OS短作业优先调度算法C语言知识分享

合集下载

短作业优先调度算法例题详解

短作业优先调度算法例题详解

短作业优先调度算法例题详解短作业优先调度算法例题详解什么是短作业优先调度算法?短作业优先调度算法是一种常见的进程调度算法,它的主要思想是优先调度执行当前剩余运行时间最短的作业。

在这种算法下,长时间作业的响应时间会相对较长,但是短时间作业的响应时间会更短。

算法原理短作业优先调度算法的原理是按照作业的执行时间来进行调度,优先选择执行时间较短的作业。

当一个作业到达时,操作系统会检查作业的执行时间,并将其与已有作业的执行时间进行比较,选择执行时间最短的作业进行调度。

算法实现以下是一个简单的短作业优先调度算法的例子:1.输入作业的数量和每个作业的执行时间。

2.按照作业的执行时间对作业进行排序,从执行时间最短的作业开始执行。

3.执行作业直到所有作业执行完毕。

例题解析假设有三个作业需要执行,它们的执行时间分别为5、2和8。

使用短作业优先调度算法对这些作业进行调度。

1.首先,按照作业的执行时间对作业进行排序,排序后的顺序为2、5和8。

2.执行时间最短的作业是2,因此首先执行该作业,剩下的两个作业的执行时间分别为5和8。

3.接下来,执行时间较短的作业是5,执行该作业后,剩下的作业的执行时间为8。

4.最后,执行剩下的唯一一个作业,执行时间为8。

根据以上步骤,最终的作业执行顺序为2、5和8。

优缺点分析短作业优先调度算法的优点是能够最大程度地缩短短时间作业的响应时间,提高系统的吞吐量。

然而,这种算法容易造成长时间作业的等待时间过长,可能会导致长时间作业的执行效率较低。

总结短作业优先调度算法是一种常见的进程调度算法,其核心原理是选择执行时间最短的作业进行调度。

通过对作业的排序和执行,可以最大程度地减少短时间作业的响应时间。

然而,这种算法也存在一些问题,如可能会导致长时间作业的等待时间过长。

因此,在实际应用中,需要根据具体情况选择合适的调度算法。

算法的应用场景短作业优先调度算法适用于作业的执行时间差异较大的情况。

在这种情况下,短时间作业可以迅速得到执行,提高系统的响应速度。

操作系统短作业优先进程调度算法

操作系统短作业优先进程调度算法

操作系统短作业优先进程调度算法操作系统中的进程调度算法是指决定哪个进程在一些时间点被执行的规则和策略。

短作业优先(SJF)是一种常见的进程调度算法,它根据进程的执行时间来安排执行顺序。

短作业优先算法的思想是,优先调度执行所需执行时间最短的进程,以最大程度地减少平均等待时间和周转时间。

这个算法适合用于处理那些执行时间相对较短的任务。

SJF算法可以按两种方式实现:非抢占和抢占。

非抢占式短作业优先调度算法是指一旦一个进程开始执行,就不能被中断或抢占,直到它完成或由于其中一种原因被阻塞。

抢占式短作业优先调度算法是指一个新到达的进程可以抢占正在执行的进程,如果新到达的进程的执行时间比当前正在执行的进程更短。

对于非抢占式短作业优先调度算法,可以使用一个队列来保存进程,并通过比较它们的执行时间来确定下一个要执行的进程。

具体实现如下:1.首先,将所有待处理的进程添加到队列中。

2.对队列中的进程按照执行时间进行排序,按照从短到长的顺序执行。

3.执行每个进程直到完成,然后将其从队列中移除。

4.重复步骤3,直到所有进程都执行完成。

对于抢占式短作业优先调度算法,可以使用一个就绪队列和一个运行队列来实现。

就绪队列用于保存已到达但尚未执行的进程,而运行队列是当前正在运行的进程。

具体实现如下:1.首先,将所有到达的进程添加到就绪队列中,按照到达时间进行排序。

2.从就绪队列中选择执行时间最短的进程,并将其添加到运行队列中。

3.执行运行队列中的进程直到完成或被抢占。

4.如果有新的进程到达,将其加入到就绪队列中。

5.如果当前运行的进程被抢占,将其放回就绪队列中,并选择一个新的执行时间最短的进程来执行。

6.重复步骤3至5,直到所有进程都完成。

非抢占式短作业优先调度算法可以保证最短平均等待时间和周转时间,但存在一个问题,即长作业会被无限期地推迟。

为了解决这个问题,可以使用抢占式短作业优先调度算法,但这也会导致较多的上下文切换。

因此,根据具体情况和需求,可以选择适合的算法来实现进程调度。

短作业优先调度算法C语言实现

短作业优先调度算法C语言实现

#include <stdio.h>struct sjf //定义进程的结构体{char name[10]; //进程名float arrivetime; //到达时间float servicetime; //服务时间float starttime; //开始时间float finishtime; //完成时间float zztime; //周转时间float dqzztime; //带权周转时间};sjf b[100]; //定义短作业优先算法进程的最大数量void Sinput(sjf *p,int N) //输入函数{int i;printf("输入进程的名称、到达时间、服务时间:(例如: x 0 100)\n");for(i=0;i<=N-1;i++){printf("输入第%d进程的名称、到达时间、服务时间:",i+1);scanf("%s%f%f",&p[i].name,&p[i].arrivetime,&p[i].servicetime);}}//输出函数void SPrint(sjf *p,float arrivetime,float servicetime,float starttime,float finishtime,float zztime,float dqzztime,int N){int k;printf("\n执行顺序:\n");printf("%s",p[0].name);for(k=1;k<N;k++){printf("-%s",p[k].name);}printf("\n进程名\tarrive\tservice\tstart\tfinish\tzz\tdqzz\n");for(k=0;k<=N-1;k++){printf("%s\t%-.2f\t%-.2f\t%-.2f\t%-.2f\t%-.2f\t%-.2f\t\n\n",p[k].name,p[k].arrivetime,p[k].ser vicetime,p[k].starttime,p[k].finishtime,p[k].zztime,p[k].dqzztime);}}void Ssort(sjf *p,int N) //按短作业优先算法排序{for(int i=1;i<=N-1;i++)for(int j=1;j<=i;j++)if(p[i].servicetime<p[j].servicetime){sjf temp;temp=p[i];p[i]=p[j];p[j]=temp;}}//运行结果void Sdeal(sjf *p, float arrivetime,float servicetime,float starttime,float finishtime,float &zztime,float &dqzztime,int N){int k;for(k=0;k<=N-1;k++){if(k==0){p[k].starttime=p[k].arrivetime;p[k].finishtime=p[k].arrivetime+p[k].servicetime;}else{p[k].starttime=p[k-1].finishtime; //开始时间=前一个进程的完成时间p[k].finishtime=p[k-1].finishtime+p[k].servicetime; //结束时间=前一个进程的完成时间+现在进程的服务时间}}for(k=0;k<=N-1;k++){p[k].zztime=p[k].finishtime-p[k].arrivetime; //周转时间=完成时间-到达时间p[k].dqzztime=p[k].zztime/p[k].servicetime; //带权周转时间=周转时间/服务时间}}void SJF(sjf *p,int N){float arrivetime=0,servicetime=0,starttime=0,finishtime=0,zztime=0,dqzztime=0;Ssort(p,N);Sdeal(p,arrivetime,servicetime,starttime,finishtime,zztime,dqzztime,N);SPrint(p,arrivetime,servicetime,starttime,finishtime,zztime,dqzztime,N);}void main() //主函数{ int M;printf("------------短作业优先调度算法-----------\n");printf("输入进程数:");scanf("%d",&M);Sinput(b,M);SJF(b,M);}。

作业调度算法之短作业优先调度算法和先来先服务调度算法

作业调度算法之短作业优先调度算法和先来先服务调度算法

作业调度算法之短作业优先调度算法和先来先服务调度算法假设有四个作业,他们的提交、运⾏时间如下表所⽰。

请回答下列问题:
(1)若采⽤短作业优先调度算法,求作业运⾏顺序和平均带权周转时间为多少?
(2)若采⽤先来先服务调度算法,求作业运⾏顺序和平均带权周转时间为多少?
作业号到达时间运⾏时间
18.0 2.0
28.30.5
38.50.4
48.70.1
解:
(1)短作业优先调度算法,作业运⾏顺序:4,3,2,1
(2)先来先服务调度算法,作业运⾏顺序:1,2,3,4
作业号1234
到达时间8.08.38.58.7
运⾏时间 2.00.50.40.1
短作业优先调度算法
完成时刻11.79.79.28.8周转时间 3.7 1.40.70.1带权周转时间 1.85 1.751平均带全周转时间 1.85
先来先服务调度算法
完成时刻1010.510.911周转时间2 2.2 2.4 2.3带权周转时间1 4.4623平均带全周转时间8.6
注:周转时间= 完成时刻—到达时刻带权周转时间= 周转时间/运⾏时间。

短作业优先调度算法例题详解

短作业优先调度算法例题详解

短作业优先调度算法例题详解
(原创实用版)
目录
1.短作业优先调度算法的概述
2.算法的例子
3.算法的详解
4.算法的优点和缺点
正文
一、短作业优先调度算法的概述
短作业优先调度算法(Shortest Job First, SJF)是一种常见的作业调度算法。

这种算法的基本原则是优先执行估计运行时间最短的作业,直到完成。

然后,再从剩下的作业中选择估计运行时间最短的作业执行,以此类推。

这种算法的目的是尽可能减少作业的平均等待时间。

二、算法的例子
假设有一个计算机系统,其中有三个作业需要执行,它们的运行时间分别是:作业 1 需要 20 分钟,作业 2 需要 30 分钟,作业 3 需要 10 分钟。

按照短作业优先调度算法,执行顺序应为:先执行作业 3(10 分钟),然后执行作业 1(20 分钟),最后执行作业 2(30 分钟)。

三、算法的详解
短作业优先调度算法的执行过程可以分为以下几个步骤:
1.首先,将等待执行的作业按照运行时间从短到长进行排序。

2.然后,选择运行时间最短的作业执行,直到完成。

3.完成后,再从剩下的作业中选择运行时间最短的作业执行,以此类推。

四、算法的优点和缺点
短作业优先调度算法的优点是能够使得作业的平均等待时间最短,从而提高了系统的效率。

然而,这种算法也有其缺点,那就是长作业可能会被频繁地打断,导致其执行效率低下。

调度算法C语言实现

调度算法C语言实现

调度算法C语言实现调度算法是操作系统中的重要内容之一,它决定了进程在系统中的运行方式和顺序。

本文将介绍两种常见的调度算法,先来先服务(FCFS)和最短作业优先(SJF),并用C语言实现它们。

一、先来先服务(FCFS)调度算法先来先服务(FCFS)调度算法是最简单的调度算法之一、它按照进程到达的先后顺序进行调度,即谁先到达就先执行。

实现这个算法的关键是记录进程到达的顺序和每个进程的执行时间。

下面是一个用C语言实现先来先服务调度算法的示例程序:```c#include <stdio.h>//进程控制块结构体typedef structint pid; // 进程IDint arrivalTime; // 到达时间int burstTime; // 执行时间} Process;int maiint n; // 进程数量printf("请输入进程数量:");scanf("%d", &n);//输入每个进程的到达时间和执行时间Process process[n];for (int i = 0; i < n; i++)printf("请输入进程 %d 的到达时间和执行时间:", i);scanf("%d%d", &process[i].arrivalTime,&process[i].burstTime);process[i].pid = i;}//根据到达时间排序进程for (int i = 0; i < n - 1; i++)for (int j = i + 1; j < n; j++)if (process[i].arrivalTime > process[j].arrivalTime) Process temp = process[i];process[i] = process[j];process[j] = temp;}}}//计算平均等待时间和平均周转时间float totalWaitingTime = 0; // 总等待时间float totalTurnaroundTime = 0; // 总周转时间int currentTime = 0; // 当前时间for (int i = 0; i < n; i++)if (currentTime < process[i].arrivalTime)currentTime = process[i].arrivalTime;}totalWaitingTime += currentTime - process[i].arrivalTime;totalTurnaroundTime += (currentTime + process[i].burstTime) - process[i].arrivalTime;currentTime += process[i].burstTime;}//输出结果float avgWaitingTime = totalWaitingTime / n;float avgTurnaroundTime = totalTurnaroundTime / n;printf("平均等待时间:%f\n", avgWaitingTime);printf("平均周转时间:%f\n", avgTurnaroundTime);return 0;```以上程序实现了先来先服务(FCFS)调度算法,首先根据进程的到达时间排序,然后依次执行每个进程,并计算总等待时间和总周转时间。

短作业先服务调度算法和时间片轮转调度算法

短作业先服务调度算法和时间片轮转调度算法

短作业先服务调度算法和时间片轮转调度算法
1.短作业先服务(SJF)调度算法
短作业先服务调度算法是一种根据作业执行时间进行调度的算法。

它假设系统中所有作业的执行时间是已知的,并按照执行时间的大小来进行排序。

在每个时间片(或者说CPU的一个时间段)内,调度器会选择一个执行时间最短的作业来执行。

如果有多个作业的执行时间相同,则根据其到达时间进行比较,选择先到达的作业来执行。

短作业先服务调度算法的优点是可以最大程度地减少平均等待时间。

因为执行时间较短的作业会更早执行完毕,并释放CPU资源给其他作业使用。

然而,这种算法的缺点是可能会导致长作业的等待时间过长,从而降低了长作业的优先级。

时间片轮转调度算法是一种基于时间片的调度算法。

每个进程被分配一个时间片,该时间片内进程可以执行。

当时间片用完后,调度器会将进程放到就绪队列的末尾,并选择队列中的下一个进程来执行,直到所有进程执行完毕。

时间片轮转调度算法的优点是公平性,所有进程的等待时间都是相同的。

此外,该算法避免了长作业等待时间过长的问题。

但是,对于长时间执行的作业,其执行会被不断中断,导致一定的上下文切换开销。

时间片轮转调度算法适用于作业执行时间相对均匀的场景,保证了所有作业的等待时间公平,但会增加一定的上下文切换开销。

综上所述,短作业先服务调度算法和时间片轮转调度算法都有各自的优点和缺点,需要根据具体的应用场景选择合适的调度算法。

同时,考虑
到实际情况,也可以采用其他调度算法的变种或综合算法来更好地满足实际需求。

操作系统进程调度优先级算法C语言模拟

操作系统进程调度优先级算法C语言模拟

操作系统进程调度优先级算法C语言模拟```cstruct Processint pid; // 进程IDint priority; // 优先级};```接下来,我们使用一个简单的示例来说明操作系统进程调度优先级算法的模拟实现。

假设有5个进程需要调度执行,它们的初始优先级和运行时间如下:进程ID,优先级,已运行时间--------,--------,------------P1,4,2P2,3,4P3,1,6P4,2,1P5,5,3首先,我们需要将这些进程按照优先级排序,以得到调度队列。

可以使用冒泡排序算法实现,代码如下:```cvoid bubbleSort(struct Process *processes, int n)for (int i = 0; i < n - 1; i++)for (int j = 0; j < n - i - 1; j++)if (processes[j].priority > processes[j + 1].priority)struct Process temp = processes[j];processes[j] = processes[j + 1];processes[j + 1] = temp;}}}``````c#include <stdio.h>void bubbleSort(struct Process *processes, int n);int maistruct Process processes[] = {{1, 4, 2}, {2, 3, 4}, {3, 1, 6}, {4, 2, 1}, {5, 5, 3}};int n = sizeof(processes) / sizeof(struct Process);bubbleSort(processes, n);printf("初始调度队列:\n");printf("进程ID\t优先级\t已运行时间\n");for (int i = 0; i < n; i++)}//模拟进程调度printf("\n开始模拟进程调度...\n");int finished = 0;while (finished < n)struct Process *current_process = &processes[0];printf("执行进程 P%d\n", current_process->pid);finished++;printf("进程 P%d 执行完毕\n", current_process->pid);} else}bubbleSort(processes, n);}printf("\n所有进程执行完毕,调度队列的最终顺序为:\n"); printf("进程ID\t优先级\t已运行时间\n");for (int i = 0; i < n; i++)}return 0;```以上代码中,我们使用了一个变量`finished`来记录已完成的进程数量,当`finished`等于进程数量`n`时,所有进程执行完毕。

操作系统实验_先来先服务的调度算法及短作业优先

操作系统实验_先来先服务的调度算法及短作业优先

操作系统实验_先来先服务的调度算法及短作业优先先来先服务调度算法是一种非抢占式的调度算法,它按照作业到达的先后顺序将作业分配给CPU。

具体来说,当一个作业进入就绪队列时,调度程序将把它放在队列的末尾,然后从队列的头部选择一个作业执行。

只有当一个作业执行完成后,作业队列的头部才会选择下一个作业执行。

先来先服务调度算法的优点是简单易实现,没有复杂的排序操作,适用于短作业和长作业混合的场景。

其缺点是没有考虑作业的执行时间,导致长作业会占用CPU很长时间,影响其他作业的响应时间。

短作业优先调度算法是一种抢占式的调度算法,它根据作业的执行时间选择优先级。

具体来说,当一个作业进入就绪队列时,调度程序会比较该作业的执行时间和其他就绪作业的执行时间,并选择执行时间最短的作业执行。

如果有一个新的作业到达,且其执行时间比当前执行的作业要短,那么调度程序会中断当前作业的执行并切换到新的作业执行。

短作业优先调度算法的优点是能够最大程度上减少作业的等待时间和响应时间,提高系统的吞吐量。

其缺点是需要对作业的执行时间有较准确的估计,否则可能导致长作业陷入饥饿状态。

此外,由于需要频繁进行作业的切换,短作业优先调度算法在实现上相对复杂。

在实际应用中,先来先服务调度算法适用于短作业和长作业混合的场景,或者作业的执行时间无法估计准确的情况下。

例如,在批处理系统中,作业的执行时间往往是固定的,先来先服务调度算法可以保证公平性,并且能够有效利用CPU资源。

而短作业优先调度算法适用于多任务环境下,作业的执行时间可以估计准确的情况下。

例如,在交互式系统中,用户的操作往往是短暂的,短作业优先调度算法可以最大限度地减少用户的等待时间,提高系统的响应速度。

总之,先来先服务调度算法和短作业优先调度算法是操作系统中常用的两种调度算法。

它们分别适用于不同的应用场景,在实际应用中可以根据具体需求选择不同的调度算法。

几种操作系统调度算法

几种操作系统调度算法

几种操作系统调度算法操作系统调度算法是操作系统中用于确定进程执行的顺序和优先级的一种方法。

不同的调度算法有不同的优缺点,适用于不同的场景和需求。

下面将介绍几种常见的操作系统调度算法:1.先来先服务(FCFS)调度算法:先来先服务调度算法是最简单的调度算法之一、按照进程到达的顺序进行调度,首先到达的进程先执行,在CPU空闲时执行下一个进程。

这种算法实现简单,并且公平。

但是,由于没有考虑进程的执行时间,可能会导致长作业时间的进程占用CPU资源较长时间,从而影响其他进程的响应时间。

2.短作业优先(SJF)调度算法:短作业优先调度算法是根据进程的执行时间进行排序,并按照执行时间最短的进程优先执行。

这种算法可以减少平均等待时间,提高系统的吞吐量。

然而,对于长作业时间的进程来说,等待时间会相对较长。

3.优先级调度算法:优先级调度算法是根据每个进程的优先级来决定执行顺序的。

优先级可以由用户设置或者是根据进程的重要性、紧迫程度等因素自动确定。

具有较高优先级的进程将具有更高的执行优先级。

这种算法可以根据不同情况进行灵活调度,但是如果不恰当地设置优先级,可能会导致低优先级的进程长时间等待。

4.时间片轮转(RR)调度算法:时间片轮转调度算法将一个固定的时间片分配给每个进程,当一个进程的时间片用完时,将该进程挂起,调度下一个进程运行。

这种算法可以确保每个进程获得一定的CPU时间,提高系统的公平性和响应速度。

但是,对于长时间运行的进程来说,可能会引起频繁的上下文切换,导致额外的开销。

5.多级反馈队列(MFQ)调度算法:多级反馈队列调度算法将进程队列划分为多个优先级队列,每个队列有不同的时间片大小和优先级。

新到达的进程被插入到最高优先级队列,如果进程在时间片内没有完成,则被移到下一个较低优先级队列。

这种算法可以根据进程的执行表现自动调整优先级和时间片,更好地适应动态变化的环境。

以上是几种常见的操作系统调度算法,每种算法都有其优缺点和适用场景。

【操作系统】先来先服务和短作业优先算法(C语言实现)

【操作系统】先来先服务和短作业优先算法(C语言实现)

【操作系统】先来先服务和短作业优先算法(C语⾔实现)【操作系统】先来先服务算法和短作业优先算法实现介绍:1.先来先服务 (FCFS: first come first service)如果早就绪的进程排在就绪队列的前⾯,迟就绪的进程排在就绪队列的后⾯,那么先来先服务(FCFS: first come first service)总是把当前处于就绪队列之⾸的那个进程调度到运⾏状态。

也就说,它只考虑进程进⼊就绪队列的先后,⽽不考虑它的下⼀个CPU周期的长短及其他因素。

FCFS算法简单易⾏,是⼀种⾮抢占式策略,但性能却不⼤好。

简单来说,先来先服务就是那个进程到达时间最早,那么CPU就先处理哪个进程。

2.短作业优先(SJF, Shortest Job First)对预计执⾏时间短的作业(进程)优先分派处理机。

通常后来的短作业不抢先正在执⾏的作业。

也就是说,不但要考虑进程的到达时间,还要考虑进程需要运⾏的时间。

当⼀个进程正在运⾏时,假如有其他的进程到达,那么这些到达的进程就需要按照其需要运⾏的时间长短排序,运⾏时间短的在前,运⾏时间长的在后。

3.例⼦:4.运⾏截图1.先来先服务2.短作业优先5.话不多说,直接上代码。

第⼀次写,有很多不⾜的地⽅。

希望⼤家看到可以帮忙纠正⼀下,谢谢⼤家。

#include <stdio.h>#include <stdlib.h>#define MAX 10typedef struct PCB {int id,arrive_time,service_time,start_time,finish_time; //进程id、到达时间、服务时间、开始时间、完成时间float zhouzhuan_time,daiquanzhouzhuan_time; //周转时间、带权周转时间。

只能说我的拼英。

emm,。

尴尬。

int status;}PCB;typedef enum {OK,ERROR}Status;typedef enum {FALSE,TRUE}Bool;typedef PCB datatype;typedef struct LinkQueue {int front;int rear;int length;datatype* base;}quene;int arrive[MAX]; // 记录每个作业的到达时间int service[MAX]; //记录每个作业的服务时间int num; //输⼊的进程个数quene init(){quene q_pcb;q_pcb.base = (datatype *)malloc(sizeof(datatype)*MAX);q_pcb.front = q_pcb.rear = 0;q_pcb.length = 0;return q_pcb;}Bool isFull(quene *q) {if ((q->rear + 1) % MAX == q->front) {return TRUE;}return FALSE;}Bool isEmpty(quene *q) {if (q->rear == q->front) {return TRUE;}return FALSE;}Status rudui(quene *q,datatype p){ //⼊队。

最短作业优先(抢占和非抢占)

最短作业优先(抢占和非抢占)

最短作业优先(抢占和非抢占)一、流程图解析:在最开始,我们先创建若干进程,选择自动运行,则在运行完后,按顺序显示运行的结果。

同理,选择手动运行,那么就是最先选择最短的作业开始运行,其实当前进程并非一定在实际运行(改变自己的状态),只是一个虚拟的运行(虚拟最短作业优先运行算法),这时我们可以做其他的事情,在做事之前,先运行虚拟算法,依照最短作业优先去改变相关进程的状态(进程可能就没有实际运行过,被虚拟算法改变了状态(就绪、等待、终止)),在做完相关事情之后,再运行虚拟算法,确定是否要发生最短作业的优先抢占。

根据以上的运行结构,我们可以在这结构的基础上,人为地设置进程状态就是改变进程状态,这时就可以发生最短作业调度的抢占和非抢占式。

我们可以进入查看进程状态,看看运行的状况,也可以进入修改进程状态,修改相关进程状态让其发生最短作业的抢占,或者进入创建进程,创建一个新的进程,这是也有可能实现最短作业优先的抢占。

二、虚拟运行算法:从进程的结构分析,进程里面有状态,到达时间(取系统时间),结束时间(取系统时间),需要运行时间,已运行时间等,我们知道第一个最短作业运行的到达时间(开始运行的时间)就是创建的时间。

在一个进程运行终止时,要设好终止的时间、改变状态等属性,这时进行进程间信息交换,终止进程的时间交给下一个要运行的进程的到达时间,这样不断下去就可以运行到最后一个进程,当发生抢占调度时,也是以上的情况运行。

先在抢占之前,就运行虚拟算法,改变相关的进程状态,发生引起抢占的事的时候就可以利用抢占来进行进程的切换。

这样就能让CPU在有工作做时就不能空闲。

直到把所有在就绪队列的进程运行完,这是CPU可以休息了,如果在CPU休息时有进程从等待进入就绪,那么CPU就要继续开工。

当我们运行完第一批输入的进程,现在CPU在空转,我们又创建了新进程,这时新进程就在创建那一刻起开始运行了,因为新进程创建好就进入了就绪的状态。

优先级调度算法原理和短进程优先调度算法原理

优先级调度算法原理和短进程优先调度算法原理

一、优先级调度算法原理优先级调度算法是一种用于操作系统中的进程调度的算法。

该算法根据每个进程的优先级来决定它在CPU上的执行顺序。

优先级通常是一个整数值,较小的优先级值表示较高的优先级。

当一个进程需要被调度时,系统会选择具有最高优先级的进程来执行。

1.1 优先级调度算法的工作原理在优先级调度算法中,每个进程被分配一个优先级值。

当系统需要选择一个进程来执行时,它会选择具有最高优先级的进程。

如果有多个进程具有相同的最高优先级,那么系统可能会根据其他因素来进行决策,比如先到先服务(FIFO)的原则。

1.2 优先级调度算法的特点优先级调度算法的特点是能够根据进程的优先级来进行调度,从而有效地提高系统的响应速度。

然而,如果进程的优先级分配不合理,可能会导致低优先级的进程长时间得不到执行的机会,造成饥饿现象。

1.3 优先级调度算法的应用场景优先级调度算法通常适用于对实时性要求较高的系统,比如多媒体应用或者交互式应用。

在这些系统中,需要优先处理一些关键的任务,以确保系统的响应速度和稳定性。

二、短进程优先调度算法原理短进程优先调度算法是一种按照进程需要的CPU时间长度进行调度的算法。

该算法先选择需要运行时间最短的进程来执行,从而能够有效地提高系统的吞吐量和响应速度。

2.1 短进程优先调度算法的工作原理在短进程优先调度算法中,系统会根据每个进程需要运行的时间长度来进行调度。

当系统需要选择一个进程来执行时,它会选择需要运行时间最短的进程。

这样可以确保每个进程都能够及时得到执行,并且能够有效地提高系统的吞吐量和响应速度。

2.2 短进程优先调度算法的特点短进程优先调度算法的特点是能够有效地提高系统的吞吐量和响应速度。

由于选择运行时间最短的进程来执行,可以确保每个进程都能够及时得到执行,从而减少了平均等待时间和平均周转时间。

2.3 短进程优先调度算法的应用场景短进程优先调度算法通常适用于需要平衡系统的吞吐量和响应速度的场景,比如多用户系统或者交互式系统。

C++-实现进程调度算法-有先来先服务、优先级调度、短作业优先、响应比高优先

C++-实现进程调度算法-有先来先服务、优先级调度、短作业优先、响应比高优先

课程设计报告书实践课题:操作系统课程设计姓名:学号:完成时间:指导老师:(老师)一、设计摘要利用C++,实现进程调度算法,有先来先服务、优先级调度、短作业优先、响应比高优先,进一步理解了进程调度各种算法的概念及含义。

二、设计背景在OS中,调度的实质是一种资源分配,调度算法即指:根据系统的资源分配策略所规定的资源分配算法。

对于不同的系统和系统目标,通常采用不同的调度算法,如在批处理系统中,为照顾为数众多的短作业,采用短作业有限调度算法;在分时系统中,为保证系统具有合理的响应时间,采用轮转法进行调度。

采用算法时,则要考虑多方面因素,以便达到最佳效果。

三、主要技术/算法简介#include<iostream>using namespace std;#define MAX 10struct task_struct{char name[10]; /*进程名称*/int number; /*进程编号*/float come_time; /*到达时间*/float run_begin_time; /*开始运行时间*/float run_time; /*运行时间*/float run_end_time; /*运行结束时间*/int priority; /*优先级*/int order; /*运行次序*/int run_flag; / *调度标志*/}tasks[MAX];int counter; /*实际进程个数*/int fcfs(); /*先来先服务*/int ps(); /*优先级调度*/int sjf(); /*短作业优先*/int hrrn(); /*响应比高优先*/int pinput(); /*进程参数输入*/int poutput(); / *调度结果输出*/void main(){ int option;pinput();printf("请选择调度算法(0~4):\n");printf("1.先来先服务\n");printf("2.优先级调度\n");printf("3.短作业优先\n");printf("4.响应比高优先\n");printf("0.退出\n");scanf("%d",&option);switch (option){case 0:printf("运行结束。

调度算法之最短作业优先算法

调度算法之最短作业优先算法

调度算法之最短作业优先算法最短作业优先算法⼜叫做短进程优先算法写此博⽂⽬的:1.⽅便⾃⼰复习2.给正在学习此算法的⼈⼀点参考单道(⼀次只能运⾏⼀个进程)分析:先将进程按照到达时间升序排序,第⼀个进程到达的时候不等待,直接运⾏,因为他是第⼀个到达的进程,在他之前没有进程在运⾏,当有进程到达但是有其他进程在运⾏的时候,到达的进程处于等待状态,当某个正在运⾏的进程运⾏完毕的时候,需要选择下⼀个进程,依据是:处于等待状态的进程,且运⾏时间最短(当有多个进程处于等待状态的时候,选择运⾏时间最短的进程,这个结束最短作业优先算法的核⼼)代码如下:#include<bits/stdc++.h>using namespace std;#define TAKEIN "takein"//对应的进程状态#define WAIT "wait"#define RUN "run"#define FINISH "finish"#define PNUMBER 5//进程个数typedef struct pcb{char processName[20];//进程名称int arriveTime;//进程到达时间int startTime;//进程开始时间int endTime;//进程结束时间int runTime;//进程运⾏时间⼤⼩int turnOverTime;//周转时间int userweightTurnOverTime;//带权周转时间char provessStatus[10];//进程状态} pcb;pcb pcbs[PNUMBER];//进程数组int currentTime=0;//时间int processIndex=0;//进程的编号void createPcbs()//进程初始化函数{freopen("input.txt","r",stdin);//以只读操作读⽂件printf("进程名\t到达时间\t运⾏时间\n");for(int index=0; index<PNUMBER; index++)//遍历所有进程,给进程赋初值{scanf("%s",pcbs[index].processName);scanf("%d",&pcbs[index].arriveTime);scanf("%d",&pcbs[index].runTime);pcbs[index].endTime=0;pcbs[index].startTime=0;pcbs[index].turnOverTime=0;pcbs[index].userweightTurnOverTime=0;strcpy( pcbs[index].provessStatus,TAKEIN);printf("%s \t%d \t%d\n", pcbs[index].processName, pcbs[index].arriveTime, pcbs[index].runTime);}printf("\n***********************************************\n");}void printfPcbsInfo()//打印所有进程的所有信息{printf("当前时间为:%d时各进程的信息.....\n\n",currentTime);printf("进程名\t到达时间\t运⾏时间\t开始时间\t结束时间\t周转时间\t带权周转时间\t状态\n");for(int index=0; index<PNUMBER; index++){printf("%s\t%8d\t%8d\t%8d\t%8d\t%8d\t%8d\t%4s\n",pcbs[index].processName,pcbs[index].arriveTime,pcbs[index].runTime,pcbs[index].startTime,pcbs[index].endTime,pcbs[index].turnOverTime,pcbs[index].userweightTurnOverTime,pcbs[index].provessStatus); }}void sortPcbs()//按到达时间的升序排序{int minIndex=0,minValue=0;for(int i=0; i<PNUMBER; i++){minIndex=i;minValue=pcbs[i].arriveTime;for(int j=i; j<PNUMBER; j++){if(pcbs[j].arriveTime<minValue){minValue=pcbs[j].arriveTime;//保存最⼩的minIndex=j;}}pcb temp=pcbs[minIndex];//交换pcbs[minIndex]=pcbs[i];pcbs[i]=temp;}}int selNectProcess()//下⼀个进程的选择,条件:等待状态&&运⾏时间最短{int result=-1;int minTime=100;for(int index=0; index<PNUMBER; index++){if(strcmp(pcbs[index].provessStatus,WAIT)==0)//进程处于等待状态{if(pcbs[index].runTime<minTime)//且运⾏时间最短{minTime=pcbs[index].runTime;result=index;}}}return result;//返回下⼀个运⾏的进程的编号}int isHasProcessArrive()//检查在某⼀个时间点有没有进程到达{int result=-1;for(int index=0; index<PNUMBER; index++){if(pcbs[index].arriveTime==currentTime)//某个进程的到达时间等于当前时间{result=index;strcpy(pcbs[index].provessStatus,WAIT);//改变进程状态}}return result;}void runProcess(int pindex){int runTime=pcbs[pindex].runTime;//进程开始,需要改变进程的相关信息pcbs[pindex].startTime=currentTime;pcbs[pindex].endTime=pcbs[pindex].startTime+pcbs[pindex].runTime;strcpy(pcbs[pindex].provessStatus,RUN);printfPcbsInfo();//输出此时进程的信息for(int k=1; k<=runTime; k++) //进程运⾏中{currentTime++;//时间转动isHasProcessArrive();if(k==runTime)//进程结束条件{//改变进程相关信息strcpy(pcbs[pindex].provessStatus,FINISH);pcbs[pindex].turnOverTime=pcbs[pindex].endTime-pcbs[pindex].arriveTime;pcbs[pindex].userweightTurnOverTime=pcbs[pindex].turnOverTime*1.0/pcbs[pindex].runTime; }printfPcbsInfo();//打印进程此时信息}processIndex++;//准备运⾏下⼀个进程currentTime--;//收回⼀个时刻,因为下⼀个进程在此时运⾏}void startProcess()//开始进程的调度{int firstArriveTime=pcbs[0].arriveTime;//第⼀个到达的进程int nextIndex=0;printfPcbsInfo();while(1){currentTime++;//时间流动isHasProcessArrive();//检查这个时候有没有新到达的进程if(currentTime<firstArriveTime)//第⼀个进程都没有到{printfPcbsInfo();}else if(currentTime==firstArriveTime){runProcess(0);//执⾏进程}else//第⼀个进程执⾏完毕,选择下⼀个进程{nextIndex=selNectProcess();if(nextIndex!=-1)//存在下⼀个将要执⾏的进程{runProcess(nextIndex);}if(processIndex==PNUMBER)//所有进程执⾏完毕break;//跳出循环}}}int main(){createPcbs();//进程相关信息的初始化sortPcbs();//进程按照到达时间升序排序startProcess();//开始进程的调度return0;}输⼊⽂本如下:运⾏结果如下:如果有不⾜错误的地⽅,欢迎⼤家拍砖指正哦天⽓不错。

操作系统实验_先来先服务的调度算法和短作业优先

操作系统实验_先来先服务的调度算法和短作业优先

操作系统实验_先来先服务的调度算法和短作业优先先来先服务(FCFS)调度算法是一种非抢占式调度算法,在这种算法中,进程按照到达系统的先后顺序执行,并且在一个进程执行完毕之前,不会有其他进程执行。

如果一个进程没有执行完成,后续进程需要等待。

FCFS调度算法的优点是实现简单,公平性好。

由于按照到达时间先后顺序执行进程,能够保证所有进程都能够得到执行的机会。

然而,FCFS调度算法容易出现“饥饿”现象,即如果一个进程占用了较长的CPU时间,其他进程可能需要等待较长时间。

短作业优先(SJF)调度算法是一种非抢占式调度算法,它选择下一个执行的进程是根据预计的执行时间最短的进程。

在SJF调度算法中,进程按照预计的执行时间进行排序,并按照顺序执行。

SJF调度算法的优点是能够最大程度地减少平均等待时间。

因为进程按照预计的执行时间最短的顺序执行,执行时间短的进程优先执行,可以最大限度地减少其他进程等待的时间。

然而,SJF调度算法需要预先知道所有进程的执行时间,并且如果一个进程执行时间长,其他进程需要等待的时间可能会很长。

FCFS调度算法和SJF调度算法都有各自的优点和局限性。

FCFS调度算法适用于进程执行时间相对均匀的情况,可以保证所有进程都能够得到执行的机会。

但是,如果一个进程执行时间很长,可能会导致其他进程等待的时间非常长,容易出现“饥饿”现象。

SJF调度算法适用于进程执行时间差异较大的情况,可以最大程度地减少平均等待时间。

但是,SJF调度算法需要预先知道所有进程的执行时间,而且在实际应用中,很难准确预测进程的执行时间。

在实验中,可以通过编写相应的模拟程序来实现FCFS调度算法和SJF调度算法。

可以设定一个进程队列,每个进程有自己的到达时间和执行时间。

按照FCFS算法,按照到达时间先后顺序执行进程;按照SJF算法,按照执行时间从小到大的顺序执行进程。

通过模拟进程的调度过程,可以观察到FCFS算法和SJF算法的效果差异。

处理器调度算法c语言

处理器调度算法c语言

处理器调度算法c语言一、概述处理器调度算法是操作系统中一个非常重要的问题。

在多任务操作系统中,有多个进程同时运行,而处理器只有一个,因此需要对进程进行调度,使得每个进程都能够得到适当的执行时间。

二、常见的处理器调度算法1. 先来先服务(FCFS)FCFS算法是最简单的调度算法之一。

它按照进程到达时间的先后顺序进行调度,即先到达的进程先执行。

这种算法容易实现,但可能会导致长作业等待时间过长。

2. 最短作业优先(SJF)SJF算法是根据每个进程所需的CPU时间来进行排序,并按照顺序进行调度。

这种算法可以减少平均等待时间和平均周转时间,并且可以最大限度地利用CPU资源。

3. 优先级调度优先级调度是根据每个进程的优先级来进行排序,并按照顺序进行调度。

这种算法可以确保高优先级进程得到更多的CPU时间,但可能会出现低优先级进程饥饿问题。

4. 时间片轮转(RR)RR算法将CPU分配给每个任务一定量的时间片,在该时间片内运行任务。

如果任务在该时间片内未完成,则将其放回队列尾部,并分配给下一个任务时间片。

这种算法可以确保公平性,并且可以避免长作业等待时间过长。

三、C语言中的处理器调度算法实现1. FCFS算法实现#include <stdio.h>int main(){int n, i, j;float avg_waiting_time = 0, avg_turnaround_time = 0;printf("Enter the number of processes: ");scanf("%d", &n);int burst_time[n], waiting_time[n], turnaround_time[n];printf("Enter the burst time for each process:\n");for(i=0; i<n; i++)scanf("%d", &burst_time[i]);waiting_time[0] = 0;turnaround_time[0] = burst_time[0];for(i=1; i<n; i++){waiting_time[i] = waiting_time[i-1] + burst_time[i-1];turnaround_time[i] = waiting_time[i] + burst_time[i];avg_waiting_time += waiting_time[i];avg_turnaround_time += turnaround_time[i];}avg_waiting_time /= n;avg_turnaround_time /= n;printf("\nProcess\tBurst Time\tWaiting Time\tTurnaround Time\n");for(i=0; i<n; i++)printf("P%d\t%d\t\t%d\t\t%d\n", i+1, burst_time[i], waiting_time[i], turnaround_time[i]);printf("\nAverage Waiting Time: %.2f\n", avg_waiting_ time);printf("Average Turnaround Time: %.2f\n", avg_turnaround_ time);return 0;}2. SJF算法实现#include <stdio.h>int main(){int n, i, j, temp;float avg_waiting_time = 0, avg_turnaround_time = 0; printf("Enter the number of processes: ");scanf("%d", &n);int burst_time[n], waiting_time[n], turnaround_time[n]; printf("Enter the burst time for each process:\n");for(i=0; i<n; i++)scanf("%d", &burst_time[i]);for(i=0; i<n-1; i++)for(j=i+1; j<n; j++)if(burst_time[i] > burst_time[j]){temp = burst_time[i];burst_time[i] = burst_time[j]; burst_time[j] = temp;}waiting_time[0] = 0;turnaround_time[0] = burst_time[0];for(i=1; i<n; i++){waiting_time[i] = waiting_time[i-1] + burst_time[i-1];turnaround_time[i] = waiting_time[i] + burst_time[i];avg_waiting_time += waiting_time[i];avg_turnaround_time += turnaround_time[i];}avg_waiting_time /= n;avg_turnaround_time /= n;printf("\nProcess\tBurst Time\tWaiting Time\tTurnaround Time\n");for(i=0; i<n; i++)printf("P%d\t%d\t\t%d\t\t%d\n", i+1, burst_time[i], waiting_time[i], turnaround_time[i]);printf("\nAverage Waiting Time: %.2f\n", avg_waiting_ time);printf("Average Turnaround Time: %.2f\n", avg_turnaround_ time);return 0;}3. 优先级调度算法实现#include <stdio.h>int main(){int n, i, j, temp;float avg_waiting_time = 0, avg_turnaround_time = 0;printf("Enter the number of processes: ");scanf("%d", &n);int burst_time[n], waiting_time[n], turnaround_time[n], priority[n];printf("Enter the burst time and priority for each process:\n"); for(i=0; i<n; i++)scanf("%d %d", &burst_time[i], &priority[i]);for(i=0; i<n-1; i++)for(j=i+1; j<n; j++)if(priority[i] > priority[j]){temp = priority[i];priority[i] = priority[j];priority[j] = temp;temp = burst_time[i];burst_time[i] = burst_time[j]; burst_time[j] = temp;}waiting_time[0] = 0;turnaround_time[0] = burst_time[0];for(i=1; i<n; i++){waiting_time[i] = waiting_time[i-1] + burst_time[i-1];turnaround_time[i] = waiting_time[i] + burst_time[i];avg_waiting_ time += waiting_ time[i];avg_turnaround_ time += turnaround_ time[i];}avg_waiting_ time /= n;avg_turnaround_ time /= n;printf("\nProcess\tBurst Time\tPriority\tWaiting Time\tTurnaround Time\n");for(i=0; i<n; i++)printf("P%d\t%d\t\t%d\t\t%d\t\t%d\n", i+1, burst_ time[i], priority[i], waiting_time[i], turnaround_time[i]);printf("\nAverage Waiting Time: %.2f\n", avg_waiting_ time);printf("Average Turnaround Time: %.2f\n", avg_turnaround _ time);return 0;}4. RR算法实现#include <stdio.h>int main(){int n, i, j, time_quantum;float avg_waiting_time = 0, avg_turnaround_time = 0;printf("Enter the number of processes: ");scanf("%d", &n);int burst_time[n], remaining_time[n], waiting_time[n], turnaround_time[n];printf("Enter the burst time for each process:\n");for(i=0; i<n; i++)scanf("%d", &burst_time[i]);printf("Enter the time quantum: ");scanf("%d", &time_quantum);for(i=0; i<n; i++)remaining_time[i] = burst_time[i];int t=0;while(1){int done = 1;for(i=0; i<n; i++){if(remaining_time[i] > 0){done = 0;if(remaining_ time[i] > time_ quantum){t += time_ quantum;remaining_ time[i] -= time_ quantum;}else{t += remaining _ time[i];waiting_time[i] = t - burst_time[i];remaining_ time[i] = 0;turnaround_ time[i] = waiting_time[i] + burst_time[i];avg_waiting_ time += waiting_ time[i];avg_turnaround _ time += turnaround_ time[i];}}}if(done == 1)break;}avg_waiting_ time /= n;avg_turnaround_ time /= n;printf("\nProcess\tBurst Time\tWaiting Time\tTurnaround Time\n");for(i=0; i<n; i++)printf("P%d\t%d\t\t%d\t\t%d\n", i+1, burst_time[i], waiting_time[i], turnaround_time[i]);printf("\nAverage Waiting Time: %.2f\n", avg_waiting_ time);printf("Average Turnaround Time: %.2f\n", avg_turnaround _ time);return 0;}四、总结以上是常见的处理器调度算法的C语言实现方式。

短作业优先调度算法例题详解(一)

短作业优先调度算法例题详解(一)

短作业优先调度算法例题详解(一)短作业优先调度算法例题简介短作业优先调度算法(SJF)是一种常用的进程调度算法,也被称为最短作业优先调度算法。

它通过选择剩余执行时间最短的作业来调度进程,以提高系统的吞吐量和响应时间。

本文将在此背景下给出一个例题,并详细解释短作业优先调度算法的实现过程。

短作业优先调度算法的例题假设有以下四个进程需要执行:1.进程A,需要执行时间为5个单位时间2.进程B,需要执行时间为3个单位时间3.进程C,需要执行时间为8个单位时间4.进程D,需要执行时间为1个单位时间解题步骤使用短作业优先调度算法调度上述四个进程,按照以下步骤进行:1.计算每个进程的执行时间,得到以下结果:–进程A,需要执行时间为5个单位时间–进程B,需要执行时间为3个单位时间–进程C,需要执行时间为8个单位时间–进程D,需要执行时间为1个单位时间2.按照执行时间的大小对进程进行排序,得到以下顺序:–进程D(执行时间为1个单位时间)–进程B(执行时间为3个单位时间)–进程A(执行时间为5个单位时间)–进程C(执行时间为8个单位时间)3.按照排序后的顺序依次执行进程,得到以下调度结果:–进程D(执行时间为1个单位时间)–进程B(执行时间为3个单位时间)–进程A(执行时间为5个单位时间)–进程C(执行时间为8个单位时间)结论通过短作业优先调度算法,进程的执行顺序被合理调度,系统的响应时间得到了改善。

短作业优先调度算法可有效减少作业的平均等待时间,提高系统的吞吐量。

总之,短作业优先调度算法是一种简单且高效的进程调度算法,适用于在大多数情况下需要快速响应任务的系统。

它通过选择剩余执行时间最短的作业来调度进程,以提高系统性能。

在实际应用中,短作业优先调度算法需要根据系统实际情况进行调优,以获得更好的性能表现。

以上就是关于短作业优先调度算法例题的详细解释。

希望通过本文的介绍,读者能够对短作业优先调度算法有更加深入的了解。

操作系统实验_先来先服务的调度算法和短作业优先

操作系统实验_先来先服务的调度算法和短作业优先

操作系统实验_先来先服务的调度算法和短作业优先操作系统中的进程调度算法是实现多道程序设计的关键,作为操作系统中的调度器,它决定了进程在CPU上执行的顺序,直接影响到系统的性能和响应时间。

本文将重点介绍两种常用的进程调度算法:先来先服务调度算法(FCFS)和短作业优先调度算法(SJF)。

先来先服务调度算法是一种最简单、最基础的调度算法,其实现非常简单:按照进程到达CPU的先后顺序,将其依次调入CPU执行。

当一个进程进入就绪队列后,在CPU空闲的时候,就将其调入CPU执行,直到进程执行完成或者主动放弃CPU时间片。

这种调度算法的优势在于实现简单、公平性好;但其缺点也很明显,由于没有考虑进程的执行时间长短,如果一个长时间的进程先到达就绪队列,则会造成其他进程的等待时间过长,导致系统的响应时间较长。

与FCFS相对的是短作业优先调度算法(Shortest Job First, SJF)。

SJF调度算法会根据进程的相对执行时间长短来进行调度,即将执行时间最短的进程优先调度进入CPU执行。

SJF算法的关键在于如何估计进程的执行时间,通常有两种方法:预测和历史信息。

预测方法是根据进程的相关信息,如进程的大小、执行时间等进行预测;而历史信息方法是根据以往同类任务的执行时间的平均值或历史执行时间进行估算。

在实际操作中,通常采用后者进行调度。

SJF调度算法的优势在于可以最大程度地减少平均等待时间,提高系统的响应效率。

然而,该算法也存在一些问题,如如何准确估算进程的执行时间、对长时间任务不够友好等。

两种调度算法各自都有其优势和劣势,因此在实际操作中需要根据具体的情况选择适用的调度算法。

如果系统中存在大量长时间任务,可以考虑使用FCFS来保证公平性;而如果系统中的任务短且繁琐,可以优先考虑SJF算法来减少平均等待时间。

此外,还有一些改进版的调度算法,如最短剩余时间优先调度算法(Shortest Remaining Time First, SRTF)和多级反馈队列调度算法(Multi-Level Feedback Queue, MLFQ)等,它们在一定程度上兼顾了FCFS和SJF的优势,更适用于实际的操作系统。

(完整版)操作系统短作业优先调度算法汇总,推荐文档

(完整版)操作系统短作业优先调度算法汇总,推荐文档
3
五、主要数据结构及其说明
算法的基本概念和原理:本次课程设计主要是采用短作业优先算法进程的 进程调度过程。短作业优先调度算法,是指对短作业或短进程优先调度的算法。 他们可以分别用于作业调度和进程调度,短作业优先的调度算法是从后备队列 中选择一个或若干个估计运行时间最短的作业,将他们调入内存运行。而短进 程优先调度算法则是从就绪队列中选出一个估计运行时间最短的进程,将处理 机分配给他,使它立即执行并一直执行到完成,或发生某事件而被阻塞放弃处 理机时再度重新调度。本程序采用了非抢占式短作业优先调度。而非抢占式这 种方式,一旦把处理机分配给某进程后,便让该进程一直执行,直至该进程完 成或发生某事件而被阻塞时,才再把处理机分配给其它进程,决不允许某进程 抢占已经分配出去的处理机。这种调度方式的优点是实现简单,系统开销小, 适用于大多数的批处理系统环境。但它难以满足紧急任务的要求——立即执行, 因而可能造成难以预料的后果。因此,在要求比较严格的实时系统中,不宜采 用这种调度方式。本课程设计主要是在满足要求多道单处理机的情况下进行短 作业的优先调度。
4
达的,那么首先执行该进程;之后就比较进程的服务时间,谁的服务时间短就 先执行谁(如果服务时间相同则看它们的到达时间,到达时间短的先执行);如 果到达时间和服务时间相同,则按先来先服务算法执行。
六、程序运行结果
1 进入操作界面如下 2 输入进程的信息
3 各时刻进程的状态
5
6
4 进程信息
5 平均带权周转时间界面
float run_time;
run_time=Process[i].WholeTime;
j=1;
while((j<N)&&(Process[i].ArrivalTime==Process[j].ArrivalTime)) //判断是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

O S短作业优先调度算法C语言采用短作业优先调度算法调度程序学号:姓名:专业:指导老师:日期:目录一、实验题目 (3)二、课程设计的目的 (3)三、设计内容 (3)四、设计要求 (3)五、主要数据结构及其说明 (4)六、程序运行结果 (5)七、流程图 (7)八、源程序文件 (9)九、实验体会 (13)十、参考文献 (14)摘要在多道程序环境下,主存中有着多个进程,其数目往往多于处理机数目。

这就要求系统能按某种算法,动态地把处理机分配给就绪队列中的一个进程,使之执行。

分配处理机的任务是由处理机调度程序完成的。

由于处理机是最重要的计算机资源,提高处理机的利用率及改善系统性能(吞吐量、响应时间),在很大程度上取决于处理机调度性能的好坏,因而,处理机调度便成为操作系统设计的中心问题之一。

在多道程序系统中,一个作业被提交后必须经过处理机调度后,方能获得处理机执行。

对于批量型作业而言,通常需要经历作业调度和进程调度两个过程后方能获得处理机。

作业调度是对成批进入系统的用户作业,根据作业控制块的信息,按一定的策略选取若干个作业使它们可以去获得处理器运行的一项工作。

而对每个用户来说总希望自己的作业的周转时间是最小的,短作业优先(SJF)便是其中一种调度方法。

本次课程设计主要是模拟短作业优先(SJF)调度算法。

一、实验题目采用短作业优先算法的的进程调度程序二、课程设计的目的●操作系统课程设计是计算机专业重要的教学环节,它为学生提供了一个既动手又动脑,将课本上的理论知识和实际有机的结合一起,独立分析和解决实际问题的机会。

●进一步巩固和复习操作系统的基础知识。

●培养学生结构化程序、模块化程序设计的方法和能力。

●提高学生调试程序的技巧和软件设计的能力。

●提高学生分析问题、解决问题以及综合利用C语言进行程序设计的能力。

三、设计内容设计并实现一个采用短作业优先算的进程调度算法演示程序四、设计要求1. 每一个进程有一个PCB,其内容可以根据具体情况设定。

2. 进程数、进入内存时间、要求服务时间、优先级等均可以在界面上设定3. 可读取样例数据(要求存放在外部文件中)进行进程数、进入内存时间、时间片长度、进程优先级的初始化4. 可以在运行中显示各进程的状态:就绪、执行(由于不要求设置互斥资源与进程间同步关系,故只有两种状态)5. 采用可视化界面,可在进程调度过程中随时暂停调度,查看当前进程的状态以及相应的阻塞队列五、主要数据结构及其说明算法的基本概念和原理:本次课程设计主要是采用短作业优先算法进程的进程调度过程。

短作业优先调度算法,是指对短作业或短进程优先调度的算法。

他们可以分别用于作业调度和进程调度,短作业优先的调度算法是从后备队列中选择一个或若干个估计运行时间最短的作业,将他们调入内存运行。

而短进程优先调度算法则是从就绪队列中选出一个估计运行时间最短的进程,将处理机分配给他,使它立即执行并一直执行到完成,或发生某事件而被阻塞放弃处理机时再度重新调度。

本程序采用了非抢占式短作业优先调度。

而非抢占式这种方式,一旦把处理机分配给某进程后,便让该进程一直执行,直至该进程完成或发生某事件而被阻塞时,才再把处理机分配给其它进程,决不允许某进程抢占已经分配出去的处理机。

这种调度方式的优点是实现简单,系统开销小,适用于大多数的批处理系统环境。

但它难以满足紧急任务的要求——立即执行,因而可能造成难以预料的后果。

因此,在要求比较严格的实时系统中,不宜采用这种调度方式。

本课程设计主要是在满足要求多道单处理机的情况下进行短作业的优先调度。

算法的简要说明:短作业(进程)优先调度算法SJ(P)F,是指对短作业或短进程优先调度的算法。

它们可以分别用于作业调度和进程调度。

短作业优先(SJF)的调度算法是从后备队列中选择一个或若干个估计运行时间最短的作业,将它们调入内存运行。

而短进程(SPF)调度算法则是从就绪队列中选出一个估计运行时间最短的进程,将处理机分配给它,使它立即执行并一直执行到完成,或发生某事件而被阻塞放弃处理机再重新调度。

优点是SJ(P)F调度算法能有效地降低作业(进程)的平均等待时间,提高系统吞吐量。

缺点是该算法对长作业不利;完全未考虑作业的紧迫程度,因而不能保证紧迫性作业(进程)长期不被调度;由于作业(进程)的长短只是根据用户所提供的估计执行时间而定的,而用户又可能会有意或无意地缩短其作业的估计运行时间,致使该算法不一定能真正做到短作业游戏那调度。

该程序定义了一个进程数据块(struct Process_),该数据块有进程名(name)、到达时间(arrivetime)、服务时间(servicetime)、开始执行时间(starttime)、完成时间(finishtime)、周转时间(zztime)、带权周转时间(dqzztime)、执行顺序(order)。

用到的公式有:完成时间=到达时间+服务时间;周转时间=完成时间+到达时间;带权周转时间=周转时间/服务时间;(第一次执行的进程的完成时间=该进程的到达时间;下一个进程的开始执行时间=上一个进程的完成时间)。

运行进程的顺序需要对进程的到达时间和服务时间进行比较。

如果某一进程是从0时刻到达的,那么首先执行该进程;之后就比较进程的服务时间,谁的服务时间短就先执行谁(如果服务时间相同则看它们的到达时间,到达时间短的先执行);如果到达时间和服务时间相同,则按先来先服务算法执行。

六、程序运行结果1 进入操作界面如下2输入进程的信息3 各时刻进程的状态4 进程信息5 平均带权周转时间界面七、流程图本次课程设计主要是通过比较各个进程的优先级以及各进程所需要占用的CPU时间来确定哪个作业优先运行,短作业优先调度算法除了能保证优先级更高的作业优先运行外,还能使相同优先级的前提下,所需CPU时间最短的那个作业优先运行,次外,本次课程设计还增加了阻塞时间和被阻塞时间来对个进程的运行加以控制。

此次课程设计的总体流程图如下:八、源程序文件#include<iostream>#define MaxNum 100using namespace std;struct Process_struct{int Number; //进程编号char Name[MaxNum]; //进程名称int ArrivalTime; //到达时间int ServiceTime; //开始运行时间int FinishTime; //运行结束时间int WholeTime; //运行时间int run_flag; //调度标志int order; //运行次序double WeightWholeTime; //周转时间double AverageWT_FCFS,AverageWT_SJF; //平均周转时间double AverageWWT_FCFS,AverageWWT_SJF; //平均带权周转时间}Process[MaxNum];int N; //实际进程个数int SJF(); //短作业优先int SJF(){ //短作业优先算法int temp_time=0; //当期那时间int i=0,j;int number_schedul,temp_counter; //进程编号,当前已执行进程个数float run_time;run_time=Process[i].WholeTime;j=1;while((j<N)&&(Process[i].ArrivalTime==Process[j].ArrivalTime)) //判断是否有两个进程同时到达{if(Process[j].WholeTime<Process[i].WholeTime){run_time=Process[i].WholeTime;i=j;}j++;}//查找下一个被调度的进程//对找到的下一个被调度的进程求相应的参数number_schedul=i;Process[number_schedul].ServiceTime=Process[number_schedul].ArrivalTim e;Process[number_schedul].FinishTime=Process[number_schedul].ServiceTime +Process[number_schedul].WholeTime;Process[number_schedul].run_flag=1;temp_time=Process[number_schedul].FinishTime;Process[number_schedul].order=1;temp_counter=1;while(temp_counter<N){for(j=0;j<N;j++){if((Process[j].ArrivalTime<=temp_time)&&(!Process[j].run_flag)){run_time=Process[j].WholeTime;number_schedul=j;break;}}for(j=0;j<N;j++){if((Process[j].ArrivalTime<=temp_time)&&(!Process[j].run_flag))if(Process[j].WholeTime<run_time){run_time=Process[j].WholeTime;number_schedul=j;}}//查找下一个被调度的进程//对找到的下一个被调度的进程求相应的参数Process[number_schedul].ServiceTime=temp_time;Process[number_schedul].FinishTime=Process[number_schedul].ServiceTime +Process[number_schedul].WholeTime;Process[number_schedul].run_flag=1;temp_time=Process[number_schedul].FinishTime;temp_counter++;Process[number_schedul].order=temp_counter;}return 0;}int Pinput(); //进程参数输入int Poutput(); //调度结果输出void main(){int option;printf(" ********************主菜单************************\n");printf(" * 1 使用短作业优先 *\n");printf(" * 0 退出 *\n");printf("**************************************************\n");//system("cls");system("color 1f");scanf("%d",&option);switch(option){case 0:printf("运行结束。

相关文档
最新文档