实验 局部放电测量

合集下载

局部放电测量原理及方法

局部放电测量原理及方法

2 局部放电试验复合介质中的电场分布第一节局部放电特征及原理1.局部放电:是指设备绝缘系统中部分被击穿的电气放电,这种放电可以发生在导体(电极)附近,也可发生在其它位置。

2.特性:局部放电发生在电极之间,但放电并未贯穿电极。

3.原因:设备绝缘内部存在缺陷,在高电压作用下,缺陷发生重复性击穿。

4.现象:绝缘内气体的击穿,局部范围内固体或液体介质击穿,电极表面尖端放电等。

5.危害:放电能量小,短时存在不影响电气设备的绝缘强度。

长期存在将产生累积效应,使绝缘性能逐渐劣化,最后导致整个绝缘击穿。

局部放电导致绝缘劣化的原因1、局部温度升高。

在发生局部放电的气隙内,局部温度可达1000o C。

2、带电粒子高速碰撞。

3、化学腐蚀。

局部放电产生臭氧,臭氧与氮生成一氧化氮和二氧化氮,再与水蒸气反应生成硝酸。

局部放电伴随的物理现象主要物理过程:电荷转移其它方面:电能损耗、电磁辐射;超声波、光、热、新的生成物等。

伴随着电荷转移,最明显的特征是反映到试品施加电压的两端,有微弱的脉冲电压信号。

局部放电发生过程以绝缘介质中存在的气泡为例:1、工频电压施加在绝缘介质两端,气泡上承受一定的电压;2、气泡两端的电压上升到气泡的击穿电压时,则发生放电;3、放电过程使大量中性气体分子电离,变成正离子和电子或负离子,形成了大量的空间电荷。

4、局部放电产生的空间电荷在外加电场作用下迁移到气泡壁上,形成了与外加电场方向相反的内部电压,这时气泡上剩余电压是外部电压与内部电压的叠加;5、当气泡上的实际电压小于气泡的击穿电压时,局部放电停止;当气泡上的电压随外加电压的上升而上升,直到重新到达其击穿电压时,气泡再次击穿,出现第二次放电。

第一次放电第二次放电第n次放电局部放电发生与否?局部放电测量原理检测由于局部放电产生的微小电压脉冲,并计算出放电电荷量。

名词术语1.视在放电量q:是指在试品两端注入一定电荷量,使试品端电压的变化量和局部放电时端电压变化量相同。

局部放电测量

局部放电测量

局部放电 检测 ❖局放发出的电磁波 ❖ 耦合电容器检测 ❖ 介损或接地电流 ❖ 超声检测 ❖ 紫外观测 ❖油中气体、气体成分
二、理论模型
V
ca
cb cg
Va
Vg
V Cb Cb Cg
Qr
0 ir dt
(Vg
ur )Cg
CaCb Ca Cb
Qr CgVg

Cb Ca Cb
Vg ur
Z:低通滤波-----防止外回路的干扰进入测量回路 -----阻隔局放信号流向电源
二、测量阻抗
好灵敏度和准确度,无工频分量,脉冲持续时间短 RC型检测阻抗 试品发生局放时,电压变化V 检测阻抗上电压
um {q [Cm Cx (1 Cm Ck )]}exp(mt) m 1 Rm[Cm CxCk (Ck Cx )]
令:Qa
Cb Cg Cb
Qr
V
CbQr
CaCg CbCg CaCb
V
Ca
Qa C g Cb
Cg Cb
Qa C
Qr: 实际放电量 Qa: 视在放电量 C Ca CgCb (Cg Cb )
测量V和C,可求得视在放电量Qa的值 气泡放电时,一周内至少2次
10-2 局部放电的检测
局部放电时的电压波形
波形振荡,局放性质分析难
Z
um
Ck
u Cx
Zm Lm Cm
0
t
三、局部放电的校准
❖ 局放仪的刻度~视在放电量的关系
放电回路 仪器性能
❖ 校正回路 C0 0.1(Cx Ck )
Z
Z
C0
Ck
12
Cx
A
Cx
Ck
C0
A

局部放电试验

局部放电试验

局部放电试验局部放电测量指导书一、适用范围本指导书适用于电力设备在交流电压下进行局部放电试验,包括测量在某一定电压下的局部放电量、设备局部放电的起始电压和熄灭电压。

二、测量基本方法与步骤2.1试验方法:根据接线方式可分为并联法、串联法,即检测阻抗与被试品串联进行测量,称为串联法;检测阻抗与被试品并联进行测量,称为并联法,此时,需加测量用耦合电容器。

对于变压器来说,一般通过套管末屏处测量,类似并联法。

(1) 并联法:2.2试验步骤:2.2.1试验接线:应根据被试品的特点完成接线,检查试验加压回路、测量系统回路;2.2.2试验回路校准:在加压前应对测试回路中的仪器进行例行校正,以确定接入试品时测试回路的刻度系数,该系数受回路特性及试品电容量的影响。

在已校正的回路灵敏度下,观察未接通高压电源及接通高压电源后是否存在较大的干扰,如果有干扰应设法排除。

2.2.3试验前试品应按有关规定进行预处理:(1)使试品表面保持清洁、干燥,以防绝缘表面潮气或污染引起局放。

(2)在无特殊要求情况下,试验期间试品应处于环境温度。

(3)试品在前一次机械、热或电气作用以后,应静放一段时间再进行试验,以减少上述因素对本次试验结果的影响。

2.2.4测定局放起始电压和熄灭电压拆除校准装置,其他接线不变,在试验电压波形符合要求的情况下,电压从远低于预期的局放起始电压加起,按规定速度升压直至放电量达到某一规定值(一般为局放仪在测量时可观测到的设备放电)时,此时的电压即为局放起始电压。

其后电压再增加10%,然后降压直到放电量等于上述规定值,对应的电压即为局放熄灭电压。

测量时,不允许所加电压超过试品的额定耐受电压,另外,重复施加接近于它的电压也有可能损坏试品。

2.2.5测定局部放电量(1)无预加电压的测量试验时试品上的电压从较低值起逐渐增加到规定值,保持一定时间再测量局放量,然后降低电压,切断电源。

有时在电压升高、降低过程中或在规定电压下的整个试验期间测量局放量。

局部放电测试方法

局部放电测试方法

局部放电测试方法局部放电测试方法随着电力设备电压等级的提高,人们对电力设备运行可靠性提出了更加苛刻的要求。

我国近年来110kV以上的大型变压器事故中50%是属正常运行下发生匝间或段间短路造成突发事故,原因也是局部放电所致。

局部放电检测作为一种非破坏性试验,越来越得到人们的重视。

虽然局部放电一般不会引起绝缘的穿透性击穿,但可以导致电介质(特别是有机电介质)的局部损坏。

若局部放电长期存在,在一定条件下会导致绝缘劣化甚至击穿。

对电力设备进行局部放电试验,不但能够了解设备的绝缘状况,还能及时发现许多有关制造与安装方面的问题,确定绝缘故障的原因及其严重程度。

因此,高压绝缘设备都把局部放电的测量列为检查产品质量的重要指标,产品不但在出厂时要做局部放电试验,而且在投入运行之后还要经常进行测量。

对电力设备进行局部放电测试是一项重要预防性试验。

根据局部放电产生的各种物理、化学现象,如电荷的交换,发射电磁波、声波、发热、光、产生分解物等,可以有很多测量局部放电的方法。

总的来说可分为电测法和非电测法两大类,电测法包括脉冲电流法、无线电干扰法、介质损耗分析法等,非电测法包括声测法、光测法、化学检测法和红外热测法等。

一、电测法局部放电最直接的现象即引起电极间的电荷移动。

每一次局部放电都伴有一定数量的电荷通过电介质,引起试样外部电极上的电压变化。

另外,每次放电过程持续时间很短,在气隙中一次放电过程在10 ns量级;在油隙中一次放电时间也只有1μs。

根据Maxwell电磁理论,如此短持续时间的放电脉冲会产生高频的电磁信号向外辐射。

局部放电电检测法即是基于这两个原理。

常见的检测方法有脉冲电流法、无线电干扰法、介质损耗分析法等。

1.脉冲电流法脉冲电流法是一种应用最为广泛的局部放电测试方法。

脉冲电流法的基本测量回路见图3-5 。

图中C x代表试品电容,Z m(Z'm)代表测量阻抗,C k代表耦合电容,它的作用是为C x与Z m之间提供一个低阻抗的通道。

局部放电检测原理及一般试验技术

局部放电检测原理及一般试验技术
4、悬浮电位放电干扰。邻近试验回路的不接地金属物产生的感应 悬浮电位放电,也是常见的一种干扰。其特点是随试验电压升高而 增大,但其波形一般较易识别。消除的对策一是搬离,二是接地。
干扰及其进入试验回路的途径(三)
5、电晕放电和各连接处接触放电的干扰。电晕放电 产生于试验回路处于高电位的导电部分,例如试品的 法兰、金属盖帽、试验变压器、耦合电容器端部及高 压引线等尖端部分。试验回路中由于各连接处接触不 良也会产生接触放电干扰。这两种干扰的特性是随试 验电压的升高而增大。消除这种干扰是在高压端部采 用防晕措施(如防晕环等),高压引线采用无晕的导电 圆管,以及保证各连接部位的良 好接触等。
Tr—试验变压器;Cx—被试品;Ck—耦合电容器;Zm—测量阻抗; DD—检测仪;M—邻近试验回路的金属物件;UA—电源干扰; UB—接地干扰;UC—经试验回路杂散电容C耦合产生的干扰;
UD—悬浮电位放电产生的干扰;UE—高压各端部电晕放电的干扰; IA—试验变压器的放电干扰;IB—经试验回路杂散电感M耦合产生的辐
3、电晕放电---在气体中,高电压导体周围所产生的 局部放电称为电晕。如高压传输线、高压变压器等高 压电气设备,因高压接线端暴露在空气中,都有可能 产生这种局部放电。
表征局部放电的参数
视在放电电荷 放电重复率 放电的能量 放电的平均电流 放电的均方率 放电功率 局部放电起始电压 局部放电熄灭电压
通常情况下局部放电试验现场干扰的处理 的注意事项
一、要有一个好的地线系统 试验现场应该有独立的地线系统,它与建筑物
的地网是分离的,接地电阻应该尽可能小,注 意,动力电网的中性线不可连接到试验现场地。
通常情况下局部放电试验现场干扰的处理 的注意事项
二、试验回路的布线 试验回路的布线应该尽可能简洁,连接线应尽

变压器局部放电试验基础及原理

变压器局部放电试验基础及原理

变压器局部放电试验基础及原理变压器局部放电试验是对变压器进行故障预测和诊断的一种重要手段。

它能够检测变压器绝缘系统中存在的局部放电缺陷,并通过测量局部放电的特征参数,分析变压器的运行状态,判断其是否存在故障隐患,从而指导保护维修工作。

1.局部放电的基本原理:当绝缘系统中存在局部缺陷时,例如油纸绝缘中的气泡、纸质绝缘的老化、污秽、裂纹等,绝缘系统中的电场会受到扰动,导致局部放电现象的发生。

局部放电是指绝缘系统中的电场扰动下,在局部区域内,由于电离作用而发生的电子释放、电荷积累和能量释放的过程。

2.局部放电的测量方法:变压器局部放电试验采用间歇巡视法进行,即以恒定的高频高压电源作用下,通过测量局部放电脉冲的波形、幅值、相位、频率和数量等参数,来判断变压器中的绝缘质量,确定变压器的运行状态。

常用的测量方法包括放大器法、光电检测法和电力干扰法等。

3.试验装置和操作步骤:变压器局部放电试验通常需要使用高频高压电源、局放测量设备、放大器、低噪声电缆和耦合装置等。

操作时,首先需要准备试验设备和仪器,包括设置好高频高压电源的输出电压和频率,接好测量设备的连接线路。

然后,按照设定的工作模式,对不同绝缘介质进行试验,记录并分析测量数据,得出变压器的绝缘状态和运行条件。

4.结果分析与判断:根据变压器局部放电试验所得到的测量数据和曲线图,结合变压器的实际工作情况,进行数据分析和判断。

当测量数据正常时,说明变压器的绝缘系数处于良好状态;而当测量数据异常时,需要进一步分析故障原因,并采取相应的维修措施。

变压器局部放电试验是一项非常重要的变压器绝缘状态评估手段,可以及时发现变压器绝缘系统中的缺陷和隐患,提前采取相应的维护和维修措施,保证变压器的正常运行。

但需要注意的是,变压器局部放电试验时,应严格按照操作规程进行,确保检测结果的准确性和可靠性。

局部放电测试方法

局部放电测试方法

局部放电测试方法局部放电测试方法随着电力设备电压等级的提高,人们对电力设备运行可靠性提出了更加苛刻的要求。

我国近年来110kV以上的大型变压器事故中50%是属正常运行下发生匝间或段间短路造成突发事故,原因也是局部放电所致。

局部放电检测作为一种非破坏性试验,越来越得到人们的重视。

虽然局部放电一般不会引起绝缘的穿透性击穿,但可以导致电介质(特别是有机电介质)的局部损坏。

若局部放电长期存在,在一定条件下会导致绝缘劣化甚至击穿。

对电力设备进行局部放电试验,不但能够了解设备的绝缘状况,还能及时发现许多有关制造与安装方面的问题,确定绝缘故障的原因及其严重程度。

因此,高压绝缘设备都把局部放电的测量列为检查产品质量的重要指标,产品不但在出厂时要做局部放电试验,而且在投入运行之后还要经常进行测量。

对电力设备进行局部放电测试是一项重要预防性试验。

根据局部放电产生的各种物理、化学现象,如电荷的交换,发射电磁波、声波、发热、光、产生分解物等,可以有很多测量局部放电的方法。

总的来说可分为电测法和非电测法两大类,电测法包括脉冲电流法、无线电干扰法、介质损耗分析法等,非电测法包括声测法、光测法、化学检测法和红外热测法等。

一、电测法局部放电最直接的现象即引起电极间的电荷移动。

每一次局部放电都伴有一定数量的电荷通过电介质,引起试样外部电极上的电压变化。

另外,每次放电过程持续时间很短,在气隙中一次放电过程在10ns量级;在油隙中一次放电时间也只有1u s。

根据Maxwell电磁理论,如此短持续时间的放电脉冲会产生高频的电磁信号向外辐射。

局部放电电检测法即是基于这两个原理。

常见的检测方法有脉冲电流法、无线电干扰法、介质损耗分析法等。

1.脉冲电流法脉冲电流法是一种应用最为广泛的局部放电测试方法。

脉冲电流法的基本测量回路见图3-5。

图中C代表试品电容,Z(Z)代表测量阻抗,C k代表耦合电容,它的作用是为C x与Z m之间提供一个低阻抗的通道。

《国家标准》局部放电测量国家标准下-6

《国家标准》局部放电测量国家标准下-6

6.2 变压器局部放电试验 6.2.1 试验及标准国家标准GB1094-85《电力变压器》中规定的变压器局部放电试验的加压时间步骤,如图5所示。

其试验步骤为:首先试验电压升到U 2下进行测量,保持5min ;然后试验电压升到U 1,保持5s ;最后电压降到U 2下再进行测量,保持30min 。

U 1、U 2的电压值规定及允许的放电量为U U U 133==mmU U 2153=.m电压下允许放电量Q <500pC或 U U 2133=.m电压下允许放电量Q <300pC式中 U m ——设备最高工作电压。

试验前,记录所有测量电路上的背景噪声水平,其值应低于规定的视在放电量的50%。

测量应在所有分级绝缘绕组的线端进行。

对于自耦连接的一对较高电压、较低电压绕组的线端,也应同时测量,并分别用校准方波进行校准。

在电压升至U 2及由U 2再下降的过程中,应记下起始、熄灭放电电压。

在整个试验时间内应连续观察放电波形,并按一定的时间间隔记录放电量Q 。

放电量的读取,以相对稳定的最高重复脉冲为准,偶尔发生的较高的脉冲可忽略,但应作好记录备查。

整个试验期间试品不发生击穿;在U 2的第二阶段的30min 内,所有测量端子测得的放电量Q ,连续地维持在允许的限值内,并无明显地、不断地向允许的限值内增长的趋势,则试品合格。

如果放电量曾超出允许限值,但之后又下降并低于允许的限值,则试验应继续进行,直到此后30min 的期间内局部放电量不超过允许的限值,试品才合格。

利用变压器套管电容作为耦合电容C k ,并在其末屏端子对地串接测量阻抗Z k 。

6.2.2 试验基本接线变压器局部放电试验的基本原理接线,如图6所示。

图6 变压器局部放电试验的基本原理接线图(a)单相励磁基本原理接线;(b)三相励磁基本原理接线; (c)在套管抽头测量和校准接线 C b —变压器套管电容6.2.3 试验电源试验电源一般采用50Hz的倍频或其它合适的频率。

局部放电测试方法

局部放电测试方法

局部放电测试方法随着电力设备电压等级的提高,人们对电力设备运行可靠性提出了更加苛刻的要求。

我国近年来110kV以上的大型变压器事故中50%是属正常运行下发生匝间或段间短路造成突发事故,原因也是局部放电所致。

局部放电检测作为一种非破坏性试验,越来越得到人们的重视。

虽然局部放电一般不会引起绝缘的穿透性击穿,但可以导致电介质(特别是有机电介质)的局部损坏。

若局部放电长期存在,在一定条件下会导致绝缘劣化甚至击穿。

对电力设备进行局部放电试验,不但能够了解设备的绝缘状况,还能及时发现许多有关制造与安装方面的问题,确定绝缘故障的原因及其严重程度。

因此,高压绝缘设备都把局部放电的测量列为检查产品质量的重要指标,产品不但在出厂时要做局部放电试验,而且在投入运行之后还要经常进行测量。

对电力设备进行局部放电测试是一项重要预防性试验。

根据局部放电产生的各种物理、化学现象,如电荷的交换,发射电磁波、声波、发热、光、产生分解物等,可以有很多测量局部放电的方法。

总的来说可分为电测法和非电测法两大类,电测法包括脉冲电流法、无线电干扰法、介质损耗分析法等,非电测法包括声测法、光测法、化学检测法和红外热测法等。

一、电测法局部放电最直接的现象即引起电极间的电荷移动。

每一次局部放电都伴有一定数量的电荷通过电介质,引起试样外部电极上的电压变化。

另外,每次放电过程持续时间很短,在气隙中一次放电过程在10 ns量级;在油隙中一次放电时间也只有1μs。

根据Maxwell电磁理论,如此短持续时间的放电脉冲会产生高频的电磁信号向外辐射。

局部放电电检测法即是基于这两个原理。

常见的检测方法有脉冲电流法、无线电干扰法、介质损耗分析法等。

1.脉冲电流法脉冲电流法是一种应用最为广泛的局部放电测试方法。

脉冲电流法的基本测量回路见图3-5 。

图中Cx 代表试品电容,Zm(Z'm)代表测量阻抗,C k代表耦合电容,它的作用是为C x与Z m之间提供一个低阻抗的通道。

变压器感应电压试验及局部放电测量

变压器感应电压试验及局部放电测量

变压器感应电压试验及局部放电测量感应耐压试验包括短时感应耐压试验(ACSD)和长时感应耐压试验(ACLD)。

短时感应耐压试验(ACSD)用于验证变压器线端和绕组对地及对其他绕组的耐受强度以及相间和被试绕组纵绝缘的耐受强度。

长时感应耐压试验(ACLD)用于验证变压器在运行条件下无局部放电。

本实验对于保证变压器在长期工作电压下能够安全可地运行具有重要作用。

试验要求GB1094.3-2003规定,对于Um=72.5kV、额定容量为10000kV A 和Um>72.5kV的变压器在感应耐压试验(ACSD)时,一般要进行局部放电测量。

感应电压试验通常是在用变压器低压绕组端子间时间交流电压,其他绕组开路,其波形尽可能为正弦波。

为了防止实验时励磁电流过大,试验电源的频率应适当大于变压器额定的频率。

除非另有规定,当实验电源频率等于或小于2倍的额定频率时,其全电压下的试验持续时间应为60s。

当试验电源频率大于2倍的额定频率时,试验电压的持续时间为120×额定频率/试验频率(s),但不的少于15s。

试验电压值以实际测量试验电压峰值除以根号2为准。

具体试验电压值见GB1094.3-2003。

短时感应耐压试验(ACSD)对于高压绕组为全绝缘的变压器,ACSD考核的是变压器的纵绝缘和相间绝缘。

试验时应采用三相对称的交流电源,如果变压器有中性点端子,试验期间应将其接地。

变压器不带分接绕组两端之间的试验电压应尽可能接近额定电压的2倍。

对于额定容量小于10000kV A 和Um≤72.5kV的变压器在感应耐压试验(ACSD)时,一般不进行局部放电测量。

试验应在不大于规定实验电压值的1/3 电压下合闸,尽快升到试验电压,施加时间到后,将电迅速降到实验电压值的1/3一下,然后切断电源。

如果试验电压不出现突然下降,则试验合格。

对于Um=72.5kV、额定容量为10000kV A和Um>72.5kV的变压器在感应耐压试验(ACSD)时,一般要进行局部放电测量。

局部放电试验

局部放电试验

并联法试品一端接地, 检测阻抗容量可较小。
a并联法
试品一端可以不接地的 采用串联法。
b串联法
c平衡法
平衡法:将两台电容量相差不大的试品,相互作为耦合电 容并平衡抑制干扰。灵敏度略低于直测法。 仪器测得的信号Uf=Ua-Ub
检测阻抗: 测量阻抗Zm。测量阻抗是一个四端网络的元件,它可以是 电阻R 或电感L的单一元件,也可以是电阻电容并联或电阻 电感并联的RC 和RL 电路,也可以由电阻、电感、电容组 成RLC 调谐回路。 调谐回路的频率特性应与测量仪器的工作频率相匹配。测 量阻抗应具有阻止试验电源频率进入仪器的频率响应。连 接测量阻抗和测量仪器中的放大单元的连线,通常为单屏 蔽同轴电缆。 RC型频带宽、噪声大,试品电流大时阻抗上有工频分量。 RCL型对工频呈低阻抗,对放电脉冲检测灵敏度较高,频 带较窄,噪声水平较低。RCL型应用普遍。
Cn
C g Cb C g Cb
因为介质电容充电电荷q=UC C=εS/d Eg:空穴电场强度 εg:空穴介电常数 Eb:与空穴串联部分电场强度 εb: 与空穴串联部分介电常数 设qn为空穴充电电荷 Ug=qn/Cg 空穴电场强度Eg= Ug/dg=q/dgCg
Cg Cb Ua U a b Eg d g Cg Cg Cb g d b bd g
标准:GB1208-97《电流互感器》规定在电压1.2Um/√3时放 电量:交接时不大于20pC Um=1.15Un=1.15×35=40.25kV 试验加压:1.2Um/√3=1.2×40.25/1.732=27.89 kV 2.电压互感器局部放电测量回路
标准: 相对地
GB1207-97《电压互感器》
第三节 脉冲电流测量原理及方法 局部放电电测法:1.无线电干扰测量法RIV:直接耦合或 天线 RIV表 读取μv 不能直接读取放电量 2.放电能量法:放电有能量损耗 测量一个周期的放电能量 3.脉冲电流法。IEC通用方法,直接通过检测回路测量电压 脉冲,灵敏度最高。 一、 脉冲电流测量法仪器及接线 测量仪器主要有脉冲显示仪和数字分析仪。 1.测试接线:

局部放电测量原理

局部放电测量原理

局部放电测量原理
局部放电测量原理是通过检测目标物体中发生的局部放电现象来判断其绝缘性能的一种方法。

局部放电是指在绝缘材料中由于局部缺陷或电场强度过高而产生的电击穿放电现象。

测量局部放电的原理是利用局部放电产生的电磁波和声波来进行检测。

当局部放电发生时,电流会产生高频电磁波和声波,这些电磁波和声波可以通过传感器进行捕捉和测量。

传感器可以是电磁感应传感器或压电传感器。

在测量过程中,传感器会将捕捉到的电磁波和声波信号转化为相应的电信号,并将其传输给信号处理系统。

信号处理系统会对信号进行放大、滤波和分析处理,以获得有关局部放电的相关参数。

这些参数可以包括放电的能量、频率、位置和强度等。

通过测量局部放电的参数,可以评估绝缘材料的质量和性能,并及时发现和定位可能存在的缺陷。

这对于预防设备的局部放电损坏以及事故的发生具有重要的意义。

因此,局部放电测量在电力设备、变压器、发电机、绝缘子等领域中得到广泛应用。

总之,局部放电测量原理是通过检测局部放电产生的电磁波和声波来评估绝缘材料性能的一种方法。

这种测量方法具有高灵敏度、无损测量和定位准确等优点,在电力行业和高压设备检测中具有重要的应用价值。

电流互感器局部放电实验

电流互感器局部放电实验

01 Chapter了解局部放电现象0102局部放电实验主要通过施加高压电场,模拟电流互感器在实际运行中可能承受的电场强度,以检测其局部放电情况。

实验过程中,通常采用测量局部放电的电量参数(如放电电荷、放电电压等)来评估电流互感器的绝缘性能。

掌握局部放电实验原理准备实验设备包括高压电源、测量仪器(如示波器、电荷放大器等)、被安装被测电流互感器将被测电流互感器安装在实验场地中的支架上,并确保其位置加压测试测量局部放电参数分析实验结果整理实验数据掌握实验操作流程02 Chapter电流互感器高压电源测量仪器具备高灵敏度和低噪声的特性以确保测量准确性能够实时显示和记录实验数据高精度的电压和电流测量仪器其他辅助材料绝缘材料,如绝缘胶带、绝缘垫等实验操作手册和安全规范以确保实验安全实验记录表格以便记录实验数据和分析结果03 Chapter实验准备准备实验设备和材料制定实验方案和操作流程了解实验原理和目的设备安装与调试030201加压与观察数据记录与分析记录数据对记录的数据进行整理,提取有用的信息。

数据整理分析结果04 Chapter实验步骤对电流互感器进行局部放电实验,记录各个时间段、不同电压下的放电数据实验设备电流互感器、高压电源、测量仪器(如示波器、频谱分析仪)数据记录表记录实验过程中观察到的局部放电现象、放电位置、放电波形等数据实验数据记录结果分析影响因素探讨环境因素探讨环境因素如温度、湿度、气压等对局部放电的影响设备结构分析电流互感器的结构特点对局部放电的影响,如电极形状、绝缘材料等电压波形研究不同电压波形下局部放电的特点和规律,如直流电压、交流电压等05 Chapter实验前安全检查检查实验设备和电流互感器是否完好无损,特别是绝缘部分不能有损伤或老化。

检查实验场所和环境是否安全,包括地面、墙壁、天花板等,确保没有杂物或易燃物品。

检查实验人员的安全防护措施是否到位,包括穿戴合适的衣服、戴手套、戴安全帽等。

局部放电试验

局部放电试验

局部放电试验
1、测试目的与要求:
局部放电试验检测是一种非破坏性试验在导体和电缆金属屏蔽层之间施加工频电压,绝缘中的微孔、杂质、金属颗粒,内外屏蔽中破洞和凸出物等,在电锡作用下,均会产生局部放电量。

放电量常用微微库伦(pC)来表示。

对于交联聚乙烯电缆,因绝缘缺陷而导致电缆击穿的主要原因是局部放电,使绝缘在工作电压下不发生局部放电或不超过一定量的局部放电,可以保证绝缘的长期工作可靠性。

因此,为了保障电缆的可靠运行,把整盘电缆的局部放电试验列入电缆的例行试验是非常重要的,世界上几乎所有国家都有该项目的考核标准。

我国最近出版的国家标准已由原来的
1.5U0试验电压下,局放最大为20Pc,改为1.73U0,局放为10Pc。

目前国内有的制造厂内控标准局放由最大为10Pc降至为5Pc。

2、局部放电试验测试原理
绝缘中发生局部放电时,引起电、化、光、声热各种效应,利用这些效应而有多种局部放电检测方法。

目前采用最广泛的高频电脉冲方法,具有较高的灵敏度,可以测量放电量为微微库的微弱信号。

当试品上的外加电压逐渐升高,达到绝缘中气隙的放电电场强度时,气隙中就发生放电。

在试品两端引起压降△U引起了试验回路中电荷重新分配的暂态过程,高频脉冲电流在试样电容,耦合电容器及测量阻抗上造成了一微弱的放电脉冲信号。

通过放大器加以放大,然后再通过示波器将放电信号显示出来,以便观察和记录。

3、局部放电试验测试方法
试验电压应加在导电线芯和金属屏蔽之间,电缆的试验电压应平稳升高到1.2倍试验电压,但时间不得超过1min,此后,缓慢的下降到规定的试验电压,此时可测量局部放电量,之后降压至零。

局部放电的测量方法

局部放电的测量方法

局部放电的测量方法
在电力系统中,局部放电的测量方式有两种:一是停电测量;二是在线监测。

对停电测量而言:根据局部放电产生的各种物理、化学现象,人们提出了很多测量局部放电的方法,归纳起来分为两大类,一类是电测法.另一类是非电测法。

(一)电测法
这是根据局部放电产生的各种电的信息来测量的方法,目前主要有:
1.脉冲电流法
由于局部放电时产生的电荷交换,使试品两端出现脉动电压,并在试品连接的回路中出现脉冲电流,因此在回路中的检测阻抗上就可取得代表局部放电的脉冲信号,从而进行测量。

2.无线电干扰法。

由于局部放电会产生频谱很宽的脉冲信号.所以可以用无线电干扰仅测量局部放电的脉冲信号。

3.放电能量法
由于局部放电伴随着能量损耗,所以可用电桥来测量一个周期的放电能量,也可以用微处理机直接测量放电功率。

(二)非电测法
这是利用局部放电产生的各种非电信息来测定硒部放电的方法,目前主要有:
1.超声波法
利用超声波检测技术来测定局部放电产生的超声波,从而分析放电的位置和放电的程度。

2.测光法
利用光电倍增技术来测定局部放电产生的光,借此来确定放电的位置、放电的起始及其发展过程.
3.测分解(或生成)柚法
在局部放电作用下,可能有各种分解物或生成物出现,可以甩各种色谱及光谱分析来确定各种分解物或生成物,从而推断局部放电的程度。

如测定变压器油中含气的成分及数量来推断变压器中局部放电的程度等。

在上述方法中,目前普遍采甩的是脉冲电流法。

长时感应电压(带局部放电测量)试验步骤

长时感应电压(带局部放电测量)试验步骤


主变局部放电测试标准依据
主变感应耐压、局部放电测试标准依据

一、感应电压试验时,试验电压的频率应大于额定频率。当试验电压频率小于或等于2 倍额定频率时,全电压下试验时间为60s;当试验电压频率大于2倍额定频率时,全电 压下试验时间应按:120×额定频率/试验频率(s),但不少于15s 《GB 501502016》。 二、现场进行局部放电试验时,可根据环境干扰水平选择相应的仪器。当干扰较强时, 一般选用窄频带测量仪器,例如 f0=(30~200)kHz,△f=(5~15)kHz;当干扰较弱时,一般选 用宽频带测量仪器,例如f1=(10~50)kHz,f2=(70~400)kHz. f0:谐振频率, △f:频带宽度 《DL/T 417-2006》 三、在U2=1.5Um/ 或1.3Um/ 下的长时试验期间,局部放电量的连续水平不大于 500pC或300pC;在U2下,局部放电不呈现持续增加的趋势,偶然出现的较高幅的值 脉冲可以不计入;在1.1Um/ 下,视在电荷量的连续水平不大于100pC。《 GB1094.3 -2003》
测试通道的命名
测试通道更改名字
局放界面Q设置
单通道 选定频阀电荷积分选项 通道选择 多通道 选择该选项,把测量频量表现在FFT图谱中 选择合适的测量中心频率和测量带宽: 例如:250kHz/300kHz 或者:400kHz/650kHz 图形的显示区域,放电量的最大显示值与最小值 放电量与放电频次关系图的设置,全部选定 PRPD图中显示放电量统计值 全部勾选,展示PD事件、柱状图、光标 检测设置 一般设置为0
主变长时感应电压 (带局部放电测量)试验流程
冯有贤出品
目录

主变长时感应耐压操作流程

主变局部放电测试标准依据

局部放电测量

局部放电测量

局部放电测量使用说明书一、局部放电的基本概念:1.视在放电量:是指在试品两端注入一定电荷量,使试品端电压的变化量和局部放电时端电压的变化量相同。

此时注入的电荷量称为局部放电的视在放电量。

以皮库(PC)表示。

2.局部放电的几种检测方法1、测分解物法在局部放电作用下。

可能有分解物或生成物出现,可以用色谱及光谱分析来确定各种分解物或生成物,从而判断局部放电的程度。

2、电荷法测量局部放电常规的电荷法局部放电测量,是通过放电量的变化发现缺陷。

3、声测法测量局部放电测量原理与振动法相似,通过放置在外壳上的声传感器接受放电产生的超声信号,达到发现缺陷的目的。

4、高频法测量局部放电用产生的高频信号达到发现缺陷的目的。

测量频率在40MHZ---300MHZ。

5、振动法测量局部放电通过放置在外壳上的传感器接受放电产生的振动脉冲打到检测放电故障的目的3.什麽是局部放电局部放电是指电气设备在电压的作用下,绝缘结构内部的气隙、油膜或导体的边缘发生非贯穿性的放电现象。

以变压器为例:变压器绝缘结构复杂,内部发生局部放电的原因很多,如果设计不当,局部场强过高,工艺上有缺陷使绝缘中含有气泡,在运行中油质劣化分解出气泡,机械振动和热胀冷缩造成局部开裂出现气泡。

在这些情况下,在外施电压下都会发生局部放电。

一旦发生局部放电,放电就会持续发展,造成绝缘老化,严重的会造成绝缘击穿。

4.局部放电起始电压是指试验电压从不产生局部放电的较低电压逐渐增加,能观察到试品开始出现局部放电时,试品两端施加的最低电压称局部放电起始电压5.局部放电熄灭电压试品发生局部放电后,在逐渐降低外施电压的过程中,试验装置尚能观察到局部放电时,试品两端施加的最低电压称局部放电熄灭电压。

(外施电压在降低就观察不到局部放电了)二、局部放电的试验回路和测量仪器1、局部放电试验基本回路图1 局部放电测量的基本回路(a)测量阻抗与耦合电容器串联回路,(b)测量阻抗与试品串联回路,(c)平衡回路Z f–高压滤波器Cx—试品等效电容Ck--耦合电容器Zm--测量阻抗Z—调平衡元件2、试验回路选择2.1试验电压下,试品的工频电容电流超出测量阻抗Zm的允许值,或试品的接地部定接地时,可采用图1(a)试验回路2.2试验电压下,试品的工频电容电流符合测量阻抗Zm的允许值时,可采用图1(b)试验回路2.3试验电压下,图1(a)、(b)试验回路有过高的干扰信号时,可采用图1(c)试验回路3、视在放电量的校准:3.1校准的基本原理视在放电量校准的基本原理是:以幅值为U0的方波通过串接小电容C0注入试品两端,此时注入的电荷为:Q O=U0C03.2直接校准将已知电荷量Q O注入试品两端称为直接校准图2直接校准的接线3.3间接校准将已知电荷量Q O注入测量阻抗Zm两端称为间接校准图3间接校准的接线三、电力设备的局部放电试验1、电力设备的局部放电试验前对试品要求1.1本试验在所有高压绝缘试验之后进行,必要时可在耐压试验前后各进行一次。

第4章 局部放电测量的基本原理

第4章 局部放电测量的基本原理

34
m
第4章
局部放电测量的基本原理
并联法多用于试品电容较大或试品有可能被击穿的情况下,过大的工频电流不会流入检 测阻抗Zd而将Zd烧损并在测试仪器上出现过电压的危险。另外,某些试品在正常测量中无法与 地分开,只能采用并联法测量线路。 串联法多用于试品电容较小情况下,耦合电容具有滤波作用,能够抑制外部干扰,而且 测量灵敏度随Ck/Cx的增大而提高。在相同的条件下,串联法比并联法具有更高的灵敏度,这 是因为高压引线的杂散电容及试验变压器入口电容(无电源滤波器时)也被利用充当耦合电 容。另外,Ck可利用高压引线杂散电容来充当,线路更简单,可以避免过多的高压引线以降低 电晕干扰,在 220kV及更高电压等级的产品试验中多被采用。 平衡法需要两个相似的试品,其中一个充当耦合电容。它是利用电桥平衡的原理将外来 的干扰消除掉,因而抗干扰能力强。电桥平衡的条件与频率有关,只有当Cx1与CBx2的电容量 掉某一固定频率的干扰。在实际测量中,试品电容的变化范围很大,若要找到与每个试品有 相同条件的电容是困难的。因而,往往采用两个同类试品作为电桥的两个高压臂以满足平衡 条件。 和介质损失角 tgδ 完全相等,才有可能完全平衡消除掉各种频率的外来干扰;否则,只能消除
∞ 0


∫ u d (t )dt = C v 1 − α d / α f
36
q
1
⎛ 1 1 ⎞ ⎟= q ⎜ − ⎜ α d α f ⎟ C vα d ⎠ ⎝
(4.6)
第4章
局部放电测量的基本原理
可见ud(t)对时间的积分值与 α f 无关,与q成正比,而低频放大器(带滤波器的放大器)就 是一种积分式放大系统。
q 0 = U 0 C 0 ,这时在局部放电检测仪的显示器上可测得脉冲高度 H 0 ,则放电量的分度系数为 K 0 = q0 H 0

高电压技术:4.3 局部放电的测量

高电压技术:4.3 局部放电的测量

2.局部放电的危害:
局部放电产生的电子、离子往复冲击绝缘物,使绝缘物分 解、破坏,并且绝缘物分解出来的导电性和化学性物质, 使绝缘进一步氧化、腐蚀;
局部放电产生的电荷使电场畸变,进一步加强局部放电的 强度;
局部放电使该处产生高温,导致绝缘物老化、劣化 如果局部放电是在工作电压下产生的,那么这种放电会在
➢ 局部放电的测量仪器 (显示单元)
传统方法用示波器观测 数字化测试:计算机辅助测试系统与传统的测
试方法相结合,作出各种谱图和统计量,来分 析局部放电情况。
测量
局放图形
特征提取
识别分类
识别结果
数据库
局部放电测试仪
6.局部放电测量仪
二、模拟局部放电测量仪
干扰判别式局部放电检测仪
6.局部放电测量仪
➢膜纸绝缘介质中,常用高性能液体色谱分析法 (HPLC)判断介质老化情况。 ➢在电力变压器中,油色谱分析(DGA)方法是一 种简单、经济、有效的变压器在线监测方法。
※测量时的注意事项
为了抑制内部干扰与外部干扰,主要措施有: 1.选用没有内部放电的试验变压器和耦合电容器, 外露电极应有合适的屏蔽罩。 2.选用抗干扰能力强的测量回路。 3.对测量线路进行屏蔽。有条件时可将整个试验回 路置于屏蔽室内进行测量。 4.试验电源最好采用独立电源。
W
1 2
qUi
Ui 为气泡放电时试品上的电压,即局部放电起始电压
放电能量W 推导:

Cg
Cg
CaCb Ca Cb
则脉冲电流: 放电能量:
i
Cg
dug dt
W
ugidt Cg
Ur Us
ug
dug
1 2
Cg

电力设备局部放电现场测量导则

电力设备局部放电现场测量导则

中华人民共和国电力行业标准DL 417—91电力设备局部放电现场测量导则中华人民共和国能源部1991-12-02批准1992-04-01实施1 主题内容本导则主题内容是依据国家标准GB7354—87《局部放电测量》规定的要求,结合现场实际情况,推荐电气法局部放电试验的测量方法、测量仪器和校准方法;规定有关通用的试验程序;给出识别试品内部放电和外界干扰脉冲的图谱与说明。

2 适用范围本导则主要适用于在变电所现场或试验室条件下,利用交流电压下的脉冲电流法测量变压器、互感器、套管、耦合电容器及固体绝缘结构的局部放电。

其测定的物理量为:a.测定电力设备在某一规定电压下的局部放电量;b.测定电力设备局部放电的起始电压和熄灭电压。

对长电缆的局部放电试验,本导则不作介绍。

在以本导则进行测量时,根据不同试品,应参照有关电力设备的国家标准或行业标准中的有关条款规定。

3 名词术语3.1 局部放电1)是指设备绝缘系统中部分被击穿的电气放电,这种放电可以发生在导体(电极)附近,也可发生在其它位置。

注:1)导体(电极)周围气体中的局部放电有时称为“电晕”,这一名词不适用于其它形式的局部放电。

“游离”是指原子与分子等等形式的电离,通常不应把“游离”这一广义性名词用来表示局部放电。

3.2 视在放电量1)q是指在试品两端注入一定电荷量,使试品端电压的变化量和局部放电时端电压变化量相同。

此时注入的电荷量即称为局部放电的视在放电量,以皮库(pC)表示。

注:1)实际上,视在放电量与试品实际点的放电量并不相等,后者不能直接测得。

试品放电引起的电流脉冲在测量阻抗端子上所产生的电压波形可能不同于注入脉冲引起的波形,但通常可以认为这二个量在测量仪器上读到的响应值相等。

3.3 局部放电起始电压U i是指试验电压从不产生局部放电的较低电压逐渐增加时,在试验中局部放电量超过某一规定值时的最低电压值。

3.4 局部放电熄灭电压U e是指试验电压从超过局部放电起始电压的较高值逐渐下降时,在试验中局部放电量小于某一规定值时的最高电压值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验4局部放电测量0 实验目的了解局部放电产生的基本原理。

学习局部放电的测量方法及仪器的正确使用。

分析局部放电起始电压、视在放电量与设备绝缘质量的关系。

了解各种局部放电信号的特点。

1.局部放电的产生和实验原理电气设备绝缘内部常存在一些弱点,例如在一些浇注、挤制或层绕绝缘内部容易出现气隙或气泡。

空气的击穿场强和介电常数都比固体介质小,因此在外施电压作用下这些气隙或气泡会首先发生放电,这就是电气设备的局部放电。

放电的能量很弱,不会影响到设备的短时绝缘强度,但日积月累会引起绝缘老化,最后可能导致整个绝缘在正常电压下发生击穿。

近数十年来,国内外已经越来越重视对设备进行局部放电测量。

图1固体介质内部气隙放电的三电容模型(a)通过气孔的介质剖面(b)等效电路局部放电的产生机理常用三电容模型来解释,如图1所示。

图中C g代表气隙的电容;C b代表与C g串联部分的介质电容;C a代表其余部分的电容。

若在电极上施加交流电压u t,则出现在C g上的电压为u g,即:u= [C b/(C g+C b)]u t= [C b/(C g+C b)]U max sinωt(1)g因为气隙很小,C g比C b大很多,故u g比u t小很多。

局部放电时气隙中的电压和电流变化如图2所示。

u随u t升高,当u t上升到u s(起始放电电压),u g达到C g的放电电压U g时,C g气隙放g电,于是C g上的电压很快从U g下降到U r,放电熄灭,则:U= [C b/(C g+C b)]u cr式中u c为相应的外施电压;U r为残余电压(0≤U r<U g)。

放电后在C g上重建的电压将随着外施电压的升高呈上升趋势,从U r开始,当上升至U g时又发生放电,如此周而复始。

此时通过C g在外回路有一脉冲电流i如图2(b)所示,它是检测局部放电的主要依据。

可以推导出回路真实放电量q r≈U g C g,但无法测得。

而介质两端的电荷变化量q = [ C b /( C g+ C b)] q r却是可以测得的,称为视在放电量,一般用它来表示电气设备的局部放电量。

图2局部放电时气隙中的电压(a)和电流(b)的变化2.局部放电的测量方法高压设备局部放电的测量主要是将局部放电的微弱信号检出,然后加以放大并用示波器或数据采集仪等设备进行显示和定量。

检测方法可分为电的和非电的两类。

长期采用的是测量电脉冲的方法,即所谓的脉冲电流法。

基本的测试回路如图3所示。

图3脉冲电流法的局部放电检测回路(a)并联法(b)串联法(c)平衡法主要包括并联法、串联法和平衡法。

图中S是电源即试验变压器,除长电缆和带绕组的试品外,一般情况下试品均可看作是集中参数的电容C x。

C k为耦合电容,Zm为检测阻抗。

测量参数包括:用传统的局部放电测试仪测量放电起始电压、熄灭电压和视在放电量。

有条件时可以用数字式的数据采集仪测量放电次数、放电相位和放电量。

3.局部放电的标定在指示仪表上测得的脉冲高度是与试品的视在放电量成比例的,但是具体的比例系数却不是固定的,它与回路及仪器本身的性能有关,为此必须进行回路灵敏度系数的校正。

图4是并联法进行标定的示意图用一幅值为U0的方波发生器G串联一小的已知电容C0构成与C x并联的有源支路来模拟C x上发生的局部放电。

分析可知当C0<<C x+(C k C m)/(C k+C m)时,注入C x的电荷为q0=U0C0。

此时如果在局部放电测试仪上测得标定脉冲高度为H0,则放电量的刻度因子为:K c=q0/ H0(pC/格)视在放电量校准器视在放电量校准器是一标准电量发生器,是测量局部放电时必备的仪器,它的性能参数直接关系到测试结果的准确性。

视在放电量校准器由校准脉冲电压发生器和校准电容串联组成。

试验前它以输出某固定电量加之试品两端,模拟该试品在此电量下放电时局部放电测试仪的响应,此时调整刻度系数,确定局部放电检测仪的量程,以便在试验时测量该试品在额定电压下的视在放电量。

因该放电量时以标准电量发生器比较后间接测出,而非直接测出,故此放电量称为“视在放电量”。

JZF-10型校正电量发生器是一种小型的可充电电池供电的视在放电量校准器,它可以分别以四种放电量向试品两端注入z左右的校正脉冲,可用于先校准后试验的局放试验中,适合于国际电工委员会IEC-270所推荐的任何一种试验电路。

4.实验设备测试设备①TCD-9302 局部放电检测仪②. 视在放电量器校准器(JZF-10校正电量发生器)③. LB系列工频、中频滤波器④.无局放耦合电容系列⑤. YDTW无局放试验变压器系列.⑥. 工频试验控制台试品(测试对象):电流互感器,变压器,含有气泡的绝缘板等5线路图图5为实验接线图。

图5局部放电实验接线图其中测试仪为传统的局部放电测试仪或者数字式局部放电数据采集系统。

Zm为检测阻抗,T1为调压器,T2为试验变压器,R为保护水阻,C x为试品,C k为耦合电容。

同时还可以通过非电接触的方式(磁耦合)的方式来检测放电脉冲,这就是在线监测的原理。

6 试验操作步骤6-1.按图5所示接好线路;6-2. 在试品C x两端并联上方波发生器,对实验回路进行灵敏度系数的校正。

(注意此时不接高压。

)选择50PC标准脉冲进行校准;①首先检查JZF-10校正脉冲发生器的电池电压,如面板上电压表指示,在8V以上方能正常工作;②用视在放电量校准器(JZF-10校正脉冲发生器)的输出接于试品两端,红端接高压端(引线尽可能短,以防干扰),黑端接低压端,调节其输出放电量,将校正电量开关置于5、10、50、100、500中任何合适一档即可校正,例如50PC,频率可在z附近调节;③调节放大器增益粗调及增益细调旋钮,使放电量表指示满度。

此时放电量表指示满度即100%表示50PC的放电量,注意此时增益细调旋钮位置不可再动。

测量盒应尽量靠近试品高压端。

④校准完毕后,拆除视在放电量校准器的连线,并关断其电源,防止高压损坏校准器。

6-3 局部放电测试仪设置①仪器开机预热5分钟;②预热同时对有关开关进行操作,“标准-扩展-直线”开关置于标准;③放大器频带f L、f H分别置20KHz,300KHz,放大器增益粗调置3档,细调置中间位置,切不可一开始将粗调开关置最高档;④根据不同频率的试验电源选择电源频率,以便观察合适的椭圆。

电流互感器测试选用频率为 50Hz的试验电源;⑤椭圆旋转可不作调节。

窗开关打在关位置,以后根据干扰出现的相位可开窗适当调旋转,根据干扰情况调窗宽、位置,使干扰在门窗之外,使局部信号在窗上,以便读取放电的数值;⑥线性、对数开关置于线性位置。

6-4.接通高压试验回路的电源,逐步升高电压至规定电压,时刻注视PC表指示,此时放电量表的读数表示试品放电量的大小,如指示在80%,则表示试品视在放电量为50×80%=40PC。

若此时试品放电量刚大于100%即超过满度,应立即将放大器增益粗调由原来的“3”切换到“2”档,此时放电量表100%,则表示500PC,假如此时放电量指示80%,由试品放电量为500×80%=400PC。

若此时试品放电量小于10%:a. 应将放大器粗调由“3”档改至“4”档,此时放电量表100%则表示5PC,假如此时放电量表指示80%,则试品视在放电量为5×80%=4PC。

b.将仪器面板上对数、线性开关切换至对数位置,因对数刻度10%以下分辨率高,可直接读出对数刻度。

6-5 旋转“椭圆旋转”开关使椭圆转到预期的放电最利于观察之处。

通常这个位置是零标脉冲分别处于椭圆上部左侧及下部右侧之处;6-6 连续升高电压,注意第一次出现持续放电,当放电量超过规定的最低值时的电压即为局部放电起始电压。

;6-7 若有干扰信号在放电脉冲附近,可以用窗宽和窗位置将干信号扰拒之窗外,即合扰窗开关,用一个或两个时间窗并用窗宽、窗位置来改变椭圆上加亮区域的宽度与位置,使其避开干扰脉冲,这样,放电量表的指示值只表示放电脉冲的大小,而不表示干扰信号的值,另外也可以改变频带的方法来提高抗干扰能力;6-8局部放电的观测观察典型的电晕放电的波形,记录波形特点。

时间窗(门单元)时间窗是为防止大于局部放电的干扰信号进入峰值检波电路而设计的一种电路装置。

时间窗的工作原理是把椭圆扫描时基分成导通(加亮区域)和截止(未加亮区域)两部分,通过改变时间窗的位置和宽度将放电脉冲置于导通(加亮区域),干扰脉冲置于截止(未加亮区域),此时仪表读数即为放电脉冲数值,而干扰则不论大小,皆不会影响放电脉冲数值。

若此时两个时间窗同时关闭,则仪表读数为整个椭圆上脉冲之峰值。

7 互感器局部放电测量的试验电压①试验电压应在不大于1/3规定测量电压下接通电源,再开始缓慢均匀上升到预加电压保持10秒后,降到规定测量电压,保持1分钟以上,再读取放电量;最后降到1/3测量电压以下,方能切除电源。

②预加电压=试品耐压值×,互感器局部放电测量试验预加电压=Um×=预加电压下椭圆放电明显③局部放电测量电压一般为Um/√3的倍数,互感器为~倍,互感器局部放电测量电压=Um/√3=局部放电测量电压下,持续时间几分钟,测局部放电量;6 注意事项①. 在试验开始加压以前,试验人员必须详细而全面地检查一遍线路,以免线路接错。

测试仪器处的接地线是否与接地体牢固连接,若连接不牢或在准备工作时掐头去尾线被脚踢断,这将可能引起人身和设备事故;②.对于连接线应避免将尖端暴露在外,防止尖端电晕放电,尤其对于电压等级较高的局部放电试验,必要时要加粗高压连接线及加装防电晕罩,减小因场强过高引起的电晕放电。

屏蔽罩不能与试品的瓷裙相接触;③. 一般情况下,在试验过程中,被试品在耐压、预升压时局部放电量都比正常值大很多,此时仪器的仪表必然会超出满刻度。

为防止仪器损坏,应将仪器的增益粗调旋钮逆时针旋转一档或更多档,以不超出满刻度为标准。

当电压降至测量电压时,再将增益粗调开关顺时针旋转一档或更多档,以便记录测量值;④.校正电量发生器校正完毕后,一定要从高压端脱离,并关闭电源开关,且仪器的增益细调旋钮不可再调,在标定时仪器放大器旋钮的位置要与测量时保持一致。

校正电量发生器使用后及时将调节电荷量的波段开关旋在关位置。

⑤.因增益粗调开关每相邻两档之间的关系是十倍,且档位有指示,故升压后根据放电量大小,可选择合适量程。

逆时针旋转时,每降一档量程扩大十倍;反之,顺时针时,量程缩小十倍;⑥.升压过程一定要缓慢,同时监视局放仪的输出;⑦.读取视在放电量值时应以重复出现的、稳定的最高脉冲信号计算视在放电量。

真正的局放信号具有一定的对称性和周期性,偶而出现的较高的脉冲可以忽略。

⑧试验完毕后,应对整个测试系统再进行一次复查校正,验证是否与试验前所校正出的刻度系数相等,以免测试仪器或其它环节在试验过程中发生故障而使测试结果不对。

相关文档
最新文档