最新圆锥体积公式的推导
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回忆 回忆:
我们在学习一种新的图形时,常常采用什么方法?
常采用的方法是:分一分、拼一拼
将新的图形
转化成
已学图形
你能举个例子说说吗?给你的同桌说说看。
如:梯形、三角形,平行四边形等的面积公 式是根据长方形的面积公式推导出来的
如:圆柱体体积公式是根据长方体的体积公式 推导出来的
想一想议一议
想一想。我们以前学过什么物体的体积计 算?
●长方体、正方体的体积,这学期又学习了圆柱 体体积
议一议:我们这节课要学习的圆锥体体积怎 么计算?
将圆锥体
转化成
已学过的圆柱体
请在圆锥中装满沙子或水,然后倒入 圆柱中;或在圆柱中装满沙子或水,然后 倒入圆锥中。通过实验,你发现什么?这 个实验说明什么?
圆锥
圆柱
圆锥的体积正好等于与它等底 等高的圆柱体积的三分之一
等,它们的高也相等。通过实验,我们发现在圆锥中装
满沙子或水,再倒入圆柱中刚好三次把圆柱装满;在圆
柱中装满沙子或水,再往圆锥里倒正好三次倒完 。这个
实验说明等底等高的圆锥和圆柱,圆锥的体积是圆柱的
三分之一或圆柱的体积是圆锥的3倍。
因为:圆锥的体积是圆柱的三分之一
所以:圆锥的体积=圆柱的体积×
1 3
底面积×高
何求体积V?
r= d÷2 S=∏ r 2
1
V= 3 S h
3、已知圆锥的底面周长C和高h,如
何求体积V?
r =C÷∏÷2
S=∏ r 2
1
V= 3 S h
填表:
已知条 件
圆锥底面半径2厘米,高9厘米
圆锥底面直径6厘米,高3厘米 圆锥底面周长6.28分米,高6分 米
体积 37.68立方厘米 28.26立方厘米 6.28立方分米
圆锥体积公式的推导
我们先说说圆柱和圆锥各部分的名称及特征吧:
高
侧面
底面
有无数条 展开后是长方形或正方形 有两个底面,是相等的圆形
圆柱的体积公式用字母表示是( V = s h )。
顶点 有一个顶点
侧面 展开后是扇形
高
只有一条
底面 有一个底面,是圆形
那么这个圆锥的体积又怎么求呢?
你有办法知道这个铅锤的体积吗?
圆锥的体积=
1 3
×底面积×高
百度文库
圆锥的体积计算公式用
字母表示是:V=
1 3
sh
例题: 圆锥形铅垂,底面积是45 平方厘米,高是6厘米,这个铅垂 的体积是多少立方厘米?
V= 1 sh
3
1 3
×45×6=90(立方厘米)
答:这个铅垂的体积是90立方厘米。
一、填空:
1、圆锥的体积=(
用字母表示是(V=
1 3
Ⅴ锥=13 Ⅴ柱
想一想,讨论一下:
通过刚才的实验,你发 现了什么?
圆锥的体积V等于和它等底等高 的圆柱体积的三分之一
V圆柱=sh
V=
1 3
sh
圆锥的体积等于和它等底等高 的圆柱体积的三分之一
V=
1 3
sh
我们总结一下:通过实验
和观察,你再次发现什么? 这个实验说明什么?
通过观察,我们发现图中的圆锥和圆柱的底面积相
有一根底面直径是6厘米,长是15厘米的圆 柱形钢材,要把它削成与它等底等高的圆锥形 零件。要削去钢材多少立方厘米?
15厘米
6厘米
同学们这节课 你学到了什么?下 课后给你的同学们 说一说,交流一下 吧。
结束语
谢谢大家聆听!!!
48
s
1 3
×底面积×高 h )。
),
2、圆柱体积的
1 3
与和它(等底等高)的圆
锥的体积相等。
3、一个圆柱和一个圆锥等底等高,圆柱 的体积是3立方分米,圆锥的体积是( 1 ) 立方分米。
4、一个圆锥的底面积是12平方厘米,高 是6厘米,体积是( 24 )立方厘米。
二、判断:
1、圆柱体的体积一定比圆锥体的体积大( × )
2、圆锥的体积等于和它等底等高的圆柱体积
的
1 3
。
(√ )
3、正方体、长方体、圆锥体的体积都等于底面
积×高。
(× )
4、等底等高的圆柱和圆锥,如果圆柱体的体积
是27立方米,那么圆锥的体积是9立方米.(√ )
1、已知圆锥的底面半径r和高h,如
何求体积V?
2、已知圆S=锥∏ r的2 底面直V径= d13 S和h 高h,如