平行四边形全章知识点
青岛版九数上章节知识点
第一章《特殊四边形》一、平行四边形1、定义:的四边形叫做平行四边形。
2、性质:①平行四边形的对边②平行四边形的对边③平行四边形的对角④平行四边形的邻角⑤平行四边形的两条对角线⑥平行四边形是,对称中心是3、判定:①一组对边的四边形是平行四边形②两组对边的四边形是平行四边形③两组对边的四边形是平行四边形④两条对角线的四边形是平行四边形4、常用结论:①平行四边形的两条对角线把它分成了四个的小三角形(等底等高),分成了四对。
②平行线间的处处相等③任意两个全等三角形都可以拼成一个④四个内角度数比可以为a:b:a:b二、菱形1、定义:的平行四边形叫做菱形2、性质:①具有的一切性质②菱形的四条边③菱形的两条对角线④菱形的每一条对角线⑤菱形是,也是,对称轴是所在的直线⑥菱形面积等于底乘以高,也等于3、判定:①的平行四边形是菱形②的四边形是菱形③的平行四边形是菱形4、常用结论:①直角三角形中,等于斜边的平方②直角三角形中,30度的角所对的直角边是③如果22+12=(√5)2,那么以2、1、√5为边的三角形是三、矩形1、定义:的平行四边形叫做矩形2、性质:①具有的一切性质②矩形四个角都是③矩形的两条对角线且相等④矩形是,也是轴对称图形,对称轴是的垂直平分线3.判定:①的平行四边形是矩形②的平行四边形是矩形4、常用结论:直角三角形等于斜边长的一半四、正方形:1、定义:的矩形叫做正方形2、性质:正方形具有、、的一切性质边:都相等且对边平行角:都是直角对角线:对角线互相且相等3、判定:①一组邻边相等的是正方形②的矩形是正方形③的菱形是正方形④对角线相等的是正方形五、梯形和等腰梯形1、定义:梯形:一组对边而另一组对边的四边形叫做梯形。
等腰梯形:相等的梯形叫做等腰梯形2、性质:①等腰梯形的两个内角相等②等腰梯形相等。
③等腰梯形是图形④四个内角度数比可以是a:b:b:a3、判定:①两腰相等的梯形是。
②同一底上的两个内角的梯形是等腰梯形4、常见辅助线:①作高(得平行四边形和两个全等三角形)②平移一条对角线(得平行四边形)③延长两腰(得等腰三角形)④平移一腰(得平行四边形和等腰三角形)⑤延长一条底边(等积变形,得全等三角形)六、中位线定理:1、三角形的中位线定义:连接三角形的线段叫做三角形的中位线。
第十八章平行四边形
平行四边形知识要求:1、掌握平行四边形、菱形、矩形、正方形的性质和判定;2、结合图形性质进行相关的角度和线段的计算。
3、结合几何图形证明。
知识重点:四边形性质的运用和判定是本章的重点。
知识难点:四边形性质的运用和判定是本章的难点。
考点:结合图形性质进行相关的角度和线段的计算及判定是考试的重点对象。
知识点:一、平行四边形1、定义:两组对边分别平行的四边形是平行四边形.符号:“”2、性质:对边相等、对角相等、对角线互相平分边:对边相等、平行角:对角相等、邻角互补对角线:平分周长:邻边之和*2面积:底*高平行四边形是中心对称图形,两条对角线的交点是对称中心例题1.已知平行四边形ABCD中,∠B=5∠A,则∠D= .例题2如图,在□ABCD中,已知AD=8cm, AB=6cm, DE平分∠ADC交BC边于点E,则BE等于()A.2cm B.4cm C.6cm D.8cm例题3如图,平行四边形ABCD的对角线AC、BD相交于点O,下列结论不正确的是()A.DC∥AB B.OA=OC C.AD=BC D.DB平分∠ADCEBAFCD3、判定:边: 两组对边分别平行的四边形是平行四边形 两组对边分别相等的四边形是平行四边形 一组对边平行且相等的四边形是平行四边形 角: 两组对角分别相等的四边形是平行四边形 对角线:两条对角线互相平分的四边形是平行四边形例题4. 在四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四组条件:① AB ∥CD ,A D ∥BC ;②AB =CD ,AD =BC ;③AO =CO ,BO =DO ;④AB ∥CD ,AD =BC .其中,一定能判定四边形ABCD 是平行四边形的条件共有 ( ) A .1组 B .2组 C .3组 D .4组例题5如图,在等边三角形ABC 中,BC=6cm,射线AG ∥BC ,点E 从点A 出发沿射线AG 以1cm/s 的速度运动,点F 从点B 出发沿射线BC 以2cm/s 的速度运动.如果点E 、F 同时出发,设运动时间为t(s)当t= s 时,以A 、C 、E 、F 为顶点四边形是平行四边形.例题6.如图,在四边形ABCD 中,E 是BC 边的中点,连结DE 并延长,交AB 的延长线于F 点,AB BF =.添加一个条件,使四边形ABCD 是平行四边形.你认为下面四个条件中可选择的是( )A .AD BC =B .CD BF =C .A C ∠=∠D .F CDE ∠=∠ 例题7如图,EF ,是四边形ABCD 的对角线AC 上两点, AF CE DF BE DF BE ==,,∥. 求证:(1)AFD CEB △≌△. (2)四边形ABCD 是平行四边形.4、三角形的中位线:三角形的中位线平行与第三边,且等于第三边的一半. (与中线区别)例题8如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,∠A =50°,∠ADE =60°,则∠C 的度数为 ( )A B DE F CA.50°B.60°C.70°D.80°例题9一个周长为12cm的三角形,三条中位线围成的三角形周长是cm.二、菱形1、定义:有一组邻边相等的平行四边形叫做菱形.2、性质:对边相等、对角相等、对角线互相垂直平分且平分对角边:四边相等、对边平行角:对角相等、邻角互补对角线:垂直平分、平分对角周长:边长*4面积:对角线乘积的一半(底*高)菱形是中心对称图形,两条对角线的交点是对称中心,也是轴对称图形。
北师大版八年级下册数学第六章平行四边形全章教案
-平行四边形性质的推理:对于初学者来说,理解平行四边形性质背后的推理过程可能存在困难,如对角相等、对角线互相平分等。
-特殊平行四边形的判定:学生可能难以区分矩形、菱形、正方形之间的判定条件,特别是它们之间的关系。
-面积公式的运用:学生在运用面积公式进行计算时,可能会对公式的选择和应用场景产生混淆。
-实际问题的解决:将数学知识应用于实际问题时,学生可能难以找到合适的数学模型,从而无法解决问题。
举例:针对难点内容,教师可以通过以下方法帮助学生突破:
-设计具有启发性的问题,引导学生通过观察、猜想、验证等方式,探索平行四边形的性质。
-使用多媒体教学资源,如动画、图片等,直观地展示特殊平行四边形的判定方法和性质。
3.平行四边形的面积
-平行四边形面积公式
-矩形、菱形、正方形面积公式的推导与应用
4.实际应用
-利用平行四边形的性质解决实际问题
-在实际情境中识别和应用特殊平行四边形
5.探究活动
-探索平行四边形的性质
-体验特殊平行四边形的特征与应用
本章内容旨在帮助学生掌握平行四边形的性质与判定,理解特殊平行四边形之间的关系,并能运用相关知识解决实际问题。通过探究活动,培养学生的观察、分析、推理能力和团队合作精神。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平行四边形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
第18章平行四边形全章专题讲座
第18章平行四边形及特殊平行四边形的判定一、平行四边形的判定1.判断题:(1)相邻的两个角都互补的四边形是平行四边形;()(2)两组对角分别相等的四边形是平行四边形;()(3)一组对边平行,另一组对边相等的四边形是平行四边形;()(4)一组对边平行且相等的四边形是平行四边形;()(5)对角线相等的四边形是平行四边形;()(6)对角线互相平分的四边形是平行四边形.()2. 能判定四边形ABCD为平行四边形的题设是()(A)AB∥CD,AD=BC (B)AB=CD,AD=BC(C)∠A=∠B,∠C=∠D(D)AB=AD,CB=CD3.下列命题:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线互相平分的四边形是平行四边形;③在四边形ABCD中,AB=AD,BC=DC,那么这个四边形ABCD是平行四边形;④一组对边相等,一组对角相等的四边形是平行四边形.其中正确命题的个数是()A.0个B. 1个C. 3个D. 4个4.已知:如图,ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.5.已知:如图,ABCD中,E、F分别是AC上两点,且BE⊥AC于E,DF⊥AC于F求证:四边形BEDF是平行四边形.6.已知:如图,在ABCD中,AE、CF分别是∠DAB、∠BCD的平分线.求证:四边形AFCE 是平行四边形.7. 在四边形ABCD中,(1)AB∥CD;(2)AD∥BC;(3)AD=BC;(4)AO=OC;(5)DO=BO;(6)AB=CD.选择两个条件,能判定四边形ABCD是平行四边形的共有________对.(共有9对)8.已知:如图 ABCD的对角线AC、BD交于点O,E、F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.9. 如图所示,BD 是ABCD 的对角线,AE ⊥BD 于E ,CF ⊥BD 于F ,求证:四边形AECF 为平行四边形.10. 已知:如图,△ABC ,BD 平分∠ABC ,DE ∥BC ,EF ∥BC , 求证:BE =CF11.在ABCD 中,AB=2,BC=6,∠ABC=60°,P 点是AD 上一动点,求△PBC 的面积。
人教版初中八年级数学下册第十八章《平行四边形》知识点(含答案解析)
一、选择题1.如图,ABC 中,//DE BC ,//EF AB ,要判定四边形DBFE 是菱形,可添加的条件是( )A .BD EF =B .AD BD =C .BE AC ⊥D .BE 平分ABC ∠ 2.如图,在ABC ∆中,D 是AB 上一点,,AD AC AE CD =⊥于点E ,点F 是BC 的中点,若10BD =,则EF 的长为( )A .8B .6C .5D .43.在平面直角坐标系中,长方形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA =3,OB =4,D 为边OB 的中点,若E 为x 轴上的一个动点,当△CDE 的周长最小时,求点E 的坐标( )A .(一3,0)B .(3,0)C .(0,0)D .(1,0) 4.如图,在ABCD 中,对角线AC ,BD 相交于点O ,E 、F 是对角线AC 上的两点,给出下列四个条件,其中不能判定四边形DEBF 是平行四边形的有( )A .AE CF =B .DE BF =C .ADE CBF ∠=∠D .ABE CDF ∠=∠ 5.如图,在平行四边形ABCD 中,对角线,AC BD 交于点O ,2BD AD =,E ,F ,G 分别是,,OA OB CD 的中点,EG 交FD 于点H .下列结论:①ED CA ⊥;②EF EG =;③12EH EG =;成立的个数有( )A .3个B .2个C .1个D .0个6.四边形ABCD 中,对角线AC BD 、交于点O .给出下列四组条件:①AB ∥CD ,AD ∥BC ;②AB CD =,AD BC =;③AO CO =,BO DO =;④AB ∥CD ,AD BC =.其中一定能判定这个四边形是平行四边形的条件共有( )A .1组;B .2组;C .3组;D .4组.7.如图,已知ABC ∆的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4,BC CF =四边形DCFE 是平行四边形,则图中阴影部分的面积为( )A .6B .8C .3D .48.如图,ABCD 的对角线AC BD 、交于点,O DE 平分ADC ∠交AB 于点,60,E BCD ∠=︒12AD AB =,连接OE .下列结论:①ABCD S AD BD =⋅;②DB 平分CDE ∠;③AO DE =;④OE 垂直平分BD .其中正确的个数有( )A .1个B .2个C .3个D .4个9.矩形ABCD 与ECFG 如图放置,点B ,C ,F 共线,点C ,E ,D 共线,连接AG ,取AG 的中点H ,连接EH .若4AB CF ==,2BC CE ==,则EH =( )A .2B .2C .3D .510.如图,在平行四边形ABCD 中,点F 是AB 的中点,连接DF 并延长,交CB 的延长线于点E ,连接AE .添加一个条件,使四边形AEBD 是菱形,这个条件是( )A .BAD BDA ∠=∠B .AB DE =C .DF EF =D .DE 平分ADB ∠11.在平面直角坐标系中,点A ,B ,C 的坐标分别为()5,0,()1,3--,()2,5-,当四边形ABCD 是平行四边形时,点D 的坐标为( )A .()8,2-B .()7,3-C .()8,3-D .()14,0 12.下列结论中,菱形具有而矩形不一定具有的性质是( ) A .对角线相等 B .对角线互相平分 C .对角线互相垂直 D .对边相等且平行 13.如图,在△ABC 中,AB=BC ,∠ABC=90°,BM 是AC 边的中线,点D ,E 分别在边AC 和BC 上,DB=DE ,EF ⊥AC 于点F ,则以下结论;①∠DBM=∠CDE ;②BN=DN ;③AC=2DF ;④S BDE ∆﹤S BMFE 四边形其中正确的结论是( )A .①②③B .②③④C .①②④D .①③14.如图,在平行四边形ABCD 中,DE 平分ADC ∠,6AD =,2BE =,则平行四边形ABCD 的周长是( )A .16B .14C .20D .2415.如图,在矩形纸片ABCD 中,BC a =,将矩形纸片翻折,使点C 恰好落在对角线交点O 处,折痕为BE ,点E 在边CD 上,则CE 的长为( )A .12aB .25aC .32aD .33a 二、填空题16.如图,在平行四边形ABCD 中,10,AB BAD =∠的平分线与BC 的延长线交于点E 、与DC 交于点F ,且点F 为边DC 的中点,ADC ∠的平分线交AB 于点M ,交AE 于点N ,连接DE .若6DM =,则DE 的长为_______.17.如图,在平行四边形ABCD 中,2AD CD =,F 是AD 的中点,CE AB ⊥,垂足E 在线段AB 上.下列结论①DCF ECF ∠=∠;②EF CF =;③3DFE AEF ∠=∠;④2BEC CEF S S <中,一定成立的是_________.(请填序号)18.如图,在边长为8厘米的正方形ABCD 中,动点P 在线段AB 上以2厘米/秒的速度由A 点向B 点运动,同时动点Q 在线段BC 上以1厘米/秒的速度由C 点向B 点运动,当点P 到达点B 时整个运动过程立即停止.设运动时间为1秒,当AQ DP ⊥时,t 的值为______.19.菱形ABCD 有一个内角是60°,它的边长是2,则此菱形的对角线AC 长为_________.20.如图,,E F 分别是ABCD 的边,AD BC 上的点.8,60,EF DEF =∠=︒将EFCD 四边形沿EF 翻折,得到四边形',EFCD ED '交BC 于点,G 则GEF △的周长为________.21.已知梯形的上底长是5cm ,中位线长是7cm ,那么下底长是_____cm .22.如图,在正八边形ABCDEFGH 中,AE 是对角线,则EAB ∠的度数是__________.23.如图,菱形ABCD 的对角线相交于点O ,AC =12,BD =16,点P 为边BC 上一点,且P 不与写B 、C 重合.过P 作PE ⊥AC 于E ,PF ⊥BD 于F ,连结EF ,则EF 的最小值等于__________.24.如图,点D 、E 分别是边AB 、AC 上的点,已知点F 、G 、H 分别是DE 、BE 、BC 的中点,连接FG 、GH 、FH ,若BD =8,CE =6,∠FGH =90°,则FH 长为____.25.如图,平面直角坐标系中,已知点()9,9A ,点B 、C 分别在y 轴、x 轴上,AB AC ⊥且AB AC =,若B 点坐标为()0,a ,则OC =______(用含a 的代数式表示).26.如图所示,在ABCD 中,AC 与BD 相交于点O ,若DAC EAC ∠=∠,4AE =,3AO =,则AEC S ∆的面积为____.三、解答题27.在Rt ABC 中,90ACB ∠=︒,点D 是AB 的中点,点E 是直线BC 上一点(不与点B ,C 重合),连结CD ,DE .(1)如图①若90CDE ∠=︒,求证:A E ∠=∠.②若BD 平分CDE ∠,且24E ∠=︒,求A ∠的度数.(2)设()45A αα∠=>︒,DEC β∠=,若CD CE =,求β关于α的函数关系式,并说明理由.28.如图,已知在Rt ABC ∆中,90,ACB CD ∠=︒是斜边AB 上的中线,点E 是边BC 延长线上一点,连结,AE DE 、过点C 作CF DE ⊥于点F ,且DF EF =.(1)求证:AD CE =.(2)若5,6AD AC ==,求BDE ∆的面积.29.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,∠ACB =∠ADB =90°,M 为边AB 的中点,连接MC ,MD .(1)求证:MC =MD :(2)若△MCD 是等边三角形,求∠AOB 的度数.30.如图1,创建文明城市期间,路边设立了一块宣传牌,图2为从此场景中抽象出的数学模型,宣传牌(AB )顶端有一根绳子(AC ),自然垂下后,绳子底端离地面还有0.7m (即0.7BC =),工作人员将绳子底端拉到离宣传牌3m 处(即点E 到AB 的距离为3m ),绳子正好拉直,已知工作人员身高(DE )为1.7m ,求宣传牌(AB )的高度.。
八年级数学下册 第18章 平行四边形 18.2 平行四边形的判定第1课时课件 华东师大版
2.(2013·郴州中考)如图,已知BE∥DF,∠ADF=∠CBE,AF=CE. 求证:四边形DEBF是平行四边形.
【证明】因为BE∥DF,所以∠AFD=∠CEB, 又因为∠ADF=∠CBE,AF=CE, 所以△ADF≌△CBE,所以DF=BE. 又BE∥DF, 所以四边形DEBF是平行四边形.
3.如图,点B,E,C,F在一条直线上,AB=DE,∠B=∠DEF, BE=CF.
求证:(1)△ABC≌△DEF. (2)四边形ABED是平行四边形.
【证明】(1)∵BE=CF,∴BE+EC=CF+EC,即BC=EF. 又∵∠B=∠DEF,AB=DE, ∴△ABC≌△DEF. (2)∵∠B=∠DEF,∴AB∥DE. ∵AB=DE,∴四边形ABED是平行四边形.
【总结提升】从边的角度判定平行四边形的三点注意 (1)判定一个四边形是平行四边形需要两个条件. (2)对于已知两组对边的情况:可以通过判定这两组对边分别 平行,也可以判定这两组对边分别相等来证明四边形是平行四 边形. (3)对于已知一组对边的情况:需要证明这一组对边平行且相 等.
题组一:从两组对边的角度判定平行四边形 1.如图所示,在△ABC中,AB=AC=5,D是BC上的点,DE∥AB交AC 于点E,DF∥AC交AB于点F,那么四边形AFDE的周长是( )
于点O,图中共有
个平行四边形.
【解析】∵四边形ABCD是平行四边形, ∴AD∥BC∥EF,AB∥GH∥CD.
所以是平行四边形的有:□AEOG,□EOHB,□OFCH, □GDFO;□ADFE,□EFCB,□AGHB,□GDCH;□ABCD;
共9个. 答案:9
3.如图,在平行四边形ABCD中,点E,F分别是AD,BC的中点.
人教版八年级数学下册知识点第十八章《平行四边形》
第十八章平行四边形【思维导图】【平行四边形】(1)平行四边形的定义与表示定义:两组对边分别平行的四边形叫做平行四边形。
表示:平行四边形用“□”表示。
2)符号“□”必须与表示顶点的字母同时使用,不能单独使用。
的顺序依次排列。
点拨:1)在用“□”表示平行四边形时, 应把表示顶点的字母按顺时针或逆时针边形。
平行四边形ABCD 记作“□ABCD”,读作“平行四边形ABCD”。
如图,在四边形ABCD 中,AB ∥DC ,AD ∥BC ,那么四边形ABCD 是平行四(2)平行四边形的基本元素如图,在□ABCD 中,邻边:AD 和AB ,AD 和DC ,DC 和BC ,BC 和AB对边:AB 和DC ,AD 和BC邻角:∠BAD 和∠ADC ,∠ADC 和∠DCB ,∠DCB 和∠ABC ,∠ABC 和∠BAD 对角:∠BAD 和∠BCD ,∠ABC 和∠ADC对角线:AC 和BD【平行四边形的性质】性质1:平行四边形的对边相等几何语言:如图1,∵四边形ABCD 是平行四边形,∴AB=CD ,AD=BC性质2:平行四边形的对角相等几何语言:如图1,∵四边形ABCD 是平行四边形,∴∠A=∠C ,∠B=∠D下面证明性质1和2证明:如图2,连接AC。
∵AD∥BC,AB∥CD∴∠1=∠2,∠3=∠4.又∵AC=CA,∴△ABC≌△CDA∴AD=BC,AB=CD,∠B=∠D∴∠1=∠2,∠3=∠4,∴∠1+∠4=∠2+∠3,即∠BAD=∠BCD性质3:平行四边形的对角线互相平分几何语言:如图3,∵四边形ABCD是平行四边形,∴OA=0C=1/2AC,OB=OD=1/2BD【典例】(中考)在□ABCD中,下列结论一定正确的是()A.AC⊥BDB.∠A+∠B=1800C.AB=ADD.∠A≠∠C解析:平行四边形的对角线互相平分但不一定垂直,所以选项A错误;@简单初中生平行四边形的邻角互补,所以选项B正确;平行四边形的对边相等但邻边不一定相等,所以选项C错误;平行四边形的对角相等,所以∠A=∠C,所以选项D错误。
八年级-第16章-平行四边形的认识-精讲精练
知识点一:平行四边形知识点浓缩:(1)定义:两组对边分别平行的四边形。
(2)性质:边的性质:对边平行且相等。
角的性质:对角相等。
对角线的性质:对角线互相平分。
1.在□ABCD中,∠A、∠B的度数之比为5:4,则∠C等于___ .2.在□ABCD中,∠A比∠B大20°,则∠C的度数为___ .3.在□ABCD中,∠A+∠C=270°,则∠B=______,∠C=______.4.平行四边形的周长等于56 cm,两邻边长的比为3:1,该平行四边形较长的边长为_______.5.在□ABCD中,AB=3,BC=4,则□ABCD的周长等于_______.6.□ABCD中,的平分线分BC成4cm和3cm两条线段,则的周长为_________7.□ABCD的周长为40 cm,△ABC的周长为25 cm,则对角线AC长为_______.8.□ABCD中,∠A=43°,过点A作BC和CD的垂线,这两条垂线的夹角度数为_______.9.在□ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4 B.1:2:2:1C.1:1:2:2 D.2:1:2:110.平行四边形的两条对角线和一条边的长依次可以取()A.6、6、6B.6、4、3C.6、4、6D.3、4、511.平行四边形一边长为12cm,那么它的两条对角线的长度可能是().A、8cm和14cmB、10cm和14cmC、18cm和20cmD、10cm和34cm12.平行四边行的两条对角线把它分成全等三角形的对数是()A.2 B.4 C.6 D.813.将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积,则这样的折纸方法共有()A.1种B.2种C.4种D.无数种14.以不在同一直线上的三个点为顶点作平行四边形,最多能作().A.4个B. 3个C.2个D.1个15.若O是ABCD的对角线的交点,AC=38cm,BD= 24 cm, AD=14cm,则△OBC 的周长等于__ ___AE⊥于E,AC=AD, ∠16.如图, ABCD中,BC56,则∠D= .CAE=︒E DCBA17.如图,ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE=度.18.已知S ABCD=5,(1)P为AB边上一点,则S△PCD= ;(2)P为AB延长线上一点,则S△PCD= ;(3)P为ABCD内一点,则S△PCD+S△PAB= ;19.若E为ABCD的边AB延长线上一点,DE交BC与F,则S△ADF S△DCE(填大小关系)20.如图在▱ABCD中,AB=8,AD=6,∠DAB=30°,点E,F在AC上,且AE=EF=FC,则△BEF的面积为21.如图12-50,在▱ABCD中,∠A的平分线交BC于点E,若AB=10厘米,AD=14厘米,则BE=_____,EC=__________.22.如图,P为□ABCD的CD上的一点,S□ABCD =20cm2,则S△APB=___________ cm2。
人教版数学八年级下册第十八章-平行四边形-专题复习辅导讲义
辅导讲义是”;是平行四边形,可以记做“ABDC1题图2.如图所示,在ABCD所示,在ABCD125.在ABCD 中,∠B-∠A=30°,则∠A ,∠B ,∠C ,∠D 的度数是( ).A .95°,85°,95°,85°B .85°,95°,85°,95°C .105°,75°,105°,75°D .75°,105°,75°,105° 6.在ABCD 中,∠A :∠B :∠C :∠D 的值可以是( ).A .1:2:3:4B .3:4:4:3C .3:3:4:4D .3:4:3:4 7.如图所示,如果ABCD 的对角线AC ,BD 相交于点O ,•那么图中的全等三角形有( ).A .1对B .2对C .3对D .4对8.如图所示,若平行四边形ABCD 的周长为22cm ,AC ,BD 相交于点O ,•△AOD 的周长比△AOB 的周长小3cm ,则AD=_______,AB=_______. 答案:4cm 7cm知识点3 平行四边形的面积 9.如图所示,ABCD 的对角线AC 的长为10cm ,∠CAB=30°,AB 的长为6cm.求ABCD 的面积.答案:30cm 210.如图所示,在ABCD 中,AB=10cm ,AB 边上的高DH=6cm ,BC=6cm ,求BC 边上的高DF 的长.答案:10cm知识点4 平行四边形的判定11.1已知:如图,ABCD 中,E 、F 分别是AD 、BC 的中点,求证:BE=DF . 提示:证明DE ∥BF ,DE=BF12.1已知:如图,ABCD 中,E 、F 分别是AC 上两点,且BE ⊥AC 于E ,DF ⊥AC 于F . 求证:四边形BEDF 是平行四边形. 提示:证明BE ∥DF ,BE=DF13.1已知:如图ABCD 的对角线AC 、BD 交于点O ,E 、F 是AC 上的两点,并且AE=CF .求证:四边形BFDE 是平行四边形. 提示:证明OB=OD, OE=OF知识点5 三角形的中位线14.1如图,A 、B 两点被池塘隔开,在AB 外选一点C ,连结AC 和BC ,并分别找出AC 和BC 的中点M 、N ,如果测得MN=20 m ,那么A 、B 两点3题图 4题图7题图 8题图3的距离是 m ,理由是 .答案:40 三角形两边的中点连线平行于第三边且等于第三边的一半15.1△ABC 中,D 、E 分别为AB 、AC 的中点,若DE =4,AD =3,AE =2,则△ABC 的周长为______. 答案:1816.1已知:如图(1),在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点. 求证:四边形EFGH 是平行四边形. 提示:连结BD ,利用中位线定理得:EH BD ,GFBD知识点6 矩形的定义与性质 17.已知在四边形ABCD 中,AB CD ,请添加一个条件,使四边形ABCD 是矩形,•加上的条件是_______.答案:AC=BD (答案不唯一) 18.如图所示,M 是ABCD 的边AD 的中点,且MB=MC .求证:ABCD 是矩形.提示:证明△ABM ≌△DCM ,得到∠A=∠D ,又因为∠A+∠D=180°19.如图所示,矩形ABCD 的两条对角线相交于点D ,∠AOD=120°,AB=4cm ,求矩形的对角线的长.答案:8cm知识点7 直角三角形斜边中线的性质20.已知直角三角形两直角边的长分别为6cm 和8cm ,则斜边上的中线长 . 答案:5cm21.如图所示,在△ABC 中,∠ACB=90°,点D ,E 分别为AC ,AB 的中点,点F•在BC 的延长线上,且∠CDF=∠A .求证:四边形DECF 为平行四边形. 提示:AE=CE,得到角相等,推出DF ∥CE ,又DE ∥BF ,即证 22.如图所示,在△ABC 中,∠C=90°,AC=BC ,AD=BD ,PE ⊥AC 于点E ,PF⊥BC 于点F ,求证:DE=DF . 提示:连结CD ,证明△ADE ≌△CDF 知识点8 矩形的判定 23.下列说法中:(1)四个角都相等的四边形是矩形.(2)两组对边分别相等并且有一个角是直角的四边形是矩形. (3)对角线相等并且有一个角是直角的四边形是矩形.B=AC,推出.如图所示,在菱形ABCD4如图,ABCD.对角线互相平分.若正方形的一条对角线长为,则它的边长是求∠AFD的度数.56提示:证明△ABE ≌△BCF知识点12 正方形的判定43.有下列命题,其中真命题有( ). ①四边都相等的四边形是正方形; ②四个内角都相等的四边形是正方形;③有三个角是直角,且有一组邻边相等的四边形是正方形; ④对角线与一边夹角为45°的四边形是正方形.A .1个B .2个C .3个D .4个 44.如图所示,在△ABC 中,∠ABC=90°,BD 平分∠ABC ,DE ⊥BC ,DF ⊥AB. 求证:四边形BEDF 是正方形.提示:由角平分线的性质可推出:DE=DF ,又三个角为90°的四边形是矩形,所以推出四边形BEDF 是正方形.一、专题精讲专题1 动点问题例1 1如图所示,在矩形ABCD 中,AB=4cm ,BC=8cm 、点P 从点D 出发向点A 运动,同时点Q 从点B 出发向点C 运动,点P 、Q 的速度都是1cm/s .(1)在运动过程中,四边形AQCP 可能是菱形吗?如果可能,那么经过多少秒后,四边形AQCP 是菱形?(2)分别求出菱形AQCP 的周长、面积.分析:(1)设经过x 秒后,四边形AQCP 是菱形,根据菱形的四边相等列方程即可求得所需的时间.(2)根据第一问可求得菱形的边长,从而不难求得其周长及面积. 解答:解:(1)经过x 秒后,四边形AQCP 是菱形 ∴DP=xcm,AP=CP=AD-DP=(8-x )cm , ∵DP 2+CD 2=PC 2,∴16+x 2=(8-x )2,解得x=3 即经过3秒后四边形是菱形.(2)由第一问得菱形的边长为5∴菱形AQCP的周长=5×4=20(cm)菱形AQCP的面积=5×4=20(cm2)点评:此题主要考查菱形的性质及矩形的性质的理解及运用.ABC’D’是菱形,并请说8ABCFD ∴BC′=21AC . 而∠ACB=30°, ∴AB=21AC ∴AB=BC′.∴四边形ABC′D′是菱形.点评:本题即考查了全等的判定及菱形的判定,注意对这两个判定定理的准确掌握.考查了学生综合运用数学的能力. 重合,点D 落到分析:(1)根据平行四边形的性质及折叠的性质我们可以得到∠B=∠D′,AB=AD′,∠1=∠3,从而利用ASA 判定△ABE≌△AD′F;(2)四边形AECF 是菱形,我们可以运用菱形的判定,有一组邻边相等的平行四边形是菱形来进行验证.∴△ABE≌△AD′F(ASA).(2)解:四边形AECF是菱形.证明:由折叠可知:AE=EC,∠4=∠5.∵四边形ABCD是平行四边形,∴AD∥BC.∴∠5=∠6.∴∠4=∠6.∴AF=AE.∵AE=EC,∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.∵AF=AE,∴平行四边形AECF是菱形.点评:此题考查了全等三角形的判定及菱形的判定方法,做题时要求学生对常用的知识点牢固掌握.分析:要证明HG与HB是否相等,可以把线段放在两个三角形中证明这两个三角形全等,或放在一个三角形中证明这个三角形是等腰三角形,而图中没有这样的三角形,因此需要作辅助线,构造三角形.910∴Rt△AGH≌Rt△ABH(HL),∴HG=HB.证法2:连接GB,∵四边形ABCD,AEFG都是正方形,∴∠ABC=∠AGF=90°,由题意知AB=AG,∴∠AGB=∠ABG,∴∠HGB=∠HBG,∴HG=HB.点评:解答本题要充分利用正方形的特殊性质.注意在正方形中的特殊三角形的应用,搞清楚矩形、菱形、正方形中的三角形的三边关系,可有助于提高解题速度和准确率.二、专题过关1. 如图所示,△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠BCA的外角平分线于点F.(1)求证:EO=FO(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.分析:(1)根据平行线性质和角平分线性质及,由平行线所夹的内错角相等易证.(2)根据矩形的判定方法,即一个角是直角的平行四边形是矩形可证解答:(1)证明:∵CE平分∠ACB,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO ,∴EO=FO.(2)解:当点O 运动到AC 的中点时,四边形AECF 是矩形.∵EO=FO,点O 是AC 的中点.∴四边形AECF 是平行四边形,∵C F 平分∠BCA 的外角,∴∠4=∠5,又∵∠1=∠2,∴∠2+∠4=21×180°=90°. 即∠ECF=90度,∴四边形AECF 是矩形.点评:本题涉及矩形的判定定理,解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联系,向“纵、横、深、广”拓展,从而寻找出添加的条件和所得的结论.12图3【解法指导】欲证两条线段之和等于第三条线段,可通过截长补1415 分析:过F 作AB 、CD 的平行线FG ,由于F 是AD 的中点,那么G 是BC 的中点,即Rt△BCE 斜边上的中点,由此可得BC=2EG=2FG ,即△GEF、△BEG 都是等腰三角形,因此求∠B 的度数,只需求得∠B EG 的度数即可;易知四边形ABGF 是平行四边形,得∠EFG=∠AEF,由此可求得∠FEG 的度数,即可得到∠AEG 的度数,根据邻补角的定义可得∠BEG 的值,由此得解.解答:解:过F 作FG∥AB∥CD,交BC 于G ;则四边形ABGF 是平行四边形,所以AF=BG ,即G 是BC 的中点;连接EG ,在Rt△BEC 中,EG 是斜边上的中线,则BG=GE=FG=21BC ; ∵AE∥FG,∴∠EFG=∠AEF=∠FEG=54°,∴∠AEG=∠AEF+∠FEG=108°,∴∠B=∠BEG=180°-108°=72°.故选D .点评:此题主要考查了平行四边形的性质、直角三角形的性质以及等腰三角形的判定和性质,正确地构造出与所求相关的等腰三角形是解决问题的关键.17。
华师大版数学八年级下册第三章 平行四边形
华师大版数学八年级下册第三章 平行四边形模块一 平行四边形的性质一、定义两组对边分别平行的四边形叫做平行四边形.如图, 四边形ABCD 是平行四边形, 记作“▱ABCD”, 读作“平行四边形ABCD”.二、性质1.平行四边形的对边相等.2. 平行四边形的对角相等.3. 平行四边形的对角线互相平分.三、重要结论1.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.2.平行四边形是中心对称图形,对角线的交点就是对称中心.(1)连接平行四边系上任意一点和平行四边孤的对称中心,并延长与另一条边相交于一点,则这两个点关于平行四边形的对称中心对称.即即OE=OF(2) 经过平行四边行对称中心的任意一条直线都把平行四边行分成面积和周长相等的两部分,即FEDC ABEF S S 四边形四边形=;FEDC ABEF C C 四边形四边形=典型例题例1.如图,在平行四边形ABCD中,DE平分∠ADC,AD=6,BE=2,则平行四边形ABCD的周长是()A.16B.14C.20D.24练习.平行四边形ABCD中,∠ABC的角平分线BE将边AD分成长度为5cm和6cm的两部分,则平行四边形ABCD的周长为cm.例2.如图,在▱ABCD中,AE⊥CD于点E,∠B=65°,则∠DAE等于.例3.如图,平行四边形ABCD的对角线相交于点O,两条对角线的和为18,AD的长为5,则△OBC的周长为.练习.如图,在▱ABCD中,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF,CE,则下列结论:①CF=AE;②OE=OF;③DE=BF;④图中共有四对全等三角形.其中正确结论的个数是()A.4B.3C.2D.1例4.如图,▱ABCD中,AC.BD为对角线,BC=3,BC边上的高为2,则阴影部分的面积为()A.3B.6C.12D.24例5.(1)如图,在▱ABCD中,AB=4,BC=6,BC边上的高AE=2,则DC边上的高AF的长是()A.2B.3C.4D.5(2)如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=100°,则∠DAE的度数为()A.20°B.25°C.30°D.35°(3)如图,在周长为20cm的▱ABCD中,AB≠AD,AC,BD相交于点O,OE⊥BD交AD 于E,则△ABE的周长为()A.4cm B.6cm C.8cm D.10cm(4)如图,平行四边形ABCD中,点E在边AD上,以BE为折痕,将△ABE折叠,使点A正好与CD上的F点重合,若△FDE的周长为16,△FCB的周长为28,则FC的长为.例6.如图,在▱ABCD中,E是CD的中点,AE的延长线与BC的延长线相交于点F.求证:BC=CF.模块二平行四边形的判定平行四边形的判定定理1.两组对边分别平行的四边形是平行四边形.AD//BC,AB//DC,四边形ABCD是平行四边形.2.两组对边分别相等的四边形是平行四边形.AB=DC,AD=BC,∴四边形ABCD是平行四边形.3.一组对边平行且相等的四边形是平行四边形.AD//BC,AD=BC,∴四边形ABCD是平行四边形.4.两组对角分别相等的四边形是平行四边形.∠=∠,∠D=BA∠C∴四边形ABCD是平行四边形.5.对角线互相平分的四边形是平行四边形.OA=OC,OB=OD,∴四边形ABCD是平行四边形.典型例题例7.如图,在四边形ABCD中,若已知AB∥CD,再添加下列条件之一,能使四边形ABCD成为平行四边形的条件是()A.∠DAC=∠BCA B.∠DCB+∠ABC=180°C.∠ABD=∠BDC D.∠BAC=∠ACD练习.下列条件中,不能判断四边形ABCD是平行四边形的是()A.AB∥CD,AD∥BC B.AB=CD,AD∥BCC.AB∥CD,AB=CD D.∠A=∠C,∠B=∠D例8.(1)如图,在▱ABCD中,点E、F分别在边AB和CD上,下列条件不能判定四边形DEBF一定是平行四边形的是()A.DE=BF B.AE=CF C.∠ADE=∠CBF D.∠AED=∠CFB(2)小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带来了两块碎玻璃,其编号应该是。
人教版八年级数学下册第18章平行四边形 知识要点总结
人教版八年级数学下册第18章平行四边形知识要点总结第18章平行四边形复习平行四边形知识点一、平行四边形定义:二、平行四边形的性质边:1.两组对边互相平行且相等;符号语言:角:2.两组对角分别相等;符号语言:对角线:3.对角线互相平分。
符号语言:对称性:中心对称图形但不一定是轴对称图形平行线之间的距离:平行线间的距离都相等符号语言:∵AE∥BF且AB⊥BF,CD⊥BF,EF⊥BF∴AB=CD=EF三、平行四边形的判定边:1. 两组对边分别平行.....的四边形是平行四边形;符号语言:2. 两组对边分别相等......的四边形是平行四边形;符号语言:3. 一组对边平行且相等......的四边形是平行四边形;符号语言:角:4. 两组对角分别相等......的四边形是平行四边形;符号语言:对角线:5.对角线互相平分的四边形是平行四边形;符号语言:四、平行四边形的面积公式S□ABCD=ah(a是边,h是这个边的高);五、与三角形有关的知识点1.三角形中位线定义:连接三角形两边中点的线段..叫做三角形的中位线。
2.三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半符号语言:3.取值范围:利用三角形的性质:两边之和大于第三边;两边之差小于第三边 如:已知□ABCD 两对角线的长分别为6和8,则较短边长x 的取值范围为1<x<7.4.直角三角形性质定理(1)直角三角形斜边上的中线等于斜边的一半.符号语言:∵在Rt △ABC 中,且AD =CD∴ BD=AD=CD(2)直角三角形中,30°角所对应的直角边等于斜边的一半.符号语言:∵在Rt △ABC 中,且∠A=30°∴BC=12AC 或 2BC=AC特殊的平行四边形知识点—矩形一、矩形的定义:二、矩形的性质1.矩形具有平行四边形的所有性质;2.矩形的四个角都是直角; 符号语言:3.矩形的对角线平分且相等。
符号语言:三、矩形判定1.有一个角是直角的平行四边形.....叫做矩形。
重庆市第八中学八年级数学下册第十八章《平行四边形》知识点总结(含答案)
一、选择题1.如图,E 是直线CD 上的一点,且12CE CD =.已知ABCD 的面积为252cm ,则ACE △的面积为( )A .52B .26C .13D .39C解析:C【分析】 设平行四边形AB 边上的高为h ,分别表示出△ACE 的面积和平行四边形ABCD 的面积,从而求出结果.【详解】解:∵四边形ABCD 是平行四边形,12CE CD =, 设平行四边形AB 边上的高为h ,∴△ACE 的面积为:12CE h ⋅,平行四边形ABCD 的面积为2CE h ⋅, ∴△ACE 的面积为平行四边形ABCD 的面积的14, 又∵□ABCD 的面积为52cm 2,∴△ACE 的面积为13cm 2.故选C .【点睛】 本题考查平行四边形的性质,比较简单,解答本题的关键是根据图形的形状得出△ACE 的面积为平行四边形ABCD 的面积的14. 2.在ABCD 中AB BC ≠.F 是BC 上一点,AE 平分FAD ∠,且E 是CD 的中点,则下列结论:①AB BF =;②AF CF CD =+;③AF CF AD =+;④AE EF ⊥,其中正确的是( )A .①②B .②④C .③④D .①②④C解析:C【分析】 首先延长AD ,交FE 的延长线于点M ,易证得△DEM ≌△CEF ,即可得EM =EF ,又由AE 平分∠FAD ,即可判定△AEM 是等腰三角形,由三线合一的知识,可得AE ⊥EF ,进而可对各选项进行判断.【详解】解:延长AD ,交FE 的延长线于点M ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠M =∠EFC ,∵E 是CD 的中点,∴DE =CE ,在△DEM 和△CEF 中,M EFC DEM CEF DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEM ≌△CEF (AAS ),∴EM =EF ,∵AE 平分∠FAD ,∴AM =AF ,AE ⊥EF .即AF =AD +DM =CF +AD ;故③,④正确,②错误.∵AF 不一定是∠BAD 的角平分线,∴AB 不一定等于BF ,故①错误.故选:C .【点睛】此题考查了平行四边形的性质、等腰三角形的判定与性质以及全等三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.3.如图,在平行四边形ABCD 中,90B ∠<︒,BC AB >.作AE BC ⊥于点E ,AF CD ⊥于点F ,记EAF ∠的度数为α,AE a =,AF b =.则以下选项错误的是( )A .::a b CD BC =B .D ∠的度数为αC .若60α=︒,则四边形AECF 的面积为平行四边形ABCD 面积的一半D .若60α=︒,则平行四边形ABCD )a b +C 解析:C【分析】由平行四边形的性质得出//AD BC ,AD BC =,AB CD =,B D ∠=∠,得出180D C ∠+∠=︒,求出180EAF C ∠+∠=︒,得出B D EAF α∠=∠=∠=;由平行四边形ABCD 的面积得出::a b CD BC =;若60α=︒,则60B D ∠=∠=︒,求出30BAE DAF ∠=∠=︒,由直角三角形的性质得出BE AE ==,DF ,得出2AB BE =,2AD DF ==,求出平行四边形ABCD 的周长2())AB AD a b =+=+;求出ABE ∆的面积212BE AE =⨯=,ADF ∆的面积2=,平行四边形ABCD 的面积BC AE a =⨯=⨯=,得出四边形AECF 的面积=平行四边形ABCD 的面积ABE -∆的面积ADF -∆的面积22)a b =+≠平行四边形ABCD 面积的一半;即可得出结论. 【详解】 解:四边形ABCD 是平行四边形,//AD BC ∴,AD BC =,AB CD =,B D ∠=∠,180D C ∴∠+∠=︒,AE BC ⊥于点E ,AF CD ⊥于点F ,360290180EAF C ∴∠+∠=︒-⨯︒=︒,B D EAF α∴∠=∠=∠=;平行四边形ABCD 的面积BC AE CD AF =⨯=⨯,AE a =,AF b =,BC a CD b ∴⨯=⨯,::a b CD BC ∴=;若60α=︒,则60B D ∠=∠=︒,30BAE DAF ∴∠=∠=︒,BE AE ∴==,DF =,2AB BE ∴==,2AD DF ==,∴平行四边形ABCD 的周长2())AB AD a b =+=+;ABE ∆的面积211332236BE AE a a a =⨯=⨯⨯=,ADF ∆的面积211332236DF AF b b b =⨯=⨯⨯=,平行四边形ABCD 的面积232333BC AE b a ab =⨯=⨯=, ∴四边形AECF 的面积=平行四边形ABCD 的面积ABE -∆的面积ADF -∆的面积22233()36ab a b =-+≠平行四边形ABCD 面积的一半; 综上所述,选项A 、B 、D 不符合题意,选项C 符合题意;故选:C .【点睛】本题考查了平行四边形的性质、直角三角形的性质、三角形面积等知识;熟练掌握平行四边形的性质和直角三角形的性质是解题的关键.4.如图,己知四边形ABCD 是平行四边形,下列说法正确..的是( )A .若AB AD =,则平行四边形ABCD 是矩形B .若AB AD =,则平行四边形ABCD 是正方形C .若AB BC ⊥,则平行四边形ABCD 是矩形D .若AC BD ⊥,则平行四边形ABCD 是正方形C解析:C【分析】根据已知及各个特殊四边形的判定方法对各个选项进行分析从而得到最后答案.【详解】解:A 、若AB=AD ,则▱ABCD 是菱形,选项说法错误;B 、若AB=AD ,则▱ABCD 是菱形,选项说法错误;C 、若AB ⊥BC ,则▱ABCD 是矩形,选项说法正确;D 、若AC ⊥BD ,则▱ABCD 是菱形,选项说法错误;故选:C .【点睛】此题考查了菱形,矩形,正方形的判定方法,对角线互相垂直平分且相等的四边形是正方形.5.如图,在正方形 ABCD 内有一个四边形AECF ,AE EF ⊥, CF EF ⊥且8AE CF ==,12EF =,则图中阴影分的面积为( )A .100B .104C .152D .304B解析:B【分析】 由题意可证四边形AECF 是平行四边形,可得AO =CO ,EO =FO =12EF =6,由勾股定理可求AO =10,可得AC =20,由阴影分的面积=S 正方形ABCD -S ▱AECF 可求解.【详解】解:连接AC ,∵AE ⊥EF ,CF ⊥EF ,∴AE ∥CF ,且AE =CF ,∴四边形AECF 是平行四边形,∴AO =CO ,EO =FO =12EF =6, ∴AO 22AE EO +10,∴AC =20, ∴阴影分的面积=S 正方形ABCD -S ▱AECF =20202⨯-8×12=104, 故选:B .【点睛】本题考查了正方形的性质以及勾股定理的应用.此题综合性较强,解题时要注意数形结合思想的应用.6.在菱形ABCD 中,∠ABC=60゜,AC=4,则BD=( )A .3B .23C .33D .43D解析:D【分析】 根据菱形的性质可得到直角三角形,利用勾股定理计算即可;【详解】如图,AC 与BD 相较于点O ,∵四边形ABCD 是菱形,4AC =,∴AC BD ⊥,2AO =,又∵∠ABC=60゜,∴30ABO ∠=︒,∴24AB AO ==,∴224223BO =-=,∴243BD BO ==;故选D .【点睛】本题主要考查了菱形的性质,结合勾股定理计算是解题的关键.7.如图,在Rt ABC 中,90C =∠,30A ∠=,D 是 AC 边的中点,DE AC ⊥于点D ,交AB 于点E ,若83AC =,则DE 的长是( )A .8B .6C .4D .2C解析:C【分析】 根据直角三角形的性质得到AB=2BC ,利用勾股定理求出BC ,再根据三角形中位线定理求出DE .【详解】解:∵在Rt △ABC 中,∠C=90°,∠A=30°,∴AB=2BC ,设BC=x ,则AB=2x , ∴()222483x x =+, 解得:x=8或-8(舍),∴BC=8,∵D 是 AC 边的中点,DE AC ⊥,∴DE=12BC=4, 故选C .【点睛】本题考查了含30°角的直角三角形的性质,三角形的中位线的性质,熟练掌握直角三角形的性质是解题的关键.8.如图,点E 为矩形ABCD 的边BC 上的点,DF AE ⊥于点F ,且DF AB =,下列结论不正确的是( )A .DE 平分AEC ∠B .ADE ∆为等腰三角形C .AF AB =D .AE BE EF =+C 解析:C【分析】根据矩形的性质及HL 定理证明Rt △DEF ≌Rt △DEC ,然后利用全等三角形的性质进行推理判断【详解】解:在矩形ABCD 中,∠C=90°,AB=CD∵DF AE ⊥于点F ,且DF AB =∴∠DFE=∠C=90°,DF=CD在Rt △DEF 和Rt △DEC 中DF DC DE DE =⎧⎨=⎩∴Rt △DEF ≌Rt △DEC∴∠FDE=∠CDE ,即DE 平分AEC ∠,故A 选项不符合题意;∵Rt △DEF ≌Rt △DEC∴∠FED=∠CED又∵矩形ABCD 中,AD ∥BC∴∠ADE=∠CED∴∠FED=∠ADE∴AD=AE,即ADE为等腰三角形,故B选项不符合题意∵Rt△DEF≌Rt△DEC∴EF=EC在矩形ABCD中,AD=BC,又∵AD=AE∴AE=AD=BC=BE+EC=BE+EF,故D选项不符合题意由于AB=CD=DF,但在Rt△ADF中,无法证得AF=DF,故无法证得AB=AF,故C选项符合题意故选:C.【点睛】本题考查矩形的性质及三角形全等的判定和性质,掌握相关性质定理正确推理论证是解题关键.9.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,S菱形ABCD=48,则OH的长为()A.4 B.8 C13D.6A解析:A【分析】由菱形的性质得出OA=OC=6,OB=OD,AC⊥BD,则AC=12,由直角三角形斜边上的中线性质得出OH=12AB,再由菱形的面积求出BD=8,即可得出答案.【详解】解:∵四边形ABCD是菱形,∴OA=OC=6,OB=OD,AC⊥BD,∴AC=12,∵DH⊥AB,∴∠BHD=90°,∴OH=12BD,∵菱形ABCD的面积=12×AC×BD=12×12×BD=48,∴BD=8,∴OH=12BD=4;【点睛】本题考查了菱形的性质,直角三角形的性质,菱形的面积公式,关键是根据直角三角形斜边上的中线性质求得OH=12BD . 10.如图在ABCD 中,对角线,AC BD 相交于点O ,AOD △与AOB 的周长相差3,8AB =,那么AD 为( )A .5B .8C .11或5D .11或14C解析:C【分析】 根据平行四边形的性质可得BO=DO ,再根据AOD △与AOB 的周长相差3,可分情况得出结果.【详解】解:∵四边形ABCD 是平行四边形,∴BO=DO ,AO=AO ,∵AOD △与AOB 的周长相差3,∴AB-AD=3,或AD-AB=3,∵AB=8,∴AD 的长为5或11,故选C .【点睛】本题考查平行四边形的性质,解题的关键是掌握平行四边形对角线互相平分.二、填空题11.如图,在平行四边形ABCD 中,10,AB BAD =∠的平分线与BC 的延长线交于点E 、与DC 交于点F ,且点F 为边DC 的中点,ADC ∠的平分线交AB 于点M ,交AE 于点N ,连接DE .若6DM =,则DE 的长为_______.【分析】先判定△ADF ≌△ECF 即可得到AF=EF 依据平行线的性质以及角平分线的定义即可得出AF ⊥DM ;再根据等腰三角形的性质即可得到DN=MN=3最后依据勾股定理即可得到AN 与NE 的长进而解析:【分析】先判定△ADF≌△ECF,即可得到AF=EF,依据平行线的性质以及角平分线的定义,即可得出AF⊥DM;再根据等腰三角形的性质,即可得到DN=MN=3,最后依据勾股定理即可得到AN与NE的长,进而得出DE的长.【详解】解:∵点F为边DC的中点,∴DF=CF=12CD=12AB=5,∵AD∥BC,∴∠ADF=∠ECF,∵∠AFD=∠EFC,∴△ADF≌△ECF(ASA),∴AF=EF,∵CD∥AB,∴∠ADC+∠DAB=180°,又∵AF平分∠BAD,DM平分∠ADC,∴∠ADN+∠DAN=90°,∴AF⊥DM,∵AF平分∠BAD,∴∠BAF=∠DAF,又∵DC∥AB,∴∠BAF=∠DFA,∴∠DAF=∠DFA,∴AD=DF=5,同理可得,AM=AD=5,又∵AN平分∠BAD,∴DN=MN=3,∴Rt△ADN中,4=,∴AF=2AN=8,EF=8,∴NE=AE-AN=12,∴Rt△DEN中,=故答案为:【点睛】本题主要考查了平行四边形的性质以及勾股定理的运用,判定AF ⊥DM ,利用勾股定理进行计算是解决问题的关键.12.215,2,则该三角形最长边上的中线长为____.【分析】利用勾股定理逆定理判断出此三角形是直角三角形再根据直角三角形斜边上的中线等于斜边的一半解答【详解】∵∴此三角形是直角三角形斜边为5∴该三角形最长边上的中线长为:5=故答案为:【点睛】本题考查 解析:52【分析】利用勾股定理逆定理判断出此三角形是直角三角形,再根据直角三角形斜边上的中线等于斜边的一半解答.【详解】 ∵221222255+==,∴此三角形是直角三角形,斜边为5,∴该三角形最长边上的中线长为:12⨯5=52. 故答案为:52. 【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理逆定理的应用,熟记性质并判断出此三角形是直角三角形是解题的关键.13.如图,在菱形ABCD 中,6AC =,5AB =,点E 是直线AB ,CD 之间任意一点,连接AE ,BE ,DE ,CE ,则EAB 和ECD 的面积之和是______.12【分析】连接BD根据菱形对角线的性质利用勾股定理计算BD的长根据两平行线的距离相等所以△EAB和△ECD的面积和等于菱形ABCD面积的一半再利用菱形面积等于对角线积的一半计算可得结论【详解】如图解析:12【分析】连接BD,根据菱形对角线的性质,利用勾股定理计算BD的长,根据两平行线的距离相等,所以△EAB和△ECD的面积和等于菱形ABCD面积的一半,再利用菱形面积等于对角线积的一半计算可得结论.【详解】如图,连接BD交AC于O,∵四边形ABCD是菱形,∴AC⊥BD,OA=12AC=12×6=3,∵AB=5,由勾股定理得:224AB OA-=,∴BD=2OB=8,∵AB∥CD,∴△EAB和△ECD的高的和等于点C到直线AB的距离,∴△EAB 和△ECD 的面积和=12×ABCD S 菱形=12×12×AC×BD=168=124⨯⨯. 故答案为:12.【点睛】 本题考查菱形的性质,三角形的面积,平行线的性质,熟知平行线的距离相等,得△EAB 和△ECD 的高的和等于点C 到直线AB 的距离是解题的关键.14.如图,在四边形ABCD 中,AC a =,BD b =,且AC BD ⊥顺次连接四边形ABCD 各边的中点,得到四边形1111D C B A ,再顺次连接四边形1111D C B A 各边中点,得到四边形2222A B C D …如此进行下去,得到四边形n n n n A B C D ,下列结论正确的有__________.①四边形2222A B C D 是矩形;②四边形4444A B C D 是菱形;③四边形5555A B C D 的周长是4a b +. ②③【分析】利用三角形的中位线的性质证明四边形是矩形四边形是菱形四边形是矩形四边形是菱形从而可得到规律序号n 是奇数时四边形是矩形当序号n 是偶数时四边形是菱形再探究n 是奇数时四边形的周长即可解决问题【解析:②③【分析】利用三角形的中位线的性质证明四边形1111D C B A 是矩形,四边形2222A B C D 是菱形,四边形3333A B C D 是矩形,四边形4444A B C D 是菱形,从而可得到规律,序号n 是奇数时四边形是矩形,当序号n 是偶数时四边形是菱形,再探究n 是奇数时四边形的周长即可解决问题.【详解】解: 1111,,,A B C D 分别是,,,AB BC CD DA 的中点,1111111111//,,//,,22A B AC A B AC C D AC C D AC ∴== 11//,A D BD 11111111//,,A B C D A B C D ∴=∴ 四边形1111D C B A 是平行四边形,,AC BD ⊥ 11//,A B AC 11//,A D BD1111,A B A D ∴⊥∴ 四边形1111D C B A 是矩形,1111,AC B D ∴=如图,2222,,,A B C D 分别是11111111,,,A B B C C D D A 的中点,∴ 2211221111,,22A B AC A D B D == 四边形2222A B C D 是平行四边形, 2222,A B A D ∴=∴ 四边形2222A B C D 是菱形,故①不符合题意,2222,A C B D ∴⊥同理可得:四边形3333A B C D 是矩形,四边形4444A B C D 是菱形,故②符合题意,······总结规律:四边形n n n n A B C D , 当序号n 是奇数时四边形是矩形,当序号n 是偶数时四边形是菱形,111111111111,,2222A B C D AC a A D B C BD b ====== ∴ 四边形1111D C B A 的周长为,a b +如图, 四边形1111D C B A 是矩形,四边形2222A B C D 是菱形,2222,,,A B C D 分别是11111111,,,A B B C C D D A 的中点,222222112211,,,A C B D A C A D B D A B ∴⊥==由中位线的性质同理可得:33332233332211111111,,22242224A DBC BD a a D C A B A C b b ===⨯====⨯= 所以四边形3333A B C D 的周长为()1,2a b + 由规律可得:四边形5555A B C D 是矩形, 同理可得:四边形5555A B C D 的周长是()11.224a b a b +⨯+=故③符合题意. 故答案为②③.【点睛】本题考查三角形的中位线的性质,中点四边形,菱形的判定与性质,矩形的判定与性质,解题的关键是学会从特殊到一般,探究规律,利用规律解决问题.15.如图,在矩形ABCD 中,AB =3,BC =4,点M 为AD 的中点,点N 为AB 上一点,连接MN ,CN ,将△AMN 沿直线MN 折叠后,点A 恰好落在CN 上的点P 处,则CN 的长为_____.【分析】连接CM 由题意易证即得到PC=DC=3设AN=x 则PN=xBN=3-xCN=3+x 在中利用勾股定理即可求出x 即可得到CN 的长【详解】如图连接CM 由题意可知在和中∴∴PC=DC=3设AN=x 则解析:133【分析】连接CM ,由题意易证DMC PMC ≅,即得到PC=DC=3.设AN=x ,则PN= x ,BN=3-x ,CN=3+ x .在Rt BCN △中利用勾股定理即可求出x ,即可得到CN 的长.【详解】如图,连接CM ,由题意可知122AM DM PM AD ====, 在Rt DMC 和Rt PMC 中,PM PD MC MC =⎧⎨=⎩, ∴DMC PMC ≅,∴PC=DC=3.设AN=x ,则PN= x ,BN=3-x ,CN=3+ x .在Rt BCN △中,222BC BN CN +=,即2224(3)(3)x x +-=+,解得:43x =,∴CN=3+413333CN +==.故答案为:133. 【点睛】 本题考查翻折的性质,矩形的性质,三角形全等的判定和性质以及勾股定理.作出常用的辅助线是解答本题的关键.16.如图,在ABC 中,已知AB =8,BC =6,AC =7,依次连接ABC 的三边中点,得到111A B C △,再依次连接111A B C △的三边中点,得到222A B C △,,按这样的规律下去,202020202020A B C △的周长为____.【分析】由再利用中位线的性质可得:再总结规律可得:从而运用规律可得答案【详解】解:探究规律:AB=8BC=6AC=7分别为的中点同理:总结规律:运用规律:当时故答案为:【点睛】本题考查的是图形周长的解析:2020212【分析】由21ABC C AB BC AC =++=,再利用中位线的性质可得:111121,22A B C ABC C C ==2221112121,22A B C A B C C C ==再总结规律可得:21,2n n n A B C n C =从而运用规律可得答案.【详解】解:探究规律:AB =8,BC =6,AC =7, 21ABC C AB BC AC ∴=++=,111,,A B C 分别为,,BC AC AB 的中点,111111111,,,222A B AB B C BC AC AC ∴=== 111121,22A B C ABC C C ∴== 同理:2221112112121,2222A B C A B C C C ==⨯= ······总结规律:21,2n n n A B C n C =运用规律: 当2020n =时,202020202020202021.2A B C C= 故答案为:202021.2 【点睛】本题考查的是图形周长的规律探究,三角形中位线的性质,掌握探究规律的方法与三角形中位线的性质是解题的关键.17.如图,在Rt ABC ∆中,90,6,10ACB AC AB ∠===,过点A 作//,AM CB CE 平分ACB ∠交AM 于点,E Q 是线段CE 上的点,连接BQ ,过点B 作BP BQ ⊥交AM 于点P ,当PBQ ∆为等腰三角形时,AP =________________________.【分析】过点P 作PG ⊥CB 交CB 的延长线于点G 过点Q 作QF ⊥CB 运用AAS 定理证明△QBF ≌△BPG 根据平行线的性质和角平分线的定义求得△AEC 为等腰直角三角形利用勾股定理求得线段BC 的长然后结合全解析:10【分析】过点P 作PG ⊥CB ,交CB 的延长线于点G ,过点Q 作QF ⊥CB ,运用AAS 定理证明△QBF ≌△BPG ,根据平行线的性质和角平分线的定义求得△AEC 为等腰直角三角形,利用勾股定理求得线段BC 的长,然后结合全等三角形和矩形的性质求解.【详解】解:过点P 作PG ⊥CB ,交CB 的延长线于点G ,过点Q 作QF ⊥CB∵BP BQ⊥,PG⊥CB∴∠1+∠2=90°,∠2+∠3=90°∴∠1=∠3∵QF⊥CB,BP BQ⊥∴∠QFB=∠PGB=90°又∵PBQ∆为等腰三角形∴QB=PB在△QBF和△BPG中1=3QFB PGB QB PB∠∠⎧⎪∠=∠⎨⎪=⎩∴△QBF≌△BPG∴PG=BF,BG=QF∵∠ACB=90°,CE平分ACB∠∴∠ACE=∠ECB=45°又∵AM∥CB,∴∠AEC=∠ECB=45°∴∠AEC=∠ACE=45°∴△AEC为等腰直角三角形∵AM∥BC,∠ACB=90°∴∠CAM+∠ACB=180°,即∠CAM=90°∴∠CAM=∠ACB=∠PGB=90°∴四边形ACGP为矩形,∴PG=AC=6,AP=CG在Rt△ABC中,BC=228AB AC-=∴CF=BC-BF=BC-PG=8-6=2∵QF⊥BC,∠ECB=45°∴△CQF是等腰直角三角形,即CF=QF=2∴AP=CG=BC+BG=BC+QF=8+2=10【点睛】本题考查矩形的判定和性质、全等三角形的判定和性质以及勾股定理,掌握相关性质定理正确推理论证是解题关键18.已知:如图,把长方形纸片ABCD 沿EF 折叠,使D C 、分别落在D C ''、的位置,若65EFB ︒∠=,则AED '∠的度数为_________.【分析】由长方形纸片可得再求解由折叠的性质求解结合平角的定义可得答案【详解】解:长方形纸片由折叠可得:故答案为:【点睛】本题考查的是矩形与折叠平行线的性质简单题解题的关键是理解折叠的性质 解析:50︒【分析】由长方形纸片ABCD ,65EFB ∠=︒可得//,AD BC 再求解,DEF ∠ 由折叠的性质求解,D EF '∠ 结合平角的定义可得答案.【详解】 解: 长方形纸片ABCD ,65EFB ∠=︒,//,AD BC ∴65DEF EFB ∴∠=∠=︒,由折叠可得:65D EF DEF '∠=∠=︒,180180656550.AED D EF DEF ''∴∠=︒-∠-∠=︒-︒-︒=︒故答案为:50.︒【点睛】本题考查的是矩形与折叠,平行线的性质,简单题,解题的关键是理解折叠的性质. 19.如图,在矩形ABCD 中,AD =2.将∠A 向内翻折,点A 落在BC 上,记为A ',折痕为DE .若将∠B 沿EA '向内翻折,点B 恰好落在DE 上,记为B ',则AB =_______.【分析】利用矩形和折叠的性质证明∠ADE=∠ADE=∠ADC=30°∠C=∠ABD=90°推出△DBA ≌△DCA 那么DC=DB 设AB=DC=x 在Rt △ADE 中通过勾股定理可求出AB 的长度【详解】解: 3【分析】利用矩形和折叠的性质,证明∠ADE=∠A'DE=∠A'DC=30°,∠C=∠A'B'D=90°,推出△DB'A'≌△DCA',那么DC=DB',设AB=DC=x ,在Rt △ADE 中,通过勾股定理可求出AB 的长度.【详解】解:∵四边形ABCD 为矩形,∴∠ADC=∠C=∠B=90°,AB=DC ,由翻折知,△AED ≌△A'ED ,△A'BE ≌△A'B'E ,∠A'B'E=∠B=∠A'B'D=90°,∴∠AED=∠A'ED ,∠A'EB=∠A'EB',BE=B'E ,∴∠AED=∠A'ED=∠A'EB=13×180°=60°, ∴∠ADE=90°-∠AED=30°,∠A'DE=90°-∠A'EB'=30°,∴∠ADE=∠A'DE=∠A'DC=30°,又∵∠C=∠A'B'D=90°,DA'=DA',∴△DB'A'≌△DCA'(AAS ),∴DC=DB',在Rt △AED 中,∠ADE=30°,AD=2,∴AE=23 =233, 设AB=DC=x ,则BE=B'E=x-233 ∵AE 2+AD 2=DE 2,∴2222323233x x +=+-()() 解得,x 1=−33 (负值舍去),x 2=3 , 故答案为:3.【点睛】本题考查了矩形的性质,轴对称的性质等,解题关键是通过轴对称的性质证明∠AED=∠A'ED=∠A'EB=60°.20.如图,将Rt △ABC 沿着点B 到A 的方向平移到△DEF 的位置,BC =8,FO =2,平移距离为4,则四边形AOFD 的面积为__.【分析】根据平移的性质判断AD =CF =BE =4AD ∥CF 再根据平行四边形的面积和三角形面积公式解答即可【详解】如图连接CF 由平移的性质知AD =CF =BE =4AD ∥CF ∴四边形ACFD 为平行四边形∴=解析:28【分析】根据平移的性质,判断AD =CF =BE =4,AD ∥CF ,再根据平行四边形的面积和三角形面积公式解答即可.【详解】如图,连接CF .由平移的性质知,AD =CF =BE =4,AD ∥CF ,∴四边形ACFD 为平行四边形.∴ACFD S =AD •BC =4×8=32,∵FO =2,∴S △FOC =12OF •BE =1242⨯⨯=4, ∴AOFD S 四边形=ACFD FOC S S -=32-4=28.故答案为28.【点睛】本题考查图形的平移以及平行四边形的判定.根据题意得出AOFD S 四边形=ACFD FOC SS -是解答本题的关键. 三、解答题21.如图,在四边形ABCD 中,AB ∥CD ,∠ADC =90°,AD =12cm ,AB =18cm ,CD =23cm ,动点P 从点A 出发,以1cm/s 的速度向点B 运动,同时动点Q 从点C 出发,以2cm/s 的速度向点D 运动,其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t 秒.(1)当t =3时,PB = cm .(2)当t 为何值时,直线PQ 把四边形ABCD 分成两个部分,且其中的一部分是平行四边形?(3)四边形PBQD 能否成为菱形?若能,求出t 的值;若不能,请说明理由.解析:(1)15;(2)t =6或233;(3)能,t =5. 【分析】(1)先求出AP ,即可求解;(2)分两种情况讨论,由平行四边形的性质可求解;(3)由菱形的性质可求DP =BP ,由勾股定理可求解.【详解】解:(1)当t =3时,则AP =3×1=3cm ,∴PB =AB ﹣AP =18﹣3=15cm ,故答案为:15.(2)若四边形PBCQ 是平行四边形,∴PB =CQ ,∴18﹣t =2t ,∴t =6,若四边形PQDA 是平行四边形,∴AP =DQ ,∴t =23﹣2t ,∴t =233, 综上所述:t =6或233; (3)如图,若四边形PBQD 是菱形,∴BP =DP ,∵222AP AD DP +=,∴22144(18)AP AP +=-,∴AP =5,∴t =51=5, ∴当t =5时,四边形PBQD 为菱形.【点睛】本题考查了平行四边形,菱形的判定,勾股定理,分类思想,熟练掌握菱形的判定定理,灵活运用分类思想是解题的关键.22.如图,已知点E 是ABCD 的边CD 延长线上的一点;连接AE ,BD ,且//AE BD ;过点E 作EF BC ⊥,交BC 的延长线于点F ,连接DF ;求证:DF DE =解析:见解析【分析】根据平行四边形的性质可得AB CD =,//AB CD ,然后结合题意利用两组对边分别平行的四边形是平行四边形可判定四边形ABDE 是平行四边形,然后利用平行四边形的性质和直角三角形斜边中线等于斜边一半证明求解.【详解】证明:∵四边形ABCD 是平行四边形,∴AB CD =,//AB CD ,又∵//AE BD∴四边形ABDE 是平行四边形;∴AB DE =,即CD DE =;又EF BC ⊥于点F ;∴∠EFC=90°∴在Rt CEF △中,点D 是斜边CE 的中点∴DF DE =.【点睛】本题考查平行四边形的性质和判定以及直角三角形斜边中线等于斜边的一半,掌握相关性质定理正确推理论证是解题关键.23.如图所示,沿AE 折叠长方形ABCD 使点D 恰好落在BC 边上的点F 处,已知8AB cm =,BC 10cm =.(1)求EC 的长(2)求AFE ∆的面积.解析:(1)3EC =cm ;(2)25cm 2【分析】(1)根据矩形的性质得DC=8cm ,AD=10cm ,再根据折叠的性质得到AF=AD=10cm ,DE=EF ,在Rt △ABF 中,利用勾股定理易得BF=6cm ,设DE=xcm ,则EF=xcm ,EC=(8-x)cm ,在Rt △CEF 中,利用勾股定理可求出x 的值,进一步得到EC 的长;(2)根据三角形面积公式计算即可求解.【详解】(1)∵AB=8cm ,BC=10cm ,∴DC=8cm ,AD=10cm ,又∵将△ADE 折叠使点D 恰好落在BC 边上的点F ,∴AF=AD=10cm ,DE=EF ,在Rt △ABF 中,AB=8cm ,AF=10cm ,∴BF=22221086AF AB (cm), ∴FC=10-6=4(cm),设DE=xcm ,则EF=xcm ,EC=(8-x)cm ,在Rt △CEF 中,EF 2=FC 2+EC 2,即x 2=42+(8-x)2,解得x=5,即DE 的长为5cm , EC=8-x=8-5=3,即EC 的长为3cm ;(2)S △AEF =12EF×AF=12×5×10=25(cm 2). 故△AFE 的面积是25cm 2.【点睛】 本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应线段相等.也考查了矩形的性质以及勾股定理.24.如图,菱形ABCD 中,60B ∠=︒,点E ,F 分别在BC 和CD 上,BE CF =,求证:AE AF =.解析:证明见解析.【分析】连接AC ,证ABE ACF ≌即可【详解】证明:连接AC ,∵四边形ABCD 是菱形,∴AB BC CD AD ===,AC 平分BCD ∠.∵60B ∠=︒,∴ABC 是等边三角形,∴AB AC =,60∠=∠=∠︒=B BCA ACF .∴在ABE △与ACF 中,AB AC B ACF BE CF =⎧⎪∠=∠⎨⎪=⎩.∴ABE ACF ≌.∴AE AF =.【点睛】本题考查了菱形的性质,全等三角形的判定和性质,证明三角形全等是解此题的关键. 25.我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.但人们可以通过折纸把一个角三等分,今天我们就通过折纸把一个直角三等分.操作如下:第一步:如图①,对折长方形纸片ABCD ,使AD 与BC 重合,沿EF 对折后,得到折痕EF ,把纸片展平;第二步:如图②,再一次折叠纸片,使点A 落在EF 上(标记为点O ),并使折痕经过点B ;第三步:如图③,再展开纸片,得到折痕BR ,同时连接BO RO 、.这时就可以得到BR BO 、把直角ABC 三等分.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程. 已知:如图④,线段EF 是长方形ABCD 对折后的折痕,BOR ∆是由BAR ∆沿BR 折叠后得到的三角形 ,求证:解析:点O 在折痕EF 上,BR BO 、把ABC ∠三等分,见解析【分析】如图④,线段EF 是长方形ABCD 对折后的折痕,BOR ∆是BAR ∆沿BR 折叠后得到的三角形,点O 在折痕EF 上;连接AO , 根据折叠的性质可得△AOB 为等边三角形,然后结合矩形的性质即可求证所求问题.【详解】解:已知:如图④,线段EF 是长方形ABCD 对折后的折痕,BOR ∆是BAR ∆沿BR 折叠后得到的三角形,点O 在折痕EF 上.求证:BR BO 、把ABC ∠三等分证明:连接AO线段EF 是长方形ABCD 对折后的折痕∴EF 垂直平分AB 又点O 在对称轴EF 上AO BO ∴=BOR ∆是BAR ∆沿BR 折叠后得到的三角形,12BO AB ∴=∠=∠AO BO AB ∴==ABO ∴∆是等边三角形60ABO ︒∴∠=又12ABO ∠+∠=∠1230︒∴∠=∠=又90ABC ︒∠=330ABC ABO ︒∴∠=∠-∠=123∴∠=∠=∠BR BO ∴、把ABC ∠三等分.【点睛】本题主要考查矩形的性质及等边三角形的性质和判定,还考查了学生的观察力和动手能力,动手操作一下,问题更容易解决.26.如图,在四边形ABCD 中,90B D ∠=∠=︒,60C ∠=°,5AB =.2AD =.(1)求CD 的长;(2)求四边形ABCD 的面积.解析:(1)32233 【分析】(1)作DM ⊥BC ,AN ⊥DM 垂足分别为M 、N ,易知四边形MNAB 是矩形,分别在Rt △ADN 中求出DN ,利用含60°的直角三角形求CD 即可;(2)由(1)可知,四边形ABCD 的面积就是△DCM 与梯形ADMB 的面积和.【详解】解:(1)如图作DM ⊥BC ,AN ⊥DM 垂足分别为M 、N .∵∠B =∠NMB =∠MNA =90°,∴四边形MNAB 是矩形,∴MN =AB =5,AN =BM ,∠BAN =90°,∵∠C +∠B +∠ADC +∠BAD =360°,∠C =60°,∠B =∠ADC =90°,∴∠DAN =∠BAD ﹣∠BAN =30°,在RT △AND 中,∵AD =2,∠DAN =30°,∴DN =12AD =1,AN =2222213AD DN -=-=, 在RT △DMC 中,∵DM =DN +MN =6,∠C =60°,∴∠CDM =30°,∴CD =2MC ,设MC =x ,则CD =2x ,∵CD 2=DM 2+CM 2,∴4x 2=x 2+62,∵x >0∴x =23,∴CD =43.(2)由(1)得,112366322DCM S CM DM =⨯⨯=⨯⨯=, 1111()3113222ADMB S AN DM AB =⨯⨯+=⨯⨯=梯形, 1123633322DCM ABCD ADMB S S S =+=+=四边形梯形.【点睛】本题考查了勾股定理和含有30°角的直角三角形的性质,通过作辅助线,构建特殊的直角三角形是解题关键.27.在Rt ABC 中,90ACB ︒∠=,以AC 为一边向外作等边三角形ACD ,点E 为AB 的中点,连接DE .(1)证明://DE CB ;(2)探索AC 与AB 满足怎样的数量关系时,四边形DCBE 是平行四边形,并说明理由.解析:(1)见解析;(2)AC =12AB 【分析】(1)首先连接CE ,根据直角三角形的性质可得CE =12AB =AE ,再根据等边三角形的性质可得AD =CD ,然后证明△ADE ≌△CDE ,进而得到∠ADE =∠CDE =30°,再有∠DCB =150°可证明DE ∥CB ;(2)当AC =12AB 或AB =2AC 时,四边形DCBE 是平行四边形.根据(1)中所求得出DC ∥BE ,进而得到四边形DCBE 是平行四边形.【详解】解:(1)证明:连结CE .∵点E 为Rt △ACB 的斜边AB 的中点,∴CE =12AB =AE . ∵△ACD 是等边三角形,∴AD =CD .在△ADE 与△CDE 中,AD DC DE DE AE CE =⎧⎪=⎨⎪=⎩,∴△ADE ≌△CDE (SSS ),∴∠ADE =∠CDE =30°.∵∠DCB =150°,∴∠EDC +∠DCB =180°.∴DE ∥CB .(2)当AC =12AB 或AB =2AC 时,四边形DCBE 是平行四边形, 理由:∵AC =12AB ,∠ACB =90°, ∴∠B =30°,∵∠DCB =150°,∴∠DCB +∠B =180°,∴DC ∥BE ,又∵DE ∥BC ,∴四边形DCBE 是平行四边形.【点睛】此题主要考查了平行线的判定、全等三角形的判定与性质,以及平行四边形的判定,关键是掌握直角三角形的性质,以及等边三角形的性质.28.正方形ABCD 中,对角线AC 、BD 交于点O ,E 为BD 上一点,延长AE 到点N ,使AE EN =,连接CN 、CE .(1)求证:CAN △为直角三角形.(2)若45AN =6,求BE 的长.解析:(1)见解析;(2)42BE =【分析】(1)由四边形ABCD 是正方形,易证得△ABE ≌△CBE ,继而证得AE=CE ,再由AE=CE ,AE=EN ,即可证得∠ACN=90°,则可判定△CAN 为直角三角形;(2)由56,易求得CN 的长,然后由三角形中位线的性质,求得OE 的长,继而求得答案.【详解】解:(1)证明:∵四边形ABCD 是正方形,∴∠ABD=∠CBD=45°,AB=CB ,在△ABE 和△CBE 中,AB CB ABE CBE BE BE ⎧⎪∠∠⎨⎪⎩===,∴△ABE ≌△CBE (SAS ),∴AE=CE ;∵AE=CE ,AE=EN ,∴∠EAC=∠ECA ,CE=EN ,∴∠ECN=∠N ,∵∠EAC+∠ECA+∠ECN+∠N=180°,∴∠ACE+∠ECN=90°,即∠ACN=90°,∴△CAN 为直角三角形;(2)∵正方形的边长为6, ∴AC BD == ∵90,ACN AN ∠=︒=∴CN ==∵,OA OC AE EN ==,∴12OE CN ==∵12OB BD == ∴BE OB OE =+=【点睛】此题考查了正方形的性质、全等三角形的判定与性质、直角三角形的判定以及勾股定理等知识.注意利用勾股定理求得各线段的长是关键.。
浙教版数学八年级下册第四章《平行四边形》复习总结:知识点与练习
教师:学生:时间:_ 2016 _年_ _月日段第__ 次课
ABCD中,延长
随堂练习三:
.若平行四边形的两邻边的长分别为
17在ABCD中,AB比AD大2,∠DAB的角平分线AE交CD于E,∠ABC的角平分线BF交CD于F,若平行四边形ABCD的周长为24,求CE、FD、EF的长
19已知:如图,ABCD中,E、F分别是AC上两点,且BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF 是平行四边形.
20、如图,□ABCD的对角线AC、BD交于O,EF过点O交AD于E,交BC于F,G是OA的中点,H是OC的中点,四边形EGFH是平行四边形吗?说明理由.
21.如图,平行四边形ABCD中,M、N分别为AD、BC的中点,连结AN、DN、BM、CM,且AN、BM交于点P,CM、DN交于点Q.四边形MGNP是平行四边形吗?为什么?
22.如图,△ABC为等边三角形,D、F分别是BC、AB上的点,且CD=BF,以AD•为边作等边△ADE.(1)求证:△ACD≌△CBF;
(2)当D在线段BC上何处时,四边形CDEF为平行四边形,且∠DEF=30°?•证明你的结论.
23已知:如图,E、F、G、H分别是AB、BC、CD、DA的中点.
求证:四边形EFGH是平行四边形.。
第18章 《平行四边形》知识点及考点典例
第十八章《平行四边形》知识点及考点典例一、平行四边形1、平行四边形的概念两组对边分别__________的四边形叫做平行四边形。
2、平行四边形的性质(1)平行四边形的邻角_______,对角_______。
(2)平行四边形的对边_______且________。
推论:夹在两条平行线间的平行线段_______。
(3)平行四边形的对角线_________。
(4)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积。
3、平行四边形的判定(1)定义:两组对边分别________的四边形是平行四边形(2)定理1:两组对角分别_________的四边形是平行四边形(3)定理2:两组对边分别_________的四边形是平行四边形(4)定理3:对角线___________的四边形是平行四边形(5)定理4:一组对边_________的四边形是平行四边形二、矩形1、矩形的概念有一个角是_______的平行四边形叫做矩形。
2、矩形的性质(1)具有平行四边形的一切性质(边、角、对角线);(2)矩形的四个角都是_______;(3)矩形的对角线_______;(4)矩形是______对称图形。
3、矩形的判定(1)定义:有一个角是________的平行四边形是矩形。
(2)定理1:有___________是直角的四边形是矩形。
(3)定理2:对角线相等的_______________是矩形。
4、矩形的面积S矩形=长×宽=ab三、菱形1、菱形的概念有一组___________的平行四边形叫做菱形2、菱形的性质(1)具有平行四边形的一切性质(边、角、对角线);(2)菱形的________边相等(3)菱形的对角线________,并且每一条对角线平分一组对角(4)菱形是________对称图形3、菱形的判定(1)定义:有一组___________的平行四边形是菱形(2)定理1:___________都相等的四边形是菱形(3)定理2:对角线___________的平行四边形是菱形4、菱形的面积S菱形=底边长×高=两条对角线乘积的一半四、正方形1、正方形的概念有一组邻边相等并且有一个角是直角的______________叫做正方形。
浙教版数学八年级下册第四章《平行四边形》复习总结:知识点与练习
教师:学生:时间:_ 2016 _年_ _月日段第__ 次课
ABCD中,延长
随堂练习三:
.若平行四边形的两邻边的长分别为
17在ABCD中,AB比AD大2,∠DAB的角平分线AE交CD于E,∠ABC的角平分线BF交CD于F,若平行四边形ABCD的周长为24,求CE、FD、EF的长
19已知:如图,ABCD中,E、F分别是AC上两点,且BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF 是平行四边形.
20、如图,□ABCD的对角线AC、BD交于O,EF过点O交AD于E,交BC于F,G是OA的中点,H是OC的中点,四边形EGFH是平行四边形吗?说明理由.
21.如图,平行四边形ABCD中,M、N分别为AD、BC的中点,连结AN、DN、BM、CM,且AN、BM交于点P,CM、DN交于点Q.四边形MGNP是平行四边形吗?为什么?
22.如图,△ABC为等边三角形,D、F分别是BC、AB上的点,且CD=BF,以AD•为边作等边△ADE.(1)求证:△ACD≌△CBF;
(2)当D在线段BC上何处时,四边形CDEF为平行四边形,且∠DEF=30°?•证明你的结论.
23已知:如图,E、F、G、H分别是AB、BC、CD、DA的中点.
求证:四边形EFGH是平行四边形.。
第六章平行四边形
【典例5】过正五边形ABCDE的顶点A作直 线PQ∥BE则∠QAE的度数为( 36 )°
P
A
Q
B
E
C
D
两次翻折=一次平移
对称
• 图形变换
全等变换
旋转 平移
形状大小都不变
翻折
相似变换(形状不变大小变) 如:位似变换。
2. 概念:多边形的边、顶点、内角、内角和、 外角、外角和、对角线与四边形相同。
3. 本书所研究的多边形是凸多边形:多边形总 在任何一边所在直线的同一侧。
4. 多边形的对角线:连接不相邻两个顶点的线 段叫做多边形的对角线。三角形没有对角线
【例1】图形中是多边形的有( )
A. 1个 B. 2个 C. 3个 D. 4个
E
易证△ADE≌△CFE,
D
F 得CF=AE , CF//AB
又可得CF=BE,CF//BE
B
C
所以四边形BCFE是平行四边形
则有DE//BC,DE= 1 EF= 1 BC
22
【典例1】Rt△ABC中,∠BCA=90°,D、 E分别是AC、AD的中点,点F在BC的延长 线上,且∠CDF=∠A,试判断四边形 CEDF的形状并加以证明。
3. 三看对角线:两条对角线互相平分的四边形 是平行四边形。
4. 注意:结合图形用“符号语言”叙述。
5. 性质与判定的联系与区别。
A
D
B
O C
辨析
• 一组对角相等,一组对边平行的四边形是 否平行四边形?(是)
• 一组对角相等,一组对边相等的四边形是 否平行四边形?(不一定是)
• 一组对边平行,另一组对边相等的四边形 是否平行四边形?(不一定)
最新北师大版九年级数学上册《特殊的平行四边形》全章热门考点整合及答案
全章热门考点整合应用名师点金:本章内容是中考的必考内容,主要考查与特殊平行四边形中菱形、矩形、正方形有关的计算和证明等问题.近几年又出现了许多与特殊平行四边形有关的开放探索题、操作题以及与全等、相似、函数知识相结合的综合题.其主要考点可概括为:一个定理、三个图形、三个判定与性质、四个技巧、两种思想.一个定理——直角三角形斜边上的中线定理1.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.求证:(1)四边形ADEF是平行四边形;(2)∠DHF=∠DEF.(第1题)三个图形图形1菱形2.如图,在△ABC中,D,E分别是AB,AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形.(2)当△ABC满足什么条件时,四边形DBFE是菱形?并说明理由.(第2题)图形2矩形3.如图,在▱ABCD中,点O是AC与BD的交点,过点O的直线与BA的延长线,DC的延长线分别交于点E,F.(1)求证:△AOE≌△COF.(2)连接EC,AF,则EF与AC满足什么数量关系时,四边形AECF是矩形?请说明理由.(第3题)图形3正方形4.如图,在Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°后得△DBE,再把△ABC沿射线AB平移至△FEG,DE,FG相交于点H.(1)判断线段DE,FG的位置关系,并说明理由;(2)连接CG,求证:四边形CBEG是正方形.(第4题)三个判定与性质判定与性质1菱形5.如图,在△ABC中,∠BAC的平分线交BC于点D,E是AB上一点,且AE=AC,EF∥BC 交AD于点F.求证:四边形CDEF是菱形.(第5题)判定与性质2矩形6.【2015·湘西州】如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.求证:(1)△ADE≌△CBF;(2)四边形DEBF为矩形.(第6题)判定与性质3正方形7.如图,E为正方形ABCD的边AB的延长线上一点,DE交AC于点F,交BC于点G,H 为GE的中点.求证:FB⊥BH.(第7题)四个技巧技巧1解与四边形有关的折叠问题的技巧(轴对称变换法】8.如图,在矩形ABCD中,AB=10,BC=5,点E,F分别在AB,CD上,将矩形ABCD 沿EF折叠,使点A,D分别落在矩形ABCD外部的点A1,D1处,求阴影部分图形的周长.(第8题)技巧2解与四边形有关的旋转问题的技巧(特殊位置法】9.如图,正方形ABCD的对角线相交于点O,点O也是正方形A′B′C′O的一个顶点,如果两个正方形的边长都等于1,那么正方形A′B′C′O绕顶点O转动,两个正方形重叠部分的面积大小有什么规律?请说明理由.(第9题)技巧3解与四边形有关的动点问题的技巧(固定位置法】10.如图,在边长为10的菱形ABCD中,对角线BD=16,对角线AC,BD相交于点G,点O是直线BD上的动点,OE⊥AB于E,OF⊥AD于F.(1)求对角线AC的长及菱形ABCD的面积.(2)如图①,当点O在对角线BD上运动时,OE+OF的值是否发生变化?请说明理由.(3)如图②,当点O在对角线BD的延长线上时,OE+OF的值是否发生变化?若不变,请说明理由;若变化,请探究OE,OF之间的数量关系.技巧4解中点四边形的技巧11.如图,在△ABC中,AB=AC,点O在△ABC的内部,∠BOC=90°,OB=OC,D,E,F,G分别是AB,OB,OC,AC的中点.(1)求证:四边形DEFG是矩形;(2)若DE=2,EF=3,求△ABC的面积.(第11题)思想1转化思想12.如图,在四边形ABCD中,∠C=90°,∠ABD=∠CBD,AB=CB,P是BD上一点,PE ⊥BC ,PF ⊥CD ,垂足分别为点E ,F.求证:PA =EF.(第12题)思想2 数形结合思想 13.[阅读]在平面直角坐标系中,以任意两点P(x 1,y 1),Q(x 2,y 2)为端点的线段的中点坐标为⎝⎛⎭⎪⎫x 1+x 22,y 1+y 22. [运用](1)如图,矩形ONEF 的对角线相交于点M ,ON ,OF 分别在x 轴和y 轴上,O 为坐标原点,点E 的坐标为(4,3),则点M 的坐标为________.(2)在平面直角坐标系中,有A(-1,2),B(3,1),C(1,4)三点,另有一点D 与点A ,B ,C 构成平行四边形的顶点,求点D 的坐标.(第13题)答案1.证明:(1)∵点D ,E 分别是AB ,BC 的中点, ∴DE ∥AC.同理可得EF ∥AB. ∴四边形ADEF 是平行四边形. (2)由(1)知四边形ADEF 是平行四边形, ∴∠DAF =∠DEF.在Rt △AHB 中,∵D 是AB 的中点, ∴DH =12AB =AD.∴∠DAH =∠DHA. 同理可得HF =12AC =AF ,∴∠FAH =∠FHA.∴∠DAH +∠FAH =∠DHA +∠FHA. ∴∠DAF =∠DHF. ∴∠DHF =∠DEF.2.(1)证明:∵D ,E 分别是AB ,AC 的中点, ∴DE 是△ABC 的中位线. ∴DE ∥BC. 又∵EF ∥AB ,∴四边形DBFE 是平行四边形. (2)解:答案不唯一,下列解法供参考. 当AB =BC 时,四边形DBFE 是菱形. 理由:∵D 是AB 的中点, ∴BD =12AB.∵DE 是△ABC 的中位线, ∴DE =12BC.又∵AB =BC ,∴BD =DE. 又∵四边形DBFE 是平行四边形, ∴四边形DBFE 是菱形.3.(1)证明:∵四边形ABCD 是平行四边形, ∴OA =OC ,AB ∥CD. ∴∠AEO =∠CFO. 又∵∠AOE =∠COF , ∴△AOE ≌△COF(AAS).(2)解:当AC =EF 时,四边形AECF 是矩形.理由如下:由(1)知△AOE≌△COF,∴OE=OF.又∵AO=CO,∴四边形AECF是平行四边形.又∵AC=EF,∴四边形AECF是矩形.4.(1)解:DE⊥FG.理由如下:由题意,得∠A=∠BDE=∠GFE,∠ABC=∠DBE=90°,∴∠BDE+∠BED=90°.∴∠GFE+∠BED=90°.∴∠FHE=90°,即DE⊥FG.(2)证明:∵△ABC沿射线AB平移至△FEG,∴CB∥GE,CB=GE.∴四边形CBEG是平行四边形.∵∠GEF=∠ABC=90°,∴四边形CBEG是矩形.∵BC=BE,∴四边形CBEG是正方形.(第5题)5.证明:如图,连接CE,交AD于点O.∵AC=AE,∴△ACE为等腰三角形.∵AO平分∠CAE,∴AO⊥CE,且OC=OE.∵EF∥CD,∴∠2=∠1.又∵∠DOC=∠FOE,∴△DOC≌△FOE(ASA).∴OD=OF.即CE与DF互相垂直且平分.∴四边形CDEF是菱形.6.证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AD=CB.又∵DE⊥AB,BF⊥CD,∴∠DEA=∠BFC=90°.∴△ADE≌△CBF.(2)∵△ADE≌△CBF,∴AE=CF.∵CD=AB,∴DF=BE.又∵CD∥AB,∴四边形DEBF为平行四边形.又∵∠DEB=90°,∴四边形DEBF为矩形.7.证明:∵四边形ABCD是正方形,∴CD=CB,∠DCF=∠BCF=45°,DC∥AE,∠CBE=90°,∴∠CDF=∠E.又∵CF=CF,∴△DCF≌△BCF.∴∠CDF=∠CBF.∴∠CBF=∠E.∵H为GE的中点,∴HB=HG=12GE.∴∠HGB=∠HBG.∵∠CDG+∠CGD=90°,∠CGD=∠HGB=∠HBG,∴∠FBG+∠HBG=90°.即∠FBH=90°,∴FB⊥BH.8.解:∵在矩形ABCD中,AB=10,BC=5,∴CD=AB=10,AD=BC=5.又∵将矩形ABCD沿EF折叠,使点A,D分别落在矩形ABCD外部的点A1,D1处,∴根据轴对称的性质可得A1E=AE,A1D1=AD,D1F=DF.设线段D1F与线段AB交于点M,则阴影部分的周长为(A1E+EM+MD1+A1D1)+(MB+MF+FC+CB)=AE+EM+MD1+AD+MB+MF+FC+CB=(AE+EM+MB)+(MD1+MF+FC)+AD+CB=AB+(FD1+FC)+10=AB+(FD+FC)+10=10+10+10=30.9.解:两个正方形重叠部分的面积保持不变,始终是1 4 .理由如下:∵四边形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°. ∵四边形A′B′C′O是正方形,∴∠EOF=90°.∴∠EOF=∠BOC.∴∠EOF-∠BOF=∠BOC-∠BOF.即∠BOE =∠COF.∴△BOE ≌△COF.∴S △BOE =S △COF .∴两个正方形重叠部分的面积等于S △BOC .∵S 正方形ABCD =1×1=1,∴S △BOC =14S 正方形ABCD =14. ∴两个正方形重叠部分的面积保持不变,始终是14. 10.解:(1)在菱形ABCD 中,AG =CG ,AC ⊥BD ,BG =12BD =12×16=8, 由勾股定理得AG =AB 2-BG 2=102-82=6,所以AC =2AG =2×6=12.所以菱形ABCD 的面积=12AC ·BD =12×12×16=96. (2)不发生变化.理由如下:如图①,连接AO ,则S △ABD =S △ABO +S △AOD ,所以12BD ·AG =12AB ·OE +12AD ·OF. 即12×16×6=12×10·OE +12×10·OF. 解得OE +OF =9.6,是定值,不变.(3)发生变化.如图②,连接AO ,则S △ABD =S △ABO -S △AOD ,所以12BD ·AG =12AB ·OE -12AD ·OF. 即12×16×6=12×10·OE -12×10·OF. 解得OE -OF =9.6,是定值,不变.所以OE +OF 的值发生变化,OE ,OF 之间的数量关系为OE -OF =9.6.(第10题)11.(1)证明:如图,连接AO 并延长交BC 于H ,∵AB =AC ,OB =OC ,∴AH 是BC 的中垂线,即AH ⊥BC 于H.∵D ,E ,F ,G 分别是AB ,OB ,OC ,AC 的中点,(第11题)∴DG ∥EF ∥BC ,DE ∥AH ∥GF.∴四边形DEFG 是平行四边形.∵EF ∥BC ,AH ⊥BC ,∴AH ⊥EF.又∵DE ∥AH ,∴EF ⊥DE ,∴四边形DEFG 是矩形.(2)解:∵D ,E ,F 分别是AB ,OB ,OC 的中点.∴AO =2DE =4,BC =2EF =6.∵△BOC 是等腰直角三角形,∴OH =12BC =3. ∴AH =OA +OH =4+3=7.∴S △ABC =12×6×7=21.(第12题)12.证明:如图,连接PC.∵PE ⊥BC ,PF ⊥CD ,∠ECF =90°.∴∠PEC =∠PFC =∠ECF =90°.∴四边形PECF 是矩形.∴PC =EF.在△ABP 和△CBP 中,⎩⎪⎨⎪⎧AB =CB ,∠ABP =∠CBP ,BP =BP ,∴△ABP ≌△CBP(SAS).∴PA =PC.∴PA =EF.点拨:本题运用了转化思想将四边形中的边转化到三角形中,通过用等式的传递性证明两条线段相等.13.解:(1)(2,1.5)(2)设点D 的坐标为(x ,y).若以点A ,B ,C ,D 为顶点构成的四边形是平行四边形,①当AB 为对角线时,∵A(-1,2),B(3,1),C(1,4),∴-1+32=1+x 2,2+12=4+y 2. ∴x =1,y =-1.∴点D 的坐标为(1,-1).②当BC 为对角线时,∵A(-1,2),B(3,1),C(1,4),∴3+12=-1+x 2,1+42=2+y 2. ∴x =5,y =3.∴点D 的坐标为(5,3).③当AC 为对角线时,∵A(-1,2),B(3,1),C(1,4),∴-1+12=3+x 2,2+42=1+y 2. ∴x =-3,y =5.∴点D 的坐标为(-3,5).综上所述,点D 的坐标为(1,-1)或(5,3)或(-3,5).。
平行四边形全章知识点总结
平行四边形全章知识点总结1.定义:2.性质:(1)相对边相等:平行四边形的相对边长度相等。
(2)相对角相等:平行四边形的相对角度相等。
(3)对角线互相平分:平行四边形的对角线互相平分。
(4)内角和为180度:平行四边形的所有内角的和等于180度。
3.定理:(1)同位角定理:平行线与直线相交时,同位角是相等的。
(2)内错角定理:平行线与直线相交时,内错角是相等的。
(3)平行线定理:如果一个直线与两条平行线相交,那么这两条平行线上对应的角度相等。
(4)平行四边形角度定理:如果一个四边形是平行四边形,那么它的相邻内角补角。
4.证明:(1)证明相对边相等:可以通过利用平行线的性质来证明两对边相等。
(2)证明相对角相等:可以通过同位角定理和内错角定理来证明相对角相等。
(3)证明对角线互相平分:可以通过使用平行线的性质和内错角定理来证明对角线互相平分。
(4)证明内角和为180度:可以通过使用内错角定理和平行线定理来证明内角和为180度。
5.应用:(1)计算平行四边形的面积:平行四边形的面积可以通过底边的长度乘以高来计算。
(2)判断平行四边形:根据边的长度和角度的相等性质,可以判断一个四边形是否为平行四边形。
(3)应用于几何问题:平行四边形常常出现在几何问题中,例如解决面积、长度和角度等问题时。
通过对平行四边形的定义、性质、定理、证明和应用的总结,我们可以更好地理解和应用平行四边形的知识。
掌握平行四边形的相关知识,不仅能够提高我们解决几何问题的能力,还可以在实际生活中应用该知识,并且能够帮助我们理解和应用其他几何形状的知识。
因此,对平行四边形的学习和理解是我们几何学习的重要一步。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行四边形全章知识点-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII平行四边形全章知识点总结定义:两组对边分别平行的四边形是平行四边形平行四边形的性质:(1):平行四边形对边相等 (即:AB=CD,AD=BC);(2):平行四边形对边平行 (即:AB//CD,AD//BC);(3):平行四边形对角相等 (即:∠A=∠C,∠B=∠D);(4):平行四边形对角线互相平分 (即:OA=OC,OB=OD);平行四边形的判定方法:1. 两组对边分别平行的四边形是平行四边形(定义判定法);2.一组对边平行且相等的四边形是平行四边形;3.两组对边分别相等的四边形是平行四边形;4.对角线互相平分的四边形是平行四边形;5.两组对角分别相等的四边形是平行四边形;考点1 特殊的平行四边形的性质与判定1.矩形的定义、性质与判定(1)矩形的定义:有一个角是直角的平行四边形是矩形。
(2)矩形的性质:矩形的对角线_________;矩形的四个角都是________角。
矩形具有________的一切性质。
矩形是轴对称图形,对称轴有_____________条,矩形也是中心对称图形,对称中心为_____________的交点。
矩形被对角线分成了____________个等腰三角形。
(3)矩形的判定有一个是直角的平行四边形是矩形;有三个角是_____________的四边形是矩形;对角线_____的平行四边形是矩形。
温馨提示:矩形的对角线是矩形比较常用的性质,当对角线的夹角中,有一个角为60度时,则构成一个等边三角形;在判定矩形时,要注意利用定义或对角线来判定时,必须先证明此四边形为平行四边形,然后再请一个角为直角或对角线相等。
很多同学容易忽视这个问题。
2.菱形的定义、性质与判定(1)菱形的定义:有一组邻边相等的平行四边形是菱形。
(2)菱形的性质菱形的_______都相等;菱形的对角线互相_______,并且每一条对角线______一组对角;菱形也具有平行四边形的一切性质。
菱形即是轴对称图形,对称轴有____条。
(3)菱形的面积菱形的面积=底×高,菱形的面积=21ab ,其中a ,b 分别为菱形两条对角线的长。
菱形被对角线分成了4个全等的直角三角形。
(4)菱形的判定:______________都相等的四边形是菱形;对角线____________的平行四边形是菱形;有一组邻边相等的平行四边形是菱形。
温馨提示:在利用菱形的判定时,也要注意所要证明的四边形是不是平行四边形,而你用的判定定理需不需要证明它是平行四边形,有对角线时,通常考虑利用对角线互相垂直的平行四边形是菱形来证明,否则一般不利用此定理。
3.正方形的性质及判定方法(1)正方形的性质:正方形的四个角都是_____________,四条边都_____________;正方形的两条对角线____________,并且互相垂直平分,每条对角线平分一组对角;正方形即是轴对称图形也是中心对称图形。
正方形具有平行四边形、矩形、菱形的一切性质。
(2)正方形的判定方法:有一组邻边相等的____是正方形;对角线互相____的矩形是正方形;有一个角是直角的菱形是正方形;对角线________的菱形是正方形。
温馨提示:无论是正方形的性质还是正方形的判定,它的中心思想就是正方形即是矩形,又是菱形,如果都从这个出发,则一切的性质与判定就都有了。
但要注意在利用对角线判定正方形时,“平分”这个前提,因为只有对角线平分了,此四边形才是平行四边形了,然后再证明是矩形又是菱形。
一.正确理解定义(1)定义:两组对边分别平行的四边形是平行四边形.平行四边形的定义揭示了图形的最本质的属性,它既是平行四边形的一条性质,又是一个判定方法.(2)表示方法:用“ABCD 记作,读作“平行四边形ABCD ”.2.熟练掌握性质平行四边形的有关性质和判定都是从 边、角、对角线 三个方面的特征进行简述的. (1)角:平行四边形的邻角互补,对角相等; (2)边:平行四边形两组对边分别平行且相等; (3)对角线:平行四边形的 对角线互相平分; (4)面积:①S ==⨯底高ah ;②平行四边形的对角线将四边形分成4个面积相等的三角形.3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形 ②方法1:两组对角分别相等的四边形是平行四边形 ③方法2:两组对边分别相等的四边形是平行四边形 ④方法3:对角线互相平分的四边形是平行四边形 ⑤方法4:一组平行且相等的四边形是平行四边形 二、.几种特殊四边形的有关概念(1)矩形:有一个角是直角 的平行四边形 是矩形,它是研究矩形的基础,它既可以看作是矩形的性质,也可以看作是矩形的判定方法,对于这个定义,要注意把握:① 平行四边形; ② 一个角是直角,两者缺一不可.(2)菱形:有一组邻边相等 的平行四边形 是菱形,它是研究菱形的基础,它既可以看作是菱形的性质,也可以看作是菱形的判定方法,对于这个定义,要注意把握:① 平行四边形;② 一组邻边相等,两者缺一不可.(3)正方形:有一组邻边相等且有一个直角的平行四边形叫做正方形,它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形.(4)梯形:一组对边平行而另一组对边不平行的四边形叫做梯形,对于这个定义,要注意把握:①一组对边平行;②另一组对边不平行(5)等腰梯形:是一种特殊的梯形,它是两腰相等的梯形,特殊梯形还有直角梯形.2.几种特殊四边形的有关性质(1)矩形:①边:对边平行且相等;②角:对角相等、邻角互补;③对角线:对角线互相平分且相等;④对称性:轴对称图形(对边中点连线所在直线,2条).(2)菱形:①边:四条边都相等;②角:对角相等、邻角互补;③对角线:对角线互相垂直平分且每条对角线平分每组对角;④对称性:轴对称图形(对角线所在直线,2条).(3)正方形:①边:四条边都相等;②角:四角相等;③对角线:对角线互相垂直平分且相等,对角线与边的夹角为450;④对称性:轴对称图形(4条).(4)等腰梯形:①边:上下底平行但不相等,两腰相等;②角:同一底边上的两个角相等;对角互补③对角线:对角线相等;④对称性:轴对称图形(上下底中点所在直线).3.几种特殊四边形的判定方法(1)矩形的判定:满足下列条件之一的四边形是矩形①有一个角是直角的平行四边形;②对角线相等的平行四边形;③四个角都相等(2)菱形的判定:满足下列条件之一的四边形是矩形①有一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等.(3)正方形的判定:满足下列条件之一的四边形是正方形.①有一组邻边相等且有一个直角的平行四边形②有一组邻边相等的矩形;③对角线互相垂直的矩形.④有一个角是直角的菱形⑤对角线相等的菱形;(4)等腰梯形的判定:满足下列条件之一的梯形是等腰梯形①同一底两个底角相等的梯形;②对角线相等的梯形.4.几种特殊四边形的常用说理方法与解题思路分析(1)识别矩形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角.②先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.③说明四边形ABCD的三个角是直角.(2)识别菱形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任一组邻边相等.② 先说明四边形ABCD 为平行四边形,再说明对角线互相垂直. ③ 说明四边形ABCD 的四条相等. (3)识别正方形的常用方法① 先说明四边形ABCD 为平行四边形,再说明平行四边形ABCD 的一个角为直角且有一组邻边相等.② 先说明四边形ABCD 为平行四边形,再说明对角线互相垂直且相等. ③ 先说明四边形ABCD 为矩形,再说明矩形的一组邻边相等. ④ 先说明四边形ABCD 为菱形,再说明菱形ABCD 的一个角为直角. (4)识别等腰梯形的常用方法① 先说明四边形ABCD 为梯形,再说明两腰相等.② 先说明四边形ABCD 为梯形,再说明同一底上的两个内角相等. ③ 先说明四边形ABCD 为梯形,再说明对角线相等. 5.几种特殊四边形的面积问题① 设矩形ABCD 的两邻边长分别为a,b ,则S 矩形=ab .② 设菱形ABCD 的一边长为a ,高为h ,则S 菱形=ah ;若菱形的两对角线的长分别为a,b ,则S 菱形=12ab .③ 设正方形ABCD 的一边长为a ,则S 正方形=2a ;若正方形的对角线的长为a ,则S 正方形=212a . ④ 设梯形ABCD 的上底为a ,下底为b ,高为h ,则S 梯形=1()2a b h .平行四边形 矩形 菱形 正方形图形性质1.对边且 ; 2.对角 ;邻角 ;3.对角线;1.对边且 ; 2.对角且四个角都是 ; 3.对角线; 1.对边 且四条边都 ; 2.对角 ; 3.对角线 且每 条对角线;1.对边 且四条边都 ; 2.对角 且四个角都是 ; 3.对角线 且每条对角线 ; 面积例1:如图,菱形ABCD 中,∠B =60°,AB =2,E 、F 分别是BC 、CD 的中点,连接AE 、EF 、AF , 则△AEF 的周长为( )A .32B .33C .34D .3例2:如图,把矩形ABCD 沿EF 对折后使两部分重合,若150∠=,则AEF ∠=( )A .110°B .115°C .120°D .130°一、选择题(每题3分,共30分)1.如图,在菱形ABCD 中,AB = 5,∠BCD = 120°,则对角线AC 等于( )A .20B .15C . 10D .52.如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开, 得到的菱形的面积为( )A .210cmB .220cmC .240cmD .280cmBACDAB CD3.如图,菱形ABCD中,对角线AC、BD相交于点O,M、N分别是边AB、AD的中点,连接OM、ON、MN,则下列叙述正确的是()A.△AOM和△AON都是等边三角形B.四边形MBON和四边形MODN都是菱形C.四边形AMON与四边形ABCD是位似图形D.四边形MBCO和四边形NDCO都是等腰梯形第5题图4.如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=()A.35° B.45° C.50° D.55°5. 将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为( )A.1 B.2 C.2 D.37.正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为()A.8 B.82 C.217 D.108.如图,□ABCD的周长是28㎝,△ABC的周长是22㎝,则AC的长为( )A.6㎝B.12㎝C.4㎝D.8㎝9.如图,菱形ABCD的边长为10cm,DE⊥AB,DE=6,则这个菱形的面积= cm2.ADE PCB F第4题图DBCANMO第3题图第10题第8题图第9题BD FOBD10.如图,四边形ABCD 是平行四边形,使它为矩形的条件可以是 .三、解答题11.如图 ,ABCD 是菱形,对角线AC 与BD 相交于O ,306ACD BD ∠==°,.(1)求证:△ABD 是正三角形; (2)求 AC 的长(结果可保留根号).12.已知:如图,四边形ABCD 是菱形,过AB 的中点E 作AC 的垂线EF ,交AD 于点M ,交CD 的延长线于点F .(1)求证:AM =DM ;(2)若DF =2,求菱形ABCD 的周长 .13.如图:已知在ABC △中,AB AC =,D 为BC 边的中点,过点D 作DE AB DF AC ⊥,⊥,垂足分别为E F ,.(1)求证:BED CFD △≌△;(2)若90A ∠=°,求证:四边形DFAE 是正方形.BA CDFM第12题图EO DBA第13题图D CB EAF11。