八年级数学上册平面直角坐标系11.1平面内点的坐标第1课时平面直角坐标系教案新版沪科版

合集下载

上海科学技术出版社初中八年级数学上册全套教案

上海科学技术出版社初中八年级数学上册全套教案

平面内点的坐标【课时安排】2课时【第一课时】【教学目标】1.通过实际问题抽象出平面直角坐标系及其相关概念,使学生认识平面直角坐标系原点、横轴和纵轴等,会由坐标描点,由点写出坐标;让学生体会到平面上的点与有序实数对之间的对应关系;2.经历画平面直角坐标系,由点写出坐标和由坐标描点的过程,进一步渗透数形结合的数学思想;3.培养学生自主探究与合作交流的学习习惯。

【教学重点】正确认识平面直角坐标系,会准确地由点写出坐标,由坐标描点。

【教学难点】各象限内坐标的符号及各坐标轴上点坐标的特点,平面上的点与有序实数对之间的对应关系。

【教学过程】一、设置问题情境:(一)回顾一下数轴的概念,及实数与数轴有怎样的关系?(学生回答)(二)情境:(多媒体显示)如图所示请指出数轴上A、B两点所表示的数;直线表示一条笔直公路,向东为正方向,原点为学校位置,A、B是位于公路旁两学生家的位置,你能说出它们的位置吗?这说明了什么?引申:确定一个点在直线上的位置,只需要一个数据,这个实数可称为点在数轴上的坐标。

怎样确定平面上一个点的位置呢?二、观察交流,构建新知。

观察、交流、思考:(1)确定平面上一点的位置需要什么条件?(2)既然确定平面上一点的位置需要两个数,那么能否用两条数轴建立模型来表示平面上任一点的位置呢?教师在学生回答的基础上,边操作边讲出:为了确定平面上一个点的位置,我们先在平面内画两条互相垂直并且原点重合的数轴,水平的数轴叫x 轴或横轴,取向右为正方向,垂直的数轴叫y轴或纵轴,取向上为正方向,两轴交点O为原点,这样就建立了平面直角坐标系。

这个平面叫做坐标平面。

有了坐标平面,平面内的点就可以用一个有序实数对来表示。

引导观察:如图中点P可以这样表示:由P向x轴作垂线,垂足M在x 轴上的坐标是-2,点P向y轴作垂线,垂足N在y轴的坐标是3,于是就说点P的横坐标是-2,纵坐标3,把横坐标写在纵坐标前面记作(-2,3),即P点坐标(-2,3)。

初中数学初二数学上册《平面直角坐标系》教案、教学设计

初中数学初二数学上册《平面直角坐标系》教案、教学设计
b.坐标的平移、对称性质在几何问题中如何应用?
c.如何利用坐标系解决实际问题?
2.各小组汇报讨论成果,教师进行点评总结坐标系的实际应用和坐标性质的作用。
(四)课堂练习
1.设计不同难度的练习题,让学生独立完成,巩固所学知识。
a.填空题:给出一些点的坐标,让学生填写对应的点。
b.选择题:判断坐标的性质,如平移、对称等。
4.小组合作,探讨坐标系的平移、对称性质在解决几何问题中的应用。要求每组选取一个典型问题进行详细解答,并在课堂上进行分享。这个作业有助于培养学生的团队协作能力和表达能力。
5.针对课堂学习内容,撰写学习心得体会,总结自己在平面直角坐标系知识方面的收获和不足。要求字数不少于300字,让学生在反思中不断提高。
4.分层次设计练习题,针对不同水平的学生,提高他们在坐标系知识方面的掌握程度。同时,注重题目的实际应用背景,培养学生的数学建模能力。
5.教学过程中,注重启发式教学,引导学生主动发现问题、解决问题,提高学生的自主探究能力。
6.定期进行课堂小结,帮助学生总结所学知识,形成知识体系。同时,关注学生的学习反馈,调整教学策略,提高教学效果。
2.完成教材课后练习题,包括填空题、选择题和计算题。这些题目涵盖了本节课的重点知识,有助于学生巩固坐标的表示方法和性质,提高运算能力。
3.设计一道实际问题,要求学生运用坐标系知识进行解答。例如:在学校的平面图上,标出教学楼、操场和食堂的位置,并计算它们之间的距离。这个作业旨在培养学生将实际问题转化为数学问题的能力,提高数学建模能力。
难点:将抽象的坐标系与实际情境相结合,运用数学知识解决现实问题。
(二)教学设想
1.采用情境导入法,以生活中的实际问题为例,引导学生认识到坐标系在解决实际问题时的重要性,激发学生的学习兴趣。

新版沪科版八年级数学上册第11章《平面直角坐标系》教案

新版沪科版八年级数学上册第11章《平面直角坐标系》教案

第十一章平面直角坐标系11.1平面内点的坐标第1课时平面直角坐标系◇教学目标◇【知识与技能】1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等的概念;2.理解坐标平面内的点与有序实数对的一一对应关系;3.能在方格纸中建立平面直角坐标系来描述点的位置.【过程与方法】1.通过画坐标系,由点找坐标等过程,发展学生的数形结合意识、合作交流意识;2.通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识.【情感、态度与价值观】让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心.◇教学重难点◇【教学重点】理解平面直角坐标系的有关知识;在给定的平面直角坐标系中,会根据点的位置写出它的坐标.【教学难点】坐标轴上的数字与坐标系中的坐标之间的关系.◇教学过程◇一、情境导入假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,根据示意图(如图),回答以下问题:(1)你是怎样确定各个景点位置的?(2)“大成殿”在“中心广场”南、西各多少个格?“碑林”在“中心广场”北、东各多少个格?(3)如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看作一个单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?二、合作探究1.平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义和象限的划分.在了解有关平面直角坐标系的知识后,再返回刚才讨论的问题.结论:如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看作一个单位长度,则“碑林”的位置是(3,1),“大成殿”的位置是(-2,-2).问题:在(3)的条件下,你能把其他景点的位置表示出来吗?结论:能,钟楼的位置是(-2,1),雁塔的位置是(0,3),影月湖的位置是(0,-5),科技大学的位置是(-5,-7).2.例题讲解典例写出图中多边形ABCDEF各顶点的坐标.此图中各顶点的坐标是否永远不变?你能举个例子吗?[解析]多边形ABCDEF各顶点的坐标分别为A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3).不是.当坐标轴的位置发生变动时,各点的坐标相应地变化.若以线段BC所在的直线为x轴,纵轴(y轴)位置不变,如图,则六个顶点的坐标分别为A(-2,3),B(0,0),C(3,0),D(4,3),E(3,6),F(0,6).再思考这个结论是否是永恒的.结论:不是.还能再改变坐标轴的位置,得出不同的坐标.继续进行坐标轴的变换,总结一下共有多少种不同的变换方式.3.想一想在上例中,(1)点B与点C的纵坐标相同,线段BC的位置有什么特点?(2)线段测定位置有什么特点?(3)坐标轴上点的坐标有什么特点?【归纳总结】(1)坐标轴上的点的坐标中至少有一个是0;横轴上的点的纵坐标为0,纵轴上的点的横坐标为0.(2)x轴、y轴把坐标平面分成四个象限,但是坐标轴上的点不属于任何一个象限.(3)各个象限内的点的坐标特征:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).变式训练如图,确定点A,B,C,D,E,F,G的坐标.[解析]点A(-1,-1),点B(0,-3),点C(2,-5),点D(4,-1),点E(3,2),点F(-2,3),点G(2,-2).三、板书设计平面直角坐标系1.平面直角坐标系:横轴、纵轴、横坐标、纵坐标、原点.2.象限的划分.◇教学反思◇学生在实际生活中经常遇到物体位置的问题,可能想不到这些问题与数学的联系,老师在这节课上应引导学生建立平面直角坐标系来表示物体的位置,让学生参与到探索获取新知的活动中,主动学习思考,感受数学的魅力,增强学生学习数学的兴趣.。

八年级上册数学教案 八年级上册数学教案(9篇)

八年级上册数学教案 八年级上册数学教案(9篇)

八年级上册数学教案八年级上册数学教案(9篇)作为一名为他人授业解惑的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。

那么大家知道正规的教案是怎么写的吗?下面是细致的小编帮大家收集整理的9篇八年级上册数学教案的相关范文,欢迎参考阅读,希望能够帮助到大家。

八年级上册数学教案篇一第11章平面直角坐标系11.1平面上点的坐标第1课时平面上点的坐标(一)教学目标【知识与技能】1.知道有序实数对的概念,认识平面直角坐标系的相关知识,如平面直角坐标系的构成:横轴、纵轴、原点等。

2.理解坐标平面内的点与有序实数对的一一对应关系,能写出给定的平面直角坐标系中某一点的坐标。

已知点的坐标,能在平面直角坐标系中描出点。

3.能在方格纸中建立适当的平面直角坐标系来描述点的位置。

【过程与方法】1.结合现实生活中表示物体位置的例子,理解有序实数对和平面直角坐标系的作用。

2.学会用有序实数对和平面直角坐标系中的点来描述物体的位置。

【情感、态度与价值观】通过引入有序实数对、平面直角坐标系让学生体会到现实生活中的问题的解决与数学的发展之间有联系,感受到数学的价值。

重点难点【重点】认识平面直角坐标系,写出坐标平面内点的坐标,已知坐标能在坐标平面内描出点。

【难点】理解坐标系中的坐标与坐标轴上的数字之间的关系。

教学过程一、创设情境、导入新知师:如果让你描述自己在班级中的位置,你会怎么说?生甲:我在第3排第5个座位。

生乙:我在第4行第7列。

师:很好!我们买的电影票上写着几排几号,是对应某一个座位,也就是这个座位可以用排号和列号两个数字确定下来。

二、合作探究,获取新知师:在以上几个问题中,我们根据一个物体在两个互相垂直的方向上的数量来表示这个物体的位置,这两个数量我们可以用一个实数对来表示,但是,如果(5,3)表示5排3号的话,那么(3,5)表示什么呢?生:3排5号。

师:对,它们对应的不是同一个位置,所以要求表示物体位置的这个实数对是有序的。

沪科2011课标版初中数学八年级上册第十一章11.1平面内点的坐标优秀教学案例

沪科2011课标版初中数学八年级上册第十一章11.1平面内点的坐标优秀教学案例
2.通过解决实际问题,让学生体验到数学在生活中的重要作用,提高学生运用数学知识解决问题的能力。
3.培养学生积极、乐观的学习态度,勇于面对挑战,克服困难的信心,培养学生的创新精神和综合素质。
在教学过程中,我将以生动形象的语言、贴近生活的实例、有趣的教学活动,引导学生积极参与,激发学生的学习兴趣。同时,注重因材施教,关注学生的个体差异,给予每个学生充分的表现机会,培养学生的自信心和自尊心。通过师生互动、生生互动,营造轻松、愉快、充满活力的课堂氛围,使学生在愉快的氛围中掌握知识,提高能力,培养情感。
(四)反思与评价
1.引导学生进行自我反思,回顾学习过程,总结学习方法和经验,提高学生的自主学习能力和反思能力。
2.设计评价量表或问题,让学生对自己的学习过程进行评价,如对坐标系的理解程度、解决问题的能力等,培养学生客观评价自己的能力。
3.教师对学生的学习过程和结果进行综合评价,关注学生的个体差异,给予鼓励和指导,促进学生的全面发展。
沪科2011课标版初中数学八年级上册第十一章11.1平面内点的坐标优秀教学案例
一、案例背景
沪科2011课标版初中数学八年级上册第十一章11.1平面内点的坐标,是学生在学习了平面几何、代数基础知识后,对坐标系知识的深入理解和应用。该章节内容涉及平面直角坐标系的建立、点的坐标的概念及其表示方法,以及坐标轴上点的坐标特点等,对于培养学生的空间想象力、逻辑思维能力和解决问题的能力具有重要意义。
(三)学生小组讨论
1.教师提出探究问题:“如何用坐标表示一个几何图形的位置?”让学生分组进行讨论和交流。
2.学生通过画图、讨论等方式,探讨不同几何图形的坐标表示方法,如线段、三角形、矩形等。
3.各小组汇报讨论成果,教师给予点评和指导,引导学生深入理解坐标系在几何图形中的应用。

《平面直角坐标系》教案

《平面直角坐标系》教案

《平面直角坐标系》教案精选平面直角坐标系教案。

教案课件在老师少不了一项工作事项,这就要老师好好去自己教案课件了。

教案是落实教学目标的有效手段,写一篇教案课件要具备哪些步骤?下面是我为大家整理的关于“《平面直角坐标系》教案”的资料,请保藏好,以便下次再读!《平面直角坐标系》教案篇1教学目标:1、理解平面直角坐标系的意义;把握在平面直角坐标系中刻画点的位置的方法。

2、把握坐标法解决几何问题的步骤;体会坐标系的作用。

教学难点:能够建立适当的直角坐标系,解决数学问题。

情境1:为了确保宇宙飞船在预定的轨道上运行,并在按方案完成科学考察任务后,平安、精确的返回地球,从火箭升空的时刻开头,需要随时测定飞船在空中的位置机器运动的轨迹。

情境2:运动会的开幕式上经常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。

要消失正确的背景图案,需要缺点不同的画布所在的位置。

在平面上,当取定两条相互垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。

它使平面上任一点P 都可以由惟一的实数对(x,y)确定。

在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。

它使空间上任一点P都可以由惟一的实数对(x,y,z)确定。

三、讲解新课:1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满意:任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置例1选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。

如何通过它们到点O的距离以及它们相对于点O的方位来刻画,即用”距离和方向”确定点的位置例2已知B村位于A村的正西方1公里处,原方案经过B村沿着北偏东60的方向设一条地下管线m、但在A村的西北方向400米出,发觉一古代文物遗址W、依据初步勘探的结果,文物管理部门将遗址W四周100米范围划为禁区、试问:埋设地下管线m的方案需要修改吗?1一炮弹在某处爆炸,在A处听到爆炸的时间比在B处晚2s,已知A、B 两地相距800米,并且此时的声速为340m/s,求曲线的方程2在面积为1的中,,建立适当的坐标系,求以M,N为焦点并过点P的椭圆方程通过平面变换可以把曲线变为中心在原点的单位圆,恳求出该复合变换?2、利用平面直角坐标系解决相应的数学问题。

《平面直角坐标系》的教案(精选5篇)

《平面直角坐标系》的教案(精选5篇)

《平面直角坐标系》的教案(精选5篇)《平面直角坐标系》的教案(精选5篇)作为一名优秀的教育工作者,时常要开展教案准备工作,教案有助于顺利而有效地开展教学活动。

那么你有了解过教案吗?下面是小编收集整理的《平面直角坐标系》的教案(精选5篇),欢迎大家借鉴与参考,希望对大家有所帮助。

《平面直角坐标系》的教案1[教学目标]1、认识平面直角坐标系,了解点的坐标的意义,会用坐标表示点,能画出点的坐标位2、渗透对应关系,提高学生的数感。

[教学重点与难点]重点:平面直角坐标系和点的坐标。

难点:正确画坐标和找对应点。

[教学设计][设计说明]一、利用已有知识,引入1.如图,怎样说明数轴上点A和点B的位置,2.根据下图,你能正确说出各个象棋子的位置吗?二、明确概念平面直角坐标系:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系(rectangular coordinate system)。

水平的数轴称为x轴(x—axis)或横轴,习惯上取向右为正方向;竖直的数轴为y轴(y—axis)或纵轴,取向上方向为由数轴的表示引入,到两个数轴和有序数对。

从学生熟悉的物品入手,引申到平面直角坐标系。

描述平面直角坐标系特征和画法正方向;两个坐标轴的交点为平面直角坐标系的原点。

点的坐标:我们用一对有序数对表示平面上的点,这对数叫坐标。

表示方法为(a,b)。

a是点对应横轴上的数值,b是点在纵轴上对应的数值。

例1 写出图中A、B、C、D点的坐标。

建立平面直角坐标系后,平面被坐标轴分成四部分,分别叫第一象限,第二象限,第三象限和第四象限。

你能说出例1中各点在第几象限吗?例2 在平面直角坐标系中描出下列各点。

()A(3,4);B(—1,2);C(—3,—2);D(2,—2)问题1:各象限点的坐标有什么特征?练习:教材49页:练习1,2、三。

深入探索教材48页:探索:识别坐标和点的位置关系,以及由坐标判断两点的关系以及两点所确定的直线的位置关系。

【沪科版教材】初二八年级数学上册《11.1.1 平面直角坐标系》课件

【沪科版教材】初二八年级数学上册《11.1.1 平面直角坐标系》课件

知1-练
1
下列数据不能确定物体位置的是(
)
A.4楼8号
C.六安路25号 2
B.东经118°,北纬40°
D.北偏东30°
A点的位置如图所示,关于A点位置的描述正确的是
( ) A.距O点3 km的地方 B.在O点的东北方向上 C.在O点北偏东50°方向上 D.在O点北偏东50°方向上,距O点3 km的地方
单位长度是一致的;但在实际中,受两轴上数量意义的影响,
两坐标轴的单位长度可以有所不同.(2)4个半轴根据实际问 题的需要,可画得长些或短些,但原点必须画出.
知2-讲
例1 下列语句不正确的是( D ) A.平面直角坐标系中,两条互相垂直的数轴的垂足是原点
B.平面直角坐标系所在的平面叫坐标平面
C.平面直角坐标系中x轴、y轴把坐标平面分成4部分 D.凡是两条互相垂直的直线都能组成平面直角坐标系 导引:本题主要考查平面直角坐标系的概念.根据平面直角坐标系 的概念可知A,B,C项正确.D项不正确,因为坐标系必须 由数轴构成,且构成平面直角坐标系的两条数轴互相垂直、 原点重合,故选D.
知3-练
1
如图,下列关于点M的坐标书写正确的是(
)
A.(1,-2)
C.(-2,1) 2
B.(1,2)
D.(2,1) )
(2015· 柳州)如图,点A(-2,1)到y轴的距离为( A.-2 C.2 B.1 D. 5
(来自《典中点》)
知3-练
3 (中考· 重庆)在平面直角坐标系中,若点P的坐标为
(-3,2),则点P所在的象限是( A.第一象限 C.第三象限 4 )
点 A B C D E F 横坐标 4 纵坐标 2 坐标 (4,2) 点A的坐标 是 (4, 2), 记作A(4, 2).点B的坐 标是(2, 4), 可见,(4, 2)与(2, 4) 表示的两个 点是不同的. 表示平面上 点的坐标是 一个有序实 数对.

八年级数学上册《平面直角坐标系》教案

八年级数学上册《平面直角坐标系》教案

八年级数学上册《平面直角坐标系》教案第一章:坐标系的引入1.1 学习目标了解平面直角坐标系的定义及作用学会在平面直角坐标系中确定点的位置1.2 教学内容引入坐标系的概念介绍平面直角坐标系的组成讲解坐标轴上的点的特点1.3 教学步骤1. 引入坐标系的概念,通过实际例子让学生感受坐标系在确定点的位置上的作用。

2. 介绍平面直角坐标系的组成,包括横轴、纵轴和原点。

3. 讲解坐标轴上的点的特点,即横轴上的点的纵坐标为0,纵轴上的点的横坐标为0。

1.4 练习与作业完成课本上的相关练习题要求学生独立完成一道实际问题,运用坐标系确定点的位置第二章:坐标轴上的点2.1 学习目标学会在坐标轴上确定点的位置理解坐标轴上点的坐标特点2.2 教学内容讲解坐标轴上点的坐标特点学会在坐标轴上确定点的位置2.3 教学步骤1. 讲解坐标轴上点的坐标特点,即横轴上的点的纵坐标为0,纵轴上的点的横坐标为0。

2. 学会在坐标轴上确定点的位置,通过实际例子进行讲解和练习。

2.4 练习与作业完成课本上的相关练习题要求学生独立完成一道实际问题,运用坐标轴上点的坐标特点确定点的位置第三章:象限内的点3.1 学习目标学会在象限内确定点的位置理解象限内点的坐标特点3.2 教学内容讲解象限内点的坐标特点学会在象限内确定点的位置3.3 教学步骤1. 讲解象限内点的坐标特点,即第一象限的点的横纵坐标均为正,第二象限的点的横坐标为负,纵坐标为正,第三象限的点的横纵坐标均为负,第四象限的点的横坐标为正,纵坐标为负。

2. 学会在象限内确定点的位置,通过实际例子进行讲解和练习。

3.4 练习与作业完成课本上的相关练习题要求学生独立完成一道实际问题,运用象限内点的坐标特点确定点的位置第四章:坐标与图形4.1 学习目标学会利用坐标表示图形理解坐标与图形之间的关系4.2 教学内容讲解坐标与图形之间的关系学会利用坐标表示图形4.3 教学步骤1. 讲解坐标与图形之间的关系,通过实际例子让学生感受坐标与图形之间的联系。

八年级数学上册《平面直角坐标系》教案、教学设计

八年级数学上册《平面直角坐标系》教案、教学设计
(3)通过师生互动,探究坐标平面内点的坐标规律,如对称点的坐标关系。
2.教学目标:
(生的空间观念和逻辑思维能力。
(三)学生小组讨论
1.教学活动设计:
将学生分成小组,针对以下问题进行讨论:
(1)坐标变换的规律是什么?如何运用坐标变换解决实际问题?
(2)让学生分享学习收获,提出疑问,教师进行解答;
(3)强调本节课的重点内容,提醒学生课后复习。
2.教学目标:
(1)强化学生对平面直角坐标系的认识,巩固所学知识;
(2)培养学生的归纳总结能力和自主学习能力。
五、作业布置
为了巩固本节课所学知识,提高学生的运用能力,特布置以下作业:
1.基础题:
(1)请在坐标纸上准确画出平面直角坐标系,并标出给定点的坐标;
(3)总结坐标系在本节课中的应用,分享你的学习心得。
作业要求:
1.学生要认真完成作业,注意书写规范,保持作业整洁;
2.鼓励学生在解决问题时,尝试不同的方法和思路,培养创新意识;
3.家长要关注孩子的作业完成情况,适时给予指导和鼓励;
4.教师在批改作业时,要关注学生的解题思路和方法,及时发现并解决学生的疑问。
3.拓展应用:
设计具有挑战性的实际问题,让学生运用坐标系知识解决问题,提高他们的问题解决能力和思维品质。
4.课堂小结:
采用师生互动的方式,总结本节课的重点内容,强化学生对坐标系的认知,巩固所学知识。
5.作业布置:
布置分层作业,既有基础题,也有拓展题,让学生在巩固基础知识的同时,提高自己的能力。
6.教学策略:
3.培养学生勇于探索、严谨治学的精神,使他们形成良好的学习习惯;
4.培养学生运用数学知识解决实际问题的能力,使他们体会数学的价值,增强自信心。

2021秋八年级数学上册11、1平面内点的坐标1平面直角坐标系教学设计新版沪科版

2021秋八年级数学上册11、1平面内点的坐标1平面直角坐标系教学设计新版沪科版

11.1 平面内点的坐标第1课时平面直角坐标系情境导入新知探究同学们,你们喜欢旅游吗?假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,根据示意图回答以下问题:1.你是怎样确定各个景点位置的?2.“大成殿”在“中心广场”南、西各多少个格?“碑林”在“中心广场”北、东各多少个格?3.如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?在上一节课,我们已经学习了许多确定位置的方法,这个问题中,大家看用哪种方法比较合适?分类讨论,探索新知平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义和象限的划分。

学生自学课本,理解上述概念。

平面直角坐标系X轴、y轴、原点1.认识并能画出平面直角坐标系。

2.在给定的直角坐标系中,由点的位置写出它的坐标。

3.能适当建立直角坐标系,写出直角坐标系中有关点的坐标。

4.横(纵)坐标相同的点的直线平行于y轴,垂直于x轴;连接纵坐标相同的点的直线平行于x轴,垂直于y轴。

5.坐标轴上点的纵坐标为0;纵坐标轴上点的坐标为0。

6.各个象限内的点的坐标特征是:第一象限(+,+)第二象限(-,+),第三象限(-,-)第四象限(+,-)。

例1写出图中的多边形ABCDEF各顶点的坐标。

引导学生猜想、探索,鼓励学生积极思维,调动学习积极性。

以问题串引导学生思维,逐个解决问题,引入新知识的探究。

引导学生理解平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义和象限的划分等相关概念。

引导学生领悟点的坐标的特点。

想一想:在例1中,)点B 与点C 的纵坐标相同,线段BC 的位置有什)线段CE 位置有什么特点?)坐标轴上点的坐标有什么特点? AB CDEF1yxG(第1题图) (第2题图) 、随堂练习;xy 1FED CBA AB CD E FO 11x yA B CD E F1yx。

沪科版八年级上册数学全册教案(2021年8月修订)

沪科版八年级上册数学全册教案(2021年8月修订)
一、情境导入 我们已经学过了数轴,知道数轴上的点与实数一一对应,在建立了数轴之后,我们就 可以确定直线上点的位置,如图.
那么,如何确定平面内点的位置呢?
二、合作探究 探究点一:认识平面直角坐标系
如图所示,点 A、点 B 所在的位置是( )
A.第二象限,y 轴上 B.第四象限,y 轴上 C.第二象限,x 轴上 D.第四象限,x 轴上 解析:根据点在平面直角坐标系中的位置来判定.点 A 在第四象限,点 B 在 x 轴正半 轴上.故选 D. 方法总结:两坐标轴上的点不属于任何一个象限,象限是按逆时针方向排列的.
【类型五】 已知点的坐标在坐标系中描点 在如图的直角坐标系中描出下列各点:
A(4,3),B(-2,3),C(-4,-1),D(2,-3).
解析:本题关键就是已知点的坐标,如何描出点的位置,以描点 B(-2,3)为例,即 在 x 轴上找到坐标-2,过-2 对应的点作 x 轴的垂线,再在 y 轴上找到坐标 3,过 3 对应 的点作 y 轴的垂线,与前垂线的交点即为 B(-2,3),同理可描出其他三个点.
解:如图所示:
方法总结:在直角坐标系中描出点 P(a,b)的方法:先在 x 轴上找到数 a 对应的点 M, 在 y 轴上找到数 b 对应的点 N,再分别由点 M、点 N 作 x 轴、y 轴的垂线,两垂线的交点就 是所要描出的点 P.已知坐标平面上的点的坐标,描出对应点的位置,反过来在坐标平面上 给一点,找出它对应的坐标,熟练掌握平面直角坐标系是解题的关键.
的负半轴上,则纵坐标为-2;由点 P 到 y 轴的距离为 1,可知点 P 的横坐标的绝对值为 1,又因为垂足在 x 轴的正半轴上,则横坐标为 1.故点 P 的坐标是(1,-2).故选 B.
方法总结:本题的易错点有三处:①混淆距离与坐标之间的区别;②不知道与“点 P 到 x 轴的距离”对应的是纵坐标,与“点 P 到 y 轴的距离”对应的是横坐标;③忽略坐标 的符号出现错解.若本例题只已知距离而无附加条件,则点 P 的坐标有四个.

沪科版初中数学八年级上册教学课件 11-1 第1课时 平面直角坐标系及点的坐标

沪科版初中数学八年级上册教学课件 11-1 第1课时 平面直角坐标系及点的坐标

-40
-50
3
1
4
2
5
-2
-4
-1
-3
o
1
2
3
4
5
-4
-3
-2
-1
x
横轴
y
纵轴
原点
平面直角坐标系具有以下特征: ①两条数轴互相垂直 ②原点重合 ③通常取向右、向上为正方向 ④单位长度一般取相同的
平面直角坐标系
坐标轴不属任何象限
第一象限
第二象限
第三象限
第四象限
y
-5
-6
横坐标
纵坐标
B点在y轴上的坐标为-2
C
C
B
A
本节课我们学习了平面直角坐标系。学习本节我们要掌握以下三方面的知识内容: 1、能够正确画出直角坐标系。 2、能在直角坐标系中,根据坐标找出点,由点求出坐标。坐标平面内的点和有序实数对是一一对应的。 3、掌握象限点、x轴及y轴上点的坐标的特征: 第一象限:(+,+)第二象限:(-,+) 第三象限:(-,-)第四象限:(+,-) x轴上的点的纵坐标为0,表示为(x,0) y轴上的点的横坐标为0,表示为(0,y)

西
30)
北京路
平面上有公共原点且互相垂直 的2条数轴构成平面直角坐标系, 简称直角坐标系。 水平方向的数轴称为x轴或横轴。 竖直方向的数轴称为y轴或纵轴。 (它们统称坐标轴) 公共原点10
10
-10
-20
-30
20
30
-20
-10
11.1平面内点的坐标(1)
1、什么是数轴?
2、数轴上的点与 ?一一对应
实数
o
1
2
3
4

平面直角坐标系(第一课时)教案

平面直角坐标系(第一课时)教案

《平面直角坐标系》教案(第一课时)执教人:彭宣武一、教学目标1、知识与技能⑴认识并能画出平面直角坐标系。

⑵能在方格纸上建立适当的直角坐标系,描述物体的位置。

⑶在给定的直角坐标系中,会根据坐标描出点的位置,由点的位置写出它的坐标。

⑷根据平面直角坐标系中点的坐标与点的位置关系,进一步感受点的坐标的特点。

2、过程与方法在“坐标系的建立”、“由坐标找点”及“由点找坐标”等过程中,体会“发现”、“探索”的乐趣,进一步提高学生学生数形结合意识,合作交流意识。

3、情感、态度与价值观在平面直角坐标系的建立过程中,进一步培养“空间观念”,并从中体会到合作的重要性,加强动手、操作能力和观察能力,培养形象思维能力。

二、教学重点正确建立坐标系;确定点的坐标的方法及点的坐标书写方法 三、教学难点点(a,b )与(b,a )的区别及特殊点的坐标的特征 四、教具准备挂图,小黑板 五、教学过程㈠学前准备1、在电影院内如何找到电影票上所指的位置?2、在地图上怎样确定唐山大地震的震中的具体位置? ㈡探究新知1、创设问题情景,引入新知(出示挂图)2、讲解平面直角坐标系的概念⑴平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

⑵x 轴(横轴)、y 轴(纵轴)直角坐标系的原点。

⑶平面直角坐标系,将平面分成了四个部分,强调按逆时针方向旋转。

⑷点P 的坐标的确定方法:过点P 分别向x 轴、y 轴作垂线,垂足在x 轴、y 轴上对应的数a,b 分别叫点P 的横坐标和纵坐标,有序实数对(a,b )叫做点P 的坐标。

⑸各象限内的点的坐标的符号特点⑹比较点(a,b )与点(b,a )的区别,揭示有序实数对与坐标平面的点的对应关系。

3、例题教学 ⑴例1题目略学生回答各个顶点的坐标(出示小黑板) ①强调坐标书写方法②坐标轴上的点不属于任何一个象限⑵想一想:学生交流想一想中的问题,总结出一般结论 ①当两点的横坐标相同时,其连线平行于y 轴;当两点的纵坐标相同时,其连线平行于x 轴,反之亦然。

八年级数学上册《平面直角坐标系》教案

八年级数学上册《平面直角坐标系》教案

八年级数学上册《平面直角坐标系》教案一、教学目标:1. 知识与技能:(1)理解平面直角坐标系的定义及特点;(2)掌握点的坐标表示方法,能够熟练地在平面直角坐标系中确定点的坐标;(3)了解坐标轴上的点的坐标特点,能够判断点在坐标轴上的位置。

2. 过程与方法:(1)通过观察实际问题,培养学生的抽象思维能力,将实际问题转化为平面直角坐标系问题;(2)通过合作交流,培养学生运用坐标知识解决实际问题的能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的观察能力、动手操作能力和团队协作精神,使学生感受到数学在生活中的应用。

二、教学重点与难点:1. 教学重点:(1)平面直角坐标系的定义及特点;(2)点的坐标表示方法;(3)坐标轴上点的坐标特点。

2. 教学难点:(1)将实际问题转化为平面直角坐标系问题;(2)运用坐标知识解决实际问题。

三、教学方法:1. 情境教学法:通过实际问题引入平面直角坐标系,激发学生兴趣;2. 合作学习法:分组讨论,培养学生的团队协作精神;3. 实践操作法:引导学生动手操作,加深对坐标系的理解。

四、教学准备:1. 教具:平面直角坐标系模型、点坐标卡片;2. 学具:练习本、笔、直尺。

五、教学过程:1. 导入新课:(1)利用实际问题,如商场购物时的优惠活动,引导学生思考如何用数学知识解决问题;(2)介绍平面直角坐标系的定义及特点,引出本节课的主题。

2. 自主学习:(1)让学生观察平面直角坐标系模型,引导学生发现坐标系的特点;(2)学生自主探究点的坐标表示方法,并互相交流心得。

3. 合作学习:(1)分组讨论,让学生结合坐标卡片,判断点在坐标轴上的位置;(2)各小组汇报讨论成果,教师点评并总结。

4. 课堂练习:(1)让学生独立完成练习题,巩固所学知识;(2)教师选取部分练习题进行讲解,解答学生疑问。

5. 总结拓展:(1)对本节课的主要内容进行总结;(2)引导学生思考如何将坐标知识应用于实际生活,激发学生学习兴趣。

八年级数学上册《平面直角坐标系》教案

八年级数学上册《平面直角坐标系》教案

八年级数学上册《平面直角坐标系》教案一、教学目标1. 知识与技能:(1)理解平面直角坐标系的定义及建立方法;(2)掌握坐标轴、坐标点、坐标值的概念;(3)学会在平面直角坐标系中确定点的位置;(4)能够进行坐标轴上的点的平移和旋转。

2. 过程与方法:(1)通过实际操作,培养学生的空间想象力;(2)利用数形结合的思想,提高学生解决问题的能力;(3)学会利用坐标系进行数据分析。

3. 情感态度价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探索、积极思考的科学精神;(3)培养学生合作交流、尊重他人的品质。

二、教学重点与难点1. 教学重点:(1)平面直角坐标系的建立及坐标轴、坐标点的概念;(2)在平面直角坐标系中确定点的位置;(3)坐标轴上的点的平移和旋转。

2. 教学难点:(1)坐标轴、坐标点、坐标值之间的联系;(2)在实际问题中灵活运用坐标系。

三、教学方法1. 情境教学法:通过生活实例引入平面直角坐标系的概念,让学生在实际情境中感受和理解知识;2. 数形结合法:利用图形直观展示坐标轴、坐标点的特征,引导学生发现规律,提高解决问题的能力;3. 小组合作法:鼓励学生分组讨论,培养合作精神和沟通能力;4. 练习法:设计有针对性的练习题,巩固所学知识。

四、教学过程1. 导入新课:通过讲解实际生活中的例子,如地图、棋盘等,引导学生思考如何用数学工具来表示这些事物之间的位置关系;2. 自主学习:让学生通过阅读教材,了解平面直角坐标系的定义及建立方法;3. 课堂讲解:详细讲解坐标轴、坐标点、坐标值的概念,并通过图形直观展示;4. 互动环节:学生分组讨论,探讨如何在平面直角坐标系中确定点的位置;5. 练习巩固:设计相关练习题,让学生动手实践,巩固所学知识;五、课后作业1. 绘制一个简单的平面直角坐标系,标出其中的坐标轴、坐标点;2. 利用平面直角坐标系,解决实际问题,如描述某个物体在平面上的运动轨迹;六、教学评估1. 课堂提问:通过提问了解学生对平面直角坐标系概念的理解程度,以及坐标轴、坐标点、坐标值之间的联系;2. 练习反馈:收集学生的练习作业,分析其对知识的掌握情况,以及解决问题的能力;3. 小组讨论:观察学生在小组合作过程中的表现,了解其合作交流、尊重他人的品质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章平面直角坐标系
11.1平面内点的坐标
第1课时平面直角坐标系
◇教学目标◇
【知识与技能】
1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等的概念;
2.理解坐标平面内的点与有序实数对的一一对应关系;
3.能在方格纸中建立平面直角坐标系来描述点的位置.
【过程与方法】
1.通过画坐标系,由点找坐标等过程,发展学生的数形结合意识、合作交流意识;
2.通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识.
【情感、态度与价值观】
让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心.
◇教学重难点◇
【教学重点】
理解平面直角坐标系的有关知识;在给定的平面直角坐标系中,会根据点的位置写出它的坐标.
【教学难点】
坐标轴上的数字与坐标系中的坐标之间的关系.
◇教学过程◇
一、情境导入
假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,根据示意图(如图),回答以下问题:
(1)你是怎样确定各个景点位置的?
(2)“大成殿”在“中心广场”南、西各多少个格?“碑林”在“中心广场”北、东各多少个格?
(3)如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看作一个单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?
二、合作探究
1.平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义和象限的划分.
在了解有关平面直角坐标系的知识后,再返回刚才讨论的问题.
结论:如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看作一个单位长度,则“碑林”的位置是(3,1),“大成殿”的位置是(-2,-2).
问题:在(3)的条件下,你能把其他景点的位置表示出来吗?
结论:能,钟楼的位置是(-2,1),雁塔的位置是(0,3),影月湖的位置是(0,-5),科技大学的位置是(-5,-7).
2.例题讲解
典例写出图中多边形ABCDEF各顶点的坐标.此图中各顶点的坐标是否永远不变?你能举个例子吗?
[解析]多边形ABCDEF各顶点的坐标分别为
A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3).不是.当坐标轴的位置发生变动时,各点的坐标相应地变化.若以线段BC所在的直线为x轴,纵轴(y轴)位置不变,如图,
则六个顶点的坐标分别为A(-2,3),B(0,0),C(3,0),D(4,3),E(3,6),F(0,6).再思考这个结论是否是永恒的.
结论:不是.还能再改变坐标轴的位置,得出不同的坐标.继续进行坐标轴的变换,总结一下共有多少种不同的变换方式.
3.想一想
在上例中,(1)点B与点C的纵坐标相同,线段BC的位置有什么特点?
(2)线段测定位置有什么特点?
(3)坐标轴上点的坐标有什么特点?
【归纳总结】(1)坐标轴上的点的坐标中至少有一个是0;横轴上的点的纵坐标为0,纵轴上的点的横坐标为0.
(2)x轴、y轴把坐标平面分成四个象限,但是坐标轴上的点不属于任何一个象限.
(3)各个象限内的点的坐标特征:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).
变式训练如图,确定点A,B,C,D,E,F,G的坐标.
[解析]点A(-1,-1),点B(0,-3),点C(2,-5),点D(4,-1),点E(3,2),点F(-2,3),点
G(2,-2).
三、板书设计
平面直角坐标系
1.平面直角坐标系:横轴、纵轴、横坐标、纵坐标、原点.
2.象限的划分.
◇教学反思◇
学生在实际生活中经常遇到物体位置的问题,可能想不到这些问题与数学的联系,老师在这节课上应引导学生建立平面直角坐标系来表示物体的位置,让学生参与到探索获取新知的活动中,主动学习思考,感受数学的魅力,增强学生学习数学的兴趣.。

相关文档
最新文档