20162017学年江苏省南京市高二(上)期末数学试卷(理科)
南京市高二上学期期末数学试卷(理科)(II)卷(测试)
![南京市高二上学期期末数学试卷(理科)(II)卷(测试)](https://img.taocdn.com/s3/m/614d0ac21711cc7930b71613.png)
南京市高二上学期期末数学试卷(理科)(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)等差数列的前项和为,已知,,则的值是()A . 24B . 48C . 60D . 722. (2分) (2017高二上·河南月考) 已知抛物线的焦点为,准线为,是上一点,是直线与抛物线的一个交点,若 ,则()A . 3B .C . 4或D . 3或43. (2分) (2018高三上·黑龙江月考) “ ,”的否定是()A . ,B . ,C . ,D . ,4. (2分)“”是“关于x的不等式的解集非空”的()A . 充要条件B . 必要不充分条件C . 充分不必要条件D . 既不充分又不必要条件5. (2分) (2016高一下·河源期中) 在R上定义运算⊗:x⊗y=x(1﹣y),若不等式(x﹣a)⊗(x﹣b)>0的解集是(2,3),则a+b的值为()A . 1B . 2C . 4D . 86. (2分)原命题“若x≤﹣3,则x<0”的逆否命题是()A . 若x<﹣3,则x≤0B . 若x>﹣3,则x≥0C . 若x<0,则x≤﹣3D . 若x≥0,则x>﹣37. (2分) (2018高二上·佛山期末) 已知曲线的方程为,给定下列两个命题::若,则曲线为椭圆;:若曲线是焦点在轴上的双曲线,则 .那么,下列命题为真命题的是()A .B .C .D .8. (2分) (2015高一下·枣阳开学考) 在边长为4的等边△ABC中,的值等于()A . 16B . ﹣16C . ﹣8D . 89. (2分)(2017·上高模拟) 若正实数x,y满足(2xy﹣1)2=(5y+2)•(y﹣2),则的最大值为()A .B .C .D .10. (2分)(2020·甘肃模拟) 为双曲线右焦点,为双曲线上的点,四边形为平行四边形,且四边形的面积为,则双曲线的离心率为()A . 2B .C .D .二、填空题 (共5题;共5分)11. (1分)(2017·南通模拟) 在△ABC中,若• +2 • = • ,则的值为________.12. (1分)在△ABC中,∠BAC=10°,∠ACB=40°,将直线BC绕AC旋转得到B1C,直线AC绕AB旋转得到AC1 ,则在所有旋转过程中,直线B1C与直线AC1所成角的取值范围为________.13. (1分)(2017·天心模拟) 某高新技术公司要生产一批新研发的A款手机和B款手机,生产一台A款手机需要甲材料3kg,乙材料1kg,并且需要花费1天时间,生产一台B款手机需要甲材料1kg,乙材料3kg,也需要1天时间,已知生产一台A款手机利润是1000元,生产一台B款手机的利润是2000元,公司目前有甲、乙材料各,则在300kg不超过120天的情况下,公司生产两款手机的最大利润是________元.14. (1分) (2018高一下·开州期末) 已知数列的前项和为,,则 ________.15. (1分) (2016高二下·抚州期中) 已知直线x﹣y﹣1=0与抛物线y=ax2相切,则a=________.三、解答题 (共5题;共40分)16. (10分) (2016高三上·苏州期中) 如图,有一块平行四边形绿地ABCD,经测量BC=2百米,CD=1百米,∠BCD=120°,拟过线段BC上一点E设计一条直路EF(点F在四边形ABCD的边上,不计路的宽度),将绿地分为面积之比为1:3的左右两部分,分别种植不同的花卉,设EC=x百米,EF=y百米.(1)当点F与点D重合时,试确定点E的位置;(2)试求x的值,使路EF的长度y最短.17. (10分)(2017·孝义模拟) 数列{an}满足an+5an+1=36n+18,n∈N* ,且a1=4.(1)写出{an}的前3项,并猜想其通项公式;(2)用数学归纳法证明你的猜想.18. (10分) (2015高二上·石家庄期末) 设F(0,1),点P在x轴上,点Q在y轴上, =2 ,⊥ ,当点P在x轴上运动时,点N的轨迹为曲线C.(1)求曲线C的方程;(2)过点F的直线l交曲线C于A,B两点,且曲线C在A,B两点处的切线相交于点M,若△MAB的三边成等差数列,求此时点M到直线AB的距离.19. (5分) (2015高二上·大方期末) 设命题p:函数f(x)=lg(ax2﹣x+ a)的定义域为R;命题q:不等式<1+ax对一切正实数均成立.如果命题p或q为真命题,命题p且q为假命题,求实数a的取值范围.20. (5分) (2016高二上·中江期中) 如图所示,在四棱锥P﹣ABCD中,底面ABCD是边长为2的正方形,其它四个侧面都是侧棱长为的等腰三角形.(Ⅰ)求二面角P﹣AB﹣C的大小;(Ⅱ)在线段AB上是否存在一点E,使平面PCE⊥平面PCD?若存在,请指出点E的位置并证明,若不存在请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共5题;共40分) 16-1、16-2、17-1、17-2、18-1、18-2、19-1、第11 页共12 页20-1、第12 页共12 页。
南京市数学高二上学期理数期末考试试卷(I)卷(模拟)
![南京市数学高二上学期理数期末考试试卷(I)卷(模拟)](https://img.taocdn.com/s3/m/c30134e7bceb19e8b9f6ba3d.png)
南京市数学高二上学期理数期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2017高二上·中山月考) 在数列1,2,,,,…中,是这个数列的第()A . 16项B . 24项C . 26项D . 28项2. (2分)设A,B为两个不相等的集合,条件p:x∉(A∩B),条件q:x∉(A∪B),则p是q的()A . 充分不必要条件B . 充要条件C . 必要不充分条件D . 既不充分也不必要条件3. (2分) (2016高二上·吉林期中) 下列有关命题的说法中错误的是()A . 若p∧q为假命题,则p、q均为假命题B . “x=1”是“x2﹣3x+2=0”的充分不必要条件C . 命题“若x2﹣3+2=0,则x=1“的逆否命题为:“若x≠1,则x2﹣3x+2≠0”D . 对于命题p:∃x∈R,使得x2+x+1<0,则¬p:∀x∈R,均有x2+x+1≥04. (2分)设全集为R,集合,,则()A .B .C .D .5. (2分)已知,那么下列不等式成立的是()A .B .C .D .6. (2分)已知等差数列{an}的公差d>0,若a1+a2+a3+...+a2013=2013at(t,则t=()A . 2014B . 2013C . 1007D . 10067. (2分)(2017·四川模拟) 设双曲线(a>0,b>0)的虚轴长为2,焦距为,则双曲线的渐近线方程为()A .B . y=±2xC .D .8. (2分)在平面直角坐标系中,已知向量,,若,则x=()A . -2B . -4C . -3D . -19. (2分) (2017高二下·孝感期中) 已知,则的最小值是()A .B .C .D .10. (2分) (2019高一上·三亚期中) 设x>0,那么有()A . 最大值1B . 最小值1C . 最大值5D . 最小值11. (2分)(2016·孝义模拟) 设a,b,c为△ABC的三边长,若c2=a2+b2 ,且 sinA+cosA= ,则∠B的大小为()A .B .C .D .12. (2分) (2017高二上·牡丹江月考) 已知圆(x+2)2+y2=36的圆心为M,设A为圆上任一点,N(2,0),线段AN的垂直平分线交MA于点P,则动点P的轨迹是()A . 圆B . 椭圆C . 双曲线D . 抛物线二、填空题 (共4题;共4分)13. (1分) (2019高二下·湖南期中) 命题“ ,”的否定是________.14. (1分) (2017高二上·阜宁月考) 已知焦点在y轴上的椭圆的长轴长为8,则m=________.15. (1分) (2016高二上·平原期中) 已知 =(2,﹣1,3), =(﹣4,2,x), =(1,﹣x,2),若( + )⊥ ,则实数x的值为________.16. (1分)已知正方体AC1的棱长为1,点P是面AA1D1D的中心,点Q是面A1B1C1D1的对角线B1D1上一点,且PQ∥平面AA1B1B,则线段PQ的长为________.三、解答题 (共7题;共52分)17. (5分) (2017高二下·赤峰期末) 命题:关于的不等式对一切恒成立,命题:指数函数是增函数,若或为真、且为假,求实数的取值范围.18. (10分)(2014·新课标I卷理) 如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(1)证明:AC=AB1;(2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.19. (10分)(2018·凯里模拟) 已知抛物线的焦点为曲线的一个焦点,为坐标原点,点为抛物线上任意一点,过点作轴的平行线交抛物线的准线于,直线交抛物线于点 .(Ⅰ)求抛物线的方程;(Ⅱ)若、、三个点满足,求直线的方程.20. (2分) (2017高二上·莆田月考) 如图所示,直线与抛物线交于两点,与轴交于点,且,(1)求证:点的坐标为;(2)求证:;(3)求面积的最小值.21. (10分) (2016高二上·西安期中) 在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.(1)求A的大小;(2)求sinB+sinC的取值范围.22. (5分)给定双曲线,过A(1,1)能否作直线m,使m与所给双曲线交于B、C两点,且A 为线段BC中点?这样的直线若存在,求出它的方程;如果不存在,说明理由.23. (10分) (2019高三上·通州期中) 如图,在四棱锥中,底面ABCD为菱形,且∠ABC=60°,平面ABCD ,,点E , F为PC , PA的中点.(1)求证:平面BDE⊥平面ABCD;(2)二面角E—BD—F的大小;(3)设点M在PB(端点除外)上,试判断CM与平面BDF是否平行,并说明理由.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共52分) 17-1、18-1、18-2、19-1、20-1、20-2、20-3、21-1、21-2、22-1、23-1、23-2、23-3、。
2016-2017学年江苏省南京市高二(上)期末数学试卷(理科)
![2016-2017学年江苏省南京市高二(上)期末数学试卷(理科)](https://img.taocdn.com/s3/m/8ff754bccd22bcd126fff705cc17552707225e01.png)
2016-2017学年江苏省南京市高二(上)期末数学试卷(理科)1.填空题:本大题共14小题,每小题5分,共70分。
请将答案填写在答题卡相应位置上。
1.(5分) 命题“若a=b,则|a|=|b|”的逆命题是“若|a|≠|b|,则a≠b”。
2.(5分) 双曲线的离心率大于1.3.(5分) 已知复数z=1的渐近线方程是y=x。
4.(5分) 在平面直角坐标系xOy中,点(4,3)到直线3x-4y+a=0的距离为1,则实数a的值是-5.5.(5分) 曲线y=x^4与直线y=4x+b相切,则实数b的值是4.6.(5分) 已知实数x,y满足条件x+y=1,则z=2x+y的最大值是2.7.(5分) 在平面直角坐标系xOy中,抛物线C:y^2=4x的焦点为F,P为抛物线C上一点,且PF=5,则点P的横坐标是9.8.(5分) 在平面直角坐标系xOy中,圆O:x^2+y^2=r^2(r>0)与圆M:(x-3)^2+(y+4)^2=4相交,则r的取值范围是1<r<3.9.(5分) 观察下列等式:sin^(-2)+sin^(-2)+sin^(-2)+。
+sin^(-2)=n(n+1)/2照此规律。
sin^(-2)+sin^(-2)+sin^(-2)+sin^(-2)+sin^(-2)+。
=110.(5分) 若“∃x∈R,x^2+ax+a=0”是真命题,则实数a的取值范围是a≤0.11.(5分) 已知函数f(x)=(x^2+x+m)ex(其中m∈R,e为自然对数的底数)。
若在x=-3处函数f(x)有极大值,则函数f(x)的极小值是f(-2)。
12.(5分) 有下列命题:①“m>0”是“方程x^2+my^2=1表示椭圆”的充要条件;②“a=1”是“直线l1:ax+y-1=0与直线l2:x+ay-2=0平行”的充分不必要条件;③“函数f(x)=x^3+mx单调递增”是“m>0”的充要条件;④已知p,q是两个不等价命题,则“p或q是真命题”是“p 且q是真命题”的必要不充分条件。
江苏省南京市2016-2017学年高二(上)期末数学试卷(文科)(解析版)
![江苏省南京市2016-2017学年高二(上)期末数学试卷(文科)(解析版)](https://img.taocdn.com/s3/m/6ceda8dc89eb172ded63b7e6.png)
2016-2017学年江苏省南京市高二(上)期末数学试卷(文科)一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上1.命题“若a=b,则|a|=|b|”的逆否命题是.2.双曲线=1的渐近线方程是.3.已知复数为纯虚数,其中i是虚数单位,则实数a的值是.4.在平面直角坐标系xOy中,点(4,3)到直线3x﹣4y+a=0的距离为1,则实数a的值是.5.曲线y=x4与直线y=4x+b相切,则实数b的值是.6.已知实数x,y满足条件则z=2x+y的最大值是.7.在平面直角坐标系xOy中,抛物线C:y2=4x的焦点为F,P为抛物线C上一点,且PF=5,则点P的横坐标是.8.在平面直角坐标系xOy中,圆O:x2+y2=r2(r>0)与圆M:(x﹣3)2+(y+4)2=4相交,则r的取值范围是.9.观察下列等式:(sin)﹣2+(sin)﹣2=×1×2;(sin)﹣2+(sin)﹣2+(sin)﹣2+sin()﹣2=×2×3;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×3×4;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×4×5;…照此规律,(sin)﹣2+(sin)﹣2+(sin)﹣2+…+(sin)﹣2=.10.若“∃x∈R,x2+ax+a=0”是真命题,则实数a的取值范围是.11.已知函数f(x)=(x2+x+m)e x(其中m∈R,e为自然对数的底数).若在x=﹣3处函数f (x)有极大值,则函数f (x)的极小值是.12.有下列命题:①“m>0”是“方程x2+my2=1表示椭圆”的充要条件;②“a=1”是“直线l1:ax+y﹣1=0与直线l2:x+ay﹣2=0平行”的充分不必要条件;③“函数f (x)=x3+mx单调递增”是“m>0”的充要条件;④已知p,q是两个不等价命题,则“p或q是真命题”是“p且q是真命题”的必要不充分条件.其中所有真命题的序号是.13.已知椭圆E: +=1(a>b>0)的焦距为2c(c>0),左焦点为F,点M的坐标为(﹣2c,0).若椭圆E上存在点P,使得PM=PF,则椭圆E离心率的取值范围是.14.已知t>0,函数f(x)=,若函数g(x)=f(f(x)﹣1)恰有6个不同的零点,则实数t的取值范围是.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.在平面直角坐标系xOy中,已知△ABC三个顶点坐标为A(7,8),B(10,4),C(2,﹣4).(1)求BC边上的中线所在直线的方程;(2)求BC边上的高所在直线的方程.16.已知复数z1=m﹣2i,复数z2=1﹣ni,其中i是虚数单位,m,n为实数.(1)若m=1,n=﹣1,求|z1+z2|的值;(2)若z1=(z2)2,求m,n的值.17.在平面直角坐标系xOy中,已知圆M的圆心在直线y=﹣2x上,且圆M与直线x+y﹣1=0相切于点P(2,﹣1).(1)求圆M的方程;(2)过坐标原点O的直线l被圆M截得的弦长为,求直线l的方程.18.某休闲广场中央有一个半径为1(百米)的圆形花坛,现计划在该花坛内建造一条六边形观光步道,围出一个由两个全等的等腰梯形(梯形ABCF和梯形DEFC)构成的六边形ABCDEF区域,其中A、B、C、D、E、F都在圆周上,CF为圆的直径(如图).设∠AOF=θ,其中O为圆心.(1)把六边形ABCDEF的面积表示成关于θ的函数f(θ);(2)当θ为何值时,可使得六边形区域面积达到最大?并求最大面积.19.在平面直角坐标系xOy中,椭圆E: +=1(a>b>0)的离心率为,两个顶点分别为A(﹣a,0),B(a,0),点M(﹣1,0),且3=,过点M 斜率为k(k≠0)的直线交椭圆E于C,D两点,且点C在x轴上方.(1)求椭圆E的方程;(2)若BC⊥CD,求k的值;(3)记直线BC,BD的斜率分别为k1,k2,求证:k1k2为定值.20.已知函数f (x)=ax﹣lnx(a∈R).(1)当a=1时,求f (x)的最小值;(2)已知e为自然对数的底数,存在x∈[,e],使得f (x)=1成立,求a 的取值范围;(3)若对任意的x∈[1,+∞),有f (x)≥f ()成立,求a的取值范围.2016-2017学年江苏省南京市高二(上)期末数学试卷(文科)参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上1.命题“若a=b,则|a|=|b|”的逆否命题是若|a|≠|b|,则a≠b.【考点】四种命题.【分析】根据已知中的原命题,结合逆否命题的定义,可得答案.【解答】解:命题“若a=b,则|a|=|b|”的逆否命题是命题“若|a|≠|b|,则a≠b”,故答案为:“若|a|≠|b|,则a≠b”2.双曲线=1的渐近线方程是y=±2x.【考点】双曲线的简单性质.【分析】渐近线方程是=0,整理后就得到双曲线的渐近线方程.【解答】解:∵双曲线标准方程为=1,其渐近线方程是=0,整理得y=±2x.故答案为y=±2x.3.已知复数为纯虚数,其中i是虚数单位,则实数a的值是2.【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数,再根据已知条件列出方程组,求解即可得答案.【解答】解:==,∵复数为纯虚数,∴,解得a=2.故答案为:2.4.在平面直角坐标系xOy中,点(4,3)到直线3x﹣4y+a=0的距离为1,则实数a的值是±5.【考点】点到直线的距离公式.【分析】直接利用点到直线的距离公式,建立方程,即可求出实数a的值.【解答】解:由题意,=1,∴a=±5.故答案为±5.5.曲线y=x4与直线y=4x+b相切,则实数b的值是﹣3.【考点】利用导数研究曲线上某点切线方程.【分析】设直线与曲线的切点为P(m,n),点P分别满足直线方程与曲线方程,同时y'(m)=4即可求出b值【解答】解:设直线与曲线的切点为P(m,n)则有:⇒,化简求:m=1,b=n﹣4;又因为点P满足曲线y=x4,所以:n=1;则:b=n﹣4=﹣3;故答案为:﹣3.6.已知实数x,y满足条件则z=2x+y的最大值是9.【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用线性规划的知识即可得到结论.【解答】解:实数x,y满足条件作出不等式组对应的平面区域如图:由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,则当直线y=﹣2x+z经过点A时,直线的截距最大,此时z最大,由可得A(3,3).此时z=9,故答案为:9.7.在平面直角坐标系xOy中,抛物线C:y2=4x的焦点为F,P为抛物线C上一点,且PF=5,则点P的横坐标是4.【考点】抛物线的简单性质.【分析】由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,已知|PF|=5,则P到准线的距离也为5,即x+1=5,将p的值代入,进而求出x.【解答】解:∵抛物线y2=4x=2px,∴p=2,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|PF|=x+1=5,∴x=4,故答案为:48.在平面直角坐标系xOy中,圆O:x2+y2=r2(r>0)与圆M:(x﹣3)2+(y+4)2=4相交,则r的取值范围是3<r<7.【考点】直线与圆的位置关系.【分析】由题意,圆心距为5,圆O:x2+y2=r2(r>0)与圆M:(x﹣3)2+(y+4)2=4相交,可得|r﹣2|<5<r+2,即可求出r的取值范围.【解答】解:由题意,圆心距为5,∴|r﹣2|<5<r+2,∴3<r<7.故答案为3<r<7.9.观察下列等式:(sin)﹣2+(sin)﹣2=×1×2;(sin)﹣2+(sin)﹣2+(sin)﹣2+sin()﹣2=×2×3;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×3×4;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×4×5;…照此规律,(sin)﹣2+(sin)﹣2+(sin)﹣2+…+(sin)﹣2=n(n+1).【考点】归纳推理.【分析】由题意可以直接得到答案.【解答】解:观察下列等式:(sin)﹣2+(sin)﹣2=×1×2;(sin)﹣2+(sin)﹣2+(sin)﹣2+sin()﹣2=×2×3;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×3×4;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×4×5;…照此规律(sin)﹣2+(sin)﹣2+(sin)﹣2+…+(sin)﹣2=×n (n+1),故答案为:n(n+1)10.若“∃x∈R,x2+ax+a=0”是真命题,则实数a的取值范围是(﹣∞,0]∪[4,+∞).【考点】命题的真假判断与应用;特称命题.【分析】若“∃x∈R,x2+ax+a=0”是真命题,则△=a2﹣4a≥0,解得实数a的取值范围.【解答】解:若“∃x∈R,x2+ax+a=0”是真命题,则△=a2﹣4a≥0,解得:a∈(﹣∞,0]∪[4,+∞),故答案为:(﹣∞,0]∪[4,+∞)11.已知函数f(x)=(x2+x+m)e x(其中m∈R,e为自然对数的底数).若在x=﹣3处函数f (x)有极大值,则函数f (x)的极小值是﹣1.【考点】利用导数研究函数的极值.【分析】求出函数f(x)的导数,根据f′(﹣3)=0,求出m的值,从而求出函数f(x)的单调区间,求出函数的极小值即可.【解答】解:f(x)=(x2+x+m)e x,f′(x)=(x2+3x+m+1)e x,若f(x)在x=﹣3处函数f (x)有极大值,则f′(﹣3)=0,解得:m=﹣1,故f(x)=(x2+x﹣1)e x,f′(x)=(x2+3x)e x,令f′(x)>0,解得:x>0,令f′(x)<0,解得:x<﹣3,故f(x)在(﹣∞,﹣3)递增,在(﹣3,0)递减,在(0,+∞)递增,0)=﹣1,故f(x)极小值=f(故答案为:﹣1.12.有下列命题:①“m>0”是“方程x2+my2=1表示椭圆”的充要条件;②“a=1”是“直线l1:ax+y﹣1=0与直线l2:x+ay﹣2=0平行”的充分不必要条件;③“函数f (x)=x3+mx单调递增”是“m>0”的充要条件;④已知p,q是两个不等价命题,则“p或q是真命题”是“p且q是真命题”的必要不充分条件.其中所有真命题的序号是②④.【考点】命题的真假判断与应用.【分析】①,当m=1时,方程x2+my2=1表示圆;②,∵a=±1时,直线l1与直线l2都平行;③,若函数f (x)=x3+mx单调递增⇒m≥0;④,p或q是真命题⇒p且q不一定是真命题;⇒p且q是真命题⇒p或q一定是真命题;【解答】解:对于①,当m=1时,方程x2+my2=1表示圆,故错;对于②,∵a=±1时,直线l1与直线l2都平行,故正确;对于③,若函数f (x)=x3+mx单调递增⇒m≥0,故错;对于④,p或q是真命题⇒p且q不一定是真命题;⇒p且q是真命题⇒p或q 一定是真命题,故正确;故答案为:②④13.已知椭圆E: +=1(a>b>0)的焦距为2c(c>0),左焦点为F,点M的坐标为(﹣2c,0).若椭圆E上存在点P,使得PM=PF,则椭圆E离心率的取值范围是[] .【考点】椭圆的简单性质.【分析】设P(x,y),由PM=PF⇒x2+y2=2c2.只需x2+y2=2c2与椭圆E: +=1(a>b>0)由公共点,即b≤≤a,可求离心率的取值范围.【解答】解:设P(x,y),由PM=PF⇒PM2=2PF2⇒(x+2c)2+y2=2(x+c)2+2y2⇒x2+y2=2c2,椭圆E上存在点P,使得PM=PF,则圆x2+y2=2c2与椭圆E: +=1(a>b>0)由公共点,∴b≤≤a⇒⇒.故答案为:[]14.已知t>0,函数f(x)=,若函数g(x)=f(f(x)﹣1)恰有6个不同的零点,则实数t的取值范围是(3,4).【考点】函数零点的判定定理.【分析】若函数g(x)=f(f(x)﹣1)恰有6个不同的零点,则方程f(x)﹣1=0和f(x)﹣1=t各有三个解,即函数f(x)的图象与y=1和y=t+1各有三个零点,进而得到答案.【解答】解:∵函数f(x)=,∴函数f′(x )=,当x <,或x <t 时,f′(x )>0,函数为增函数,当<x <t 时,f′(x )<0,函数为减函数,故当x=时,函数f (x )取极大值,函数f (x )有两个零点0和t ,若函数g (x )=f (f (x )﹣1)恰有6个不同的零点, 则方程f (x )﹣1=0和f (x )﹣1=t 各有三个解, 即函数f (x )的图象与y=1和y=t +1各有三个零点,由y |x=t ==,故,=(t ﹣3)(2t +3)2>0得:t >3,故不等式的解集为:t ∈(3,4), 故答案为:(3,4)二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.在平面直角坐标系xOy 中,已知△ABC 三个顶点坐标为A (7,8),B (10,4),C (2,﹣4).(1)求BC 边上的中线所在直线的方程; (2)求BC 边上的高所在直线的方程. 【考点】待定系数法求直线方程.【分析】(1)求出BC 中点D 的坐标,AD 的斜率,即可求BC 边上的中线所在直线的方程;(2)求出BC 边上的高所在直线的斜率为,即可求BC 边上的高所在直线的方程.【解答】解:(1)由B(10,4),C(2,﹣4),得BC中点D的坐标为(6,0),…所以AD的斜率为k==8,…所以BC边上的中线AD所在直线的方程为y﹣0=8(x﹣6),即8x﹣y﹣48=0.…(2)由B(10,4),C(2,﹣4),得BC所在直线的斜率为k==1,…所以BC边上的高所在直线的斜率为﹣1,…所以BC边上的高所在直线的方程为y﹣8=﹣1(x﹣7),即x+y﹣15=0.…16.已知复数z1=m﹣2i,复数z2=1﹣ni,其中i是虚数单位,m,n为实数.(1)若m=1,n=﹣1,求|z1+z2|的值;(2)若z1=(z2)2,求m,n的值.【考点】复数代数形式的混合运算.【分析】(1)利用复数的运算法则、模的计算公式即可得出.(2)利用复数的运算法则、复数相等即可得出.【解答】解:(1)当m=1,n=﹣1时,z1=1﹣2i,z2=1+i,所以z1+z2=(1﹣2i)+(1+i)=2﹣i,…所以|z1+z2|==.…(2)若z1=(z2)2,则m﹣2i=(1﹣ni)2,所以m﹣2i=(1﹣n2)﹣2ni,…所以,…解得.…17.在平面直角坐标系xOy中,已知圆M的圆心在直线y=﹣2x上,且圆M与直线x+y﹣1=0相切于点P(2,﹣1).(1)求圆M的方程;(2)过坐标原点O的直线l被圆M截得的弦长为,求直线l的方程.【考点】直线与圆的位置关系.【分析】(1)求求出圆心坐标与半径,即可求出圆M的方程;(2)分类讨论,利用点到直线的距离公式,结合过坐标原点O的直线l被圆M截得的弦长为,求直线l的方程.【解答】解:(1)过点(2,﹣1)且与直线x+y﹣1=0垂直的直线方程为x﹣y﹣3=0,…由解得,所以圆心M的坐标为(1,﹣2),…所以圆M的半径为r=,…所以圆M的方程为(x﹣1)2+(y+2)2=2.…(2)因为直线l被圆M截得的弦长为,所以圆心M到直线l的距离为d==,…若直线l的斜率不存在,则l为x=0,此时,圆心M到l的距离为1,不符合题意.若直线l的斜率存在,设直线l的方程为y=kx,即kx﹣y=0,由d==,…整理得k2+8k+7=0,解得k=﹣1或﹣7,…所以直线l的方程为x+y=0或7x+y=0.…18.某休闲广场中央有一个半径为1(百米)的圆形花坛,现计划在该花坛内建造一条六边形观光步道,围出一个由两个全等的等腰梯形(梯形ABCF和梯形DEFC)构成的六边形ABCDEF区域,其中A、B、C、D、E、F都在圆周上,CF为圆的直径(如图).设∠AOF=θ,其中O为圆心.(1)把六边形ABCDEF的面积表示成关于θ的函数f(θ);(2)当θ为何值时,可使得六边形区域面积达到最大?并求最大面积.【考点】函数模型的选择与应用.【分析】(1)作AH⊥CF于H,则六边形的面积为f (θ)=2(cosθ+1)sinθ,θ∈(0,).(2)求导,分析函数的单调性,进而可得θ=时,f (θ)取最大值.【解答】(本题满分16分)解:(1)作AH⊥CF于H,则OH=cosθ,AB=2OH=2cosθ,AH=sinθ,…则六边形的面积为f (θ)=2×(AB+CF)×AH=(2cosθ+2)sinθ=2(cosθ+1)sinθ,θ∈(0,).…(2)f′(θ)=2[﹣sinθsinθ+(cosθ+1)cosθ]=2(2cos2θ+cosθ﹣1)=2(2cosθ﹣1)(cosθ+1).…令f′(θ)=0,因为θ∈(0,),所以cosθ=,即θ=,…当θ∈(0,)时,f′(θ)>0,所以f (θ)在(0,)上单调递增;当θ∈(,)时,f′(θ)<0,所以f (θ)在(,)上单调递减,…所以当θ=时,f (θ)取最大值f ()=2(cos+1)sin=.…答:当θ=时,可使得六边形区域面积达到最大,最大面积为平方百米.…19.在平面直角坐标系xOy中,椭圆E: +=1(a>b>0)的离心率为,两个顶点分别为A(﹣a,0),B(a,0),点M(﹣1,0),且3=,过点M 斜率为k(k≠0)的直线交椭圆E于C,D两点,且点C在x轴上方.(1)求椭圆E的方程;(2)若BC⊥CD,求k的值;(3)记直线BC,BD的斜率分别为k1,k2,求证:k1k2为定值.【考点】椭圆的简单性质.【分析】(1)由已知点的坐标结合向量等式求得a,再由离心率求得c,结合隐含条件求得b,则椭圆方程可求;(2)写出CD所在直线方程,得到BC所在直线方程联立求得C的坐标,代入椭圆方程即可求得k值;(3)联立直线方程和椭圆方程,求得C、D的横坐标的和与积,代入斜率公式可得k1k2为定值.【解答】(1)解:∵A(﹣a,0),B(a,0),点M(﹣1,0),且3=,∴3(﹣1+a,0)=(a+1,0),解得a=2.又∵=,∴c=,则b2=a2﹣c2=1,∴椭圆E的方程为+y2=1;(2)解:CD的方程为y=k(x+1),∵BC⊥CD,∴BC的方程为y=﹣(x﹣2),联立方程组,可得点C的坐标为(,),代入椭圆方程,得,解得k=±2.又∵点C在x轴上方,>0,则k>0,∴k=2;(3)证明:∵直线CD的方程为y=k(x+1),联立,消去y得:(1+4k2)x2+8k2x+4k2﹣4=0,设C(x1,y1),D(x2,y2),则x1+x2=﹣,x1x2=,k1k2=====﹣,∴k1k2为定值.20.已知函数f (x)=ax﹣lnx(a∈R).(1)当a=1时,求f (x)的最小值;(2)已知e为自然对数的底数,存在x∈[,e],使得f (x)=1成立,求a 的取值范围;(3)若对任意的x∈[1,+∞),有f (x)≥f ()成立,求a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最小值即可;(2)得到a=+,设g(x)=+,x∈[,e],根据函数的单调性求出a 的范围即可;(3)问题转化为a(x﹣)﹣2lnx≥0,令h(x)=a(x﹣)﹣2lnx,通过讨论a的范围求出函数的单调区间,从而求出a的范围即可.【解答】解:(1)a=1时,f(x)=x﹣lnx,则f'(x)=1﹣=,令f'(x)=0,则x=1.…当0<x<1时,f'(x)<0,所以f(x)在(0,1)上单调递减;当x>1时,f'(x)>0,所以f(x)在(1,+∞)上单调递增,…所以当x=1时,f (x)取到最小值,最小值为1.…(2)因为 f (x)=1,所以ax﹣lnx=1,即a=+,…设g(x)=+,x∈[,e],则g'(x)=,令g'(x)=0,得x=1.当<x<1时,g'(x)>0,所以g(x)在(,1)上单调递增;当1<x<e时,g'(x)<0,所以g(x)在(1,e)上单调递减;…因为g(1)=1,g()=0,g(e)=,所以函数g (x)的值域是[0,1],所以a的取值范围是[0,1].…(3)对任意的x∈[1,+∞),有f(x)≥f()成立,则ax﹣lnx≥+lnx,即a(x﹣)﹣2lnx≥0.令h(x)=a(x﹣)﹣2lnx,则h'(x)=a(1+)﹣=,①当a≥1时,ax2﹣2x+a=a(x﹣)2+≥0,所以h'(x)≥0,因此h(x)在[1,+∞)上单调递增,所以x∈[1,+∞)时,恒有h(x)≥h(1)=0成立,所以a≥1满足条件.…②当0<a<1时,有>1,若x∈[1,],则ax2﹣2x+a<0,此时h'(x)=<0,所以h(x)在[1,]上单调递减,所以h()<h(1)=0,即存在x=>1,使得h(x)<0,所以0<a<1不满足条件.…③当a≤0时,因为x≥1,所以h'(x)<0,所以h(x)在[1,+∞)上单调递减,所以当x>1时,h(x)<h(1)=0,所以a≤0不满足条件.综上,a的取值范围为[1,+∞).…2017年2月16日。
江苏省南京市数学高二上学期理数期末考试试卷
![江苏省南京市数学高二上学期理数期末考试试卷](https://img.taocdn.com/s3/m/a7b5f20e5022aaea998f0fd2.png)
江苏省南京市数学高二上学期理数期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)命题:“若-1<x<1,则x2<1”的逆否命题是()A . 若或,则B . 若x2<1,则-1<x<1C . 若x2>1,则x>1或x<-1D . 若,则或2. (2分)已知在区间[-1,1]上是增函数,实数a组成集合A;设关于x的方程的两个非零实根x1,x2实数m使得不等式使得对任意及恒成立,则m的解集是()A .B .C . (-2.5,2.5)D . (-2,2)3. (2分)(2012·天津理) 设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的()A . 充分而不必要条件B . 必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件4. (2分) (2019高二上·双流期中) 焦点在x轴上的椭圆的离心率e= ,F , A分别是椭圆的左焦点和右顶点,P是椭圆上任意一点,则的最大值为()A . 4B . 6C . 8D . 105. (2分)各项均为正数的等比数列{an}中,a2a5a8=8,则log2a4+log2a6=()A . 1B . 2C . 3D . 46. (2分) (2016高二上·湖北期中) 已知点P(x,y)满足过点P的直线与圆x2+y2=36相交于A,B两点,则|AB|的最小值为()A . 8B .C .D . 107. (2分) (2016高三上·长宁期中) 等差数列{an}中,已知3a5=7a10 ,且a1<0,则数列{an}前n项和Sn(n∈N*)中最小的是()A . S7或S8B . S12C . S13D . S148. (2分)(2017·四川模拟) 过点M(2,﹣2p)引抛物线x2=2py(p>0)的切线,切点分别为A,B,若,则p的值是()A . 1或2B . 或2C . 1D . 29. (2分) (2019高二上·郑州期中) 在中,A , B , C的对边分别为a , b , c ,,则的形状一定是()A . 直角三角形B . 等边三角形C . 等腰三角形D . 等腰直角三角形10. (2分) (2017高二下·赤峰期末) 已知,分别为双曲线:(,)的左、右顶点,是上一点,且直线,的斜率之积为2,则的离心率为()A .B .C .D .二、填空题 (共3题;共3分)11. (1分)在实数范围内因式分解:x2﹣2=________.12. (1分)设向量 =(1,2), =(2,3),若向量k + 与向量 =(4,﹣7)共线,则k=________.13. (1分) (2016高二上·宜春期中) 己知数列{an}的前n项和满足Sn=2n+1﹣1,则an=________.三、解答题 (共6题;共50分)14. (5分)已知命题命题,若命题“”是真命题,求实数的取值范围.15. (10分) (2016高一下·徐州期末) 在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(1)求角A的大小;(2)若a=6,b+c=8,求△ABC的面积.16. (5分) (2016高三上·成都期中) 已知数列{an}的前n项和Sn满足2Sn=3an﹣1,其中n∈N* .(Ⅰ)求数列{an}的通项公式;(Ⅱ)设anbn= ,求数列{bn}的前n项和为Tn .17. (10分) (2016高一下·威海期末) 如图,在xOy平面上,点A,B在单位圆上,已知A(1,0),∠AOB=θ(0<θ<π)(1)若点B(﹣,),求的值;(2)若,,求tanθ的值.18. (10分) (2019高二上·河南期中) 已知数列满足,.(1)求证:数列是等差数列,并求数列的通项公式;(2)记,为数列的前项和,若对任意的正整数都成立,求实数的最小值.19. (10分)已知抛物线上的一点的横坐标为,焦点为,且,直线与抛物线交于两点.(1)求抛物线的方程;(2)若是轴上一点,且△ 的面积等于,求点的坐标.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共3题;共3分)11-1、12-1、13-1、三、解答题 (共6题;共50分)14-1、15-1、15-2、16-1、17-1、17-2、18-1、18-2、19-1、19-2、。
2016-2017学年江苏省南京市高二(上)期末数学试卷(理科)
![2016-2017学年江苏省南京市高二(上)期末数学试卷(理科)](https://img.taocdn.com/s3/m/337cdef6f242336c1eb95edc.png)
2016-2017学年江苏省南京市高二(上)期末数学试卷(理科)一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上1.(5分)命题“若a=b,则|a|=|b|”的逆否命题是.2.(5分)双曲线=1的渐近线方程是.3.(5分)已知复数为纯虚数,其中i是虚数单位,则实数a的值是.4.(5分)在平面直角坐标系xOy中,点(4,3)到直线3x﹣4y+a=0的距离为1,则实数a的值是.5.(5分)曲线y=x4与直线y=4x+b相切,则实数b的值是.6.(5分)已知实数x,y满足条件则z=2x+y的最大值是.7.(5分)在平面直角坐标系xOy中,抛物线C:y2=4x的焦点为F,P为抛物线C上一点,且PF=5,则点P的横坐标是.8.(5分)在平面直角坐标系xOy中,圆O:x2+y2=r2(r>0)与圆M:(x﹣3)2+(y+4)2=4相交,则r的取值范围是.9.(5分)观察下列等式:(sin)﹣2+(sin)﹣2=×1×2;(sin)﹣2+(sin)﹣2+(sin)﹣2+sin()﹣2=×2×3;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×3×4;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×4×5;…照此规律,(sin)﹣2+(sin)﹣2+(sin)﹣2+…+(sin)﹣2=.10.(5分)若“∃x∈R,x2+ax+a=0”是真命题,则实数a的取值范围是.11.(5分)已知函数f(x)=(x2+x+m)e x(其中m∈R,e为自然对数的底数).若在x=﹣3处函数f (x)有极大值,则函数f (x)的极小值是.12.(5分)有下列命题:①“m>0”是“方程x2+my2=1表示椭圆”的充要条件;②“a=1”是“直线l1:ax+y﹣1=0与直线l2:x+ay﹣2=0平行”的充分不必要条件;③“函数f (x)=x3+mx单调递增”是“m>0”的充要条件;④已知p,q是两个不等价命题,则“p或q是真命题”是“p且q是真命题”的必要不充分条件.其中所有真命题的序号是.13.(5分)已知椭圆E:+=1(a>b>0)的焦距为2c(c>0),左焦点为F,点M的坐标为(﹣2c,0).若椭圆E上存在点P,使得PM=PF,则椭圆E 离心率的取值范围是.14.(5分)已知t>0,函数f(x)=,若函数g(x)=f(f(x)﹣1)恰有6个不同的零点,则实数t的取值范围是.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)在平面直角坐标系xOy中,已知△ABC三个顶点坐标为A(7,8),B(10,4),C(2,﹣4).(1)求BC边上的中线所在直线的方程;(2)求BC边上的高所在直线的方程.16.(14分)已知数列{a n}满足a1=1,(a n﹣3)a n+1﹣a n+4=0(n∈N*).(1)求a2,a3,a4;(2)猜想{a n}的通项公式,并用数学归纳法证明.17.(14分)在平面直角坐标系xOy中,已知圆M的圆心在直线y=﹣2x上,且圆M与直线x+y﹣1=0相切于点P(2,﹣1).(1)求圆M的方程;(2)过坐标原点O的直线l被圆M截得的弦长为,求直线l的方程.18.(16分)某休闲广场中央有一个半径为1(百米)的圆形花坛,现计划在该花坛内建造一条六边形观光步道,围出一个由两个全等的等腰梯形(梯形ABCF 和梯形DEFC)构成的六边形ABCDEF区域,其中A、B、C、D、E、F都在圆周上,CF为圆的直径(如图).设∠AOF=θ,其中O为圆心.(1)把六边形ABCDEF的面积表示成关于θ的函数f(θ);(2)当θ为何值时,可使得六边形区域面积达到最大?并求最大面积.19.(16分)在平面直角坐标系xOy中,椭圆E:+=1(a>b>0)的离心率为,两个顶点分别为A(﹣a,0),B(a,0),点M(﹣1,0),且3=,过点M斜率为k(k≠0)的直线交椭圆E于C,D两点,其中点C在x轴上方.(1)求椭圆E的方程;(2)若BC⊥CD,求k的值;(3)记直线AD,BC的斜率分别为k1,k2,求证:为定值.20.(16分)已知函数f(x)=ax﹣lnx(a∈R).(1)当a=1时,求f(x)的最小值;(2)若存在x∈[1,3],使+lnx=2成立,求a的取值范围;(3)若对任意的x∈[1,+∞),有f(x)≥f()成立,求a的取值范围.2016-2017学年江苏省南京市高二(上)期末数学试卷(理科)参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上1.(5分)命题“若a=b,则|a|=|b|”的逆否命题是若|a|≠|b|,则a≠b.【解答】解:命题“若a=b,则|a|=|b|”的逆否命题是命题“若|a|≠|b|,则a≠b”,故答案为:“若|a|≠|b|,则a≠b”2.(5分)双曲线=1的渐近线方程是y=±2x.【解答】解:∵双曲线标准方程为=1,其渐近线方程是=0,整理得y=±2x.故答案为y=±2x.3.(5分)已知复数为纯虚数,其中i是虚数单位,则实数a的值是2.【解答】解:==,∵复数为纯虚数,∴,解得a=2.故答案为:2.4.(5分)在平面直角坐标系xOy中,点(4,3)到直线3x﹣4y+a=0的距离为1,则实数a的值是±5.【解答】解:由题意,=1,∴a=±5.故答案为±5.5.(5分)曲线y=x4与直线y=4x+b相切,则实数b的值是﹣3.【解答】解:设直线与曲线的切点为P(m,n)则有:⇒,化简求:m=1,b=n﹣4;又因为点P满足曲线y=x4,所以:n=1;则:b=n﹣4=﹣3;故答案为:﹣3.6.(5分)已知实数x,y满足条件则z=2x+y的最大值是9.【解答】解:实数x,y满足条件作出不等式组对应的平面区域如图:由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,则当直线y=﹣2x+z经过点A时,直线的截距最大,此时z最大,由可得A(3,3).此时z=9,故答案为:9.7.(5分)在平面直角坐标系xOy中,抛物线C:y2=4x的焦点为F,P为抛物线C上一点,且PF=5,则点P的横坐标是4.【解答】解:∵抛物线y2=4x=2px,∴p=2,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|PF|=x+1=5,∴x=4,故答案为:48.(5分)在平面直角坐标系xOy中,圆O:x2+y2=r2(r>0)与圆M:(x﹣3)2+(y+4)2=4相交,则r的取值范围是3<r<7.【解答】解:由题意,圆心距为5,∴|r﹣2|<5<r+2,∴3<r<7.故答案为3<r<7.9.(5分)观察下列等式:(sin)﹣2+(sin)﹣2=×1×2;(sin)﹣2+(sin)﹣2+(sin)﹣2+sin()﹣2=×2×3;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×3×4;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×4×5;…照此规律,(sin)﹣2+(sin)﹣2+(sin)﹣2+…+(sin)﹣2=n(n+1).【解答】解:观察下列等式:(sin)﹣2+(sin)﹣2=×1×2;(sin)﹣2+(sin)﹣2+(sin)﹣2+sin()﹣2=×2×3;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×3×4;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×4×5;…照此规律(sin)﹣2+(sin)﹣2+(sin)﹣2+…+(sin)﹣2=×n (n+1),故答案为:n(n+1)10.(5分)若“∃x∈R,x2+ax+a=0”是真命题,则实数a的取值范围是(﹣∞,0]∪[4,+∞).【解答】解:若“∃x∈R,x2+ax+a=0”是真命题,则△=a2﹣4a≥0,解得:a∈(﹣∞,0]∪[4,+∞),故答案为:(﹣∞,0]∪[4,+∞)11.(5分)已知函数f(x)=(x2+x+m)e x(其中m∈R,e为自然对数的底数).若在x=﹣3处函数f (x)有极大值,则函数f (x)的极小值是﹣1.【解答】解:f(x)=(x2+x+m)e x,f′(x)=(x2+3x+m+1)e x,若f(x)在x=﹣3处函数f (x)有极大值,则f′(﹣3)=0,解得:m=﹣1,故f(x)=(x2+x﹣1)e x,f′(x)=(x2+3x)e x,令f′(x)>0,解得:x>0,令f′(x)<0,解得:x<﹣3,故f(x)在(﹣∞,﹣3)递增,在(﹣3,0)递减,在(0,+∞)递增,=f(0)=﹣1,故f(x)极小值故答案为:﹣1.12.(5分)有下列命题:①“m>0”是“方程x2+my2=1表示椭圆”的充要条件;②“a=1”是“直线l1:ax+y﹣1=0与直线l2:x+ay﹣2=0平行”的充分不必要条件;③“函数f (x)=x3+mx单调递增”是“m>0”的充要条件;④已知p,q是两个不等价命题,则“p或q是真命题”是“p且q是真命题”的必要不充分条件.其中所有真命题的序号是②④.【解答】解:对于①,当m=1时,方程x2+my2=1表示圆,故错;对于②,∵a=±1时,直线l1与直线l2都平行,故正确;对于③,若函数f (x)=x3+mx单调递增⇒m≥0,故错;对于④,p或q是真命题⇒p且q不一定是真命题;⇒p且q是真命题⇒p或q 一定是真命题,故正确;故答案为:②④13.(5分)已知椭圆E:+=1(a>b>0)的焦距为2c(c>0),左焦点为F,点M的坐标为(﹣2c,0).若椭圆E上存在点P,使得PM=PF,则椭圆E 离心率的取值范围是[] .【解答】解:设P(x,y),由PM=PF⇒PM2=2PF2⇒(x+2c)2+y2=2(x+c)2+2y2⇒x2+y2=2c2,椭圆E上存在点P,使得PM=PF,则圆x2+y2=2c2与椭圆E:+=1(a>b >0)有公共点,∴b≤≤a⇒⇒.故答案为:[]14.(5分)已知t>0,函数f(x)=,若函数g(x)=f(f(x)﹣1)恰有6个不同的零点,则实数t的取值范围是(3,4).【解答】解:∵函数f(x)=,∴函数f′(x)=,当x<,或x<t时,f′(x)>0,函数为增函数,当<x<t时,f′(x)<0,函数为减函数,故当x=时,函数f(x)取极大值,函数f(x)有两个零点0和t,若函数g(x)=f(f(x)﹣1)恰有6个不同的零点,则方程f(x)﹣1=0和f(x)﹣1=t各有三个解,即函数f(x)的图象与y=1和y=t+1各有三个零点,由y|x=t==,故,=(t﹣3)(2t+3)2>0得:t>3,故不等式的解集为:t∈(3,4),故答案为:(3,4)二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)在平面直角坐标系xOy中,已知△ABC三个顶点坐标为A(7,8),B(10,4),C(2,﹣4).(1)求BC边上的中线所在直线的方程;(2)求BC边上的高所在直线的方程.【解答】解:(1)由B(10,4),C(2,﹣4),得BC中点D的坐标为(6,0),…(2分)所以AD的斜率为k==8,…(5分)所以BC边上的中线AD所在直线的方程为y﹣0=8(x﹣6),即8x﹣y﹣48=0.…(7分)(2)由B(10,4),C(2,﹣4),得BC所在直线的斜率为k==1,…(9分)所以BC边上的高所在直线的斜率为﹣1,…(12分)所以BC边上的高所在直线的方程为y﹣8=﹣1(x﹣7),即x+y﹣15=0.…(14分)16.(14分)已知数列{a n}满足a1=1,(a n﹣3)a n+1﹣a n+4=0(n∈N*).(1)求a2,a3,a4;(2)猜想{a n}的通项公式,并用数学归纳法证明.【解答】解:(1)令n=1,﹣2a2+3=0,a2=,令n=2,﹣a3﹣+4=0,a3=,令n=3,﹣a4﹣+4=0,a4=.(2)猜想a n=(n∈N*).证明:当n=1时,a1=1=,所以a n=成立,假设当n=k时,a n=成立,即a k=,则(a k﹣3)a k+1﹣a k+4=0,即(﹣3)a k+1﹣+4=0,=,即a k+1==,所以a k+1所以当n=k+1时,结论a n=成立.综上,对任意的n∈N*,a n=成立.17.(14分)在平面直角坐标系xOy中,已知圆M的圆心在直线y=﹣2x上,且圆M与直线x+y﹣1=0相切于点P(2,﹣1).(1)求圆M的方程;(2)过坐标原点O的直线l被圆M截得的弦长为,求直线l的方程.【解答】解:(1)过点(2,﹣1)且与直线x+y﹣1=0垂直的直线方程为x﹣y﹣3=0,…(2分)由解得,所以圆心M的坐标为(1,﹣2),…(4分)所以圆M的半径为r=,…(6分)所以圆M的方程为(x﹣1)2+(y+2)2=2.…(7分)(2)因为直线l被圆M截得的弦长为,所以圆心M到直线l的距离为d==,…(9分)若直线l的斜率不存在,则l为x=0,此时,圆心M到l的距离为1,不符合题意.若直线l的斜率存在,设直线l的方程为y=kx,即kx﹣y=0,由d==,…(11分)整理得k2+8k+7=0,解得k=﹣1或﹣7,…(13分)所以直线l的方程为x+y=0或7x+y=0.…(14分)18.(16分)某休闲广场中央有一个半径为1(百米)的圆形花坛,现计划在该花坛内建造一条六边形观光步道,围出一个由两个全等的等腰梯形(梯形ABCF 和梯形DEFC)构成的六边形ABCDEF区域,其中A、B、C、D、E、F都在圆周上,CF为圆的直径(如图).设∠AOF=θ,其中O为圆心.(1)把六边形ABCDEF的面积表示成关于θ的函数f(θ);(2)当θ为何值时,可使得六边形区域面积达到最大?并求最大面积.【解答】(本题满分16分)解:(1)作AH⊥CF于H,则OH=cosθ,AB=2OH=2cosθ,AH=sinθ,…(2分)则六边形的面积为f (θ)=2×(AB+CF)×AH=(2cosθ+2)sinθ=2(cosθ+1)sinθ,θ∈(0,).…(6分)(2)f′(θ)=2[﹣sinθsinθ+(cosθ+1)cosθ]=2(2cos2θ+cosθ﹣1)=2(2cosθ﹣1)(cosθ+1).…(10分)令f′(θ)=0,因为θ∈(0,),所以cosθ=,即θ=,…(12分)当θ∈(0,)时,f′(θ)>0,所以f (θ)在(0,)上单调递增;当θ∈(,)时,f′(θ)<0,所以f (θ)在(,)上单调递减,…(14分)所以当θ=时,f (θ)取最大值f ()=2(cos+1)sin=.…(15分)答:当θ=时,可使得六边形区域面积达到最大,最大面积为平方百米.…(16分)19.(16分)在平面直角坐标系xOy中,椭圆E:+=1(a>b>0)的离心率为,两个顶点分别为A(﹣a,0),B(a,0),点M(﹣1,0),且3=,过点M斜率为k(k≠0)的直线交椭圆E于C,D两点,其中点C在x轴上方.(1)求椭圆E的方程;(2)若BC⊥CD,求k的值;(3)记直线AD,BC的斜率分别为k1,k2,求证:为定值.【解答】解:(1)因为3=,所以3(﹣1+a,0)=(a+1,0),解得a=2.…(2分)又因为=,所以c=,所以b2=a2﹣c2=1,所以椭圆E的方程为+y2=1.…(4分)(2)设点C的坐标为(x0,y0),y0>0,则=(﹣1﹣x0,﹣y0),=(2﹣x0,﹣y0).因为BC⊥CD,所以(﹣1﹣x0)(2﹣x0)+y02=0.①…(6分)又因为+y02=1,②联立①②,解得x0=﹣,y0=,…(8分)所以k==2.…(10分)(3),设C(x0,y0),则CD:y=(x+1)(﹣2<x0<2且x0≠﹣1),由消去y,得x2+8y02x+4y02﹣4(x0+1)2=0.…(12分)又因为+y02=1,所以得D(,),…(14分)所以===3,所以为定值.…(16分)20.(16分)已知函数f(x)=ax﹣lnx(a∈R).(1)当a=1时,求f(x)的最小值;(2)若存在x∈[1,3],使+lnx=2成立,求a的取值范围;(3)若对任意的x∈[1,+∞),有f(x)≥f()成立,求a的取值范围.【解答】解:(1)f(x)=x﹣lnx(x>0)的导数为f′(x)=1﹣=,当x>1时,f′(x)>0,f(x)递增;当0<x<1时,f′(x)>0,f(x)递减.即有f(x)在x=1处取得极小值,也为最小值,且为1;(2)存在x∈[1,3],使+lnx=2成立,即为=2﹣lnx,即有a=,设g(x)=,x∈[1,3],则g′(x)=(1﹣lnx)(1+),当1<x<e时,g′(x)>0,g(x)递增;当e<x<3时,g′(x)<0,g(x)递减.则g(x)在x=e处取得极大值,且为最大值e+;g(1)=2,g(3)=3(2﹣ln3)+>2,则a的取值范围是[2,e+];(3)若对任意的x∈[1,+∞),有f(x)≥f()成立,即为ax﹣lnx≥﹣ln,即有a(x﹣)≥2lnx,x≥1,令F(x)=a(x﹣)﹣2lnx,x≥1,F′(x)=a(1+)﹣,当x=1时,原不等式显然成立;当x>1时,由题意可得F′(x)≥0在(1,+∞)恒成立,即有a(1+)﹣≥0,即a≥,由=<=1,则a≥1.综上可得a的取值范围是[1,+∞).。
南京市2016-2017学年度第一学期期末检测卷(高二数学理)参考答案终稿
![南京市2016-2017学年度第一学期期末检测卷(高二数学理)参考答案终稿](https://img.taocdn.com/s3/m/0ac685d87c1cfad6195fa759.png)
南京市2016-2017学年度第一学期期末检测卷 高二数学(理科)参考答案及评分标准 2017.01 说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,填空题不给中间分数.一、填空题(本大题共14小题,每小题5分,共70分)1.若|a |≠|b |,则a ≠b 2.y =±2x 3.2 4.±5 5.-3 6.9 7.48.(3,7) 9.4n (n +1)310.(-∞,0]∪[4,+∞) 11.-1 12. ②④ 13.[33,22] 14.(3,4) 二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤) 15.(本题满分14分)解:(1)由B (10,4),C (2,-4),得BC 中点D 的坐标为(6,0), ………………2分所以AD 的斜率为k =8-07-6=8, ……………… 5分 所以BC 边上的中线AD 所在直线的方程为y -0=8(x -6),即8x -y -48=0. ……………… 7分(2)由B (10,4),C (2,-4),得BC 所在直线的斜率为k =4-(-4)10-2=1,…… 9分 所以BC 边上的高所在直线的斜率为-1, ………………… 12分 所以BC 边上的高所在直线的方程为y -8=-(x -7),即x +y -15=0. ………………………… 14分16.(本题满分14分)解:(1)令n =1,-2a 2+3=0,a 2=32, ………………1分 令n =2,-32a 3-32+4=0,a 3=53, ………………2分 令n =3,-43a 4-53+4=0,a 4=74. ………………3分(2)猜想a n =2n -1n(n ∈N *). ………………5分 证明:当n =1时,a 1=1=2-11,所以a n =2n -1n成立, ……………… 6分 假设当n =k 时,a n =2n -1n 成立,即a k =2k -1k, ………………8分 则(a k -3)a k +1-a k +4=0,即(2k -1k -3)a k +1-2k -1k+4=0, 所以k +1k a k +1=2k +1k ,即a k +1=2k +1k +1=2(k +1)-1k +1, ………………12分 所以当n =k +1时,结论a n =2n -1n 成立. 综上,对任意的n ∈N *,a n =2n -1n成立. ………………14分 17.(本题满分14分)解:(1)过点(2,-1)且与直线x +y -1=0垂直的直线方程为x -y -3=0, ……2分由⎩⎨⎧y =-2x ,x -y -3=0, 解得⎩⎨⎧x =1,y =-2.所以圆心M 的坐标为(1,-2), ………………4分 所以圆M 的半径为r =(2-1)2+[-1-(-2)]2=2, ………………6分 所以圆M 的方程为 (x -1)2+(y +2)2=2. ………………7分(2)因为直线l 被圆M 截得的弦长为6,所以圆心M 到直线l 的距离为d =2-(62)2=22, ……………9分 若直线l 的斜率不存在,则l 为x =0,此时,圆心M 到l 的距离为1,则弦长为2,不符合题意.若直线l 的斜率存在,设直线l 的方程为y =kx ,即kx -y =0,由d =|k +2|k 2+(-1)2=22, ………………11分 整理得k 2+8k +7=0,解得k =-1或-7, ………………13分所以直线l 的方程为x +y =0或7x +y =0. ………………14分18.(本题满分16分)解:(1)作AH ⊥CF 于H ,则OH =cos θ,AB =2OH =2cos θ,AH =sin θ, ……………2分则六边形的面积为f (θ)=2×12(AB +CF )×AH =(2cos θ+2)sin θ =2(cos θ+1)sin θ,θ∈(0,π2). ………………6分 (2)f ′(θ)=2[-sin θsin θ+(cos θ+1)cos θ]=2(2cos 2θ+cos θ-1)=2(2cos θ-1)(cos θ+1). ………………10分令 f ′(θ)=0,因为θ∈(0,π2),所以cos θ=12,即θ=π3, ……………………12分 当θ∈(0,π3)时,f ′(θ)>0,所以f (θ)在(0,π3)上单调递增; 当θ∈(π3,π2)时,f ′(θ)<0,所以f (θ)在(π3,π2)上单调递减, …………14分 所以当θ=π3时,f (θ)取最大值f (π3)=2(cos π3+1)sin π3=323. …………15分 答:当θ=π3时,可使得六边形区域面积达到最大,最大面积为323平方百米. …………………………16分19.(本题满分16分)解:(1)因为3AM →=MB →,所以3(-1+a ,0)=(a +1,0),解得a =2. ………………2分又因为c a = 3 2,所以c =3,所以b 2=a 2-c 2=1, 所以椭圆E 的方程为x 24+y 2=1. ………………4分 (2)方法1设点C 的坐标为(x 0,y 0),y 0>0,则CM →=(-1-x 0,-y 0),CB →=(2-x 0,-y 0).因为BC ⊥CD ,所以(-1-x 0)( 2-x 0)+y 02=0. ① ……………6分 又因为x 024+y 02=1, ② 联立①②,解得x 0=-23,y 0=223, ………………8分 所以k =223-23+1=22. ………………10分 方法2因为CD 的方程为y =k (x +1),且BC ⊥CD ,所以BC 的方程为y =-1k(x -2), ………………6分 联立方程组,可得点C 的坐标为(2-k 21+k 2,3k 1+k 2), ………………8分 代入椭圆方程,得(2-k 21+k 2)24+(3k 1+k 2)2=1, 解得k =±22.又因为点C 在x 轴上方,所以3k 1+k 2>0,所以k >0,所以k =2 2 ………………10分(3)方法1因为直线CD 的方程为y =k (x +1),由⎩⎪⎨⎪⎧y =k (x +1),x 24+y 2=1,消去y ,得(1+4k 2)x 2+8k 2x +4k 2-4=0, 设C (x 1,y 1),D (x 2,y 2),则x 1+x 2=-8k 21+4k 2,x 1x 2=4k 2-4 1+4k 2. …………………12分 所以k 1k 2=y 2x 2+2 y 1x 1-2 =k (x 2+1)x 2+2 k (x 1+1)x 1-2 =(x 2+1)(x 1-2)(x 2+2)(x 1+1) =x 1x 2-2(x 1+x 2)+3x 1-2 x 1x 2+(x 1+x 2)+x 1+2…………………14分 =4k 2-4 1+4k 2-2×(-8k 21+4k 2)+3x 1-2 4k 2-4 1+4k 2+(-8k 21+4k 2)+x 1+2=12k 2-6 1+4k 2+3x 1 4k 2-2 1+4k 2+x 1=3, 所以k 1k 2为定值. ………………………16分 方法2因为直线AD 的方程为y =k 1(x +2),由⎩⎪⎨⎪⎧y =k 1(x +2),x 24+y 2=1,解得D (2-8k 12 1+4k 12,4k 1 1+4k 12), ………………………12分 因为直线BC 的方程为y =k 2(x -2),由⎩⎪⎨⎪⎧y =k 2(x -2),x 24+y 2=1,解得C (8k 22-2 1+4k 22,-4k 2 1+4k 22), 由于C ,M ,D 三点共线,故MC →,MD →共线,又MC →=(8k 22-2 1+4k 22+1,-4k 2 1+4k 22)=(12k 22-1 1+4k 22,-4k 2 1+4k 22), MD →=(2-8k 12 1+4k 12+1,4k 1 1+4k 12)=(3-4k 12 1+4k 12,4k 1 1+4k 12), 所以12k 22-1 1+4k 22·4k 1 1+4k 12=-4k 2 1+4k 22·3-4k 121+4k 12, ……………14分 化简得12k 22k 1-k 1=4k 12k 2-3k 2,即(4k 1k 2+1)(k 1-3k 2)=0,若4k 1k 2+1=0,则k 2=-14k 1代入C (8k 22-2 1+4k 22,-4k 2 1+4k 22), 化简得C (2-8k 12 1+4k 12,4k 1 1+4k 12), 此时C 与D 重合,于是4k 1k 2+1≠0,从而k 1-3k 2=0,所以k 1 k 2=3,即k 1k 2为定值. ………………………16分方法3设C (x 0,y 0),则CD :y =y 0 x 0+1(x +1)(-2<x 0<2且x 0≠-1), 由⎩⎨⎧y =y 0 x 0+1(x +1),x 24+y 2=1,消去y , 得[(x 0+1)2+4y 02]x 2+8y 02x +4y 02-4(x 0+1)2=0. ………………12分又因为x 024+y 02=1,所以得D (-8-5x 05+2x 0,-3y 05+2x 0), ………………14分 所以k 1k 2=-3y 05+2x 0-8-5x 05+2x 0+2·x 0-2 y 0 =-3y 0-x 0+2·x 0-2 y 0=3, 所以k 1k 2为定值. ……………………16分 方法4设D (x 0,y 0),y 0≠0,则k 1k BD =y 0 x 0+2·y 0 x 0-2=y 02x 02-4=1-x 024 x 02-4=-14. …………………12分 因为CD 的方程为y =k (x +1),设C (x 1,y 1),D (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x +1),x 24+y 2=1,消去y ,得(1+4k 2)x 2+8k 2x +4k 2-4=0, 则x 1+x 2=-8k 21+4k 2,x 1x 2=4k 2-4 1+4k 2, 所以k 2k BD =y 1x 1-2×y 2x 2-2=k 2(x 1+1) (x 2+1) (x 1-2)(x 2-2)=k 2(x 1 x 2+x 1+x 2+1) x 1 x 2-2 (x 1+x 2)+4=k 2(4k 2-4 1+4k 2-8k 21+4k 2+1) 4k 2-4 1+4k 2+2×8k 2 1+4k 2+4=-3k 236k 2=-112. …………………14分 又因为k 1k BD =-14, 所以k 1 k 2=3,即k 1k 2为定值. ………………………16分 20.(本题满分16分)解:(1)a =1时,f (x )=x -ln x , 则f '(x )=1-1x =x -1x,令f '(x )=0,则x =1. ……………………2分 当0<x <1时,f '(x )<0,所以f (x )在(0,1)上单调递减;当x >1时,f '(x )>0,所以f (x )在(1,+∞)上单调递增, ………………3分 所以当x =1时,f (x )取到最小值,最小值为1. …………………4分(2)因为 f (x )x 2+ln x =2(x >0), 所以ax -ln x =(2-ln x )x 2,即a =2x -x ln x +ln x x, …………………6分 设g (x )=2x -x ln x +ln x x,x ∈[1,3], 则g '(x )=2-(1+ln x )+1-ln x x 2=(1-ln x )(1+1x 2), 令g '(x )=0,解得x =e ,当1<x <e 时,g '(x )>0,所以g (x )在(1,e)上单调递增;当e <x <3时,g '(x )<0,所以g (x )在(e ,3)上单调递减, ………………8分因为g (1)=2,g (e)=e +1e ,g (3)=6-83ln3, 因为6-83ln3>2,所以函数g (x )的值域是[2,e +1e], 所以a 的取值范围是[2,e +1e]. ………………10分 (3)对任意的x ∈[1,+∞),有f (x )≥f (1x)成立, 则ax -ln x ≥a x +ln x ,即a (x -1x)-2ln x ≥0. 令h (x )=a (x -1x )-2ln x ,则h '(x )=a (1+1x 2)-2x =ax 2-2x +a x 2, ①当a ≥1时,ax 2-2x +a =a (x -1a )2+a 2-1a ≥0, 所以h '(x )≥0,因此h (x )在[1,+∞)上单调递增,所以x ∈[1,+∞)时,恒有h (x )≥h (1)=0成立,所以a ≥1满足条件. ………………12分②当0<a <1时,有1a >1,若x ∈[1,1a],则ax 2-2x +a <0, 此时h '(x )=ax 2-2x +a x 2<0, 所以h (x )在[1,1a ]上单调递减,所以h (1a)<h (1)=0, 即存在x =1a>1,使得h (x )<0,所以0<a <1不满足条件.……………14分 ③当a ≤0时,因为x ≥1,所以h '(x )=ax 2-2x +a x 2<0,所以h (x )在[1,+∞)上单调递减, 所以当x >1时,h (x )<h (1)=0,所以a ≤0不满足条件.综上, a 的取值范围为[1,+∞). ………………16分。
(完整word版)江苏省南京市2016-2017学年高二(上)期末数学试卷(文科)(解析版)
![(完整word版)江苏省南京市2016-2017学年高二(上)期末数学试卷(文科)(解析版)](https://img.taocdn.com/s3/m/be1d0a15856a561253d36f32.png)
2016-2017学年江苏省南京市高二(上)期末数学试卷(文科)一、填空题:本大题共14小题,每小题5分,共70分•请把答案填写在答题 卡相应位置上1 .命题 若a=b ,则| a| =| b| ”的逆否命题是 ______ . 2•双曲线- —=1的渐近线方程是3. 已知复数亍〒为纯虚数,其中i 是虚数单位,则实数a 的值是_.4. 在平面直角坐标系xOy 中,点(4,3)到直线3x -4y+a=0的距离为1,则实 数a 的值是 ____ .5. 曲线y=x 4与直线y=4x+b 相切,则实数b 的值是 ____ .x+y - 6 .已知实数x ,y 满足条件* — 则z=2x+y 的最大值是 ___________ . 7.在平面直角坐标系xOy 中,抛物线C : y 2=4x 的焦点为F ,P 为抛物线C 上一 点,且PF=5,则点P 的横坐标是_ .8 .在平面直角坐标系xOy 中,圆O: x 2 +y 2=r 2 (r >0)与圆M : (x - 3) 2+ (y+4) 2=4相交,则r 的取值范围是 ________ .照此规律,TT— 27 TT — 23 兀—2兀 —2(sin)+(sin;「) +(sin ;j )+"(sin;j )=—.10. ____________________________________________________ 若? x € R ,x 2+ax+a=0”是真命题,则实数a 的取值范围是 _____________________ .11. 已知函数f (x ) = (x 2+x+m ) e x (其中m € R ,e 为自然对数的底数).若在9.观察下列等式:7T(sin :).7T(sin•)(sin 上) (sin )(sin =) / • 2兀、(sin)(si n ]) (sin)2= [ X1X 2;— —2一 )2=X 2X 3;(;)=-X 3X 4;/痕兀、-2 4()=X 4X 5;(si 2+ 2+sin ( (si 2+ 2+・・+sinx=- 3处函数f (x)有极大值,则函数f (x)的极小值是____________ .12. 有下列命题:①“心0”是方程x2+my2=1表示椭圆”的充要条件;②“a=1是直线l i:ax+y- 1=0与直线I2:x+ay-2=0平行”的充分不必要条件;③函数f (x) =x3+mx单调递增”是“m> 0”的充要条件;④已知p, q是两个不等价命题,则“威q是真命题”是“I且q是真命题”的必要不充分条件.其中所有真命题的序号是—./ V213. 已知椭圆E:七+ ±=1 (a>b>0)的焦距为2c (c>0),左焦点为F,点/ b2M的坐标为(-2c, 0).若椭圆E上存在点P,使得PM^PF,则椭圆E离心率的取值范围是________________ .x(x - t) xCt14. 已知t >0,函数f (x) = 1 、,若函数g (x) =f (f (x)- 1)4恰有6个不同的零点,则实数t的取值范围是 _ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15. 在平面直角坐标系xOy中,已知△ ABC三个顶点坐标为A (7, 8), B (10, 4),C (2,- 4).(1)求BC边上的中线所在直线的方程;(2)求BC边上的高所在直线的方程.16. 已知复数Z1=m- 2i,复数z2=1 - ni,其中i是虚数单位,m, n为实数.(1)若m=1, n=- 1,求|可+乙2|的值;(2)若Z1=(Z2)2,求m, n 的值.17. 在平面直角坐标系xOy中,已知圆M的圆心在直线y=-2x上,且圆M与直线x+y-仁0相切于点P (2,- 1).(1)求圆M的方程;(2)过坐标原点O的直线l被圆M截得的弦长为「,求直线l的方程.18 •某休闲广场中央有一个半径为1 (百米)的圆形花坛,现计划在该花坛内建造一条六边形观光步道,围出一个由两个全等的等腰梯形(梯形ABCF和梯形DEFC构成的六边形ABCDEF区域,其中A、B、C、D、E、F都在圆周上,CF为圆的直径(如图).设/ AOF=9,其中0为圆心.(1)把六边形ABCDEF的面积表示成关于B的函数f ( B);(2)当B为何值时,可使得六边形区域面积达到最大?并求最大面积.B/ \A19. 在平面直角坐标系xOy中,椭圆E:_<>1 (a>b>。
【配套K12】江苏省南京市2017-2018学年高二数学上学期期末考试试题 理(含解析)
![【配套K12】江苏省南京市2017-2018学年高二数学上学期期末考试试题 理(含解析)](https://img.taocdn.com/s3/m/ac62212410a6f524ccbf85c0.png)
江苏省南京市2017-2018学年高二数学上学期期末考试试题理一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置.......上.1. 命题“若ab=0,则b=0”的逆否命题是______.【答案】“若b≠0,则ab≠0”【解析】因为一个命题的逆否命题,是将原命题逆命题的条件与结论同时否定得到,所以命题“若ab=0,则b=0”的逆否命题是“若b≠0,则ab≠0”.故答案为:“若b≠0,则ab≠0”.2. 已知复数z满足z(1+i)=i,其中i是虚数单位,则 |z| 为______.【答案】【解析】复数z满足z(1+i)=i,所以.所以.故答案为:.3. 在平面直角坐标系xOy中,抛物线y2=4x的焦点坐标是______.【答案】(1,0)【解析】抛物线y2=4x,满足y2=2p x,其中p=2.所以抛物线y2=4x的焦点坐标是(1,0).故答案为:(1,0).4. “x2-3x+2<0”是“-1<x<2”成立的______条件(在“充分不必要”,“必要不充分”,“充要”,“既不充分又不必要”中选一个填写).【答案】充分不必要【解析】由x2-3x+2<0,解得1<x<2,因为1<x<2是“-1<x<2”成立的充分不必要条件,所以“x2-3x+2<0”是“-1<x<2”成立的充分不必要条件.故答案为:充分不必要.5. 已知实数x,y满足条件则z=3x+y 的最大值是______.【答案】7【解析】作出不等式的可行域如图所示:作直线经过点A(2,1)时,z取最大值7.故答案为:7.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.6. 函数f(x)=x e x 的单调减区间是______.【答案】(-∞,-1)或(-∞,-1]【解析】函数f(x)=x e x,求导得:.令,解得.所以函数f(x)=x e x 的单调减区间是(-∞,-1)( (-∞,-1]也可以).故答案为: (-∞,-1)或(-∞,-1].7. 如图,直线l经过点(0,1),且与曲线y=f(x) 相切于点(a,3).若f ′(a)=,则实数a的值是______.【解析】由导数的几何意义知f ′(a)=,即为切线斜率为.所以,解得.故答案为:3.8. 在平面直角坐标系xOy中,若圆 (x-a)2+(y-a)2=2 与圆x2+(y-6)2=8相外切,则实数a的值为______.【答案】3【解析】圆 (x-a)2+(y-a)2=2 与圆x2+(y-6)2=8相外切,则圆心距等于半径之和,即,解得.故答案为:3.点睛:这个题目考查的是两圆的位置关系;两圆的位置关系有相交,外切,内切,内含,外离这几种情况。
2017-2018学年江苏省南京市高二(上)期末数学试卷(理科)(解析版)
![2017-2018学年江苏省南京市高二(上)期末数学试卷(理科)(解析版)](https://img.taocdn.com/s3/m/05820e1fe2bd960590c677a5.png)
2017-2018学年江苏省南京市高二(上)期末数学试卷(理科)一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上.1.(5分)命题“若ab=0,则b=0”的逆否命题是.2.(5分)已知复数z满足z(1+i)=i,其中i是虚数单位,则|z|为.3.(5分)在平面直角坐标系xOy中,抛物线y2=4x的焦点坐标是.4.(5分)“x2﹣3x+2<0”是“﹣1<x<2”成立的条件(在“充分不必要”,“必要不充分”,“充要”,“既不充分又不必要”中选一个填写).5.(5分)已知实数x,y满足条件,则z=3x+y的最大值是.6.(5分)函数f(x)=xe x的单调减区间是.7.(5分)如图,直线l经过点(0,1),且与曲线y=f(x)相切于点(a,3).若f′(a)=,则实数a的值是.8.(5分)在平面直角坐标系xOy中,若圆(x﹣a)2+(y﹣a)2=2与圆x2+(y﹣6)2=8相外切,则实数a的值为.9.(5分)如图,在三棱锥P﹣ABC中,M是侧棱PC的中点,且=x+y+z,则x+y+z的值为.10.(5分)在平面直角坐标系xOy中,若双曲线﹣y2=1的渐近线与抛物线x2=4y 的准线相交于A,B两点,则三角形OAB的面积为.11.(5分)在平面直角坐标系xOy中,若点A到原点的距离为2,到直线x+y﹣2=0的距离为1,则满足条件的点A的个数为.12.(5分)若函数f(x)=x3﹣3x2+mx在区间(0,3)内有极值,则实数m的取值范围是.13.(5分)在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,过F1且与x轴垂直的直线交椭圆于A,B两点,直线AF2与椭圆的另一个交点为C.若=2,则该椭圆的离心率为.14.(5分)已知函数f(x)=x|x2﹣3|.若存在实数m,m∈(0,],使得当x∈[0,m]时,f(x)的取值范围是[0,am],则实数a的取值范围是.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知复数z=,(m∈R,i是虚数单位).(1)若z是纯虚数,求m的值;(2)设是z的共轭复数,复数+2z在复平面上对应的点在第一象限,求m的取值范围.16.(14分)如图,在正方体ABCD﹣A1B1C1D1中,点E,F,G分别是棱BC,A1B1,B1C1的中点.(1)求异面直线EF与DG所成角的余弦值;(2)设二面角A﹣BD﹣G的大小为θ,求|cosθ|的值.17.(14分)如图,圆锥OO1的体积为π.设它的底面半径为x,侧面积为S.(1)试写出S关于x的函数关系式;(2)当圆锥底面半径x为多少时,圆锥的侧面积最小?18.(16分)在平面直角坐标系xOy中,已知圆C经过点A(1,3),B(4,2),且圆心在直线l:x﹣y﹣1=0上.(1)求圆C的方程;(2)设P是圆D:x2+y2+8x﹣2y+16=0上任意一点,过点P作圆C的两条切线PM,PN,M,N为切点,试求四边形PMCN面积S的最小值及对应的点P坐标.19.(16分)在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的一条准线方程为x=,离心率为.(1)求椭圆C的方程;(2)如图,设A为椭圆的上顶点,过点A作两条直线AM,AN,分别与椭圆C相交于M,N两点,且直线MN垂直于x轴.①设直线AM,AN的斜率分别是k1,k2,求k1k2的值;②过M作直线l1⊥AM,过N作直线l2⊥AN,l1与l2相交于点Q.试问:点Q是否在一条定直线上?若在,求出该直线的方程;若不在,请说明理由.20.(16分)设函数f(x)=ax2﹣1﹣lnx,其中a∈R.(1)若a=0,求过点(0,﹣1)且与曲线y=f(x)相切的直线方程;(2)若函数f(x)有两个零点x1,x2,①求a的取值范围;②求证:f′(x1)+f′(x2)<0.2017-2018学年江苏省南京市高二(上)期末数学试卷(理科)参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上.1.【解答】解:根据原命题与逆否命题的关系,知:命题“若ab=0,则b=0”的逆否命题是“若b≠0,则ab≠0”.故答案为:若b≠0,则ab≠0.2.【解答】解:由z(1+i)=i,得z=,∴|z|=.故答案为:.3.【解答】解:抛物线y2=4x开口向右,p=2,所以抛物线的焦点坐标是(1,0).故答案为:(1,0).4.【解答】解:∵x2﹣3x+2<0⇔1<x<2,∵{x|1<x<2}⊊{x|﹣1<x<2},∴“x2﹣3x+2<0”是“﹣1<x<2”成立的充分不必要,故答案为:充分不必要.5.【解答】解:由题意,实数x,y满足条件表示一个三角形区域(包含边界),三角形的三个顶点的坐标分别为A(0,5),B(2,1),C(0,1)目标函数z=3x+y的几何意义是直线的纵截距由线性规划知识可得,在点(2,1)处取得最大值7.故答案为:76.【解答】解:函数f(x)=xe x,可得f′(x)=(1+x)e x,当f′(x)=(1+x)e x≤0,解得x≤﹣1,此时函数f(x)=xe x是单调减函数,函数的单调减区间(﹣∞,﹣1].故答案为:(﹣∞,﹣1].[或(﹣∞,﹣1)].7.【解答】解:直线l经过点(0,1),且与曲线y=f(x)相切于点(a,3).若f′(a)=,切线的斜率为,切线方程为:y﹣1=x,所以3﹣1=,解得a=3.故答案为:3.8.【解答】解:根据题意,圆(x﹣a)2+(y﹣a)2=2的圆心为(a,a),半径r1=,圆x2+(y﹣6)2=8的圆心为(0,6),半径r2=2,若圆(x﹣a)2+(y﹣a)2=2与圆x2+(y﹣6)2=8相外切,则有a2+(a﹣6)2=(+2)2,解可得:a=3;故答案为:3.9.【解答】解:∵M是侧棱PC的中点,∴=,又=,=.∴=()=﹣++,又=x+y+z,∴x=﹣1,y=z=.则x+y+z=0.故答案为:0.10.【解答】解:双曲线﹣y2=1的渐近线:x=y,抛物线x2=4y的准线y=﹣,双曲线﹣y2=1的渐近线与抛物线x2=4y的准线相交于A,B两点,所以A(3,﹣),(﹣3,﹣),则三角形OAB的面积为:=3.故答案为:3.11.【解答】解:如图,作出直线x+y﹣2=0,作出以原点为圆心,以2为半径的圆,∵原点O到直线x+y﹣2=0的距离为1,∴在直线x+y﹣2=0的右上方有一点满足到原点的距离为2,到直线x+y﹣2=0的距离为1,过原点作直线x+y﹣2=0的平行线,交圆于两点,则交点满足到原点的距离为2,到直线x+y﹣2=0的距离为1.∴到原点的距离为2,到直线x+y﹣2=0的距离为1的点A共3个.故答案为:3.12.【解答】解:∵函数f(x)=x3﹣3x2+mx.∴f′(x)=3x2﹣6x+m,若函数f(x)=x3﹣3x2+mx在区间(0,3)内有极值,则f′(x)=3x2﹣6x+m在区间(0,3)内有零点,导函数的对称轴为x=1,可得△=36﹣12m>0,解得m<3.并且f′(3)>0.即27﹣18+m>0.解得m∈(﹣9,3).故答案为:(﹣9,3).13.【解答】解:F1(﹣c,0),F2(c,0),直线AB的方程为x=﹣c,不妨设A在第二象限,把x=﹣c代入椭圆方程得A(﹣c,),过C作CD⊥x轴,垂足为D,则Rt△AF1F2∽Rt△CDF2,∴==,∴C(2c,﹣),代入椭圆方程得:+=1,即4e2+(1﹣e2)=1,解得e=.故答案为:.14.【解答】解:f(x)=x|x2﹣3|=,作出函数图象如图所示:根据题意知,m∈[0,],x∈[0,m],当m∈[0,1]时,f(x)在[0,m]上单调递增,此时f(x)的取值范围是[0,f(m)],所以f(m)=am,即m(3﹣m2)=am,得a=3﹣m2∈[[2,3);当m∈(1,2]时,此时f(x)的取值范围是[0,2],所以am=2,得a=∈[1,2),当m∈(2,]时,此时f(x)的取值范围是[0,f(m)],所以f(m)=am,即m(m2﹣3)=am,即a=m2﹣3∈(1,2],综上:实数a的取值范围是[1,3).故答案为:[1,3)二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.【解答】解:z==.(1)∵z是纯虚数,∴,即m=;(2)∵=(1﹣2m)﹣(1+2m)i,∴+2z=(1﹣2m)﹣(1+2m)i+2(1﹣2m)+2(1+2m)i=(3﹣6m)+(1+2m)i,由复数+2z在复平面上对应的点在第一象限,得,解得.∴m的取值范围是().16.【解答】(本题满分14分)解:如图,以{,,}为正交基底建立坐标系D﹣xyz.设正方体的边长为2,则D(0,0,0),A(2,0,0),B(2,2,0),E(1,2,0),F(2,1,2),G(1,2,2).(1)因为=(2,1,2)﹣(1,2,0)=(1,﹣1,2),=(1,2,2),…(2分)所以•=1×1+(﹣1)×2+2×2=3,||==,||=3.…(4分)从而cos<,>===,即向量与的夹角的余弦为,从而异面直线EF与DG所成角的余弦值为.…(7分)(2)=(2,2,0),=(1,2,2),设平面DBG的一个法向量为=(x,y,z).由题意,得,取x=2,可得y=﹣2,z=1.所以=(2,﹣2,1).…(11分)又平面ABD的一个法向量==(0,0,2),所以cos<,>===.因此|cosθ|=.…(14分)17.【解答】解:(1)设圆锥OO1的高为h,母线长为l.∵圆锥的体积为π,即πx2h=π,∴h=.因此l=,从而S=πxl=πx•=π,(x>0).(2)令f(x)=x4+,则f′(x)=4x3﹣,(x>0).由f′(x)=0,解得x=.当0<x<时,f′(x)<0,即函数f(x)在区间(0,)上单调递减;当x>时,f′(x)>0,即函数f(x)在区间(,+∞)上单调递增.∴当x=时,f(x)取得极小值也是最小值.答:当圆锥底面半径为时,圆锥的侧面积最小.18.【解答】解:(1)设圆C的方程为x2+y2+Dx+Ey+F=0,其圆心为(﹣,﹣).∵圆C经过点A(1,3),B(4,2),且圆心在直线l:x﹣y﹣1=0上,∴,解得.∴所求圆C的方程为x2+y2﹣4x﹣2y=0;(2)由(1)知,圆C的方程为(x﹣2)2+(y﹣1)2=5.依题意,S=2S△PMC=PM×MC=.∴当PC最小时,S最小.∵圆D:x2+y2+8x﹣2y+16=0,∴D(﹣4,1),半径为1.∵C(2,1),∴两个圆的圆心距DC=6.∵点P在圆D上,且圆D的半径为1,∴PC min=6﹣1=5.∴S min=×=10.此时直线PC:y=1,从而P(﹣3,1).19.【解答】解:(1)设椭圆C::+=1的半焦距为c.由题意,得解得从而b=1.所以椭圆C的方程为+y2=1.(2)①根据椭圆的性质,M,N两点关于x轴对称,故可设M(x0,y0),N(x0,﹣y0)(x0≠0,y0≠0),从而k1k2=•=.因为点M在椭圆C上,所以+y02=1,所以1﹣y02=,所以k1k2==.②设Q(x1,y1),依题意A(0,1).因为l1⊥AM,所以•=﹣1,即(y0﹣1)(y1﹣y0)=﹣x0(x1﹣x0);因为l2⊥AN,所以•=﹣1,即(﹣y0﹣1)(y1+y0)=﹣x0(x1﹣x0),故(y0﹣1)(y1﹣y0)﹣(﹣y0﹣1)(y1+y0)=0,化得(y1+1)y0=0.从而必有y1+1=0,即y1=﹣1.即点Q在一条定直线y=﹣1上.20.【解答】(本题满分16分)解(1)当a=0时,f(x)=﹣1﹣lnx,f′(x)=﹣.设切点为T(x0,﹣1﹣lnx0),则切线方程为:y+1+lnx0=﹣(x﹣x0).…(2分)因为切线过点(0,﹣1),所以﹣1+1+ln x0=﹣(0﹣x0),解得x0=e.所以所求切线方程为y=﹣x﹣1.…(4分)(2)①f′(x)=ax﹣=,x>0.(i)若a≤0,则f′(x)<0,所以函数f(x)在(0,+∞)上单调递减,从而函数f(x)在(0,+∞)上至多有1个零点,不合题意.…(5分)(ii)若a>0,由f′(x)=0,解得x=.当0<x<时,f′(x)<0,函数f(x)单调递减;当x>时,f′(x)>0,f(x)单调递增,所以f(x)min=f()=﹣ln﹣1=﹣﹣ln.要使函数f(x)有两个零点,首先﹣﹣ln<0,解得0<a<e.…(7分)当0<a<e时,>>.因为f()=>0,故f()•f()<0.又函数f(x)在(0,)上单调递减,且其图象在(0,)上不间断,所以函数f(x)在区间(0,)内恰有1个零点.…(9分)考察函数g(x)=x﹣1﹣lnx,则g′(x)=1﹣=.当x∈(0,1)时,g′(x)<0,函数g(x)在(0,1)上单调递减;当x∈(1,+∞)时,g′(x)>0,函数g(x)在(1,+∞)上单调递增,所以g(x)≥g(1)=0,故f()=﹣1﹣ln≥0.因为﹣=>0,故>.因为f()•f()≤0,且f(x)在(,+∞)上单调递增,其图象在(,+∞)上不间断,所以函数f(x)在区间(,]上恰有1个零点,即在(,+∞)上恰有1个零点.综上所述,a的取值范围是(0,e).…(11分)②由x1,x2是函数f(x)的两个零点(不妨设x1<x2),得两式相减,得a(x12﹣x22)﹣ln=0,即a(x1+x2)(x1﹣x2)﹣ln=0,所以a(x1+x2)=.…(13分)f′(x1)+f′(x2)<0等价于ax1﹣+ax2﹣<0,即a(x1+x2)﹣﹣<0,即:﹣﹣<0,即2ln+﹣>0.设h(x)=2lnx+﹣x,x∈(0,1).则h′(x)=﹣﹣1=﹣<0,所以函数h(x)在(0,1)单调递减,所以h(x)>h(1)=0.因为∈(0,1),所以2ln+﹣>0,即f′(x1)+f′(x2)<0成立.…(16分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年江苏省南京市高二(上)期末数学试卷(理科)一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上1.(5分)命题“若a=b,则|a|=|b|”的逆否命题是.2.(5分)双曲线=1的渐近线方程是.3.(5分)已知复数为纯虚数,其中i是虚数单位,则实数a的值是.4.(5分)在平面直角坐标系xOy中,点(4,3)到直线3x﹣4y+a=0的距离为1,则实数a的值是.5.(5分)曲线y=x4与直线y=4x+b相切,则实数b的值是.6.(5分)已知实数x,y满足条件则z=2x+y的最大值是.7.(5分)在平面直角坐标系xOy中,抛物线C:y2=4x的焦点为F,P为抛物线C上一点,且PF=5,则点P的横坐标是.8.(5分)在平面直角坐标系xOy中,圆O:x2+y2=r2(r>0)与圆M:(x﹣3)2+(y+4)2=4相交,则r的取值范围是.9.(5分)观察下列等式:(sin)﹣2+(sin)﹣2=×1×2;(sin)﹣2+(sin)﹣2+(sin)﹣2+sin()﹣2=×2×3;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×3×4;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×4×5;…照此规律,(sin)﹣2+(sin)﹣2+(sin)﹣2+…+(sin)﹣2=.10.(5分)若“∃x∈R,x2+ax+a=0”是真命题,则实数a的取值范围是.11.(5分)已知函数f(x)=(x2+x+m)e x(其中m∈R,e为自然对数的底数).若在x=﹣3处函数f (x)有极大值,则函数f (x)的极小值是.12.(5分)有下列命题:①“m>0”是“方程x2+my2=1表示椭圆”的充要条件;②“a=1”是“直线l1:ax+y﹣1=0与直线l2:x+ay﹣2=0平行”的充分不必要条件;③“函数f (x)=x3+mx单调递增”是“m>0”的充要条件;④已知p,q是两个不等价命题,则“p或q是真命题”是“p且q是真命题”的必要不充分条件.其中所有真命题的序号是.13.(5分)已知椭圆E:+=1(a>b>0)的焦距为2c(c>0),左焦点为F,点M的坐标为(﹣2c,0).若椭圆E上存在点P,使得PM=PF,则椭圆E 离心率的取值范围是.14.(5分)已知t>0,函数f(x)=,若函数g(x)=f(f(x)﹣1)恰有6个不同的零点,则实数t的取值范围是.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)在平面直角坐标系xOy中,已知△ABC三个顶点坐标为A(7,8),B(10,4),C(2,﹣4).(1)求BC边上的中线所在直线的方程;(2)求BC边上的高所在直线的方程.16.(14分)已知数列{a n}满足a1=1,(a n﹣3)a n+1﹣a n+4=0(n∈N*).(1)求a2,a3,a4;(2)猜想{a n}的通项公式,并用数学归纳法证明.17.(14分)在平面直角坐标系xOy中,已知圆M的圆心在直线y=﹣2x上,且圆M与直线x+y﹣1=0相切于点P(2,﹣1).(1)求圆M的方程;(2)过坐标原点O的直线l被圆M截得的弦长为,求直线l的方程.18.(16分)某休闲广场中央有一个半径为1(百米)的圆形花坛,现计划在该花坛内建造一条六边形观光步道,围出一个由两个全等的等腰梯形(梯形ABCF和梯形DEFC)构成的六边形ABCDEF区域,其中A、B、C、D、E、F都在圆周上,CF为圆的直径(如图).设∠AOF=θ,其中O为圆心.(1)把六边形ABCDEF的面积表示成关于θ的函数f(θ);(2)当θ为何值时,可使得六边形区域面积达到最大?并求最大面积.19.(16分)在平面直角坐标系xOy中,椭圆E:+=1(a>b>0)的离心率为,两个顶点分别为A(﹣a,0),B(a,0),点M(﹣1,0),且3=,过点M斜率为k(k≠0)的直线交椭圆E于C,D两点,其中点C在x轴上方.(1)求椭圆E的方程;(2)若BC⊥CD,求k的值;(3)记直线AD,BC的斜率分别为k1,k2,求证:为定值.20.(16分)已知函数f(x)=ax﹣lnx(a∈R).(1)当a=1时,求f(x)的最小值;(2)若存在x∈[1,3],使+lnx=2成立,求a的取值范围;(3)若对任意的x∈[1,+∞),有f(x)≥f()成立,求a的取值范围.2016-2017学年江苏省南京市高二(上)期末数学试卷(理科)参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上1.(5分)命题“若a=b,则|a|=|b|”的逆否命题是若|a|≠|b|,则a≠b.【解答】解:命题“若a=b,则|a|=|b|”的逆否命题是命题“若|a|≠|b|,则a≠b”,故答案为:“若|a|≠|b|,则a≠b”2.(5分)双曲线=1的渐近线方程是y=±2x.【解答】解:∵双曲线标准方程为=1,其渐近线方程是=0,整理得y=±2x.故答案为y=±2x.3.(5分)已知复数为纯虚数,其中i是虚数单位,则实数a的值是2.【解答】解:==,∵复数为纯虚数,∴,解得a=2.故答案为:2.4.(5分)在平面直角坐标系xOy中,点(4,3)到直线3x﹣4y+a=0的距离为1,则实数a的值是±5.【解答】解:由题意,=1,∴a=±5.故答案为±5.5.(5分)曲线y=x4与直线y=4x+b相切,则实数b的值是﹣3.【解答】解:设直线与曲线的切点为P(m,n)则有:⇒,化简求:m=1,b=n﹣4;又因为点P满足曲线y=x4,所以:n=1;则:b=n﹣4=﹣3;故答案为:﹣3.6.(5分)已知实数x,y满足条件则z=2x+y的最大值是9.【解答】解:实数x,y满足条件作出不等式组对应的平面区域如图:由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,则当直线y=﹣2x+z经过点A时,直线的截距最大,此时z最大,由可得A(3,3).此时z=9,故答案为:9.7.(5分)在平面直角坐标系xOy中,抛物线C:y2=4x的焦点为F,P为抛物线C上一点,且PF=5,则点P的横坐标是4.【解答】解:∵抛物线y2=4x=2px,∴p=2,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|PF|=x+1=5,∴x=4,故答案为:48.(5分)在平面直角坐标系xOy中,圆O:x2+y2=r2(r>0)与圆M:(x﹣3)2+(y+4)2=4相交,则r的取值范围是3<r<7.【解答】解:由题意,圆心距为5,∴|r﹣2|<5<r+2,∴3<r<7.故答案为3<r<7.9.(5分)观察下列等式:(sin)﹣2+(sin)﹣2=×1×2;(sin)﹣2+(sin)﹣2+(sin)﹣2+sin()﹣2=×2×3;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×3×4;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×4×5;…照此规律,(sin)﹣2+(sin)﹣2+(sin)﹣2+…+(sin)﹣2=n(n+1).【解答】解:观察下列等式:(sin)﹣2+(sin)﹣2=×1×2;(sin)﹣2+(sin)﹣2+(sin)﹣2+sin()﹣2=×2×3;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×3×4;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×4×5;…照此规律(sin)﹣2+(sin)﹣2+(sin)﹣2+…+(sin)﹣2=×n (n+1),故答案为:n(n+1)10.(5分)若“∃x∈R,x2+ax+a=0”是真命题,则实数a的取值范围是(﹣∞,0]∪[4,+∞).【解答】解:若“∃x∈R,x2+ax+a=0”是真命题,则△=a2﹣4a≥0,解得:a∈(﹣∞,0]∪[4,+∞),故答案为:(﹣∞,0]∪[4,+∞)11.(5分)已知函数f(x)=(x2+x+m)e x(其中m∈R,e为自然对数的底数).若在x=﹣3处函数f (x)有极大值,则函数f (x)的极小值是﹣1.【解答】解:f(x)=(x2+x+m)e x,f′(x)=(x2+3x+m+1)e x,若f(x)在x=﹣3处函数f (x)有极大值,则f′(﹣3)=0,解得:m=﹣1,故f(x)=(x2+x﹣1)e x,f′(x)=(x2+3x)e x,令f′(x)>0,解得:x>0,令f′(x)<0,解得:x<﹣3,故f(x)在(﹣∞,﹣3)递增,在(﹣3,0)递减,在(0,+∞)递增,故f(x)=f(0)=﹣1,极小值故答案为:﹣1.12.(5分)有下列命题:①“m>0”是“方程x2+my2=1表示椭圆”的充要条件;②“a=1”是“直线l1:ax+y﹣1=0与直线l2:x+ay﹣2=0平行”的充分不必要条件;③“函数f (x)=x3+mx单调递增”是“m>0”的充要条件;④已知p,q是两个不等价命题,则“p或q是真命题”是“p且q是真命题”的必要不充分条件.其中所有真命题的序号是②④.【解答】解:对于①,当m=1时,方程x2+my2=1表示圆,故错;对于②,∵a=±1时,直线l1与直线l2都平行,故正确;对于③,若函数f (x)=x3+mx单调递增⇒m≥0,故错;对于④,p或q是真命题⇒p且q不一定是真命题;⇒p且q是真命题⇒p或q 一定是真命题,故正确;故答案为:②④13.(5分)已知椭圆E:+=1(a>b>0)的焦距为2c(c>0),左焦点为F,点M的坐标为(﹣2c,0).若椭圆E上存在点P,使得PM=PF,则椭圆E 离心率的取值范围是[] .【解答】解:设P(x,y),由PM=PF⇒PM2=2PF2⇒(x+2c)2+y2=2(x+c)2+2y2⇒x2+y2=2c2,椭圆E上存在点P,使得PM=PF,则圆x2+y2=2c2与椭圆E:+=1(a>b >0)有公共点,∴b≤≤a⇒⇒.故答案为:[]14.(5分)已知t>0,函数f(x)=,若函数g(x)=f(f(x)﹣1)恰有6个不同的零点,则实数t的取值范围是(3,4).【解答】解:∵函数f(x)=,∴函数f′(x)=,当x<,或x<t时,f′(x)>0,函数为增函数,当<x<t时,f′(x)<0,函数为减函数,故当x=时,函数f(x)取极大值,函数f(x)有两个零点0和t,若函数g(x)=f(f(x)﹣1)恰有6个不同的零点,则方程f(x)﹣1=0和f(x)﹣1=t各有三个解,即函数f(x)的图象与y=1和y=t+1各有三个零点,由y|x=t==,故,=(t﹣3)(2t+3)2>0得:t>3,故不等式的解集为:t∈(3,4),故答案为:(3,4)二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)在平面直角坐标系xOy中,已知△ABC三个顶点坐标为A(7,8),B(10,4),C(2,﹣4).(1)求BC边上的中线所在直线的方程;(2)求BC边上的高所在直线的方程.【解答】解:(1)由B(10,4),C(2,﹣4),得BC中点D的坐标为(6,0),…(2分)所以AD的斜率为k==8,…(5分)所以BC边上的中线AD所在直线的方程为y﹣0=8(x﹣6),即8x﹣y﹣48=0.…(7分)(2)由B(10,4),C(2,﹣4),得BC所在直线的斜率为k==1,…(9分)所以BC边上的高所在直线的斜率为﹣1,…(12分)所以BC边上的高所在直线的方程为y﹣8=﹣1(x﹣7),即x+y﹣15=0.…(14分)16.(14分)已知数列{a n}满足a1=1,(a n﹣3)a n+1﹣a n+4=0(n∈N*).(1)求a2,a3,a4;(2)猜想{a n}的通项公式,并用数学归纳法证明.【解答】解:(1)令n=1,﹣2a2+3=0,a2=,令n=2,﹣a3﹣+4=0,a3=,令n=3,﹣a4﹣+4=0,a4=.(2)猜想a n=(n∈N*).证明:当n=1时,a1=1=,所以a n=成立,假设当n=k时,a n=成立,即a k=,则(a k﹣3)a k+1﹣a k+4=0,即(﹣3)a k+1﹣+4=0,所以a k=,即a k+1==,+1所以当n=k+1时,结论a n=成立.综上,对任意的n∈N*,a n=成立.17.(14分)在平面直角坐标系xOy中,已知圆M的圆心在直线y=﹣2x上,且圆M与直线x+y﹣1=0相切于点P(2,﹣1).(1)求圆M的方程;(2)过坐标原点O的直线l被圆M截得的弦长为,求直线l的方程.【解答】解:(1)过点(2,﹣1)且与直线x+y﹣1=0垂直的直线方程为x﹣y﹣3=0,…(2分)由解得,所以圆心M的坐标为(1,﹣2),…(4分)所以圆M的半径为r=,…(6分)所以圆M的方程为(x﹣1)2+(y+2)2=2.…(7分)(2)因为直线l被圆M截得的弦长为,所以圆心M到直线l的距离为d==,…(9分)若直线l的斜率不存在,则l为x=0,此时,圆心M到l的距离为1,不符合题意.若直线l的斜率存在,设直线l的方程为y=kx,即kx﹣y=0,由d==,…(11分)整理得k2+8k+7=0,解得k=﹣1或﹣7,…(13分)所以直线l的方程为x+y=0或7x+y=0.…(14分)18.(16分)某休闲广场中央有一个半径为1(百米)的圆形花坛,现计划在该花坛内建造一条六边形观光步道,围出一个由两个全等的等腰梯形(梯形ABCF 和梯形DEFC)构成的六边形ABCDEF区域,其中A、B、C、D、E、F都在圆周上,CF为圆的直径(如图).设∠AOF=θ,其中O为圆心.(1)把六边形ABCDEF的面积表示成关于θ的函数f(θ);(2)当θ为何值时,可使得六边形区域面积达到最大?并求最大面积.【解答】(本题满分16分)解:(1)作AH⊥CF于H,则OH=cosθ,AB=2OH=2cosθ,AH=sinθ,…(2分)则六边形的面积为f (θ)=2×(AB+CF)×AH=(2cosθ+2)sinθ=2(cosθ+1)sinθ,θ∈(0,).…(6分)(2)f′(θ)=2[﹣sinθsinθ+(cosθ+1)cosθ]=2(2cos2θ+cosθ﹣1)=2(2cosθ﹣1)(cosθ+1).…(10分)令f′(θ)=0,因为θ∈(0,),所以cosθ=,即θ=,…(12分)当θ∈(0,)时,f′(θ)>0,所以f (θ)在(0,)上单调递增;当θ∈(,)时,f′(θ)<0,所以f (θ)在(,)上单调递减,…(14分)所以当θ=时,f (θ)取最大值f ()=2(cos+1)sin=.…(15分)答:当θ=时,可使得六边形区域面积达到最大,最大面积为平方百米.…(16分)19.(16分)在平面直角坐标系xOy中,椭圆E:+=1(a>b>0)的离心率为,两个顶点分别为A(﹣a,0),B(a,0),点M(﹣1,0),且3=,过点M斜率为k(k≠0)的直线交椭圆E于C,D两点,其中点C在x轴上方.(1)求椭圆E的方程;(2)若BC⊥CD,求k的值;(3)记直线AD,BC的斜率分别为k1,k2,求证:为定值.【解答】解:(1)因为3=,所以3(﹣1+a,0)=(a+1,0),解得a=2.…(2分)又因为=,所以c=,所以b2=a2﹣c2=1,所以椭圆E的方程为+y2=1.…(4分)(2)设点C的坐标为(x0,y0),y0>0,则=(﹣1﹣x0,﹣y0),=(2﹣x0,﹣y0).因为BC⊥CD,所以(﹣1﹣x0)(2﹣x0)+y02=0.①…(6分)又因为+y02=1,②联立①②,解得x0=﹣,y0=,…(8分)所以k==2.…(10分)(3),设C(x0,y0),则CD:y=(x+1)(﹣2<x0<2且x0≠﹣1),由消去y,得x2+8y02x+4y02﹣4(x0+1)2=0.…(12分)又因为+y02=1,所以得D(,),…(14分)所以===3,所以为定值.…(16分)20.(16分)已知函数f(x)=ax﹣lnx(a∈R).(1)当a=1时,求f(x)的最小值;(2)若存在x∈[1,3],使+lnx=2成立,求a的取值范围;(3)若对任意的x∈[1,+∞),有f(x)≥f()成立,求a的取值范围.【解答】解:(1)f(x)=x﹣lnx(x>0)的导数为f′(x)=1﹣=,当x>1时,f′(x)>0,f(x)递增;当0<x<1时,f′(x)>0,f(x)递减.即有f(x)在x=1处取得极小值,也为最小值,且为1;(2)存在x∈[1,3],使+lnx=2成立,即为=2﹣lnx,即有a=,设g(x)=,x∈[1,3],则g′(x)=(1﹣lnx)(1+),当1<x<e时,g′(x)>0,g(x)递增;当e<x<3时,g′(x)<0,g(x)递减.则g(x)在x=e处取得极大值,且为最大值e+;g(1)=2,g(3)=3(2﹣ln3)+>2,则a的取值范围是[2,e+];(3)若对任意的x∈[1,+∞),有f(x)≥f()成立,即为ax﹣lnx≥﹣ln,即有a(x﹣)≥2lnx,x≥1,令F(x)=a(x﹣)﹣2lnx,x≥1,F′(x)=a(1+)﹣,当x=1时,原不等式显然成立;当x>1时,由题意可得F′(x)≥0在(1,+∞)恒成立,即有a(1+)﹣≥0,即a≥,由=<=1,则a≥1.综上可得a的取值范围是[1,+∞).。