美国“高考”SAT考试的数学题

合集下载

SAT数学试题及答案x

SAT数学试题及答案x

SAT数学试题及答案x1. 题目:一个矩形的长是宽的两倍,如果矩形的面积是48平方单位,那么矩形的宽是多少?答案:设矩形的宽为 \( w \) ,则长为 \( 2w \) 。

根据面积公式 \( \text{面积} = \text{长} \times \text{宽} \) ,我们有\( 2w \times w = 48 \) 。

解这个方程得到 \( w^2 = 24 \) ,所以\( w = \sqrt{24} = 2\sqrt{6} \) 。

因此,矩形的宽是\( 2\sqrt{6} \) 单位。

2. 题目:一个圆的半径是5单位,求这个圆的周长。

答案:圆的周长公式是 \( C = 2\pi r \) ,其中 \( r \) 是半径。

将 \( r = 5 \) 代入公式,得到 \( C = 2\pi \times 5 =10\pi \) 。

所以,这个圆的周长是 \( 10\pi \) 单位。

3. 题目:如果一个数 \( x \) 的三倍加上5等于20,求 \( x \) 的值。

答案:根据题目,我们有方程 \( 3x + 5 = 20 \) 。

解这个方程,首先从两边减去5得到 \( 3x = 15 \) ,然后除以3得到 \( x = 5 \) 。

因此,\( x \) 的值是5。

4. 题目:一个三角形的底边长为8单位,高为6单位,求这个三角形的面积。

答案:三角形的面积公式是 \( \text{面积} = \frac{1}{2}\times \text{底} \times \text{高} \) 。

将底边长8单位和高6单位代入公式,得到 \( \text{面积} = \frac{1}{2} \times 8 \times 6 = 24 \) 。

所以,这个三角形的面积是24平方单位。

5. 题目:如果一个函数 \( f(x) \) 满足 \( f(x+2) = 2f(x) \) ,并且 \( f(1) = 3 \) ,求 \( f(5) \) 的值。

SAT-II-Math(美国SAT数学几何题目和答案)

SAT-II-Math(美国SAT数学几何题目和答案)

10.Geometry1.In a circle with center at O, arc ST measures 110°. What is the measure of angle STO?2.If the angles of a triangle are in the ratio of 2:3:5, what is the measure of the smallest angle?3.In the figure x.4.The diagonal of a rectangle is 26 cm and its height is 10 cm. Find the area of the rectangle in squarecentimeters.5. A ship travels 60 mi north, 90 mi west, and then 60 mi north again. How many miles is it fromits starting point?6.Find the length in inches of a tangent drawn to a circle with a 10 in. radius from a point 26 in.from the center of the circle.7.If the largest possible circular disc is cut from a rectangular piece of tin 8 in. by 12 in., what isthe area of the waste tin in square inches in terms of π?8. A circle is inscribed in a square. What is the ratio of the area of the square to that of the circle interms of π?9.At 4:20 PM., how many degrees has the hour hand of a clock moved since noon?10.Find the volume of a cube in cubic centimeters if the total surface area of its faces is 150 sq cm.11.A cylindrical can has a circular base with a diameter of 14 in. and a height of 9 in. Approxi-12.What is the volume in cubic inches of an open box made by snipping squares 2 in. by 2 in. fromthe corners of a sheet of metal 8 in. by 11 in. and then folding up the sides?13.Water 6 in. high in a fish tank 15 in. long by 8 in. wide is poured into a tank 20 in. long by 12 in.wide. What height in inches does it reach in the larger tank?14.A 6 ft pole is casting a 5 ft shadow at the same time that a flagpole is casting a 22 ft shadow. Howmany feet high is the flagpole?15.In the figure, PQRST is a regular pentagon inscribed in the circle. andthe pentagon, forming an angle of x° as shown. What does x equal?16.A treasure is buried 10 ft from tree T and 12 ft from a straight fence F. If T is 20 ft from F, in howmany places may the treasure be buried?17.If a given statement is true, which of the following statements must also be true?(A)the converse of the statement(B)the inverse of the statement(C)the contrapositive of the statement(D)the negative of the statement(E)none of these18.Given point P on a line. In a given plane containing the line, what is the total number of pointsthat are at a distance of 4 units from P and also at a distance of 3 units from the given line? 19.Point Q is 20 cm from plane P in space. What is the locus of points 8 cm from P and 12 cm frompoint Q?20.The sum of the measures of the interior angles of a convex polygon is 720°. What is the sum of themeasures of the interior angles of a second convex polygon that has two more sides than the first?10.GEOMETRY1.The correct answer is (35º).Let PT be a diameter of Circle O.2.The correct answer is (36º). Let 2x = smallest angle in degrees, 3x and 5x = other two anglesin degrees.3.The correct answer is (120º).m (alernate interior angles), and mAngle x is an exterior angle of ∆DEF and isequal to the sum of the measures of the two remote interior angles.x= 50º + 70º = 120º5.The correct answer is (150).The tangent is perpendicular to the radiusat the point of tangency.In right triangle OTP7.The correct answer is (96 - 16π).8.The correct answer isLet radius of circle be 1.Side of square is 1 + 1 =2.9.The correct answer is (130º).From noon to 4:00 PM., the hour hand has moved from 12 to 4: of360º = 120º. In the next 20 minutes it moves of the distance from 4:00 to 5:00: of30º = 10º.120º + 10º = 130º10.The correct answer is (125).11.The correct answer is (6).12.The correct answer is (56).13.The correct answer is (3).14.The correct answer isCross-multiply.15.The correct answer is (108°).16.The correct answer is (2).The locus of points 10 ft. from T is acircle of radius 10. The locus of points12 ft from F consists of two parallellines 12 ft from F on each side. Thecircle and one parallel line intersect intwo points.17.The correct answer is (C). The only statement that has the same truth value as the given statement isthe contrapositive of the original statement. This is the converse of the inverse of the original statement.18.The correct answer is (4).The locus of points 4 units from P is a circleof radius 4 with center at P. The locusof points 3 units from the given line consistsof two parallel lines 3 units from theline. The two parallel lines intersect thecircle in 4 points.19.The correct answer is (1).The locus of points 8 cm from P consistsof two planes parallel to P and 8 cm fromit. The locus of points 12 cm from Q is asphere of radius 12 and center at Q. Thesphere intersects one of the parallel planesin one point (point of tangency).20.The correct answer is (1080°). The sum of the interior angles of an n-sided polygon is (n – 2) 180°= 720°. Divide by 180.The second polygon has 6 + 2 = 8 sides.Sum of the measures of its interior angles = 180(8 – 2)= 180(6) = 1080°。

SAT考试2024数学历年题目全解

SAT考试2024数学历年题目全解

SAT考试2024数学历年题目全解SAT考试是一项全球性的标准化考试,旨在评估学生在阅读、写作和数学方面的能力。

数学部分是SAT考试的一个重要组成部分,涵盖了各种数学概念和技巧。

本文将为您提供2024年SAT数学部分的历年题目全解,帮助您更好地应对这一考试。

第一题:题目:求解以下方程:3x + 5 = 20解析:要求解方程3x + 5 = 20,我们首先将5从等式两边减去,得到3x = 15。

然后,我们将方程两边都除以3,即x = 5。

因此,方程的解为x = 5。

第二题:题目:计算以下比例的值:5:8 = x:40解析:要计算比例5:8与x:40的值,我们可以采取交叉乘法的方法。

将5乘以40,并将结果除以8,即可求得x的值。

计算过程如下:5 * 40 / 8 = 200 / 8 = 25因此,比例5:8与x:40的值为25。

第三题:题目:已知一个等边三角形的边长为12,计算其面积。

解析:一个等边三角形的边长为12,则其高可以通过勾股定理求得。

根据勾股定理,我们有:高的平方= 边长的平方- 底边的一半的平方。

设高为h,则有 h^2 = 12^2 - (12/2)^2= 144 - 36= 108因此,高h = √108 = 6√3由于等边三角形的高等于边长的一半乘以根号3,所以面积S可以计算为:S = 1/2 * 12 * 6√3= 6 * 6√3= 36√3因此,该等边三角形的面积为36√3。

第四题:题目:在一个长方形花坛中,长度是宽度的3倍,已知宽度为2米,计算花坛的面积。

解析:我们知道长方形花坛的面积可以通过长度乘以宽度来计算。

已知宽度为2米,则长度为3 * 2 = 6米。

因此,花坛的面积为2 * 6 =12平方米。

通过以上题目的解析,我们可以看到SAT数学部分考察了各种数学概念和技巧,包括方程的求解、比例的计算、勾股定理的应用以及长方形面积的计算等。

熟练掌握这些数学知识,并能够灵活运用于实际问题的解决中,将有助于您在SAT考试中取得更好的成绩。

SAT考试数学练习题第九套 SAT problem solving practice test 9

SAT考试数学练习题第九套 SAT problem solving practice test 9

SAT考试数学练习题第九套 SAT problem solving practice test 91. (3 x 104) + (2 x 10²) + (4 x 10) =A. 302400B. 32400C. 30240D. 3240E. 3242. Andy solves problems 74 to 125 inclusive in a Math exercise. How many problems does he solve?A. 53B. 52C. 51D. 50E. 493.If x and y are integers, and 3x + 2y = 13, which of the following could be the value of y ?A. 0B. 1C. 2D. 3E. 44.In triangle ABC, AD = DB , DE is parallel to BC, and the area of triangle ABC is 40. What is the area of triangle ADE ?A. 10B. 15C. 20D. 30E. it cannot be determined from the information given5. If n > 0 , which of the following must be true?I n² > 1II n - n² < 0III 2n - 1 > 0A. I onlyB. II onlyC. III onlyD. I and II onlyE. none6.If the slope of a line is ½ and the y-intercept is 3, what is the x-intercept of the same line?A. 6B. 3/2C. 0D. -2/3E. -67.6 people meet for a business lunch. Each person shakes hands once with each other person present. How many handshakes take place?A. 30B. 21C. 18D. 15E. 108.If x² - y² = 55, and x - y = 11, then y =A. 8B. 5C. 3D. -8E. -39.In a sports club with 30 members, 17 play badminton and 19 play tennis and 2 do not play either. How many members play both badminton and tennis?A. 7B. 8C. 9D. 10E. 1110. Rectangle ABCD has a perimeter of 26. The half circle with diameter AD has an area of 8π. What is the perimeter of the part of the figure that is not shaded?A. 26 + 4πB. 18 + 8πC. 18 + 4πD. 14 + 4πE. 14 + 2πSAT数学练习题第9套参考答案1.Correct Answer: CExplanation:2 x 104 = 30,000; 2 x 102 = 200; 4 x 10 = 40The total is 30,2402.Correct Answer: BExplanation:To find how many problems in the series we need to take the difference and add one.125 - 74 = 51; 51 + 1 =523.Correct Answer: CExplanation:Substitute the given values for y and check whether you get an integer value for x.For example, using 0 we get 3x = 13; x = 13/3 which is not a whole number. The right answer is 2, since 3x + 2(2) = 13; 3x = 13 - 4 = 9; x = 9/3 = 3.4.Correct Answer: AExplanation:The big triangle ABC is similar to the small triangle ADE because their bases are parallel. If corresponding side of two similar triangles are known the ratio of the areas is also known. In this case, let AD be one unit, then AB is 2 units (given that AB = AD + DB). The ratios of the sides is 1 : 2. The ratio of the areas will be (1)2 : (2)2 ; 1 : 4Since the big triangle has area 40, using the ratio, the small has area 10.5.Correct Answer: EExplanation:Given that n is positive, it could be a positive fraction, 1, or a fraction of whole number greater than 1.If n = 1, then case I is not true since n2 = 1Likewise in II if n = 1, n - n2 = 0, and the statement is not true.In III, if n = ½, then 2n - 1 = 0, and again the statement is incorrect.6.Correct Answer: EExplanation:The equation for a straight line is y = mx + c, where m = slope and c = y-intercept.Putting the given values in this equation we have y = x/2 + 3The x-intercept occurs where y = 0. Thus, 0 = x/2 + 3 ; -3 = x/2 ; -6 =x7.Correct Answer: DExplanation:Imagine the first person of the six. He or she will have to shake hands with each of the other 5. Now turn to the second person. He or she will have to shake with the other five, but he she has already shaken with the first person. This means 4 new handshakes. The third person will have to shake with 5 - 2 = 3 people, and so on. Total handshakes = 5 + 4 + 3 + 2 + 1 = 158.Correct Answer: EExplanation:x2 - y2 can be expressed as (x + y)(x - y); since x - y =11 we can write (x + y)11 = 55; therefore x + y = 5Adding the two equations x + y = 5 and x - y = 11 we get2x = 16; x = 8Therefore 8 - y = 11; y = -39.Correct Answer: BExplanation:Since 2 do not play either, there are 28 members who play one sport or the other. Let the number who play both be n.Total (28) will be made up of only badminton players (17 - n), plus onlytennis (19 - n) and those who play both (n).28 = (17 - n) + (19 - n) + n28 = 36 - n ; n = 810.Correct Answer: CExplanation:The total perimeter of the un-shaded part is made up of three sides of the rectangle and the perimeter of the half-circle.The area of a half circle = ½ π r28 π = ½ π r2; therefore r = 4The perimeter of the half circle is ½ 8 π = 4 πThe diameter of the circle (8) = the length of the rectangle.Total perimeter of the rectangle = 26Three sides measure 26 - 8 = 18 Ans. 18 + 4π。

SAT考试2024数学历年真题研究

SAT考试2024数学历年真题研究

SAT考试2024数学历年真题研究随着全球教育水平的提高,越来越多的学生选择参加SAT考试,该考试是大多数美国大学招生的重要标准之一。

数学部分是SAT考试的重要组成部分,对考生的数学能力和解题能力进行考察。

为了更好地应对SAT数学考试,了解历年真题并进行研究是非常重要的。

本文将对SAT考试2024数学部分的历年真题进行研究,并分享一些备考建议。

第一部分:单选题单选题是SAT数学部分的常见题型,考察考生对数学概念和基本运算的理解能力。

以下是2024年SAT数学部分的一道单选题:题目:如图所示,一个正方形中有一个带有边缘的圆形。

如果正方形的周长是18,那么圆形的半径是多少?解析:根据题目描述,我们可以推断出正方形的边长是18/4=4.5。

根据正方形的对角线性质可知,对角线的长度等于边长的平方根的2倍,即对角线长度为4.5√2。

由于圆形的直径等于对角线的长度,因此圆形的直径为4.5√2。

而圆形的半径等于直径的一半,即(4.5√2)/2=2.25√2。

因此,圆形的半径是2.25√2。

备考建议:对于这类单选题,关键是理解题目并运用相应的数学知识进行推理和计算。

在备考过程中,建议多做一些类似的题目,并加强对基本概念和运算规则的理解与掌握。

第二部分:多选题多选题是SAT数学部分的另一种题型,相比于单选题更为复杂,考察考生的判断和综合分析能力。

以下是2024年SAT数学部分的一道多选题:题目:如图所示,一个直角梯形的上底、下底和高分别为a、b和h。

已知(a+b+h)^2的展开式中,二次项系数的和为15,三次项系数的和为12,四次项系数的和为4。

求a、b和h的值。

解析:首先,我们可以将(a+b+h)^2展开为a^2+b^2+h^2+2ab+2ah+2bh。

根据题目条件,我们可以得到以下等式:2ab+2ah+2bh=152a+2b+2h=12a^2+b^2+h^2+2ab+2ah+2bh=4将第一个等式除以2,我们得到ab+ah+bh=7.5;将第二个等式除以2,我们得到a+b+h=6。

2024年SAT考试数学历年真题精选辑

2024年SAT考试数学历年真题精选辑

2024年SAT考试数学历年真题精选辑一、选择题1. 已知方程 ax^2 + bx + c = 0 中,a ≠ 0,若该方程存在两个相等实数根,则下列哪个条件必然成立?A) a = bB) a = cC) b = cD) a + b = cE) b + c = a2. 投掷一枚均匀硬币,连续抛掷若干次,每次结果独立。

设已知前两次投掷结果都是正面朝上,下一次投掷的正面朝上的概率为多少?A) 1/2B) 1/4C) 1/3D) 2/3E) 2/93. 若函数 f(x) = 2x^2 + kx + 1,对于所有实数 x,f(x) > 0 成立。

则 k 的取值范围是?A) -1 < k < 1B) k > 1C) k < -1D) k ≠ 0E) k = 1二、解答题1. 设正整数 n 满足 n(n+1)(n+2) 可以被 3 和 8 同时整除,求 n 的最小值。

解:根据题意,n(n+1)(n+2) 是 3 和 8 的公倍数。

由于 3 和 8 互质,所以n(n+1)(n+2) 的最小公倍数为 24(3*8)。

因此,n 的最小值为 2。

2. 一辆长为 5 米的火车以恒定速度行驶通过测速点,测速点距离火车的前端 9 米,测得该火车的速度为 72 km/h。

若按该测速点测得的速度计算,火车的长度应为多少米?解:由于测得的速度为火车通过测速点的平均速度,根据平均速度公式v = d/t,我们可以得到火车通过测速点所用的时间 t = 9 米 / 72 km/h = (9/1000) / (72/3600) 小时。

由此,我们可以计算火车通过测速点所用的时间 t = 0.15 秒。

根据速度公式 v = d/t,可以得到火车通过测速点所用的距离 d = v * t = 72 km/h * 0.15 秒 = (72/3600) km * 0.15 秒 = 0.00375 km = 3.75 米。

2024 SAT考试数学历年题目大盘点

2024 SAT考试数学历年题目大盘点

2024 SAT考试数学历年题目大盘点2024年即将迎来 SAT 考试,作为一项重要的学术考试,数学部分一直是考生们关注的焦点。

为了帮助考生更好地备考,本文将对近年的 SAT 数学试题进行盘点,并分析其中的一些常见考点。

一、代数与函数(Algebra and Functions)1. 方程与不等式(Equations and Inequalities)近年的 SAT 数学试题中,涉及到方程与不等式的题目较为常见。

考生需要熟练掌握一元一次方程、二元一次方程、一元二次方程以及绝对值不等式等的解法。

此外,还需要注意对于方程和不等式解集的理解和应用。

2. 函数(Functions)函数是 SAT 考试中的重点内容之一。

考生需要了解各类常见函数的性质,如线性函数、二次函数、指数函数、对数函数等,并能够灵活运用函数的性质解决问题。

此外,函数的符号表示、定义域、值域以及函数图像的理解也是考点之一。

二、几何(Geometry)1. 平面几何(Plane Geometry)几何部分涉及到平面几何和空间几何的知识。

在平面几何方面,考生需要掌握直线与角、三角形、四边形、圆等图形的性质,能够灵活运用相关定理解决几何问题。

2. 空间几何(Solid Geometry)空间几何侧重于三维几何图形的性质和计算。

考生需要了解球体、圆柱体、锥体、棱柱等立体图形的特征和计算方法,并能够运用相关定理解决与空间几何有关的问题。

三、数据分析(Data Analysis)1. 统计与概率(Statistics and Probability)数据分析部分主要考察考生对统计与概率的理解和运用能力。

考生需要了解统计数据的收集、整理和分析方法,包括频率分布、平均数、中位数、标准差等;同时还需要对概率的计算和应用有一定的掌握。

2. 数据表示与解释(Data Representation and Interpretation)数据表示与解释主要考察考生对数据图表的理解和分析能力。

sat数学试题及答案

sat数学试题及答案

sat数学试题及答案SAT数学试题及答案一、选择题1. 一个圆的半径是5,求这个圆的面积。

A. 25πB. 50πC. 75πD. 100π答案:B2. 如果一个数列的前三项是2, 4, 6,那么第10项是多少?A. 18B. 20C. 22D. 24答案:B3. 一个三角形的三边长分别为3, 4, 5,这个三角形是:A. 等边三角形B. 等腰三角形C. 直角三角形D. 钝角三角形答案:C二、填空题4. 一个数的平方根等于它本身,这个数是________。

答案:0或15. 如果一个函数f(x) = 3x + 5,求f(-2)的值。

答案:-16. 一个长方形的长是10厘米,宽是5厘米,求它的周长。

答案:30厘米三、简答题7. 一个圆的周长是31.4厘米,求这个圆的直径。

解:根据圆的周长公式C = πd,我们有31.4 = πd。

解得d = 31.4 / π ≈ 10厘米。

8. 一个等差数列的首项是5,公差是3,求第20项的值。

解:等差数列的通项公式为an = a1 + (n - 1)d。

将首项a1 = 5和公差d = 3代入公式,得到a20 = 5 + (20 - 1) * 3 = 5 + 57 = 62。

9. 一个直角三角形的两条直角边分别是6和8,求斜边的长度。

解:根据勾股定理,斜边c的长度等于两直角边的平方和的平方根,即c = √(6² + 8²) = √(36 + 64) = √100 = 10。

四、解答题10. 一个工厂生产了1000个零件,其中5%是次品。

如果工厂决定只出售合格的零件,那么工厂将出售多少个零件?解:首先计算次品的数量,1000 * 5% = 50个。

然后从总数中减去次品的数量,得到出售的合格零件数量:1000 - 50 = 950个。

11. 一个投资项目预计在第一年结束时产生$10,000的利润,如果每年的增长率为5%,那么第三年结束时的利润是多少?解:使用复合利息公式计算,P = P0 * (1 + r)^n,其中P0是初始利润,r是增长率,n是年数。

SAT考试专题2024数学历年题目解析

SAT考试专题2024数学历年题目解析

SAT考试专题2024数学历年题目解析2024年的SAT考试将继续囊括数学科目,下面将对该年度的数学部分历年题目进行解析,帮助考生更好地准备SAT数学考试。

1. 第一题解析该题目是一道代数题,要求求解方程:3x + 5 = 20。

解题思路:将方程中的变量与常数项分离,得到:3x = 20 - 5。

计算得:3x = 15,再将等式两边同时除以3,得到:x = 5。

因此,方程的解为x = 5。

2. 第二题解析该题目是一道几何题,要求计算三角形的面积。

解题思路:已知三角形的底边长度为6,高为8。

直接使用三角形面积公式:面积 = 底边长度 ×高 ÷ 2。

代入已知的数值进行计算:面积 = 6 × 8 ÷ 2 = 24。

因此,该三角形的面积为24平方单位。

3. 第三题解析该题目是一道概率题,要求计算从一副标准扑克牌中随机抽取一张牌,该牌为红桃的概率。

解题思路:一副标准扑克牌中共有52张牌,其中有13张红桃牌。

因此,红桃牌的概率为:概率 = 红桃牌数目 ÷总牌数目。

代入已知数值进行计算:概率 = 13 ÷ 52 = 1 ÷ 4 = 0.25。

因此,从一副标准扑克牌中随机抽取一张牌,该牌为红桃的概率为0.25。

4. 第四题解析该题目是一道函数题,要求计算函数的值。

解题思路:已知函数 f(x) = 2x^2 + 3x + 1,需要计算当 x = 2 时的函数值。

将 x = 2 代入函数表达式中,得到:f(2) = 2 × 2^2 + 3 × 2 + 1。

计算得:f(2) = 8 + 6 + 1 = 15。

因此,当 x = 2 时,函数 f(x) 的值为15。

5. 第五题解析该题目是一道统计题,要求根据给定的数据计算平均数。

解题思路:已知一组数据为:10, 12, 15, 18, 20。

需要计算这组数据的平均数。

平均数的计算公式为:平均数 = 总和 ÷数据个数。

sat数学考试试题

sat数学考试试题

s a t数学考试试题(共12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--SAT数学真题精选1. If 2 x + 3 = 9, what is the value of 4 x – 3(A) 5 (B) 9 (C) 15 (D) 18 (E) 212. If 4(t + u) + 3 = 19, then t + u =(A) 3 (B) 4 (C) 5 (D) 6 (E) 73. In the xy-coordinate (坐标) plane above, the line contains the points (0,0) and (1,2). If line M (not shown) contains the point (0,0) and is perpendicular (垂直) to L, what is an equation of M?(A) y = -1/2 x(B) y = -1/2 x + 1(C) y = - x(D) y = - x + 2(E) y = -2x4. If K is divisible by 2,3, and 15, which of the following is also divisible by these numbers?(A) K + 5 (B) K + 15 (C) K + 20 (D) K + 30 (E) K + 455. There are 8 sections of seats in an auditorium. Each section contains at least 150 seats but not more than 200 seats. Which of the following could be the number of seats in this auditorium?(A) 800 (B) 1,000 (C) 1,100 (D) 1,300 (E) 1,7006. If rsuv = 1 and rsum = 0, which of the following must be true?(A) r < 1 (B) s < 1 (C) u= 2 (D) r = 0 (E) m = 07. The least integer of a set of consecutive integers (连续整数) is –126. if the sum of these integers is 127, how many integers are in this set? (A) 126 (B) 127 (C) 252 (D) 253 (E) 2548. A special lottery is to be held to select the student who will live in the only deluxe room in a dormitory. There are 200 seniors, 300 juniors, and 400 sophomores who applied. E ach senior’s name is placed in the lottery 3 times; each junior’s name, 2 time; and each sophomore’s name, 1 times. If a student’s name is chosen at random from the names in the lottery, what is the probability that a senior’s name will be chosen?(A)1/8 (B) 2/9 (C) 2/7 (D) 3/8 (E) 1/2Question #1: 50% of US college students live on campus. Out of all students living on campus, 40% are graduate students. What percentage of US students are graduate students living on campus?(A) 90% (B) 5% (C) 40% (D) 20% (E) 25%Question #2: In the figure below, MN is parallel with BC and AM/AB = 2/3. What is the ratio between the area of triangle AMN and the area of triangle ABC?(A) 5/9 (B) 2/3 (C) 4/9 (D) 1/2 (E) 2/9Question #3: If a2 + 3 is divisible by 7, which of the following values can be a?(A)7 (B)8 (C)9 (D)11 (E)4Question #4: What is the value of b, if x = 2 is a solution of equation x2 - b · x + 1 = 0?(A)1/2 (B)-1/2 (C)5/2 (D)-5/2 (E)2Question #5: Which value of x satisfies the inequality | 2x | < x + 1(A)-1/2 (B)1/2 (C)1 (D)-1 (E)2Question #6: If integers m > 2 and n > 2, how many (m, n) pairs satisfy the inequality m n < 100?(A)2 (B)3 (C)4 (D)5 (E)7Question #7: The US deer population increase is 50% every 20 years. How may times larger will the deer population be in 60 years(A) (B) (C) (D) (E)Question #8: Find the value of x if x + y = 13 and x - y = 5.(A)2 (B)3 (C)6 (D)9 (E)4Question #9:The number of medals won at a track and field championship is shown in the table above. What is the percentage of bronze medals won by UK out of all medals won by the 2 teams?(A)20% (B)% (C)% (D)% (E)10%Question #10: The edges of a cube are each 4 inches long. What is the surface area, in square inches, of this cube(A)66 (B)60 (C)76 (D)96 (E)65Question #1: The sum of the two solutions of the quadratic equation f(x) = 0 is equal to 1 and the product of the solutions is equal to -20. What are the solutions of the equation f(x) = 16 - x(a) x1 = 3 and x2 = -3 (b) x1 = 6 and x2 = -6(c) x1 = 5 and x2 = -4 (d) x1 = -5 and x2 = 4(e) x1 = 6 and x2 = 0 Question #2: In the (x, y) coordinate plane, three lines have the equations: l1: y = ax + 1l2: y = bx + 2l3: y = cx + 3Which of the following may be values of a, b and c, if line l3 is perpendicular to both lines l1 and l2(a) a = -2, b = -2, c = .5 (b) a = -2, b = -2, c = 2(c) a = -2, b = -2, c = -2 (d) a = -2, b = 2, c = .5(e) a = 2, b = -2, c = 2Question #3: The management team of a company has 250 men and 125 women. If 200 of the managers have a master degree, and 100 of the managers with the master degree are women, how many of the managers are men without a master degree(a) 125 (b) 150 (c) 175 (d) 200 (e) 225Question #4: In the figure below, the area of square ABCD is equal to the sum of the areas of triangles ABE and DCE. If AB = 6, then CE =(a) 5 (b) 6 (c) 2 (d) 3 (e) 4Question #5:If α and β are the angles of the right triangle shown in the figure above, then sin2α + sin2β is equal to:(a) cos(β)(b) sin(β) (c) 1 (d) cos2(β) (e) -1Question #6: The average of numbers (a + 9) and (a - 1) is equal to b, where a and b are integers. The product of the same two integers is equal to (b - 1)2. What is the value of a(a) a = 9 (b) a = 1 (c) a = 0 (d) a = 5 (e) a = 11 Question #1: If f(x) = x and g(x) = √x, x≥ 0, what are the solutions of f(x) = g(x)(A) x = 1 (B)x1 = 1, x2 = -1(C)x1 = 1, x2 = 0 (D)x = 0(E)x = -1Question #2: What is the length of the arc AB in the figure below, if O is the center of the circle and triangle OAB is equilateral The radius of the circle is 9(a) π(b) 2 ·π(c) 3 ·π(d) 4 ·π (e) π/2Question #3: What is the probability that someone that throws 2 dice gets a 5 and a 6 Each dice has sides numbered from 1 to 6.(a)1/2 (b)1/6 (c)1/12 (d)1/18 (e)1/36Question #4: A cyclist bikes from town A to town B and back to town A in 3 hours. He bikes from A to B at a speed of 15 miles/hour while his return speed is 10 miles/hour. What is the distance between the 2 towns?(a)11 miles (b)18 miles (c)15 miles (d)12 miles (e)10 milesQuestion #5: The volume of a cube-shaped glass C1 of edge a is equal to half the volume of a cylinder-shaped glass C2. The radius of C2 is equal to the edge of C1. What is the height of C2?(a)2·a /π (b)a / π (c)a / (2·π) (d)a / π (e)a + πQuestion #6: How many integers x are there such that 2x < 100, and at the same time the number 2x + 2 is an integer divisible by both 3 and 2?(a)1 (b)2 (c) 3 (d) 4 (e)5Question #7: sin(x)cos(x)(1 + tan2(x)) =(a)tan(x) + 1 (b)cos(x)(c)sin(x) (d)tan(x)(e)sin(x) + cos(x)Question #8: If 5xy = 210, and x and y are positive integers, each of the following could be the value of x + y except:(a)13 (b) 17 (c) 23 (d)15 (e)43Question #9: The average of the integers 24, 6, 12, x and y is 11. What is the value of the sum x + y(a)11 (b)17 (c)13 (d)15 (e) 9Question #10: The inequality |2x - 1| > 5 must be true in which one of the following casesI. x < -5 II. x > 7 III. x > 01.Three unit circles are arranged so that each touches the other two. Findthe radii of the two circles which touch all three.2.Find all real numbers x such that x + 1 = |x + 3| - |x - 1|.3.(1) Given x = (1 + 1/n)n, y = (1 + 1/n)n+1, show that x y = y x.(2) Show that 12 - 22 + 32 - 42 + ... + (-1)n+1n2 = (-1)n+1(1 + 2 + ... + n).4.All coefficients of the polynomial p(x) are non-negative and noneexceed p(0). If p(x) has degree n, show that the coefficient of x n+1 in p(x)2 is at most p(1)2/2.5.What is the maximum possible value for the sum of the absolute valuesof the differences between each pair of n non-negative real numbers which do not exceed 1?6.AB is a diameter of a circle. X is a point on the circle other than themidpoint of the arc AB. BX meets the tangent at A at P, and AX meetsthe tangent at B at Q. Show that the line PQ, the tangent at X and the line AB are concurrent.7.Four points on a circle divide it into four arcs. The four midpoints forma quadrilateral. Show that its diagonals are perpendicular.8.Find the smallest positive integer b for which 7 + 7b + 7b2 is a fourthpower.9.Show that there are no positive integers m, n such that 4m(m+1) =n(n+1).10.ABCD is a convex quadrilateral with area 1. The lines AD, BC meet atX. The midpoints of the diagonals AC and BD are Y and Z. Find the area of the triangle XYZ.11. A square has tens digit 7. What is the units digit?12.Find all ordered triples (x, y, z) of real numbers which satisfy thefollowing system of equations:xy = z - x - yxz = y - x - zyz = x - y - z。

2024 SAT考试数学历年题目精粹

2024 SAT考试数学历年题目精粹

2024 SAT考试数学历年题目精粹SAT考试是许多学生考入大学的重要考试之一,其中数学部分是考生需要面对的一项挑战。

为了帮助考生更好地备考SAT数学,本文将精选并解析2024年SAT考试数学部分的历年题目,以供参考。

第一部分:选择题题目1:一个矩形的宽度是它的长度的一半,若该矩形的面积为12,求其周长是多少?A. 12B. 14C. 16D. 18解析:设矩形的长度为l,则宽度为l/2。

根据面积的定义,我们可以列出方程l*(l/2)=12。

解方程得到l=4。

根据周长的计算公式,周长为2*l+2*(l/2)=14,选项B为正确答案。

题目2:若函数f(x)定义为f(x)=3x+1,求f(f(2))的值。

A. 9B. 10C. 11D. 12解析:由题意可知,f(2)=3*2+1=7。

将7代入函数f(x),得到f(f(2))=f(7)=3*7+1=22。

选项D为正确答案。

题目3:已知一个等差数列的公差为3,前两个数的和为10,求这个等差数列的第n个数。

A. 3n-1B. 3n-2C. 3n-3D. 3n-4解析:设等差数列的首项为a,第n个数为an。

根据题意可得到方程a+(a+3)=10,解得a=3。

利用等差数列的通项公式an=a+(n-1)d,代入公差d=3和首项a=3,得到an=3+3(n-1)=3n。

选项A为正确答案。

第二部分:填空题题目1:若a为正整数,满足2a+5=11,则a的值为____________。

解析:将已知条件代入方程,得到2a+5=11,解得a=3。

填入空格中为3。

题目2:一个矩形的面积为25,其中宽度为5,长度为_________。

解析:设矩形的长度为l,则根据面积的定义可得到方程5l=25,解得l=5。

填入空格中为5。

第三部分:解答题题目:一辆汽车以40 mph的速度行驶了3小时,另一辆汽车以50 mph的速度行驶了t小时。

若两辆汽车行驶的距离相同,求t的值。

解析:汽车行驶的距离等于速度乘以时间,可以列出方程40*3=50*t,解得t=2.4。

美国高考sat数学试题及答案

美国高考sat数学试题及答案

美国高考sat数学试题及答案美国高考SAT数学试题及答案1. 某商店进行促销活动,所有商品打8折。

如果一件商品原价为$50,那么打折后的价格是多少?A. $40B. $45C. $35D. $20答案:B2. 一个长方形的长是宽的两倍,如果宽为$x$,那么长方形的周长是多少?A. $6x$B. $4x$C. $2x$D. $8x$答案:A3. 如果一个数的平方等于36,那么这个数是多少?A. 6B. -6C. 6 或 -6D. 0答案:C4. 在一次数学测试中,平均分是75分。

如果一个学生得了80分,那么他的分数比平均分高了多少?A. 5分B. 10分C. 15分D. 20分答案:A5. 一个圆的半径是5厘米,那么这个圆的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π答案:B6. 如果一个函数$f(x) = 2x + 3$,那么$f(-1)$的值是多少?A. -1B. 1C. 5D. 7答案:B7. 一个等差数列的首项是3,公差是2,那么这个数列的第10项是多少?A. 23B. 21C. 19D. 17答案:A8. 如果一个三角形的两边长分别是5和7,且这两边夹角是90度,那么这个三角形的面积是多少?A. 12.5B. 15C. 17.5D. 20答案:A9. 如果一个函数$g(x) = x^2 - 4x + 3$,那么这个函数的最小值是多少?A. -1B. 0C. 1D. 3答案:A10. 在一个装有红球和蓝球的袋子里,红球和蓝球的比例是2:3。

如果随机抽取一个球,抽到红球的概率是多少?A. 2/5B. 3/5C. 4/5D. 1/2答案:A结束语:以上是美国高考SAT数学部分的试题及答案,希望对准备参加SAT考试的学生有所帮助。

(完整版)sat数学考试试题(可编辑修改word版)

(完整版)sat数学考试试题(可编辑修改word版)

SAT 数学真题精选1. If 2 x + 3 = 9, what is the value of 4 x – 3 ?(A) 5 (B) 9 (C) 15 (D) 18 (E) 212. If 4(t + u) + 3 = 19, then t + u = ?(A) 3 (B) 4 (C) 5 (D) 6 (E) 73.In the xy-coordinate (坐标) plane above, the line contains the points (0,0) and (1,2). If line M (not shown) contains the point (0,0) and is perpendicular (垂直)to L, what is an equation of M?(A) y = -1/2 x(B) y = -1/2 x + 1(C)y = - x(D)y = - x + 2(E)y = -2x4.If K is divisible by 2,3, and 15, which of the following is also divisible by these numbers?(A) K + 5 (B) K + 15 (C) K + 20 (D) K + 30 (E) K + 455.There are 8 sections of seats in an auditorium. Each section contains at least 150 seats but not more than 200 seats. Which of the following could be the number of seats in this auditorium?(A) 800 (B) 1,000 (C) 1,100 (D) 1,300 (E) 1,7006.If rsuv = 1 and rsum = 0, which of the following must be true?(A) r < 1 (B) s < 1 (C) u= 2 (D) r = 0 (E) m = 07.The least integer of a set of consecutive integers (连续整数) is –126. if the sum of these integers is 127, how many integers are in this set?(A) 126 (B) 127 (C) 252 (D) 253 (E) 2548.A special lottery is to be held to select the student who will live in the only deluxe room in a dormitory. There are 200 seniors, 300 juniors, and 400 sophomores who applied. Each senior’s name is placed in the lottery 3 times; each junior’s name, 2 time; and each sophomore’s name, 1 times. If a student’s name is chosen at random from the names in the lottery, what is the probability that a senior’s name will be chosen?(A)1/8 (B) 2/9 (C) 2/7 (D) 3/8 (E) 1/2Question #1: 50% of US college students live on campus. Out of all students living on campus, 40% are graduate students. What percentage of US students are graduate students living on campus?(A) 90% (B) 5% (C) 40% (D) 20% (E) 25% Question #2: In the figure below, MN is parallel with BC and AM/AB = 2/3. What is the ratio between the area of triangle AMN and the area of triangle ABC?(A) 5/9 (B) 2/3 (C) 4/9 (D) 1/2 (E) 2/9Question #3: If a2 + 3 is divisible by 7, which of the following values can be a?(A)7 (B)8 (C)9 (D)11 (E)4Question #4: What is the value of b, if x = 2 is a solution of equation x2 - b · x + 1 = 0?(A)1/2 (B)-1/2 (C)5/2 (D)-5/2 (E)2Question #5: Which value of x satisfies the inequality | 2x | < x + 1 ?(A)-1/2 (B)1/2 (C)1 (D)-1 (E)2Question #6: If integers m > 2 and n > 2, how many (m, n) pairs satisfy the inequality m n < 100?(A)2 (B)3 (C)4 (D)5 (E)7Question #7: The US deer population increase is 50% every 20 years. How may times larger will the deer population be in 60 years ?(A)2.275 (B)3.250 (C)2.250 (D)3.375 (E)2.500 Question #8: Find the value of x if x + y = 13 and x - y = 5.(A)2 (B)3 (C)6 (D)9 (E)4Question #9:The number of medals won at a track and field championship is shown in the table above. What is the percentage of bronze medals won by UK out of all medals won by the 2 teams?(A)20% (B)6.66% (C)26.6% (D)33.3% (E)10%Question #10: The edges of a cube are each 4 inches long. What is the surface area, in square inches, of this cube?(A)66 (B)60 (C)76 (D)96 (E)65Question #1: The sum of the two solutions of the quadratic equation f(x) = 0 is equal to 1 and the product of the solutions is equal to -20. What are the solutions of the equation f(x) = 16 - x ?(a) x1 = 3 and x2 = -3 (b) x1 = 6 and x2 = -6(c) x1 = 5 and x2 = -4 (d) x1 = -5 and x2 = 4(e) x1 = 6 and x2 = 0Question #2: In the (x, y) coordinate plane, three lines have the equations:l1: y = ax + 1l2: y = bx + 2l3: y = cx + 3Which of the following may be values of a, b and c, if line l3 is perpendicular to both lines l1 and l2?(a) a = -2, b = -2, c = .5 (b) a = -2, b = -2, c = 2(c) a = -2, b = -2, c = -2 (d) a = -2, b = 2, c = .5(e) a = 2, b = -2, c = 2Question #3: The management team of a company has 250 men and 125 women. If 200 of the managers have a master degree, and 100 of the managers with the master degree are women, how many of the managers are men without a master degree? (a) 125 (b) 150 (c) 175 (d) 200 (e) 225 Question #4: In the figure below, the area of square ABCD is equal to the sum of the areas of triangles ABE and DCE. If AB = 6, then CE =(a) 5 (b) 6 (c) 2 (d) 3 (e) 4Question #5:If α and β are the angles of the right triangle shown in the figure above, then sin2α + sin2β is equal to:(a) cos(β)(b) sin(β)(c) 1 (d) cos2(β)(e) -1 Question #6: The average of numbers (a + 9) and (a - 1) is equal to b, where a and b are integers. The product of the same two integers is equal to (b - 1)2. What is the value of a?(a) a = 9 (b) a = 1 (c) a = 0 (d) a = 5 (e) a = 11Question #1: If f(x) = x and g(x) = √x, x≥ 0, what are the solutions of f(x) = g(x)? (A) x = 1 (B)x1 = 1, x2 = -1(C)x1 = 1, x2 = 0 (D)x = 0(E)x = -1Question #2: What is the length of the arc AB in the figure below, if O is the center of the circle and triangle OAB is equilateral? The radius of the circle is 9(a) π(b) 2 ·π(c) 3 ·π(d) 4 ·π(e) π/2 Question #3: What is the probability that someone that throws 2 dice gets a 5 and a 6? Each dice has sides numbered from 1 to 6.(a)1/2 (b)1/6 (c)1/12 (d)1/18 (e)1/36 Question #4: A cyclist bikes from town A to town B and back to town A in 3 hours. He bikes from A to B at a speed of 15 miles/hour while his return speed is 10 miles/hour. What is the distance between the 2 towns?(a)11 miles (b)18 miles (c)15 miles (d)12 miles (e)10 miles Question #5: The volume of a cube-shaped glass C1 of edge a is equal to half the volume of a cylinder-shaped glass C2. The radius of C2 is equal to the edge of C1. What is the height of C2?(a)2·a/π(b)a / π(c)a / (2·π)(d)a / π(e)a + πQuestion #6: How many integers x are there such that 2x < 100, and at the same time the number 2x + 2 is an integer divisible by both 3 and 2?(a)1 (b)2 (c) 3 (d) 4 (e)5Question #7: sin(x)cos(x)(1 + tan2(x)) =(a)tan(x) + 1 (b)cos(x)(c)sin(x) (d)tan(x)(e)sin(x) + cos(x)Question #8: If 5xy = 210, and x and y are positive integers, each of the following could be the value of x + y except:(a)13 (b) 17 (c) 23 (d)15 (e)43Question #9: The average of the integers 24, 6, 12, x and y is 11. What is the value of the sum x + y?(a)11 (b)17 (c)13 (d)15 (e) 9Question #10: The inequality |2x - 1| > 5 must be true in which one of the following cases?I. x < -5 II. x > 7 III. x > 01.Three unit circles are arranged so that each touches the other two. Find the radiiof the two circles which touch all three.2.Find all real numbers x such that x + 1 = |x + 3| - |x - 1|.3.(1) Given x = (1 + 1/n)n, y = (1 + 1/n)n+1, show that x y = y x.(2) Show that 12 - 22 + 32 - 42 + ... + (-1)n+1n2 = (-1)n+1(1 + 2 + ... + n).4.All coefficients of the polynomial p(x) are non-negative and none exceed p(0). Ifp(x) has degree n, show that the coefficient of x n+1 in p(x)2 is at most p(1)2/2.5.What is the maximum possible value for the sum of the absolute values of thedifferences between each pair of n non-negative real numbers which do not exceed 1?6.AB is a diameter of a circle. X is a point on the circle other than the midpoint ofthe arc AB. BX meets the tangent at A at P, and AX meets the tangent at B at Q.Show that the line PQ, the tangent at X and the line AB are concurrent.7.Four points on a circle divide it into four arcs. The four midpoints form aquadrilateral. Show that its diagonals are perpendicular.8.Find the smallest positive integer b for which 7 + 7b + 7b2 is a fourth power.9.Show that there are no positive integers m, n such that 4m(m+1) = n(n+1).10.ABCD is a convex quadrilateral with area 1. The lines AD, BC meet at X. Themidpoints of the diagonals AC and BD are Y and Z. Find the area of the triangle XYZ.11.A square has tens digit 7. What is the units digit?12.Find all ordered triples (x, y, z) of real numbers which satisfy the following systemof equations:xy = z - x - yxz = y - x - zyz = x - y - z第11 页共11 页。

SAT考试数学练习题第九套_SAT_problem_solving_practice_test_9

SAT考试数学练习题第九套_SAT_problem_solving_practice_test_9

SAT考试数学练习题第九套 SAT problem solving practice test 91. (3 x 104) + (2 x 10²) + (4 x 10) =A. 302400B. 32400C. 30240D. 3240E. 3242. Andy solves problems 74 to 125 inclusive in a Math exercise. How many problems does he solve?A. 53B. 52C. 51D. 50E. 493.If x and y are integers, and 3x + 2y = 13, which of the following could be the value of y ?A. 0B. 1C. 2D. 3E. 44.In triangle ABC, AD = DB , DE is parallel to BC, and the area of triangle ABC is 40. What is the area of triangle ADE ?A. 10B. 15C. 20D. 30E. it cannot be determined from the information given5. If n > 0 , which of the following must be true?I n² > 1II n - n² < 0III 2n - 1 > 0A. I onlyB. II onlyC. III onlyD. I and II onlyE. none6.If the slope of a line is ½ and the y-intercept is 3, what is the x-intercept of the same line?A. 6B. 3/2C. 0D. -2/3E. -67.6 people meet for a business lunch. Each person shakes hands once with each other person present. How many handshakes take place?A. 30B. 21C. 18D. 15E. 108.If x² - y² = 55, and x - y = 11, then y =A. 8B. 5C. 3D. -8E. -39.In a sports club with 30 members, 17 play badminton and 19 play tennis and 2 do not play either. How many members play both badminton and tennis?A. 7B. 8C. 9D. 10E. 1110. Rectangle ABCD has a perimeter of 26. The half circle with diameter AD has an area of 8π. What is the perimeter of the part of the figure that is not shaded?A. 26 + 4πB. 18 + 8πC. 18 + 4πD. 14 + 4πE. 14 + 2πSAT数学练习题第9套参考答案1.Correct Answer: CExplanation:2 x 104 = 30,000; 2 x 102 = 200; 4 x 10 = 40The total is 30,2402.Correct Answer: BExplanation:To find how many problems in the series we need to take the difference and add one.125 - 74 = 51; 51 + 1 =523.Correct Answer: CExplanation:Substitute the given values for y and check whether you get an integer value for x.For example, using 0 we get 3x = 13; x = 13/3 which is not a whole number. The right answer is 2, since 3x + 2(2) = 13; 3x = 13 - 4 = 9; x = 9/3 = 3.4.Correct Answer: AExplanation:The big triangle ABC is similar to the small triangle ADE because their bases are parallel. If corresponding side of two similar triangles are known the ratio of the areas is also known. In this case, let AD be one unit, then AB is 2 units (given that AB = AD + DB). The ratios of the sides is 1 : 2. The ratio of the areas will be (1)2 : (2)2 ; 1 : 4Since the big triangle has area 40, using the ratio, the small has area 10.5.Correct Answer: EExplanation:Given that n is positive, it could be a positive fraction, 1, or a fraction of whole number greater than 1.If n = 1, then case I is not true since n2 = 1Likewise in II if n = 1, n - n2 = 0, and the statement is not true.In III, if n = ½, then 2n - 1 = 0, and again the statement is incorrect.6.Correct Answer: EExplanation:The equation for a straight line is y = mx + c, where m = slope and c = y-intercept.Putting the given values in this equation we have y = x/2 + 3The x-intercept occurs where y = 0. Thus, 0 = x/2 + 3 ; -3 = x/2 ; -6 =x7.Correct Answer: DExplanation:Imagine the first person of the six. He or she will have to shake hands with each of the other 5. Now turn to the second person. He or she will have to shake with the other five, but he she has already shaken with the first person. This means 4 new handshakes. The third person will have to shake with 5 - 2 = 3 people, and so on. Total handshakes = 5 + 4 + 3 + 2 + 1 = 158.Correct Answer: EExplanation:x2 - y2 can be expressed as (x + y)(x - y); since x - y =11 we can write (x + y)11 = 55; therefore x + y = 5Adding the two equations x + y = 5 and x - y = 11 we get2x = 16; x = 8Therefore 8 - y = 11; y = -39.Correct Answer: BExplanation:Since 2 do not play either, there are 28 members who play one sport or the other. Let the number who play both be n.Total (28) will be made up of only badminton players (17 - n), plus onlytennis (19 - n) and those who play both (n).28 = (17 - n) + (19 - n) + n28 = 36 - n ; n = 810.Correct Answer: CExplanation:The total perimeter of the un-shaded part is made up of three sides of the rectangle and the perimeter of the half-circle.The area of a half circle = ½ π r28 π = ½ π r2; therefore r = 4The perimeter of the half circle is ½ 8 π = 4 πThe diameter of the circle (8) = the length of the rectangle.Total perimeter of the rectangle = 26Three sides measure 26 - 8 = 18 Ans. 18 + 4π。

sat数学试题及答案

sat数学试题及答案

sat数学试题及答案1. 题目:解下列方程求x的值:\(2x - 5 = 3x + 1\)。

答案:首先将方程中的x项移到同一边,得到\(2x - 3x = 1 + 5\),简化后得到\(-x = 6\)。

然后将系数化为1,得到\(x = -6\)。

2. 题目:计算下列表达式的值:\(\frac{3}{4} \times\frac{8}{9}\)。

答案:将分子相乘得到\(3 \times 8 = 24\),分母相乘得到\(4\times 9 = 36\),所以表达式的值为\(\frac{24}{36}\)。

化简分数得到\(\frac{2}{3}\)。

3. 题目:一个矩形的长是宽的两倍,如果宽是5单位,那么矩形的周长是多少?答案:矩形的长是宽的两倍,所以长为\(5 \times 2 = 10\)单位。

矩形的周长是\(2 \times (\text{长} + \text{宽}) = 2 \times (10 + 5) = 2 \times 15 = 30\)单位。

4. 题目:如果一个数的平方是25,那么这个数是多少?答案:设这个数为\(x\),则有\(x^2 = 25\)。

解这个方程,我们得到\(x = \pm 5\)。

所以这个数可以是5或者-5。

5. 题目:计算下列多项式的乘积:\((x + 3)(x - 2)\)。

答案:使用分配律,我们得到\(x(x - 2) + 3(x - 2) = x^2 - 2x +3x - 6\)。

合并同类项,得到\(x^2 + x - 6\)。

6. 题目:一个圆的半径是4厘米,求这个圆的面积。

答案:圆的面积公式是\(A = \pi r^2\),其中\(r\)是半径。

将半径4厘米代入公式,得到\(A = \pi \times 4^2 = 16\pi\)平方厘米。

7. 题目:如果一个函数\(f(x) = 2x + 3\),求\(f(-1)\)的值。

答案:将\(x = -1\)代入函数\(f(x)\),得到\(f(-1) = 2(-1) + 3 = -2 + 3 = 1\)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

美国“高考”SAT考试的数学题数学第一部分时间(25分钟)16个问题说明:这部分包含有两种类型的问题。

你将有25分钟时间来完成他们。

对于1—8,在所给选项中选出一个最佳答案,然后再答题卡上填上相应的圆圈,你可以使用任何可用的草稿纸空间。

注释:1、可以使用计算器。

2、所有使用的数字均为实数。

3、在测试中,问题中所提供的数字或图表都包含一定的信息,这对于解题很有帮助。

所有图表都是比较准确的,除非在某些具体问题中,图表没有按比例绘制。

所有数字都呈现于平面上,除非另有说明。

4、除非另有规定,对于任何函数f 的值域都是所有实数x 的集合,并使得f(x) 是实数。

可能用到的公式:1、If 4(t+u) + 3 =19, then t+u=如果4(t+u) + 3 =19, 那么t+u=A 3B 4C 5D 6E 72、如图,三条直线相交于一点。

如果f=85, e=25, 那么a 的值是多少?A 60B 65C 70D 75E 853、如果玛丽开车行驶n 英里用了t 小时,那么下列哪个可以表示她行驶的平均速度,英里/小时?A n/tB t/nC 1/ntD ntE n²t4、如果a 是一个奇数,b 是一个偶数,那么选项中哪一个是奇数?A 3bB a+3C 2(a+b)D a+2bE 2a+b5、在平面坐标内,F(-2,1),G(1,4), H(4,1)在以P为圆心的圆上,那么点P的坐标是什么?A(0,0)B(1,1)C(1,2)D(1,-2)E(2.5,2.5)6、如图,如果-3≤x≤6,那么x 有几个值,使得f(x)=2?A 零B 一个C 两个D 三个E 三个以上7、如果t 和t+2 的算术平均值是x, t 和t-2的算术平均值是y,那么x 和y 的算术平均值是多少?A 1B 1/2C tD t+1/2E 2t8、对于任何数x 和y,假设x△y=x²+xy+y²,那么(3△1)△1等于多少?A 5B 13C 27D 170E 1839、摩根的植物在一年之内从42厘米长到57厘米。

而琳达的植物年前是59厘米,一年之内她的植物生长的高度是摩根植物长高的两倍,那么,在年底琳达植物的高度是多少?10、从1990年开始,一个树木繁茂区的松鼠的数量以每三年三倍的速度在增长。

如果1999年初这个地区有松鼠5400只,那么在1990年初的时候这个地区有多少松鼠?11、如图,ΔABC和ΔDCE均是等边三角形,且AE长为25.求这两个等边三角形的周长一共是多少?12、一个坛子中有24颗弹珠,其中红色和黑色弹珠各有12颗,如果要从中取出弹珠,那么至少要取出多少弹珠才能使剩余在坛子中的红色弹珠与黑色弹珠的比例为4:3?13、已知X=3v ,V=4t ,X=pt如果x≠0,求p的值?14、如果|-2x+1|<1,找出x的一个可能值?15、有一个正数,它是一个数的平方根,并且这个数也是40的一个约数,那么这个正数是多少?16、如下图,矩形ABDF, C和E分别是边BD、DF的中点。

那么阴影ACEF部分的面积占了这个矩形的几分之几?数学第二部分时间(25分钟)16个问题说明:这部分包含有两种类型的问题。

你将有25分钟时间来完成他们。

对于1—8,在所给选项中选出一个最佳答案,然后再答题卡上填上相应的圆圈,你可以使用任何可用的草稿纸空间。

注释:1、可以使用计算器。

2、所有使用的数字均为实数。

3、在测试中,问题中所提供的数字或图表都包含一定的信息,这对于解题很有帮助。

所有图表都是比较准确的,除非在某些具体问题中,图表没有按比例绘制。

所有数字都呈现于平面上,除非另有说明。

4、除非另有规定,对于任何函数f 的值域都是所有实数x 的集合,并使得f(x) 是实数。

1、下列哪一项不是80的因数?A、5B、8C、12D、16E、402、已知k=3wx,m=(w-1)k.当w=4,x=1时,m的值是多少?A、0B、3C、12D、24E、363、如图,街道的两边各有5间房子,若给这五间房子涂色,且相邻或正面相对的两间房子不可以涂相同的颜色,如果标有G的房子已涂了灰色,那么剩余7间房子有几间不可以涂成灰色?4、如果7n×7=7¹²,(7n为7的n次方)那么n 的值是多少?A、2B、4C、9D、15E、365、如图,一家具公司生产桌椅,左图为其在3年中桌椅的不同销售价格;右图为三个仓库所能存放的货物最大容量。

根据图表所示价格,在1995年,y仓库所存桌椅的价值最大是多少?6、如图,图中哪个角最大?A、aB、bC、cD、dE、e7、下列哪个方程式可能是图中函数的方程式?A、y=x²+2B、y=(x+2)²C、y=x²-2D、y=(x-2)²E、y=2x²8、立方体的边所形成的直角一共有多少个?A、36B、24C、20D、16E、129、如果(p+1)(t-3)=0,并且p是正数,那么t的值是多少?A、-3B、-1C、0D、1E、310、表中x,y满足下面那个等式?A、y=100-x²B、y=100-xC、y=100-2xD、y=100-4xE、y=100-100x11、一集邮俱乐部对其中10名成员的集邮数量进行了统计,其平均集邮数量为88.但是后来发现在输入票数时有两个数字出现失误,把55错输为75;把78错输为88.那么这十个人实际平均集邮为多少?A、91B、89C、87D、86E、8512、如图,直线L的斜率是多少?A、r/sB、-r/sC、s/rD、-s/rE、1/rs13、如图,如果l//m,且r=91,那么t+u=?A、178B、179C、180D、181E、18214、如图,如果x是直线上的一点,那么直线上那个点可以表示为-2x?A、AB、BC、CD、DE、E15、已知X和Y是圆上不重合的两点,M是一个定点,且XM=YM。

那么下列哪些可能是正确的?I、M是圆心II、M在弧度xy上III、M是圆外一点A、只有I是正确的B、只有II是正确的C、I和II都是正确的D、II和III是正确的E、都正确16、如图,直线函数f和y,求f(3)+g(3)=?A、1.5B、2C、3D、4E、5.517、如果A是质数的集合,B是一个由两位数组成的正整数集合,并且这个两位数的个位数是5,那么有多少个数字同时满足这两个集合?A、0B、1C、2D、5E、918、如果m的75%与k的25%相等,那么m/k=?A、3/16B、1/3C、3/4D、3E、16/319、R是线段PT的中点,Q是线段PR的中点。

如果S是介于R和T之间的一点,且QS为10,PS为19,那么ST=?A、13B、14C、15D、16E、1720、某电话公司规定:每次打电话的第一分钟按x美分/分钟收费。

超过一分钟的时间按y美分/分钟收费。

若一次通话话费5.55美元,那么下列哪个表达式可以表示这次通话的时间?A、555-x/yB、555+x+y/yC、555-x+y/yD、555-x-y/yE、555/x+y数学第三部分时间(20分钟)16个问题说明:这部分包含有两种类型的问题。

你将有25分钟时间来完成他们。

对于1—8,在所给选项中选出一个最佳答案,然后再答题卡上填上相应的圆圈,你可以使用任何可用的草稿纸空间。

注释:1、可以使用计算器。

2、所有使用的数字均为实数。

3、在测试中,问题中所提供的数字或图表都包含一定的信息,这对于解题很有帮助。

所有图表都是比较准确的,除非在某些具体问题中,图表没有按比例绘制。

所有数字都呈现于平面上,除非另有说明。

4、除非另有规定,对于任何函数f 的值域都是所有实数x 的集合,并使得f(x) 是实数。

1、凯诺有36个糖果。

她要把卖糖果的钱作为筹款活动的资金。

他自己买了10个,他的母亲把剩下的一半卖给了她的同事。

如果再没有卖出,还有几分之几的糖果没有卖出?A、5//8B、11/36C、1/3D、13/36E、7/182、在△PQR中,PR=QR,下列哪个是正确的?A、u=xB、x=vC、x=zD、y=xE、y=z3、如图,图中显示了某农场从1985年到1991年农场豆类的出产量。

那么哪两年的豆类的平均出产量与1985年的出产量相近?A、1986-1987B、1987-1988C、1988-1989D、1989-1990E、1990-19914、马克买牛仔裤和衬衫最多不可以超过120美元。

他买了三件牛仔裤,每件32美元,如果x表示他可以买衬衫的钱,那么下列哪个不等式可以表示他买衬衫的价格范围?A、(3)32-x≤120B、(3)32-x≥120C、(3)32+x≤120D、(3)32+x≥120E、(3)x≤(3)325、如果y与x成正比,那么下边那个图表可以表示y和x的关系?6、如图,梯形的周长是多少?A、52B、72C、75D、80E、877、某一商店对产品进行打折,每周都在原来的基础上打九折。

当商品在原来价格的基础上打五折时不再打折。

下列哪个图表可以表示八周内产品的不同价格?8、如果x+y/a-b=2/3,那么9x+9y/10a-10b=?A、9/10B、20/23C、20/27D、2/3E、3/59、一个长方形鱼缸的内部长为4英尺,宽为3英尺,高为2英尺。

鱼缸内的水位是1英尺。

如果要把缸内所有的水斗放到另外一个鱼缸。

并且那个鱼缸的长为3英尺,宽为2英尺,高为4英尺,那么在第二个水缸中的水位是多少?A、0.5ftB、1ftC、1.5ftD、2ftE、4ft10、已知数字1,2,3.如果m,n,k在1,2,3中可以分别任意取值,那么(m+n)k(为m+n的k次方)有多少种不同取值?A、3B、4C、5D、8E、911、上表显示了某x公司根据轮班以及薪水对员工的分类。

如果在第二班中随意抽取,可以抽到员工薪水在30000美元以上的概率是多少?A、1/2B、1/3C、1/10D、2/3E、2/512、如果x是正数,并且满足x7=k,x9=m,下列哪一项等于x11 (x7为x的7次方,x9为x的9次方,x11为x的11次方)?A、m²/kB、m²-kC、m²-7D、2k-m/3E、k+413、一正整数序列,每一项与其前一项的比为2:1.那么在这个序列中第八项与第五项的比是多少?A、6:1B、8:5C、8:1D、64:1E、256:114、如图,小圆的半径为3,他们分别与大圆相切于点A和点C,并且这两个小圆也相切,切点为B。

同时点B也是大圆的圆心。

那么虚线部分的周长是多少?A、6πB、8πC、9πD、12πE、15π15、下列哪个不等式可能成立?A、x<x²<x³B、x<x³<x²C、x²<x³<xD、x³<x<x²E、x³<x²<x16、如图,AC=6,BC=3,点P是AB上一点,且CP⊥AB。

相关文档
最新文档