(推荐)高一数学集合知识整理
高一数学集合知识点总结_高三数学知识点总结
高一数学集合知识点总结_高三数学知识点总结
一、基本概念
1.集合的定义:集合就是一堆元素
2.元素:组成集合的基本对象
3.空集:不包含任何元素的集合
4.子集:若A的所有元素都在B中出现,则称A是B的子集
5.真子集:A是B的子集且A不等于B,则称A是B的真子集
6.并集:若x是A或B中的元素,称x是集合A和B的并集,记为A∪B
8.差集:对于任何集合A,定义对A的补集A',A'称为A的差集
二、集合的运算
1.交换律:A∪B=B∪A;A∩B=B∩A
3.分配律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C)
三、应用
1.按照题意选择合适的运算进行操作
2.注意各个集合的定义及要求
3.在解决实际问题时,可以将问题中的各个部分转化为集合的形式,再进行运算
4.需要注意的是,在进行求交集、求并集、求差集时,要注意元素的重复出现
5.应适当掌握分类讨论、逆向思维等方法,提高解题的效率
四、注意事项
1.在进行集合运算时,要注意运算的优先级,可使用括号来改变优先级
2.求子集时,要注意空集是任何集合的子集,且每个集合都是其本身的子集
3.在使用德摩根定理时,要注意要求补集存在
4.在解决问题时,应注意判断问题是否存在歧义,应根据问题的要求确定集合的定义、元素及运算方式
五、小结
集合是高中数学中基础的概念之一,应当掌握集合的基本概念、运算法则等内容。
在解决实际问题时,可以通过将问题转化为集合的形式,再运用集合的基本运算法则来解决问题,提高解题的效率。
在学习和应用集合时,需要注意方法的正确性及严谨性,避免出现错误。
高一数学集合知识点总结5篇
高一数学集合知识点总结5篇第1篇示例:高一数学集合知识点总结数学中的集合理论是一门基础重要的数学分支,它在高中数学教学中占有重要位置。
在我们高一的数学学习中,集合知识点也是必须掌握的内容之一。
下面就让我们来总结一下高一数学中的集合知识点吧。
一、集合的概念集合是由若干个元素构成的整体。
一般用大写字母A、B、C等表示集合,用小写字母a、b、c等表示元素。
集合中的元素是无序排列的,并且一个集合中的元素都是不同的。
二、集合的表示方法1. 列举法:直接将集合中的所有元素列出来,用大括号{}括起来。
例如:A={1,2,3,4,5}2. 描述法:通过一个条件来描述集合中的元素的特点。
例如:B={x|x是正整数,且x<6}三、集合之间的关系1. 交集:集合A和集合B的交集,记作A∩B,表示A和B共同拥有的元素组成的集合。
2. 并集:集合A和集合B的并集,记作A∪B,表示A和B所有的元素组成的集合。
3. 差集:集合A减去集合B,记作A-B,表示只属于A而不属于B的元素组成的集合。
4. 补集:集合A对于全集U的补集,记作A’或者A^c,表示不属于A的元素组成的集合。
四、集合运算规律1. 交换律:A∩B=B∩A,A∪B=B∪A2. 结合律:(A∩B)∩C=A∩(B∩C),(A∪B)∪C=A∪(B∪C)3. 分配律:A∩(B∪C)=(A∩B)∪(A∩C),A∪(B∩C)=(A∪B)∩(A∪C)4. 吸收律:A∩(A∪B)=A,A∪(A∩B)=A5. 其他运算规律:A∪(A’∩B)=A∪B,A∩(A’∪B)=A∩B五、集合的应用1. 数学中的集合是研究对象的统一表达形式,常用于描述集合之间的关系。
2. 集合论在概率论、代数学、数论等多个数学分支中都有广泛的应用。
3. 集合的知识也经常会在真实生活中的问题中得到应用,比如排列组合问题、概率统计问题等。
通过对高一数学集合知识点的总结,我们对集合的概念、表示方法、集合之间的关系、集合运算规律以及集合的应用有了更清晰的认识。
高一集合知识点总结
高一集合知识点总结一、集合的基本概念1. 集合定义:集合是具有某种特定性质的事物的总体。
2. 元素:组成集合的每个事物称为该集合的元素。
3. 集合的表示:常用大写字母表示集合,如集合A、B等;集合中的元素用小写字母表示,如a、b等。
二、集合的分类1. 有限集:元素数量有限的集合。
2. 无限集:元素数量无限的集合。
3. 空集:不包含任何元素的集合,记作∅。
三、集合的表示方法1. 枚举法:直接列举出集合中的所有元素。
2. 描述法:用数学表达式描述集合中的元素性质。
3. 图示法:用图形表示集合及其关系。
四、集合间的关系1. 子集:如果集合A的所有元素都属于集合B,则A是B的子集。
2. 真子集:集合A是集合B的子集,且A不等于B。
3. 并集:两个集合A和B的所有元素组成的集合。
4. 交集:两个集合A和B的公共元素组成的集合。
5. 补集:对于集合A,其在全集U中的补集是全集U中不属于A的元素组成的集合。
五、集合运算1. 并集运算(∪):A ∪ B = {x | x ∈ A 或x ∈ B}。
2. 交集运算(∩):A ∩ B = {x | x ∈ A 且 x ∈ B}。
3. 差集运算(-):A - B = {x | x ∈ A 且 x ∉ B}。
4. 补集运算(' 或 C):A' = {x | x ∉ A}。
六、特殊集合1. 有理数集:可以表示为两个整数比的数的集合。
2. 无理数集:不能表示为两个整数比的数的集合。
3. 自然数集:正整数的集合。
4. 整数集:正整数、负整数和零的集合。
5. 实数集:包括有理数和无理数的集合。
七、集合的简单性质1. 德摩根定律:(A ∪ B)' = A' ∩ B';(A ∩ B)' = A' ∪ B'。
2. 集合恒等式:A ∪ A' = U,A ∩ A' = ∅。
3. 子集性质:如果A ⊆ B 且 B ⊆ A,则A = B。
高中数学必修一集合知识点总结大全
高中数学 必修1知识点集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。
、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。
、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。
真子集:若且(即至少存在但),则是的真子集。
集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂=⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念把某些特定的对象集在一起就叫做集合. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算B{x A A = ∅=∅ B A ⊆A B B ⊆B{x A A = A ∅= B A ⊇ B B ⊇交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A == 分配律:)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A U A A U A U Φ=ΦΦ=== 等幂律:.,A A A A A A == 求补律:A ∩ A ∪=U反演律:(A ∩B)=(A)∪(B) (A ∪B)=(A)∩(B)。
高一集合知识点总结
高一集合知识点总结集合是数学中非常基础且重要的概念,它有着广泛的应用。
本文将围绕高一阶段学习的集合知识点进行总结。
一、集合的基本概念1. 集合的定义:集合是由一些具有相同特性的对象组成的整体。
2. 集合的表示方法:常用的表示方法有列举法、描述法和级数法。
3. 元素与集合的关系:一个元素可以属于一个集合,也可以不属于一个集合。
4. 空集:不含任何元素的集合称为空集。
二、集合的运算1. 并集:包含两个或多个集合中的所有元素的集合。
2. 交集:包含几个集合中共同元素的集合。
3. 差集:包含一个集合中所有不属于另一个集合的元素的集合。
4. 补集:在一个全集中,除去一个集合中的元素后,剩下的元素构成的集合。
5. 集合的运算法则:包括交换律、结合律、分配律等。
三、集合的性质1. 子集:如果一个集合的所有元素都属于另一个集合,则前者称为后者的子集。
2. 真子集:如果一个集合是另一个集合的子集,且两个集合不相等,则前者称为后者的真子集。
3. 幂集:一个集合所有子集的集合。
4. 两个集合相等的充要条件:就是它们互为子集。
5. 全集:包含研究对象的一切元素的集合。
6. 互不相交:两个集合没有共同的元素。
7. 集合的基数:一个集合所含元素的个数。
四、集合的应用1. 应用于数学证明:集合论是数学的基础理论之一,许多数学证明都涉及到集合的概念和运算。
2. 应用于概率统计:集合可以用于描述样本空间、事件和概率等概念。
3. 应用于函数关系:集合可以用于描述函数的定义域、值域和图像等概念。
4. 应用于逻辑推理:集合可以用于描述命题、逻辑关系和推理过程等。
五、常见问题与解析1. 集合的相等与包含关系:很多问题需要判断两个集合是否相等或一个集合是否包含另一个集合。
2. 集合的运算性质:有时需要利用集合的运算性质简化问题或变换表达式。
3. 幂集的计算:计算幂集需要将一个集合的所有子集列举出来。
4. 集合的守恒问题:在进行集合运算时,需要注意集合的守恒问题,即集合运算前后集合元素的变化情况。
高一数学集合知识点归纳及典型例题
集合一、知识点: 1、元素:(1)集合中的对象称为元素,若a 是集合A 的元素,记作A a ∈;若b 不是集合A 的元素,记作A b ∉;(2)集合中对象元素的性质:确定性、互异性、无序性; (3)集合表示方法:列举法、描述法、图示法; (4)常用数集:R Q Z N N N ;;;;;*+ 2、集合的关系: 子集 相等 3、全集交集 并集 补集4、集合的性质:(1);,,A B B A A A A A ⋂=⋂=⋂=⋂φφ (2) ;,A B B A A A ⋃=⋃=⋃φ (3) );()(B A B A ⋃⊆⋂(4);B B A A B A B A =⋃⇔=⋂⇔⊆(5));()()(),()()(B C A C B A C B C A C B A C S S S S S S ⋂=⋃⋃=⋂二、典型例题例1. 已知集合}33,)1(,2{22++++=a a a a A ,若A ∈1,求a 。
例2. 已知集合M ={}012|2=++∈x ax R x 中只含有一个元素,求a 的值。
例3. 已知集合},01|{},06|{2=+==-+=ax x B x x x A 且B A ,求a 的值。
\例4. 已知方程02=++c bx x 有两个不相等的实根x 1, x 2. 设C ={x 1, x 2}, A ={1,3,5,7,9}, B ={1,4,7,10},若C B C C A =Φ= ,,试求b ,c 的值。
例5. 设集合}121|{},52|{-≤≤+=≤≤-=m x m x B x x A ,(1)若Φ=B A , 求m 的范围;(2)若A B A = , 求m 的范围。
例6. 已知A ={0,1}, B ={x|x ⊆A},用列举法表示集合B ,并指出集合A 与B 的关系。
三、练习题1. 设集合M =,24},17|{=≤a x x 则( ) A. M a ∈ B. M a ∉ C. a = M D. a > M2. 有下列命题:①}{Φ是空集 ② 若N b N a ∈∈,,则2≥+b a ③ 集合}012|{2=+-x x x 有两个元素 ④ 集合},100|{Z x N x x B ∈∈=为无限集,其中正确命题的个数是( )A. 0B. 1C. 2D. 3 3. 下列集合中,表示同一集合的是( ) A. M ={(3,2)} , N ={(2,3)} B. M ={3,2} , N ={(2,3)}C. M ={(x ,y )|x +y =1}, N ={y|x +y =1}D.M ={1,2}, N ={2,1}4. 设集合}12,4{},1,3,2{22+-+=+=a a a N a M ,若}2{=N M , 则a 的取值集合是( ) A.}21,2,3{- B. {-3}C. }21,3{-D. {-3,2}5. 设集合A = {x| 1 < x < 2}, B = {x| x < a}, 且B A ⊆, 则实数a的范围是( )A. 2≥aB. 2>aC. 1≤aD. 1>a 6. 设x ,y ∈R ,A ={(x ,y )|y =x}, B =}1|),{(=x yy x , 则集合A ,B 的关系是( )A. A BB. B AC. A =BD. A ⊆B7. 已知M ={x|y =x 2-1} , N ={y|y =x 2-1}, 那么M ∩N =( ) A. Φ B. M C. N D. R8. 已知 A = {-2,-1,0,1}, B = {x|x =|y|,y ∈A}, 则集合B =_________________9. 若A B },01|{},023|{22⊆=-+-==+-=且a ax x x B x x x A ,则a 的值为_____10. 若{1,2,3}⊆A ⊆{1,2,3,4,5}, 则A =____________11. 已知M ={2,a ,b}, N ={2a ,2,b 2},且M =N 表示相同的集合,求a ,b 的值12. 已知集合B,A }02|{},04|{22⊆>--=<++=且x x x B p x x x A 求实数p 的范围。
高一数学集合知识点全总结
高一数学集合知识点全总结一、集合的概念集合是具有某种特定性质的事物的总体或类别。
集合中具体的元素称为集合的成员。
集合的表示方法有三种:列举法、描述法和集合的图示法。
1. 列举法:集合A = {a, b, c, d, e}2. 描述法:集合A = {x|x具有某种特定的性质}3. 图示法:通常用Venn图来表示,也可以用数轴、区间等形式表示。
二、集合的基本运算1. 并集设A和B是两个集合,A和B的并集,记作A∪B,是一个集合C,C中的元素是A和B 中所有元素的集合,即C={x | x∈A或x∈B}。
2. 交集设A和B是两个集合,A和B的交集,记作A∩B,是一个集合C,C中的元素是A和B 中共有元素的集合,即C={x | x∈A且x∈B}。
3. 差集设A和B是两个集合,A和B的差集,记作A-B,是一个集合C,C中的元素是属于A 但不属于B的所有元素的集合,即C={x | x∈A,x∉B}。
4. 补集A的补集,记作Ā,是一个集合C,C中的元素是不属于A的所有元素的集合,即C={x | x∈U,x∉A},其中U为全集。
5. 交叉并集设A和B是两个集合,A和B的交叉并集,记作A⊕B,是一个集合C,C中的元素是A 和B中所有元素的集合减去A和B的交集,即C={x | x∈A或x∈B,但x∉A∩B}。
6. 笛卡尔积对于两个集合A和B,在数学上,A和B的笛卡尔积,记作AxB,是一个集合C,C中的元素是由A和B中的每个元素按一定次序组成的。
写作C={(a,b)|a∈A,b∈B}以上的集合运算规则和公式需要通过具体的例题来进行练习和理解。
三、集合的关系1. 包含关系若集合A的每个元素都是集合B的元素,则A是B的子集,记作A⊆B或B⊇A。
特别地,空集是每个集合的子集。
2. 相等关系若集合A和B有相同的元素,则A等于B,记作A=B。
3. 差集和补集的关系若A⊆B,则A-B=BĀ。
四、集合论的重要定理1. 德摩根定理对于任意两个集合A和B,有以下两个等式成立:A∪B = AĀ∩BĀA∩B = AĀ∪BĀ2. 韦恩图定理对于任意三个集合A、B和C,有以下等式成立:A∪(B∩C) = (A∪B)∩(A∪C)A∩(B∪C) = (A∩B)∪(A∩C)3. 分配率对于任意三个集合A、B和C,有以下等式成立:A∪(B∩C) = (A∪B)∩(A∪C)A∩(B∪C) = (A∩B)∪(A∩C)以上定理是在集合论中非常重要的定理,需要通过具体的例题来进行理解和应用。
高一数学集合重要知识点总结
高一数学集合重要知识点总结高一数学中很多内容都与集合知识密切联系,集合有哪些知识点需要掌握?下面是店铺给大家带来的高一数学集合重要知识点,希望对你有帮助。
高一数学集合重要知识点(一)1、集合的含义:“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。
数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。
所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。
比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。
2、集合的表示通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。
a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作d∉A。
有一些特殊的集合需要记忆:非负整数集(即自然数集)N正整数集N*或N+整数集Z有理数集Q实数集R集合的表示方法:列举法与描述法。
①列举法:{a,b,c……}②描述法:将集合中的元素的公共属性描述出来。
如{x∈R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}③语言描述法:例:{不是直角三角形的三角形}例:不等式x-3>2的解集是{x∈R|x-3>2}或{x|x-3>2}强调:描述法表示集合应注意集合的代表元素A={(x,y)|y=x2+3x+2}与B={y|y=x2+3x+2}不同。
集合A中是数组元素(x,y),集合B中只有元素y。
3、集合的三个特性(1)无序性指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。
例题:集合A={1,2},B={a,b},若A=B,求a、b的值。
解:,A=B注意:该题有两组解。
(2)互异性指集合中的元素不能重复,A={2,2}只能表示为{2}(3)确定性集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。
数学高一的集合知识点
数学高一的集合知识点在高一数学课程中,集合是一个非常重要的数学概念。
它是数学中研究对象的分类和组织方式,具有广泛的应用。
本文将介绍高一学生需要了解和掌握的集合知识点。
一、集合的基本概念1. 集合的定义:集合是由一定规则确定的,具有确定性和互异性的事物的总称。
2. 元素:集合中的个体称为元素,用小写字母表示。
如果a是集合A的元素,记作a∈A;如果a不是集合A的元素,记作a∉A。
3. 集合的表示方法:列举法和描述法。
列举法是将集合的所有元素一个个列举出来;描述法是使用描述集合元素的特征或性质来表示集合。
4. 空集:不包含任何元素的集合称为空集,用符号∅表示。
二、集合的运算1. 交集:对于给定的两个集合A和B,它们的交集是同时属于A和B的元素组成的集合,记作A∩B。
2. 并集:对于给定的两个集合A和B,它们的并集是包含A和B中所有元素的集合,记作A∪B。
3. 差集:对于给定的两个集合A和B,A与B的差集是属于A但不属于B的元素组成的集合,记作A-B。
4. 互斥事件:如果两个事件A和B的交集为空集,即A∩B=∅,则称事件A和事件B是互斥事件。
5. 包含关系:若集合A中的任意一个元素同样也属于集合B,则称集合A是集合B的子集,记作A⊆B。
若存在元素属于A而不属于B,则称集合A是集合B的真子集,记作A⊂B。
三、集合的关系与运算性质1. 相等关系:若集合A包含的元素与集合B完全相同,则称集合A与集合B相等,记作A=B。
2. 空集关系:对于任意集合A,有A∪∅=A,A∩∅=∅。
3. 并集交换律:对于任意集合A和B,有A∪B=B∪A。
4. 交集交换律:对于任意集合A和B,有A∩B=B∩A。
5. 结合律:对于任意集合A、B和C,有(A∪B)∪C=A∪(B∪C),(A∩B)∩C=A∩(B∩C)。
四、集合的应用1. 集合的运用:集合在数学中被广泛应用于各个领域,如概率论、数理逻辑、离散数学等。
2. Venn图:Venn图是用来表示集合间包含关系和交集、并集、差集等运算的图形工具。
高一数学集合知识点总结3篇
高一数学集合知识点总结数学集合知识点总结(一)1. 集合的概念和符号集合是相同性质或特征的元素组成的整体,用大写字母表示,元素用小写字母表示,元素用逗号隔开,用花括号表示。
2. 元素和等价集合元素是集合中具体的对象;等价集合指具有相同元素的集合。
3. 子集和真子集若集合 A 中的任何元素均属于集合 B,则集合 A 是集合 B 的子集(A⊆B),反之则称集合 B 是集合 A 的超集;集合 A 不等于集合 B,则称 A 是 B 的真子集(A⊂B)。
4. 交集和并集有两个集合 A 和 B,A∩B 表示它们的交集,即两个集合中共有的元素组成的集合;A∪B 表示它们的并集,即两个集合中所有元素组成的集合。
5. 互异集合和全集互异集合即任何两个不同元素的集合都是互异的;全集指一个集合中的所有元素都属于某个范围或条件下的集合。
6. 补集设 U 为全集,A 为 U 的子集,则集合 A 的补集表示为 A',包含 U 中所有不属于 A 的元素。
7. 幂集幂集是指一个集合的所有子集构成的集合,记为 P(A)。
8. 集合的运算规律交换律:A∪B=B∪A;A∩B=B∩A结合律:(A∪B)∪C=A∪(B∪C);(A∩B)∩C=A∩(B∩C)分配律:A∪(B∩C)=(A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A∩C)德摩根定律:(A∪B)'=A'∩B';(A∩B)'=A'∪B'以上就是数学集合知识点的一些基础概念和运算规律,接下来将讲解集合的相关性质和常用定理。
数学集合知识点总结(二)1. 集合的数学运算性质交换律:A∪B=B∪A;A∩B=B∩A结合律:(A∪B)∪C=A∪(B∪C);(A∩B)∩C=A∩(B∩C)分配律:A∪(B∩C)=(A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A∩C)德摩根定律:(A∪B)'=A'∩B';(A∩B)'=A'∪B'2. 集合的常用定理定理1:若 A⊆B,B⊆A,则 A=B。
高一数学集合知识点总结
高一数学集合知识点总结一、集合的基本概念1. 集合是由元素组成的整体,元素是集合的构成要素。
2. 集合的表示方法:列举法和描述法。
3. 集合的基本运算:并集、交集、差集和补集。
二、集合的性质及运算规律1. 交换律:A∪B = B∪A,A∩B = B∩A。
2. 结合律:(A∪B)∪C = A∪(B∪C),(A∩B)∩C = A∩(B∩C)。
3. 分配律:A∪(B∩C) = (A∪B)∩(A∪C),A∩(B∪C) = (A∩B)∪(A∩C)。
4. 幂等律:A∪A = A,A∩A = A。
5. 吸收律:A∪(A∩B) = A,A∩(A∪B) = A。
6. 对偶律:(A∪B)' = A'∩B',(A∩B)' = A'∪B'。
三、集合的关系和判断1. 包含关系:子集和真子集。
- 子集:若集合A中的每个元素都属于集合B,则A是B的子集,记作A⊆B。
- 真子集:若A是B的子集且A≠B,则A是B的真子集,记作A⊂B。
2. 相等关系:两个集合A和B相等,当且仅当A是B的子集且B是A的子集,记作A=B。
3. 元素关系:属于和不属于。
- 属于:若元素a是集合A的元素,则记作a∈A。
- 不属于:若元素a不是集合A的元素,则记作a∉A。
4. 判断问题:- 空集:空集是任何集合的子集。
- 空集的子集:空集是任何集合的子集。
- 空集与非空集的关系:空集不是任何非空集的子集。
四、集合的应用1. 集合的应用于元素的归类和分类问题。
2. 集合的应用于概率问题,如事件的集合、样本空间等。
3. 集合的应用于数学推理和证明,如集合的运算规律的证明。
五、常见问题及解答1. 如何用集合表示一个范围?- 使用描述法:例如,表示大于1小于10的整数集合可以表示为{x | 1 < x < 10}。
2. 如何求两个集合的并集、交集、差集和补集?- 并集:将两个集合中的元素合并在一起,并去除重复的元素。
高一数学集合知识点
高一数学集合知识点一、集合的定义与表示方法集合是由确定的对象组成的整体。
在数学中,我们可以使用不同的表示方法来表示集合:•列举法:将集合中的元素一一列举出来,并用大括号{}括起来。
例如,集合A={1, 2, 3}。
•描述法:用一个或多个条件来描述集合中的元素。
例如,集合B={x | x是正整数且x<5}。
二、集合的基本运算1. 并集两个集合A和B的并集,表示为A∪B,包含了A和B中的所有元素。
并集的求法可以通过将两个集合的元素合并在一起,并去除重复的部分。
例如,集合A={1, 2, 3},集合B={2, 3, 4},则A∪B={1, 2, 3, 4}。
2. 交集两个集合A和B的交集,表示为A∩B,包含了A和B中共有的元素。
交集的求法可以通过找出两个集合中相同的元素。
例如,集合A={1, 2, 3},集合B={2, 3, 4},则A∩B={2, 3}。
3. 差集两个集合A和B的差集,表示为A-B,包含了属于集合A但不属于集合B的元素。
差集的求法可以通过从A中移除与B相同的元素。
例如,集合A={1, 2, 3},集合B={2, 3, 4},则A-B={1}。
4. 互斥事件与空集如果两个集合A和B的交集为空集,即A∩B={},则称A和B为互斥事件。
空集是不含任何元素的集合,用符号∅表示。
三、集合的性质与定理1. 子集与真子集如果集合A的所有元素都属于集合B,即A中的元素在B中都存在,我们可以说A是B的子集,记作A⊆B。
如果集合A是集合B的子集且A与B不相等,则A是B的真子集,记作A⊂B。
例如,集合A={2, 3},集合B={1, 2, 3, 4},则A⊂B。
2. 幂集集合A的幂集,表示为P(A),是包含A的所有子集的集合。
幂集的元素个数是2的A的元素个数次方。
例如,集合A={1, 2},则P(A)={{}, {1}, {2}, {1, 2}}。
3. 全集和空集全集是包含讨论范围内所有元素的集合。
高一数学集合知识点
1.1集合1.1.1集合的含义与表示一、集合的含义集合是一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元,是具有某种特定性质的事物的总体.关键词:确定的、总体【特征】确定性、无序性、互异性、【表示方法】列举法、描述法、图示法.二、元素与集合关系得判断【知识点的认识】一般地,我们把研究对象称为元素,把一些元素组成的总体称为集合,简称集.元素一般用小写字母a,b,c表示,集合一般用大写字母 A,B,C表示,两者之间的关系是属于与不属于关系,符号表示如:a∈A或a∉A.【命题方向】元素与集合之间的关系命题方向有二,一是验证元素是否是集合的元素;二是知元素是集合的元素,根据集合的属性求出相关的参数.【解题方法点拨】如题型一:已知A是偶数集,试判断a=2b2+4b,b∈N是否是集合的元素?方法点拨:因为偶数都可以写成整数2倍的形式,故解决本题的方法就是看元素a能否变成数的2倍的形式.三、集合的确定性、互异性、无序性【知识点的认识】集合中元素具有确定性、互异性、无序性三大特征.(1)确定性:集合中的元素是确定的,即任何一个对象都说明它是或者不是某个集合的元素,两种情况必居其一且仅居其一,不会模棱两可,例如“著名科学家”,“与2接近的数”等都不能组成一个集合.(2)互异性:一个给定的集合中,元素互不相同,就是在同一集合中不能出现相同的元素.例如不能写成{1,1,2},应写成{1,2}.(3)无序性:集合中的元素,不分先后,没有如何顺序.例如{1,2,3}与{3,2,1}是相同的集合,也是相等的两个集合.【解题方法点拨】解答判断型题目,注意元素必须满足三个特性;一般利用分类讨论逐一研究,转化为函数与方程的思想,解答问题,结果需要回代验证,元素不许重复.【命题方向】本部分内容属于了解性内容,但是近几年高考中基本考查选择题或填空题,试题多以集合相等,含参数的集合的讨论为主.四、集合的分类【知识点的认识】集合的分类主要依集合中元素个数的多少来划分,有限集和无限集两种.有限集元素个数是确定的,元素个数有限个,可以利用列举法或描述法表示;无限集元素个数是无限的,只能利用描述法表示.【解题方法点拨】从集合的元素个数直接判断.【命题方向】这一考点,是了解内容,会考多以选择题判断为主,高考多与集合之间的关系联合命题.五、集合的表示法【知识点的认识】1.列举法:常用于表示有限集合,把集合中的所有元素一一列举出来,写在大括号内,这种表示集合的方法叫做列举法.{1,2,3,…},注意元素之间用逗号分开.2.描述法:常用于表示无限集合,把集合中元素的公共属性用文字,符号或式子等描述出来,写在大括号内,这种表示集合的方法叫做描述法.即:{x|P}(x 为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于π的正实数组成的集合表示为:{x|0<x<π}3.图示法(Venn图):为了形象表示集合,我们常常画一条封闭的曲线(或者说圆圈),用它的内部表示一个集合.4.自然语言(不常用).【解题方法点拨】在掌握基本知识的基础上,(例如方程的解,不等式的解法等等),初步利用数形结合思想解答问题,例如数轴的应用,Venn图的应用,通过转化思想解答.注意解题过程中注意元素的属性的不同,例如:{x|2x-1>0}表示实数x的范围;{(x,y)|y-2x=0}表示方程的解或点的坐标.【命题方向】本考点是考试命题常考内容,多在选择题,填空题值出现,可以与集合的基本关系,不等式,简易逻辑,立体几何,线性规划,概率等知识相结合.1.1.2集合间的基本关系一、子集与真子集【知识点的认识】子集定义:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集(subset).记作:A⊆B(或B⊇A).而真子集是对于子集来说的.真子集定义:如果集合A⊆B,但存在元素x∈B,且元素x不属于集合A,我们称集合A是集合B的真子集.也就是说如果集合A的所有元素同时都是集合 B 的元素,则称 A 是 B 的子集,若 B 中有一个元素,而A 中没有,且A 是 B 的子集,则称 A 是 B 的真子集,注①空集是所有集合的子集②所有集合都是其本身的子集③空集是任何非空集合的真子集例如:所有亚洲国家的集合是地球上所有国家的集合的真子集.所有的自然数的集合是所有整数的集合的真子集.{1,3}⊂{1,2,3,4}{1,2,3,4}⊆{1,2,3,4}真子集和子集的区别子集就是一个集合中的全部元素是另一个集合中的元素,有可能与另一个集合相等;真子集就是一个集合中的元素全部是另一个集合中的元素,但不存在相等;注意集合的元素是要用大括号括起来的“{}”,如{1,2},{a,b,g};另外,{1,2}的子集有:空集,{1},{2},{1,2}.真子集有:空集,{1},{2}.一般来说,真子集是在所有子集中去掉空集和它本身,所以对于含有n个(n不等于0)元素的集合而言,它的子集就有2n个;真子集就有2n-2.但空集属特殊情况,它只有一个子集,没有真子集.【解题方法点拨】注意真子集和子集的区别,不可混为一谈,A⊆B,并且A⊆B 时,有A=B,但是A⊂B,并且B⊂A,是不能同时成立的;子集个数的求法,空集与自身是不可忽视的.【命题方向】本考点要求理解,高考会考中多以选择题、填空题为主,曾经考查子集个数问题,常常与集合的运算,概率,函数的基本性质结合命题.二、集合的包含关系及其应用【知识点的认识】如果集合A中的任意一个元素都是集合B的元素,那么集合A 叫做集合B的子集;A⊆B;如果集合A是集合B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集,即A⊂B;如果集合A的每一个元素都是集合B的元素,反过来,集合B的每一个元素也都是集合A的元素,那么我们就说集合A等于集合B,即A=B.【解题方法点拨】1.按照子集包含元素个数从少到多排列.2.注意观察两个集合的公共元素,以及各自的特殊元素.3.可以利用集合的特征性质来判断两个集合之间的关系.4.有时借助数轴,平面直角坐标系,韦恩图等数形结合等方法.【命题方向】通常命题的方式是小题,直接求解或判断两个或两个以上的集合的关系,可以与函数的定义域,三角函数的解集,子集的个数,简易逻辑等知识相结合命题.三、集合的相等【知识点的认识】(1)若集合A与集合B的元素相同,则称集合A等于集合B.(2)对集合A和集合B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么集合A等于集合B,记作A=B.就是如果A⊆B,同时B⊆A,那么就说这两个集合相等,记作 A=B.(3)对于两个有限数集A=B,则这两个有限数集 A、B中的元素全部相同,由此可推出如下性质:①两个集合的元素个数相等;②两个集合的元素之和相等;③两个集合的元素之积相等.由此知,以上叙述实质是一致的,只是表达方式不同而已.上述概念是判断或证明两个集合相等的依据.【解题方法点拨】集合A 与集合B相等,是指A 的每一个元素都在B 中,而且B中的每一个元素都在A中.解题时往往只解答一个问题,忽视另一个问题;解题后注意集合满足元素的互异性.【命题方向】通常是判断两个集合是不是同一个集合;利用相等集合求出变量的值;与集合的运算相联系,也可能与函数的定义域、值域联系命题,多以小题选择题与填空题的形式出现,有时出现在大题的一小问.四、集合中元素个数的最值【知识点的认识】【命题方向】【解题方法点拨】求集合中元素个数的最大(小)值问题的方法通常有:类分法、构造法、反证法、一般问题特殊化、特殊问题一般化等.需要注意的是,有时一道题需要综合运用几种方法才能解决.五、空集的定义、性质及运算【知识点的认识】空集的定义:不含任何元素的集合称为空集.记作∅.空集的性质:空集是一切集合的子集.空集不是没有;它是内部没有元素的集合,而集合是存在的.这通常是初学者的一个难理解点.将集合想象成一个装有其元素的袋子的想法或许会有帮助;袋子可能是空的,但袋子本身确实是存在的.例如:{x|x2+1=0,x∈R}=∅.虽然有x的表达式,但方程中根本就没有这样的实数x使得方程成立,所以方程的解集是空集.空集是任何集合的子集,是任何非空集合的真子集.【解题方法点拨】解答与空集有关的问题,例如集合A∩B=B⇔B⊆A,实际上包含3种情况:①B=∅;②B⊂A且B≠∅;③B=A;往往遗漏B是∅的情形,所以老师们在讲解这一部分内容或题目时,总是说“空集优先的原则”,就是首先考虑空集.【命题方向】一般情况下,多与集合的基本运算联合命题,是学生容易疏忽、出错的地方,考查分析问题解决问题的细心程度,难度不大,可以在选择题、填空题、简答题中出现.1.1.3集合的基本运算一、并集及其运算【知识点的认识】由所有属于集合A或属于集合B的元素的组成的集合叫做A与B的并集,记作A ∪B.符号语言:A∪B={x|x∈A或x∈B}.图形语言:.A∪B实际理解为:①x仅是A中元素;②x仅是B中的元素;③x是A且是B中的元素.运算形状:①A∪B=B∪A.②A∪∅=A.③A∪A=A.④A∪B⊇A,A∪B⊇B.⑤A∪B=B⇔A⊆B.⑥A∪B=∅,两个集合都是空集.⑦A∪(CUA)=U.⑧CU(A∪B)=(CUA)∩(CUB).【解题方法点拨】解答并集问题,需要注意并集中:“或”与“所有”的理解.不能把“或”与“且”混用;注意并集中元素的互异性.不能重复.【命题方向】掌握并集的表示法,会求两个集合的并集,命题通常以选择题、填空题为主,也可以与函数的定义域,值域联合命题.二、交集及其运算【知识点的认识】由所有属于集合A且属于集合B的元素的所有元素组成的集合叫做A与B的交集,记作A∩B.符号语言:A∩B={x|x∈A,且x∈B}.图形语言:.A∩B实际理解为:x是A且是B中的相同的所有元素.当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集.运算形状:①A∩B=B∩A.②A∩∅=∅.③A∩A=A.④A∩B⊆A,A∩B⊆B.⑤A∩B=A⇔A⊆B.⑥A∩B=∅,两个集合没有相同元素.⑦A∩(CUA)=∅.⑧CU(A∩B)=(CUA)∪(CUB).【解题方法点拨】解答交集问题,需要注意交集中:“且”与“所有”的理解.不能把“或”与“且”混用;求交集的方法是:①有限集找相同;②无限集用数轴、韦恩图.【命题方向】掌握交集的表示法,会求两个集合的交集.命题通常以选择题、填空题为主,也可以与函数的定义域,值域,函数的单调性、复合函数的单调性等联合命题.三、补集及其运算【知识点的认识】一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集,通常记作U.(通常把给定的集合作为全集).对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作CUA,即CUA={x|x∈U,且x∉A}.其图形表示如图所示的Venn图..【解题方法点拨】常用数轴以及韦恩图帮助分析解答,补集常用于对立事件,否命题,反证法.【命题方向】通常情况下以小题出现,高考中直接求解补集的选择题,有时出现在简易逻辑中,也可以与函数的定义域、值域,不等式的解集相结合命题,也可以在恒成立中出现.四、全集及其运算【知识点的认识】一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集,通常记作U.(通常把给定的集合作为全集).全集是相对概念,元素个数可以是有限的,也可以是无限的.例如{1,2};R;Q 等等.【解题方法点拨】注意审题,可以借助数轴韦恩图解答.【命题方向】本考点属于理解,常出现的类型有直接求出全集,利用全集求解子集的个数,集合在参数的范围等问题,难度属于容易题.五、交、并、补集的混合运算【知识点的认识】集合交换律A∩B=B∩A,A∪B=B∪A.集合结合律(A∩B)∩C=A∩(B∩C),(A∪B)∪C=A∪(B∪C).集合分配律A∩(B∪C)=(A∩B)∪(A∩C),A∪(B∩C)=(A∪B)∩(A ∪C).集合的摩根律 Cu(A∩B)=CuA∪CuB,Cu(A∪B)=CuA∩CuB.集合吸收律A∪(A∩B)=A,A∩(A∪B)=A.集合求补律A∪CuA=U,A∩CuA=Φ.【解题方法点拨】直接利用交集、并集、全集、补集的定义或运算性质,借助数轴或韦恩图直接解答.【命题方向】理解交集、并集、补集的混合运算,每年高考一般都是单独命题,一道选择题或填空题,属于基础题.六、Venn图表达集合的关系及运算【知识点的认识】用平面上一条封闭曲线的内部来代表集合,这个图形就叫做Venn图(韦恩图).集合中图形语言具有直观形象的特点,将集合问题图形化,利用Venn图的直观性,可以深刻理解集合的有关概念、运算公式,而且有助于显示集合间的关系.运算公式:card(A∪B)=card(A)+card(B)-card(A∩B)的推广形式:card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(A∩C)+card(A∩B∩C),或利用Venn图解决.公式不易记住,用Venn图来解决比较简洁、直观、明了.【解题方法点拨】在解题时,弄清元素与集合的隶属关系以及集合之间的包含关系,结合题目应很好地使用Venn图表达集合的关系及运算,利用直观图示帮助我们理解抽象概念.Venn图解题,就必须能正确理解题目中的集合之间的运算及关系并用图形准确表示出来.【命题方向】一般情况涉及Venn图的交集、并集、补集的简单运算,也可以与信息迁移,应用性开放问题.也可以联系实际命题.。
高一数学集合知识点总结_高三数学知识点总结
高一数学集合知识点总结_高三数学知识点总结高一数学的集合部分主要包括集合的概念、集合的运算、集合的表示方法以及集合的分区等内容。
下面是高一数学集合知识点的总结:1. 集合的概念:- 集合是由一些确定的对象所组成的整体。
- 集合中的对象称为元素,用小写字母表示。
- 表示集合的方法有列举法、描述法和图形法。
2. 集合的关系:- 包含关系:一个集合的所有元素都是另一个集合的元素。
- 相等关系:两个集合的所有元素一样,即元素相同。
- 全集:指定一个特定的集合,包含了所有讨论的元素。
- 空集:不包含任何元素的集合。
5. 集合的分区:- 集合的划分:将一个集合分成若干个互不相交的子集合。
- 等价关系:将一个集合划分为若干个互相关联的子集合。
高三数学知识点总结高三数学的知识点相对来说比较复杂,内容包括了函数的极限、导数、不等式、数列与数学归纳法、三角函数等等。
下面是高三数学知识点的总结:1. 函数的极限:- 函数极限的定义:当自变量趋于某一值时,函数值的变化情况。
- 函数极限的性质和运算法则。
- 函数的左极限和右极限。
2. 导数与微分:- 导数的概念和求导公式。
- 导函数与原函数的关系。
- 高次导数和隐函数求导。
- 微分的概念和应用。
3. 不等式:- 不等式的性质与运算法则。
- 绝对值不等式与分段函数。
- 二次函数与不等式。
- 系数判别法和根的判别式。
4. 数列与数学归纳法:- 数列的概念和常见数列的性质。
- 数列的通项公式和前n项和公式。
- 数学归纳法的基本原理和应用。
(精选推荐)高一数学集合知识点归纳
(精选推荐)高一数学集合知识点归纳一、集合概念集合是一组具有一定特征或相似特性的元素(或称实例)的统一表示,它们本身没有特别的特征,而是具有“某种性质”的一组实例。
1.定义1:假设U是全集,若属于U的元素具有一定的共同性质,称那些元素所组成的集合为“A”。
元素的性质表示在不被破坏的限度上可以任意改变,但集合A的定义(或特性)要保持不变。
2.定义2:若U是一个有限集合{a1,a2,…,an},若归纳性地定义一个集合:A={x∣x=aj(1≤j≤n)},称A为“有界集合”。
二、空集若集合A中没有任何元素,则称A为“空集”,记作A=∅。
三、全集和子集若U是集合A的全部元素,则称U为“全集”,记作U=A;若B是集合A的一部分元素,则称B为“子集”,记作B⊆A。
四、并集、交集和补集1.若两个同种集合A和B的全部元素相加,所形成的集合的元素恰好等于这两个集合的全部元素,则称两个集合的“并集”,记作A∪B;2.若两个同种集合A和B的所有元素中共有的元素,所形成的集合的元素为A和B的“交集”,记作A∩B;3.若A是一个集合,且U为集合A的全部元素,则U-A是“补集”,记作A′。
五、相等集合六、真子集若A和B是同种集合,且A是B的真子集(即A中的所有元素也都属于B,而B中的某些元素并不属于A),则称A是B的“真子集”,记作A⊂B。
七、幂集若A是一个集合,X是A中所有元素的有限次组合所形成的集合,则称X为“A的幂集”,记作X=P(A)。
八、极大集和极小集若A是条件R满足的一类集合,且A中任一子集B都不满足R,则称A为“R的极大集”;若A是条件S满足的一类集合,且A中任一超集B都不满足S,则称A为“S的极小集”。
高一数学集合知识点归纳
一、集合的概念1. 集合的定义:集合是由一些确定的对象组成的整体,这些对象称为集合的元素。
2. 集合的表示方法:集合通常用大写字母表示,如A、B、C等,元素用小写字母表示,如a、b、c等。
3. 集合的分类:有限集和无限集。
有限集中元素的个数是有限的,无限集中元素的个数是无限的。
二、集合的基本运算1. 并集:两个集合A和B的并集是指包含A和B中所有元素的集合,记作A∪B。
2. 交集:两个集合A和B的交集是指既属于A又属于B的元素组成的集合,记作A∩B。
3. 差集:两个集合A和B的差集是指属于A但不属于B的元素组成的集合,记作A-B。
4. 补集:一个集合A的补集是指不属于A的所有元素的集合,记作A'或A^c。
5. 幂集:一个集合的所有子集构成的集合称为该集合的幂集,记作P(A)。
三、集合的性质1. 互异性:一个集合中的元素都是不同的。
2. 无序性:一个集合中的元素没有固定的顺序。
3. 确定性:一个元素要么属于某个集合,要么不属于该集合。
4. 空集:不包含任何元素的集合称为空集,记作∅。
5. 全集:包含所有元素的集合称为全集,记作U。
6. 子集:如果一个集合的所有元素都属于另一个集合,那么这个集合称为另一个集合的子集。
7. 真子集:如果一个集合的所有元素都属于另一个集合,但这个集合本身不是另一个集合,那么这个集合称为另一个集合的真子集。
8. 相等集:如果两个集合的元素完全相同,那么这两个集合称为相等集。
9. 空集是任意集合的子集。
10. 空集是任意非空集合的真子集。
四、集合的关系1. 包含关系:一个集合A包含另一个集合B,记作A⊆B。
2. 相等关系:两个集合A和B的元素完全相同,记作A=B。
3. 不相等关系:两个集合A和B的元素不完全相同,记作A≠B。
4. 子集关系:一个集合A是另一个集合B的子集,记作A⊆B。
5. 真子集关系:一个集合A是另一个集合B的真子集,记作A⊆B且A≠B。
6. 相等关系与包含关系的关系:如果两个集合相等,那么它们一定相互包含;如果两个集合相互包含,那么它们不一定相等。
高一数学集合知识点(珍藏版)
高一数学集合一、集合的含义与表示1、集合的含义:指定的某些对象的全体称为集合。
2、集合的构成---元素:集合中的每个对象我们称为元素。
元素是集合构成的主要部分。
元素的三个特性:(1)确定性如:世界上最高的山、身高在185cm的高二男生(2)互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)无序性如:{a,b,c}和{a,c,b}是表示同一个集合3、元素与集合的关系元素与集合有属于(∈)和不属于(∉)这两种关系。
如果a是集合A的元素就说a属于集合A,记作:a∈A如果a不是集合A的元素就说a不属于集合A,记作:a∉A4、常用的数集的表示非负整数集(即自然数集):N , 正整数集:N*或N+, 整数集:Z, 有理数集:Q, 实数集:R5、集合的表示方法1)列举法:{a,b,c……}注意:①元素元素之间必须用“,”隔开。
②集合中的元素必须是明确的。
③元素可以没有顺序的出现。
④集合中的元素不能出现重复或漏掉的情况。
⑤元素可以是任何的具体的事物。
⑥如果元素的数量无限,表示的时候必须表示出规律然后用省略号2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x ∈R|x-3>2} ,{x| x-3>2} (符号描述法) 语言描述法:例:{不是直角三角形的三角形} 3)Venn 图: 6、集合的分类(1) 有限集 含有有限个元素的集合 (2) 无限集 含有无限个元素的集合(3) 空集 不含任何元素的集合 例:{x|x 2=-5} 二、集合间的基本关系1、子集:如果集合A 的任意一个元素都是集合B 的元素,那么集合A 称为集合B 的子集,记为A ⊆B ,或B ⊃A ,读作“集合A 包含于集合B ”或“集合B 包含集合A ”。
即:若A a ∈则B a ∈,那么称集合A 称为集合B 的子集注意:①A 如果是B 的子集,那么A 中的元素全是B 中的元素。
②当A 不是B 的子集,那么A 不包含于B ,或者说B 不包含A 。
高中数学必修一第一章集合知识点总结
高中数学必修一第一章集合一、集合的概念1、集合的含义:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),构成集合的每个对象叫做这个集合的元素(或成员)。
注意:在集合中,通常用小写字母表示点(元素),用大写字母表示点(元素)的集合,而在几何中,通常用大写字母表示点(元素),用小写字母表示点的集合,应注意区别。
2、空集的含义:不含任何元素的集合叫做空集,记为Ø。
3、集合中元素的三个特性:确定性、互异性、无序性。
(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素,这叫集合元素的确定性。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素,这叫集合元素的互异性。
集合中的元素互不相同。
例如:集合A={1,a},则a不能等于1。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样,这叫集合元素的无序性。
例{0,1,2}有其它{0,2,1}、{1,0,2}、{1,2,0}、{2,0,1}、{2,1,0}等共六种表示方法。
4、元素与集合之间只能用“∈”或“∉”符号连接。
5、集合的分类:(1)有限集:含有有限个元素的集合。
(2)无限集:含有无限个元素的集合。
(3)空集:不含任何元素的集合。
6、常见的特殊集合:;(1)非负整数集(即自然数集)N(包括零);(2)正整数集N*或N+(3)整数集Z(包括负整数、零和正整数);(4)实数集R(包括所有有理数和无理数);(5)有理数集Q(包括整数集Z和分数集→正负有限小数或无限循环小数);(6)复数集C,虚数可以指不实的数字或并非表明具体数量的数字。
在数学中,虚数就是形如a+b*i 的数,其中a,b是任意实数,且b≠0,i²=-1。
二、集合的表示方式1、列举法:把集合中的元素一一列举出来,元素之间用逗号隔开,然后用一个花括号全部括上。
高一集合知识点总结
高一知识点总结数学是培养逻辑思维能力,分析能力的重要学科,下面是小编为大家搜集整理的高一集合知识点总结,欢迎大家阅读与借鉴,希望能够给你带来帮助。
高一集合知识点总结【1】一、集合有关概念1. 集合的含义2. 集合的中元素的三个特性:(1) 元素的确定性如:世界上最高的山(2) 元素的互异性如:集合中的任意两个元素都是不同的(3) 元素的无序性: 集合中的元素之间是没有顺序的。
如:{a,b,c} 和{a,c,b}是表示同一个集合3.集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1) 列举法:将集合中的元素一一列举出来{a,b,c……}2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{xR| x-3>2} ,{x| x-3>2}3) 语言描述法:例:{不是直角三角形的三角形}4) Venn图:4、集合的分类:(1) 有限集含有有限个元素的集合(2) 无限集含有无限个元素的集合(3) 空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系属于:;包含于:;属于与包含于的区别:属于是元素与集合之间的关系,例如:元素a属于集合A{a,b}包含于是集合与集合之间的关系。
例如:集合A{a}包含于集合B {a,c}1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:① 任何一个集合是它本身的子集。
AA②真子集:如果AB,且A B那就说集合A是集合B的真子集,记作A B(或B A)③如果 AB, BC ,那么 AC④ 如果AB 同时 BA 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹性学制数学讲义
集合(4课时)
★知识梳理
一:集合的含义与表示
1、一般地,指定的某些对象的全体称为集合,标记:A ,B ,C ,D ,…
集合中的每个对象叫做这个集合的元素,标记:a ,b ,c ,d ,…
2.集合中元素与集合的关系: 文字语言
符号语言 属于
∈ 不属于 ∉
即:a 是集合A 的元素,就说a 属于集合A , 记作 a ∈A ,
a 不是集合A 的元素,就说a 不属于集合A , 记作 a A
3.集合中的元素具有的三个性质:确定性、无序性和互异性;
元素的确定性:对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
元素的互异性:任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
比如:book 中的字母构成的集合
元素的无序性:集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
4.常见集合的符号表示 数集
自然数集 正整数集 整数集 有理数集 实数集 复数集 符号 N *N 或+N Z Q R C
5、集合的分类 原则:集合中所含元素的多少
①有限集 含有限个元素,如A={-2,3}
②无限集 含无限个元素,如自然数集N ,有理数
③空 集 不含任何元素,如方程x 2
+1=0实数解集。
专用标记:Φ
注:∅与{}∅不同,∅∈{}∅
6.集合的3
种表示方法:列举法、描述法、图示法;
列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法。
例:“中国的直辖市”构成的集合,写成{北京,天津,上海,重庆}
描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法。
格式:{x∈A| P(x)} 含义:在集合A中满足条件P(x)的x的集合。
例:不等式12
x+<-的解集可以表示为:{|12}
x R x
∈+<-或{|3,}
x x x R
<-∈图示法:
韦恩图(Venn图):用一条封闭的曲线的内部来表示一个集合的方法。
数轴法:{x∈R|3<x<10}、{x∈R|3≤x<10}、{x∈R|3≤x≤10} 可用数轴表示为:二:集合间的基本关系
表示
关系
文字语言符号语言
相等集合A与集合B中的所有元
素都相同
B
A⊆且A
⊆
B⇔B
A=
子集A中任意一元素均为B中的
元素,称集合A是集合B的
子集(subset)
B
A⊆或A
B⊇读作:A包含于(is contained in)B,或B包含(contains)A
真子集A中任意一元素均为B中的
元素,且B中至少有一元素
不是A的元素称集合A是集
合B的真子集(proper
subset)A B读作:A真包含于B (或B真包含A)
空集空集是任何集合的子集,是
任何非空集合的真子集
A
⊆
φ,φB(φ
≠
B)
注:集合A 中元素的个数记为n ,则它的子集的个数为:2n
真子集的个数:2n -1,非空真子集个数:2n -2
三:集合的基本运算
① 两个集合的交集:A B = {}x x A x B ∈∈且;
一般地,由属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集 记作:A ∩B 读作:“A 交B ” 即: A ∩B={x|∈A ,且x ∈B}
说明:两个集合求交集,结果还是一个集合,是由集合A 与B 的公共元素组成的集合。
② 两个集合的并集: A B ={}x x A x B ∈∈或;
一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集记作:A ∪B 读作:“A 并B ” 即: A ∪B={x|x ∈A ,或x ∈B}
说明:两个集合求并集,结果还是一个集合,是由集合A 与B 的所有元素组成的集合
(重复元素只看成一个元素)。
③全集U
S 包含我们要研究的各个集合,这时S 可以看作一个全集。
全集通常用字母U 表示 ④补集(余集)
设U 是全集,A 是U 的一个子集(即A ⊆U ),则由U 中所有不属于A 的元素组成的集
合,叫作“A 在U 中的补集”,简称集合A 的补集,记作C U A ,即U C A ={}
x x U x A ∈∉且 交集
并集 补集 {|,}A B x x A x B =∈∈且 {|,}A B x x A x B =∈∈或 U C A ={}x x U x A ∈∉且
★重、难点突破
1.集合的表示法
(1)列举法要注意元素的三个特性;(2)描述法要紧紧抓住代表元素以及它所具有的性质,如{})(x f y x =、{})(x f y y =、{}
)(),(x f y y x =等的差别,如果对集合中代表元素认识不清,将导致求解错误:
2.集合间的关系的几个重要结论
(1)空集是任何集合的子集,即A ⊆φ
(2)任何集合都是它本身的子集,即A A ⊆
(3)子集、真子集都有传递性,即若B A ⊆,C B ⊆,则C A ⊆
4.集合的运算性质
(1)交集:①A B B A =;②A A A = ;③φφ= A ;④A B A ⊆ ,B
B A ⊆ ⑤B A A B A ⊆⇔= ;
(2)并集:①A B B A =;②A A A = ;③A A =φ ;④A B A ⊇ ,B
B A ⊇ ⑤A B A B A ⊆⇔= ;
(3)交、并、补集的关系:
①()U A C A U ⋃=,()U A C A ⋂=Φ, A A C C U U =)(
②B C A C B A C U U U ⋂=⋃)(,B C A C B A C U U U ⋃=⋂)(
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注!)。