江苏省宿迁市沭阳县2018-2019学年八年级(下)期末数学试卷
2018-2019学年度八年级下学期期末考试数学试卷(最新整理)
![2018-2019学年度八年级下学期期末考试数学试卷(最新整理)](https://img.taocdn.com/s3/m/89349386767f5acfa1c7cdee.png)
绝密★启用前2018-2019学年度八年级下学期期末考试数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一.选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.下列图形是中心对称图形的是( )A.B.C.D.2.如果a>b,那么下列各式中正确的是( )A.a﹣2<b﹣2B.<C.﹣2a<﹣2b D.﹣a>﹣b3.下列运算正确的是( )A.(x﹣y)2=x2﹣y2B.x3•x4=x12C.=x3D.(x3y2)2=x6y44.等腰三角形一腰上的高与另一腰的夹角是50°,则这个等腰三角形的底角为( )A.70°B.20°C.70°或20°D.40°或140°5.如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,△PEF、△PDC、△PAB的面积分别为S、S1、S2,若S=2,则S1+S2=( )A.4B.6C.8D.不能确定6.某密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:中,爱,我,二,游,美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是( )A.我爱美B.二中游C.爱我二中D.美我二中二.填空题(本大题共6小题,每小题3分,共18分)7.分解因式:x2﹣4x= .8.用不等式表示“a与6的差不是正数”: .9.在Rt△ABC中,∠C=90°,∠A=30°,AB=6,则AC= .10.在平面直角坐标系中,点(3,4)关于原点对称的点的坐标是 .11.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于 .12.如图,在平面直角坐标系中,O为坐标原点,四边形ABCD是平行四边形,点A、B、C 的坐标分别为A(0,4),B(﹣2,0),C(8,0),点E是BC的中点,点P为线段AD 上的动点,若△BEP是以BE为腰的等腰三角形,则点P的坐标为 .三.(本大题共5小题,每小题6分,共30分)13.(1)化简:(a+2)2﹣2(2a﹣1);(2)解不等式组:.14.解不等式,并把解集表示在数轴上.15.先化简:()÷然后选取一个你认为合适的数作为x的值代入求值.16.如图,平行四边形ABCD中,AE=CE,请仅用无刻度的直尺完成下列作图:(1)在图1中,作出∠DAE的角平分线;(2)在图2中,作出∠AEC的角平分线.17.如图,已知∠BAC=60°,D是BC边上一点,AD=CD,∠ADB=80°,求∠B的度数.四.(本大题共3小题,每小题8分,共24分)18.已知关于x的分式方程+=(1)已知m=4,求方程的解;(2)若该分式方程无解,试求m的值.19.如图,在Rt△ABC中,∠ACB=90°,点D、E分别在AB、AC上,且CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得到CF,连接EF.(1)求证:△BDC≌△EFC;(2)若EF∥CD,求证:∠BDC=90°.20.如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,DC=BF,以BF 为边在△ABC外作等边三角形BEF.(1)求证:四边形EFCD是平行四边形.(2)△ABC的边长是6,当点D是BC三等分点时,直接写出平行四边形CDEF的面积.五.(本大题共2小题,每小题9分,共18分)21.我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.(1)文学书和科普书的单价各多少钱?(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?22.定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.请解决下列问题:(1)已知点M,N是线段AB的勾股分割点,且BN>MN>AM.若AM=2,MN=3,求BN的长;(2)如图2,若点F、M、N、G分别是AB、AD、AE、AC边上的中点,点D,E是线段BC的勾股分割点,且EC>DE>BD,求证:点M,N是线段FG的勾股分割点.六.(本大题12题)23.小明同学在学习过程中得出两个结论,结论1:直角三角形中,60°内角的两夹边长是2倍的关系.结论2:在一个三角形中,如果60°内角的两夹边长是2倍的关系,那么这个三角形是直角三角形.(1)上述结论1 .(填写“正确”或“不正确”)(2)上述结论2正确吗?如果你认为正确,请你给出证明.如果你认为不正确,请你给出反例.(3)等边三角形ABC边长为4,点P、Q分别从A、B出发,分别沿边AB、BC运动,速度是每秒1个单位长度,当P点到达B点时停止运动.请问当运动时间是多少秒时△BPQ是直角三角形?请你给出解题过程.2018-2019学年度八年级下学期期末考试数学试卷参考答案一.选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.B.2.C.3.D.4.C.5.C.6.C.二.填空题(本大题共6小题,每小题3分,共18分)7. x(x﹣4) .8. a﹣6≤0 .9.310. (﹣3,﹣4) .11. 72° .12. (1,4)或(6,4)或(0,4) .三.(本大题共5小题,每小题6分,共30分)13.解:(1)原式=a2+4a+4﹣4a+2=a2+6;(2),由①得:x≥1,由②得:x<3,则不等式组的解集为1≤x<3.14.解:去分母得:x+5﹣2<3x+2,移项合并得:﹣2x<﹣1,解得:x>,15.解:原式=(﹣)÷=•=,∵x≠±1且x≠0,∴取x=4,则原式=1.16.解:(1)连接AC,AC即为∠DAE的平分线;如图1所示:(2)①连接AC、BD交于点O,②连接EO,EO为∠AEC的角平分线;如图2所示.17.解:∵∠ADB=80°又∵AD=CD∴∠DAC=∠C=40°,∴∠B=180°﹣∠BAC﹣∠C=180°﹣60°﹣40°=80°.四.(本大题共3小题,每小题8分,共24分)18.解:分式方程去分母得:2(x+2)+mx=x﹣1,整理得:(m+1)x=﹣5.(1)当m=4时,(4+1)x=5,解得:x=﹣1经检验:x=﹣1是原方程的解.(2)∵分式方程无解,∴m+1=0或(x+2)(x﹣1)=0,当m+1=0时,m=﹣1;当(x+2)(x﹣1)=0时,x=﹣2或x=1.当x=﹣2时m=;当x=1是m=﹣6,∴m=﹣1或﹣6或时该分式方程无解.19.证明:(1)由旋转的性质得,CD=CF,∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠BCD+∠DCE=90°,∴∠BCD=∠ECF,在△BDC和△EFC中,,∴△BDC≌△EFC(SAS);(2)∵EF∥CD,∴∠F+∠DCF=180°,∵∠DCF=90°,∴∠F=90°,∵△BDC≌△EFC,∴∠BDC=∠F=90°.20.证明:(1)∵△ABC是等边三角形,∴∠ABC=60°,∵∠EFB=60°,∴∠ABC=∠EFB,∴EF∥DC(内错角相等,两直线平行),∵DC=EF,∴四边形EFCD是平行四边形;(2)解:过E作EH⊥BC交CB的延长线于H,∵△ABC和△BEF是等边三角形,∴∠ABC=∠EBF=60°,∴∠EBH=180°﹣60°﹣60°=60°,∴EH=BE=BF=CD,∵点D是BC三等分点,∴当CD=BC=2时,平行四边形CDEF的面积=2×=2,当CD=BC=4时,平行四边形CDEF的面积=4×2=8,综上所述,平行四边形CDEF的面积为2或8.五.(本大题共2小题,每小题9分,共18分)21.解:(1)设文学书的单价为每本x元,则科普书的单价为每本(x+4)元,依题意得:,解得:x=8,经检验x=8是方程的解,并且符合题意.∴x+4=12.∴购进的文学书和科普书的单价分别是8元和12元.②设购进文学书550本后还能购进y本科普书.依题意得550×8+12y≤10000,解得,∵y为整数,∴y的最大值为466∴至多还能购进466本科普书.22.(1)解∵点M,N是线段AB的勾股分割点,且BN>MN>AM,AM=2,MN=3,∴BN2=MN2+AM2=9+4=13,∴BN=;(2)证明∵点F、M、N、G分别是AB、AD、AE、AC边上的中点,∴FM、MN、NG分别是△ABD、△ADE、△AEC的中位线,∴BD=2FM,DE=2MN,EC=2NG,∵点D,E是线段BC的勾股分割点,且EC>DE>BD,∴EC2=DE2+DB2,∴4NG2=4MN2+4FM2,∴NG2=MN2+FM2,∴点M,N是线段FG的勾股分割点.六.(本大题12分)23.解:(1)上述结论1正确,如图1,∵∠C=90°,∠B=60°,∴∠A=30°,∴BC=AB,∴60°内角的两夹边长是2倍的关系;故答案为:正确;(2)正确,如图2,取AB的中点D,连接CD,∴BD=AD=AB,∵BC=AB,∴BC=BD,∵∠B=60°,∴△BDC是等边三角形,∴∠BCD=∠BDC=60°,∵AD=CD,∴∠A=∠ACD=BDC=30°,∴∠ACB=90°,∴在一个三角形中,如果60°内角的两夹边长是2倍的关系,那么这个三角形是直角三角形正确.(3)分两种情况考虑:(i)当PQ⊥BC时,如图3所示:由题意可得:AP=BQ=t,BP=4﹣t,∵△ABC为等边三角形,∴∠B=60°,在Rt△BPQ中,cos60°==,即=,解得:t=秒;(ii)当QP⊥AB时,如图4所示:由题意可得:AP=BQ=t,BP=4﹣t,∵△ABC为等边三角形,∴∠B=60°,在Rt△BPQ中,cos60°==,即=,解得:t=秒,综上所述,t的值是秒或秒.。
2017 2018江苏省宿迁市沭阳县八年级下期末数学试卷 0
![2017 2018江苏省宿迁市沭阳县八年级下期末数学试卷 0](https://img.taocdn.com/s3/m/c799cc420975f46527d3e1be.png)
2017-2018学年江苏省宿迁市沭阳县八年级(下)期末数学试卷-0 2017-2018学年江苏省宿迁市沭阳县八年级(下)期末数学试卷一、选择题(每小题3分,共8题,总计24分)1.(3分)下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查2.(3分)要反映长沙市一周内每天的最高气温的变化情况,宜采用()A.条形统计图B.扇形统计图D.折线统计图.频数分布直方图C3.(3分)在以下式子中,x可以取到3和4的是().CAD.B..4.(3分)下列根式是最简二次根式的是().D.B..AC分)估计+1的值应在((3)5.B.4和5之间C.5和3A.和4之间6之间D.6和7之间6.(3分)如图,为测量池塘边A、B两点的距离,小明在池塘的一侧选取一点C,测得CA、CB的中点分别是点M、N,且MN=14米,则A、B间的距离是()A.30米B.28米C.24米D.18米=y+b和反比例函数xy.≠?kk0)的图象如图所7(3分)一次函数=k(22111示,若y>y,则x的取值范围是()217/ 1-0)下期末数学试卷2017-2018学年江苏省宿迁市沭阳县八年级(1B2<x<0或x>1.﹣2<x<A.﹣1<0或<1C.x<﹣2或x>x D.x<﹣2,双,0)分)如图,在直角坐标系中,有菱形OABC,A点的坐标为(10(8.3)120,则k的值为( ?曲线y(=x>0)经过C点,且OBAC=60.48.DBA.24.32C分)题,总计3010二、填空题(每小题3分,共15039.(分)某同学期中考试数学考了150分,则他期末考试数学考)(选填“不可能”“可能”或“必然”分,.﹣=.10 (3分)化简:.,的图象经过点(﹣23),则k的值为(11.3y分)反比例函数=.=,则=312.(分)若60个,甲做分)甲、乙二人做某种机械零件.已知甲每小时比乙多做(3413.个所用的时间相等,则乙每小时所做零件的个数40个所用的时间与乙做.为分)某农科所在相同条件下做玉米种子发芽实验,结果如下:(3.147/ 2-02017-2018学年江苏省宿迁市沭阳县八年级(下)期末数学试卷千克种子能发芽.千克,那么大约有某位顾客购进这种玉米种子10.的结果是<4,则化简15.(3分)若1<x的取值范围(16.3分)若关于x的分式方程的解为非负数,则m=2.是、“=”(填“>”17.(3分)估计、0.5.与0.5的大小关系是:)“<”的值,x=(18.3分)设函数y与y=+4的图象的交点坐标为(ab),则﹣.为分)9题,总计96三、解答题(共+)(2﹣21分)19.(10()计算1(2=)解方程:﹣分)请你先化简(中选择一022)÷a﹣+2,再从﹣,,,10.(20个合适的数代入求值.的值.,求++3yx(10分)若,y是实数,且>.21分)某校为提高学生身体素质,决定开展足球、篮球、排球、乒乓球四10.22(项课外体育活动,并要求学生必须并且只能选择一项.为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并绘制出以下两幅不(要求写出简要的解答过程)完整的统计图.请根据统计图回答下列问题.7/ 32017-2018学年江苏省宿迁市沭阳县八年级(下)期末数学试卷-0(1)这次活动一共调查了多少名学生?(2)补全条形统计图.(3)若该学校总人数是1300人,请估计选择篮球项目的学生人数.23.(10分)某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h,求汽车原来的平均速度.=的图象交于Ay(2,y(10分)如图所示,一次函数=kx+b与反比例函数24.4),B(﹣4,n)两点.(1)分别求出一次函数与反比例函数的表达式.(2)过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.25.(12分)如图,在平面直角坐标系中,正方形OABC的顶点O与原点重合,=(k≠0,xyC分别在x轴、y轴上,反比例函数>0)的图象与A顶点,正方形的两边AB、BC分别交于点M、N,连接OM、ON、MN.(1)若正方形边长为4,点M为AB中点,求k的值;(2)证明△OCN≌△OAM;(3)若∠NOM=45°,MN=2,求点C的坐标.7/ 4-0)期末数学试卷2017-2018学年江苏省宿迁市沭阳县八年级(下设.∥BCO.(12分)如图,△ABC中,点O是边AC上一个动点,过作直线MN26.FACB的外角平分线于点MN交∠ACB的平分线于点E,交∠;=OF(1)求证:OE的长;OC,(2)若CE=8CF=6,求是矩形?并说明理由.四边形(3)当点O在边AC上运动到什么位置时,AECF,27.(12分)阅读理解:对于任意正实数a、b2,)0∵(a≥﹣,≥2∴a﹣20,∴a+bb+≥2时,a+b有最小值=.∴当ab根据上述内容,回答下列问题;0m>,只有当m时,m=+有最小值1()若.m2+有最小值=若m>0,只有当m时,与双的另一直线L轴交于点A,过点Ay2)如图,已知直线L:=x+1与x(21的解析式.L),求直线2)相交于点B(,m0=曲线y(x>2于L∥y轴交直线CD2(3)在()的条件下,若点C为双曲线上任意一点,作1围成的四边形面积.、DCBACDD点,试求当线段最短时,点、、7/ 52017-2018学年江苏省宿迁市沭阳县八年级(下)期末数学试卷-07/ 6-0(下)期末数学试卷2017-2018学年江苏省宿迁市沭阳县八年级学年江苏省宿迁市沭阳县八年级(下)期末数2017-2018学试卷参考答案分)题,总计24一、选择题(每小题3分,共8;4.CD7.;8;.A;5.B;6.B C;1.D;2.C 3.;分)题,总计二、填空题(每小题3分,共1030m 16.15.3;.8 119.可能;10.;.﹣6;12;.13.;148.8;;18.2≠m1;17.>;≥﹣1且分)9三、解答题(共题,总计96;23.;.;2422;.20;.19.;21.;;;;.26;.25.;2712287/ 7。
最新江苏省2018-2019年八年级下期末数学试卷
![最新江苏省2018-2019年八年级下期末数学试卷](https://img.taocdn.com/s3/m/52471fed4693daef5ff73d09.png)
八年级(下)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.下列二次根式中,属于最简二次根式的是()A. √5B. √12C. √0.2D. √27【答案】A【解析】解:A、是最简二次根式,故本选项符合题意;B、√12=12√2,不是最简二次根式,故本选项不符合题意;C、√0.2=√14=15√5,不是最简二次根式,故本选项不符合题意;D、√27=3√3,不是最简二次根式,故本选项不符合题意;故选:A.根据最简二次根式的定义逐个判断即可.本题考查了最简二次根式的定义,能熟记最简二次根式的定义的内容是解此题的关键.2.下列各组线段a、b、c中,能组成直角三角形的是()A. a=4,b=5,c=6B. a=1,b=√3,c=2C. a=1,b=1,c=3D. a=5,b=12,c=12【答案】B【解析】解:A、∵42+52≠62,∴该三角形不是直角三角形,故此选项不符合题意;B、∵12+√32=22,∴该三角形是直角三角形,故此选项符合题意;C、∵12+12≠32,∴该三角形不是直角三角形,故此选项不符合题意;D、∵52+122≠122,∴该三角形不是直角三角形,故此选项不符合题意.故选:B.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.下列各式中,y不是x的函数的是()A. y=|x|B. y=xC. y=−x+1D. y=±x【答案】D【解析】解:A、y=|x|对于x的每一个取值,y都有唯一确定的值,故A错误;B、y=x对于x的每一个取值,y都有唯一确定的值,故B错误;C、y=−x+1对于x的每一个取值,y都有唯一确定的值,故C错误;D、y=±x对于x的每一个取值,y都有两个值,故D正确;故选:D.根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4.用配方法解方程x2−4x−2=0变形后为()A. (x−2)2=6B. (x−4)2=6C. (x−2)2=2D. (x+2)2=6【答案】A【解析】解:把方程x2−4x−2=0的常数项移到等号的右边,得到x2−4x=2方程两边同时加上一次项系数一半的平方,得到x2−4x+4=2+4配方得(x−2)2=6.故选:A.在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数−4的一半的平方.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.一次函数y=x+2的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】解:∵k=1>0,图象过一三象限,b=2>0,图象过第二象限,∴直线y=x+2经过一、二、三象限,不经过第四象限.故选:D.根据k,b的符号确定一次函数y=x+2的图象经过的象限.本题考查一次函数的k>0,b>0的图象性质.需注意x的系数为1.6.一元二次方程x2−8x+20=0的根的情况是()A. 没有实数根B. 有两个相等的实数根C. 只有一个实数根D. 有两个不相等的实数根【答案】A【解析】解:∵△=(−8)2−4×20×1=−16<0,∴方程没有实数根.故选:A.先计算出△,然后根据判别式的意义求解.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.7.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,下列说法正确的是()A. y1>y2B. y1<y2C. y1=y2D. 不能确定【答案】A【解析】解:∵一次函数y=kx中,k<0,∴函数图象经过二、四象限,且y随x的增大而减小,∵x1<x2,∴y1>y2.故选:A.先根据题意判断出一次函数的增减性,再根据x1<x2即可得出结论.本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8.菱形的两条对角线长分别为6和8,则菱形的面积是()A. 10B. 20C. 24D. 48【答案】C【解析】解:∵菱形的两条对角线的长分别是6和8, ∴这个菱形的面积是:12×6×8=24.故选:C .由菱形的两条对角线的长分别是6和8,根据菱形的面积等于对角线积的一半,即可求得答案. 此题考查了菱形的性质.菱形的面积等于对角线积的一半是解此题的关键.9. 已知一次函数y =kx +b 的图象如图所示,当x <2时,y 的取值范围是( )A. y <−4B. −4<y <0C. y <2D. y <0 【答案】D【解析】解:将(2,0)、(0,−4)代入y =kx +b 中, 得:{−4=b 0=2k+b,解得:{b =−4k=2,∴一次函数解析式为y =2x −4. ∵k =2>0,∴该函数y 值随x 值增加而增加, ∴y <2×2−4=0. 故选:D .由函数图象找出点的坐标,利用待定系数法即可求出函数解析式,再根据函数的性质找出函数的单调性,代入x <2即可得出结论.本题考查了待定系数法求出函数解析式以及一次函数的性质,解题的关键是找出该一次函数的单调性.本题属于基础题,难度不大,解决该题型题目时,根据函数图象找出点的坐标,利用待定系数法求出函数解析式是关键.10. 如图,点O 是矩形ABCD 的对角线AC 的中点,M 是CD 边的中点.若AB =8,OM =3,则线段OB 的长为( ) A. 5 B. 6 C. 8 D. 10 【答案】A 【解析】解:∵四边形ABCD 是矩形, ∴∠D =90∘,∵O 是矩形ABCD 的对角线AC 的中点,OM//AB , ∴OM 是△ADC 的中位线, ∵OM =3, ∴AD =6,∵CD =AB =8,∴AC =√AD 2+CD 2=10, ∴BO =12AC =5.故选:A .已知OM 是△ADC 的中位线,再结合已知条件则DC 的长可求出,所以利用勾股定理可求出AC 的长,由直角三角形斜边上中线的性质则BO 的长即可求出.本题考查了矩形的性质,勾股定理的运用,直角三角形斜边上中线的性质以及三角形的中位线的应用,解此题的关键是求出AC 的长.11. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售,尽快减少库存,商场决定釆取降价措施,调查发现,每件衬衫,每降价1元,平均每天可多销售2件,若商场每天要盈利1200元,每件衬衫应降价( ) A. 5元 B. 10元 C. 20元 D. 10元或20元 【答案】C【解析】解:设每件衬衫应降价x 元,则每天可销售(20+2x)件, 根据题意得:(40−x)(20+2x)=1200, 解得:x 1=10,x 2=20. ∵扩大销售,减少库存, ∴x =20. 故选:C .设每件衬衫应降价x 元,则每天可销售(20+2x)件,根据每件的利润×销售数量=总利润,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.12. 如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 的坐标为(2,0),点B 的坐标为(0,1),点C 在第一象限,对角线BD 与x 轴平行.直线y =x +3与x 轴、y 轴分别交于点E ,F.将菱形ABCD 沿x 轴向左平移m 个单位,当点D 落在△EOF 的内部时(不包括三角形的边),m 的值可能是( ) A. 3 B. 4 C. 5 D. 6 【答案】C【解析】解:∵菱形ABCD 的顶点A(2,0),点B(1,0), ∴点D 的坐标为(4,1), 当y =1时,x +3=1, 解得x =−2,∴点D 向左移动2+4=6时,点D 在EF 上, ∵点D 落在△EOF 的内部时(不包括三角形的边), ∴4<m <6,∴m 的值可能是5. 故选:C .根据菱形的对角线互相垂直平分表示出点D 的坐标,再根据直线解析式求出点D 移动到MN 上时的x 的值,从而得到m 的取值范围,再根据各选项数据选择即可.本题是一次函数综合题型,主要利用了一次函数图象上点的坐标特征,菱形的性质,比较简单,求出m 的取值范围是解题的关键.二、填空题(本大题共6小题,共18.0分)13. 若√x −2在实数范围内有意义,则x 的取值范围为______. 【答案】x ≥2【解析】解:由题意得:x −2≥0, 解得:x ≥2, 故答案为:x ≥2.根据二次根式有意义的条件可得x−2≥0,再解即可.此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.14.将直线y=−2x+4向下平移5个单位长度,平移后直线的解析式为______.【答案】y=−2x−1【解析】解:直线y=−2x+4向下平移5个单位长度后:y=−2x+4−5,即y=−2x−1.故答案为:y=−2x−1.直接根据“上加下减”的平移规律求解即可.本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.15.已知关于x的方程x2−kx−6=0的一个根为x=3,则实数k的值为______.【答案】1【解析】解:∵x=3是方程的根,由一元二次方程的根的定义,可得32−3k−6=0,解此方程得到k=1.本题根据一元二次方程的根的定义、一元二次方程的定义求解.本题逆用一元二次方程解的定义易得出k的值.16.如图是某地区出租车单程收费y(元)与行驶路程x(km)之间的函数关系图象,根据图象回答下列问题:(Ⅰ)该地区出租车的起步价是______元;(Ⅱ)求超出3千米,收费y(元)与行驶路程x(km)(x>3)之间的函数关系式______.【答案】8;y=2x+2【解析】解:(Ⅰ)该城市出租车3千米内收费8元,即该地区出租车的起步价是8元;故答案为:8;(Ⅱ)依题意设y与x的函数关系为y=kx+b,∵x=3时,y=8,x=8时,y=18;∴{8k+b=183k+b=8,解得{b=2k=2;所以所求函数关系式为:y=2x+2(x>3).故答案为:y=2x+2.(Ⅰ)利用折线图即可得出该城市出租车3千米内收费8元,(Ⅱ)利用待定系数法求出一次函数解析式即可.此题主要考查了一次函数的应用,根据待定系数法求出一次函数的解析式是解题关键.17.如图,在△BC中,AC=BC,点D、E分别是边AB、AC的中点.延长DE到点F,使DE=EF,得四边形ADCF.若使四边形ADCF是正方形,则应在△ABC中再添加一个条件为______.【答案】∠ACB=90∘【解析】解:∠ACB=90∘时,四边形ADCF是正方形,理由:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE =12BC ,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形,点D、E分别是边AB、AC的中点,∴DE//BC,∵∠ACB=90∘,∴∠AED=90∘,∴矩形ADCF是正方形.故答案为:∠ACB=90∘.先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90∘得出答案即可.本题考查了矩形的判定、等腰三角形的性质、平行四边形的判定、三角形中位线定理、正方形的判定;熟记对角线相等的平行四边形是矩形是解决问题的关键.18.如图,在每个小正方形的边长为1的网格中,A,B,C,D均为格点.(Ⅰ)∠ABC的大小为______(度);(Ⅱ)在直线AB上存在一个点E,使得点E满足∠AEC=45∘,请你在给定的网格中,利用不带刻度的直尺作出∠AEC.【答案】90【解析】解:(Ⅰ)如图,∵△ABM是等腰直角三角形,∴∠ABM=90∘故答案为90;(Ⅱ)构造正方形BCDE,∠AEC即为所求;(Ⅰ)如图,根据△ABM是等腰直角三角形,即可解决问题;(Ⅱ)构造正方形BCDE即可;本题考查作图−应用与设计,解题的关键是寻找特殊三角形或特殊四边形解决问题,属于中考常考题型.三、计算题(本大题共2小题,共12.0分)19.计算下列各题:(Ⅰ)√12+3√2×√6;(Ⅱ)(√5+√2)(√5−√2)−(√3+√2)2.【答案】解:(Ⅰ)原式=2√3+3√3=5√3;(Ⅱ)原式=(√5)2−(√2)2−(5+2√6)=5−2−5−2√6=−2−2√6.【解析】(Ⅰ)先化简二次根式、计算乘法,再合并同类二次根式即可得;(Ⅱ)先利用平方差公式和完全平方公式计算,再去括号、合并同类二次根式即可得.本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.20.某校运动会需购买A、B两种奖品共100件,其中A种奖品的单价为10元,B种奖品的单价为15元,且购买的A种奖品的数量不大于B种奖品的3倍设购买A种奖品x件.(Ⅰ)根据题意,填写下表:购买A种奖品的数量/件 3070 x购买A种奖品的费用/元 300______ ______购买B种奖品的费用/元______ 450______(Ⅱ)设购买奖品所需的总费用为y元,试求出总费用y与购买A种奖品的数量x的函数解析式;(Ⅲ)试求A、B两种奖品各购买多少件时所需的总费用最少?此时的最少费用为多少元?【答案】700;10x;1050;1500−15x【解析】解:(Ⅰ)由题意可得,当购买A种奖品30件时,购买A种奖品的费用是30×10=300(元),购买B种奖品的费用是15×(100−30)=1050(元),当购买A种奖品70件时,购买A种奖品的费用是70×10=700(元),购买B种奖品的费用是15×(100−70)=450(元),当购买A种奖品x件时,购买A种奖品的费用是30x(元),购买B种奖品的费用是15×(100−x)=(1500−15x)(元),故答案为:700、10x、1050、1500−15x;(Ⅱ)由题意可得,y=10x+15(100−x)=−5x+1500,即总费用y与购买A种奖品的数量x的函数解析式是y=−5x+1500;(Ⅲ)∵购买的A种奖品的数量不大于B种奖品的3倍,∴x≤3(100−x),解得,x≤75,∵y=−5x+1500,∴当x=75时,y取得最小值,此时y=−5×75+1500=1125,100−x=25,答:购买的A种奖品75件,B种奖品25件时,所需的总费用最少,最少费用是1125元.(Ⅰ)根据题意和表格中的数据可以将表格中缺失的数据补充完整;(Ⅱ)根据题意可以写出y与x的函数关系式;(Ⅲ)根据题意可以列出相应的不等式,求出x的取值范围,再根据一次函数的性质即可解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.四、解答题(本大题共5小题,共40.0分)21.解下列方程:(Ⅰ)x2+3=2√3x(Ⅱ)x(x−2)+x−2=0.【答案】解:(I)移项得:x2−2√3x+3=0,配方得:(x−√3)2=0,开方得:x−√3=0,即x1=x2=√3;(II)x(x−2)+x−2=0,(x−2)(x+1)=0,x−2=0,x+1=0,x1=2,x2=−1.【解析】(I)移项,配方,开方,即可求出答案;(II)先分解因式,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元一次方程,能选择适当的方法解一元二次方程是解此题的关键.22.如图,在Rt△ABC中,∠ACB=90∘,BC=3,AC=4,在边BC上有一点M,将△ABM沿直线AM折叠,点B恰好落在AC延长线上的点D处.(Ⅰ)AB的长=______;(Ⅱ)CD的长=______;(Ⅲ)求CM的长.【答案】5;1【解析】解:(Ⅰ)∵∠ACB=90∘,BC=3,AC=4∴AB=5(Ⅱ)∵折叠∴AB=AD=5且AC=4∴CD=1(Ⅲ)连接DM∵折叠∴BM=DM在Rt△CDM中,DM2=CD2+CM2∴(3−CM)2=1+CM2∴CM =4 3(Ⅰ)由勾股定理可得AB的长.(Ⅱ)由折叠可得AD=AB,即可求CD的长.(Ⅲ)在直角三角形CDM中,根据勾股定理可得方程,可求出CM的长.本题考查了折叠问题,勾股定理的运用,关键是灵活运用折叠的性质解决问题.23.在▱ABCD中,点E,F分别在边BC,AD上,且AF=CE.(Ⅰ)如图①,求证四边形AECF是平行四边形;(Ⅱ)如图②,若∠BAC=90∘,且四边形AECF是边长为6的菱形,求BE的长.【答案】解:(I)证明:∵四边形ABCD是平行四边形,∴AD//BC,∵AF=CE,∴四边形AECF是平行四边形;(II)如图:∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠BAC=90∘,∴∠2+∠3=90∘∠1+∠B=90∘,∴∠3=∠B,∴AE=BE,∵AE=6,∴BE=6.【解析】(I)根据平行四边形的性质得出AD//BC,根据平行四边形的判定推出即可;(II)根据菱形的性质求出AE=6,AE=EC,求出AE=BE即可.本题考查了平行四边形的性质,等腰三角形的性质,菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.24.如图,在Rt△ABC中,∠ABC=90∘,∠C=30∘,AC=12cm,点E从点A出发沿AB以每秒lcm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.(I)试用含t的式子表示AE、AD、DF的长;(Ⅱ)如图①,连接EF,求证四边形AEFD是平行四边形;(Ⅲ)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.【答案】解:(I)由题意得,AE=t,CD=2t,则AD=AC−CD=12−2t,∵DF⊥BC,∠C=30∘,∴DF=12CD=t;(Ⅱ)∵∠ABC=90∘,DF⊥BC,∴AB//DF,∵AE=t,DF=t,∴AE=DF,∴四边形AEFD是平行四边形;(Ⅲ)当t=3时,四边形EBFD是矩形,理由如下:∵∠ABC=90∘,∠C=30∘,∴BC=12AC=6cm,∵BE//DF,∴BE=DF时,四边形EBFD是平行四边形,即6−t=t,解得,t=3,∵∠ABC=90∘,∴四边形EBFD是矩形,∴t=3时,四边形EBFD是矩形.【解析】(I)根据题意用含t的式子表示AE、CD,结合图形表示出AD,根据直角三角形的性质表示出DF;(Ⅱ)根据对边平行且相等的四边形是平行四边形证明;(Ⅲ)根据矩形的定义列出方程,解方程即可.本题考查的是直角三角形的性质、平行四边形的判定、矩形的判定,掌握平行四边形、矩形的判定定理是解题的关键.25.在平面直角坐标系中,直线l1:y=−12x+4分别与x轴、y轴交于点A、点B,且与直线l2:y=x于点C.(Ⅰ)如图①,求出B、C两点的坐标;(Ⅱ)若D是线段OC上的点,且△BOD的面积为4,求直线BD的函数解析式.(Ⅲ)如图②,在(Ⅱ)的条件下,设P是射线BD上的点,在平面内是否存在点Q,使以O、B、P、Q 为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.【答案】解:(Ⅰ)对于直线:y =−12x +4,令x =0,得到y =4, ∴B(0,4),由{y =x y =−12x +4,解得{x =83y =83,∴C(83,83).(Ⅱ)∵点D 在直线y =x 上,设D(m,m), ∵△BOD 的面积为4, ∴12×4×m =4,解得m =2, ∴D(2,2).设直线BD 的解析式为y =kx +b ,则有{2k +b =2b=4, 解得{b =4k=−1,∴直线BD 的解析式为y =−x +4.(Ⅲ)如图②中,①当OB 为菱形的边时,OB =PB =4,可得P(2√2,4−2√2),Q(2√2,−2√2). ②当P′B 为菱形的对角线时,四边形OBQ′P′是正方形,此时Q(4,4).③当OB 为菱形的边时,点P″与D 重合,P 、Q 关于y 轴对称,Q″(−2,2), 综上所述,满足条件的Q 的坐标为(2√2,−2√2)或(−2,2)或(4,4).【解析】(Ⅰ)利用待定系数法求出点B 坐标,利用方程组求出点C 坐标即可;(Ⅱ)设D(m,m),构建方程求出m 即可解决问题,再利用待定系数法求出直线的解析式; (Ⅲ)分三种情形分别求解即可解决问题;本题主要考查了一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式,解二元一次方程组,菱形的性质,三角形的面积等知识点,解此题的关键是熟练地运用知识进行计算.此题是一个综合性很强的题目.。
2018-2019学年八年级下期末数学试卷及答案
![2018-2019学年八年级下期末数学试卷及答案](https://img.taocdn.com/s3/m/f2386f9b71fe910ef12df86f.png)
2018-2019学年八年级(下)期末考试数学试卷一、填空题(每小题3分,共24分)1.当x时,在实数范围内有意义.2.在▱ABCD中,∠A=70°,则∠C=度.3.正比例函数y=kx(k≠0)的图象经过点A(﹣1,5),则k=.4.如图,分别以Rt△ABC的三边为边长,在三角形外作三个正方形,若正方形P的面积等于89,Q的面积等于25,则正方形R的边长是.5.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件,使四边形AECF是平行四边形(只填一个即可).6.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是.7.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=cm.8.一次函数y1=kx+b与y2=x+a的图象如图所示,则不等式kx+b<x+a的解集为.二、选择题(每小题3分,共24分)9.下列二次根式中,最简二次根式是()A.B.C. D.10.下列计算正确的是()A.2B. C.D.=﹣311.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD是AB边上的中线,则CD的长是()A.20 B.10 C.5 D.12.一次函数y=kx+b的图象如图所示,则k、b的符号()A.k<0,b>0 B.k>0,b>0 C.k<0,b<0 D.k>0,b<013.下列命题中,为真命题的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.有一组对边平行的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形14.为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水量,结果如下表:3458月用水量(吨)户数2341则关于这若干户家庭的月用水量,下列说法错误的是()A.平均数是4.6吨B.中位数是4.5吨C.众数是4吨D.调查了10户家庭的月用水量15.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度为h(cm),燃烧时间为t(小时),则下列图象能反映h与t的函数关系的是()A. B. C. D.16.如图,菱形ABCD的周长为40cm,对角线AC、BD相交于点O,DE⊥AB,垂足为E,DE:AB=4:5,则下列结论:①DE=8cm;②BE=4cm;③BD=4cm;=80cm,正确的有()④AC=8cm;⑤S菱形ABCDA.①②④⑤B.①②③④C.①③④⑤D.①②③④⑤三、解答题(共72分)17.(12分)计算:(1)2(2)÷﹣2×+(3)﹣(+2)(﹣2)18.(6分)如图所示,沿海城市B的正南方向A处有一台风中心,沿AC的方向以30km/h的速度移动,已知AC所在的方向与正北成30°的夹角,B市距台风中心最短的距离BD为120km,求台风中心从A处到达D处需要多少小时?(,结果精确到0.1)19.(6分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系,现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y关于x的函数关系式(不需要写出函数自变量x的取值范围);(2)用该体温计测体温时,水银柱的长度为6.0cm,求此时体温计的读数.20.(6分)已知:如图,在▱ABCD中,E、F是对角线BD上的两点,BE=DF,求证:AE=CF.21.(6分)某中学为了丰富学生的体育活动,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,学校随机抽取了部分同学调查他们的兴趣爱好,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,n=;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?22.(9分)在昆明市“创文”工作的带动下,某班学生开展了“文明在行动”的志愿者活动,准备购买一些书包送到希望学校,已知A品牌的书包每个40元,B 品牌的书包每个42元,经协商:购买A品牌书包按原价的九折销售;购买B品牌的书包10个以内(包括10个)按原价销售,10个以上超出的部分按原价的八折销售.(1)设购买x个A品牌书包需要y1元,求出y1关于x的函数关系式;(2)购买x个B品牌书包需要y2元,求出y2关于x的函数关系式;(3)若购买书包的数量超过10个,问购买哪种品牌的书包更合算?说明理由.23.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)DF⊥AC,若∠ADF:∠FDC=3:2,则∠BDF的度数是多少?24.(9分)如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C (0,6),与x轴交于点B.(1)求这条直线的解析式;(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).①求n的值及直线AD的解析式;②求△ABD的面积;③点M是直线y=﹣2x+a上的一点(不与点B重合),且点M的横坐标为m,求△ABM的面积S与m之间的关系式.25.(10分)如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图1,当点Q在DC边上时,探究PB与PQ所满足的数量关系;小明同学探究此问题的方法是:过P点作PE⊥DC于E点,PF⊥BC于F点,根据正方形的性质和角平分线的性质,得出PE=PF,再证明△PEQ≌△PFB,可得出结论,他的结论应是;(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.2018-2019学年八年级(下)期末考试八年级数学参考答案一、填空题(每小题3分,共24分) 1.3≥x 2. 70º3. -54. 85. AF=CE 或DF=BE 或AE ∥CF 或∠AEB=∠FCB 或∠DFC=∠DAE 或∠AEC=∠CFA 或∠EAF=∠FCE 或∠AEB=∠CFD6. 小林7. 98. x >3三、解答题:17.计算:(每小题4分,共12分) (1)483316122+- 解: 原式=3123234+- …………………………3分 =314= …………………………4分(2)810512-327+⨯÷ 解: 原式=22223+- …………………………3分 =3 …………………………4分 (3)()()()2525232-+-+解: 原式= 12623-++ …………………………3分 =624+ …………………………4分18. 解:在Rt △ADB 中,∠ADB=90º∵∠BAD=30º,BD=120km∴ AB=240km …………………………2分 又∵ 222AB BD AD =+∴312012024022=-=AD km …………………………4分∵73.13≈∴从A 处到达D 处需要34303120=9.6≈小时 …………………………5分答:求台风中心从A 处到达D 处大约6.9小时 …………………………6分19. 解:设函数的解析式为:b kx y +=(k ≠0)依题意得:⎩⎨⎧=+=+408354b k b k …………………………2分…………………………3分∴ 3045+=x y …………………………4分 (2)当 x=6.0cm 时,y=7.5+30=37.5 …………………………5分 答:此时体温计的读数为37.5ºC . …………………………6分20.证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD . …………………………1分 ∴∠ABE=∠CDF . …………………………2分 在△ABE 和△CDF 中⎪⎩⎪⎨⎧==∠=DF BE CDF ABE CD AB ∴△ABE ≌△CDF (SAS ). …………………………5分∴AE=CF …………………………6分 (其它做法参照给分)21. 解:(1)n =100;…………………………1分(2)∵喜欢羽毛球的人数=100×20%=20人,…………………………2分∴条形统计图如图;…………………………3分(3)由已知得,1200×20%=240(人). …………………………5分答;该校约有240人喜欢跳绳. …………………………6分22. 解:(1)由题意得:x y 361= ………1分(2)⎩⎨⎧+≤≤=)>10(846.33)100(422x x x x y …………………………4分(分开书写:当0≤x ≤10时,x y 422=,当x >10时;()846.33108.04210422+=-⋅⨯+⨯=x x y ,得满分) (列对一个解析式得一分,取值范围共一分)(3)若x >10则:846.332+=x y①当21y y =时,846.3336+=x x ,解得35=x ;………5分 ②当1y >2y 时,846.3336+x x >,解得35>x ;………6分当21y y <时,846.3336+x x <,解得35<x ,………7分 ∵x >10∴3510<<x ………8分答:若购买35个书包,选A 、B 品牌都一样;若购买35个以上书包,选B 品牌划算;若购买书包个数超过10个但小于35个,选A 品牌划算. ………9分23. 证明:(1)证明:∵A0=C0,B0=D0∴四边形ABCD 是平行四边形 …………………………2分∴∠ABC=∠ADC ∵∠ABC+∠ADC=180°∴∠ABC=∠ADC=90° …………………………3分∴平行四边形ABCD 是矩形 …………………………4分 (2)解:∵∠ADC=90°,∠ADF :∠FDC=3:2∴∠FDC=36° …………………………5分 ∵DF ⊥AC ,∴∠DCO=90°-36°=54°, …………………………6分 ∵四边形ABCD 是矩形,∴OC=OD ,∴∠DCO =∠ODC=54° …………………………7分 ∴∠BDF=∠ODC-∠FDC=18° …………………………8分24. 解:(1)∵直线y=-2x+a 与y 轴交于点C (0,6),∴a=6,…………………………1分 ∴y=-2x+6,…………………………2分(2) ①∵点D (-1,n )在y=-2x+6上,∴n=8,…………………………3分设直线AD 的解析式为y=kx+b(K ≠0)⎩⎨⎧=+-=+83-b k b k 解得:k=4,b=12 …………………………4分∴直线AD 的解析式为y=4x+12;…………………………5分 ②令y=0,则-2x+6=0,解得:x=3,∴B (3,0),…………………………6分∴AB=6,∵点M 在直线y=-2x+6上,设M (m ,-2m+6),∴S= 21×6×62-+m =362-+m …………………………7分 ∴①当m <3时,S=3(-2m+6),即S=-6m+18;…………………………8分 ②当m >3时,S=21×6×[-(-2m+6)],即S=6m-18;…………………………9分25..(1)答:PB=PQ ………………………2分(2)证明:过P 作PE ⊥BC 的延长线于E 点,PF ⊥CQ 于F 点, ………………………3分∵AC 是正方形的对角线∴ PA 平分∠DCB ,∴∠DCA=∠ACB ………………………4分∵ ∠ACB=∠PCE , ∠DCA=∠FCP∴∠PCE=∠FCP∴ PC 平分∠FCE ,又∵PE ⊥BC ,PF ⊥CQ∴ PF=PE , ………………………5分∴∠ECF=∠CEP=∠CFP = 90°=∠QFP∴ 四边形CEPF 是矩形………………………6分 ∴∠EPF=90°∴∠BPE=∠QPF ,………………………7分 在△PEB 和△PFQ 中⎪⎩⎪⎨⎧∠=∠=∠=∠BPEQPF PF PE QFPBEP∴△PEB ≌△PFQ (ASA )………………………9分 ∴PB=PQ .………………………10分 (其它做法参照给分)。
(苏科版)2018-2019学年八年级数学下学期期末考试试卷(含答案)
![(苏科版)2018-2019学年八年级数学下学期期末考试试卷(含答案)](https://img.taocdn.com/s3/m/f8e3ff8a1a37f111f1855bc6.png)
★绝密★启用前2018-2019学年下学期期末考试八年级 数学(苏科版)一、选择题(本大题共有8小题,每小题3分,共24分)1.如图所示的四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有(▲)A .1个B .2个C . 3个D . 4个 2.下列调查中适合采用普查的是( ▲ )A .调查市场上某种白酒中塑化剂的含量B .调查鞋厂生产的鞋底能承受的弯折次数C .了解某火车的一节车厢内感染禽流感病毒的人数D .了解某城市居民收看江苏卫视的时间3.在一个不透明的盒子里有形状、大小相同的黄球2个、红球3个,从盒子里任意摸出1 个球,摸到红球的概率是(▲)A .52B .53C .51D .31 4.下列代数式是最简形式的是(▲)A .242--x xB .121442+++x x x C .34x D .215- 5.已知点1(1,)A y ,2(2,)B y ,3(3,)C y -都在反比例函数21k y x+=的图像上,则321,,y y y 的大小关系是( ▲ )A .312y y y <<B .123y y y <<C . 213y y y <<D .321y y y <<6.如图,直线l 与函数xky =的图像相交,C B A 、、是直线l 的三点,过点C B A 、、分别作x 轴的垂线,垂足分别为F E D 、、,连接OC OB OA 、、,设OAD ∆的面积是1S , OBE ∆的面积是2S ,OCF ∆的面积是3S ,则( ▲ )A .123S S S <<B .123S S S ==C .213S S S >>D .312S S S >>7.图1所示矩形ABCD 中,BC x =,CD y =,y 与x 满足的反比例函数关系如图2所示,等腰直角三角形AEF 的斜边EF 过C 点,M 为EF 的中点,则下列结论正确的是(▲)A .当3=x 时,EC EM <B .当9=y 时,EM EC >C .当x 增大时,EC CF 的值不变D .当y 增大时,BE DF 的值增大8.如图,点A 为函数)0(16>=x x y 图像上一点,连接OA ,交函数)0(4>=x xy 的图像于点B ,点C 是x 轴上一点,且AC AO =,则ABC ∆的面积为( ▲ )A .6B .8C . 10D .12二、填空题(本大题共有10小题,每小题3分,共30分)9.若代数式12+x 在实数内范围有意义,则x 的取值范围为 ▲ . 10.有五张不透明卡片,每张卡片上分别写有3,1-,327,19,π,除正面的数不同外其余都相同,将它们背面朝上洗匀后从中任取一张,取到的数是无理数的概率是 ▲ .11.函数x y 3=与42+=x y 图象的交点坐标为()b a , ,则ba 121-的值为 ▲ . 12.关于x 的分式方程3333x m mx x++=--的解为正数,则m 的取值范围是 ▲ . 13.已知一个对角线长分别为6cm 和8cm 的菱形,顺次连接它的四边中点得到的四边形的面积是▲ 2cm .14.若关于x 的方程311x a x x--=-无解,则a = ▲ . 15.如果三角形有一边上的中线长恰好等于这条边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”.已知Rt ABC ∆中,90C ∠=,一条直角边为1,如果Rt ABC ∆是“有趣三角形”,那第7题第7题 第6题xy FE D AOBC 第8题yxB COA么这个三角形“有趣中线”的长等于 ▲ .16.如图,菱形ABCD 中,P 为AB 中点,60A ∠=,折叠菱形ABCD ,使点C 落在DP 所在的直线上,得到经过点D 的折痕DE ,则DEC ∠的大小为 ▲ .图,一次函数11y k x b =+的图像与反比例函数22k y x=的图17.如像相交与A ,B 两点,其横坐标分别为2和6,则不等式21k k x b x<-的解集是 ▲ .18.已知一个菱形的两个顶点与一个正方形的两个顶点重合,并且这两个四边形没有公共边,菱形的面积为224cm ,正方形的面积为232cm ,则菱形的边长为 ▲ cm .三、解答题(本大题共有10道题,共96分)19.(每小题4分,共8分)计算或化简: (1)()211832733÷-⨯ (2)228244244x x x x x x +-⎛⎫-÷ ⎪---+⎝⎭20.(本题8分) 解方程:22216224x x x x x -+-=+--21.(本题8分)先化简再求值:2344111a a a a a -+⎛⎫-+÷⎪++⎝⎭,再从0,1-,2,中选一个数作为a 的值代入求值.22.(本题8分)为了更好地了解近阶段九年级学生的近期目标,某区设计了如下调查问卷:你认为近阶段的主要学习目标是哪一个?(此为单选题)A .升入四星级普通高中,为考上理想大学作准备;B .升入三星级普通高中,将来能考上大学就行;C .升入五年制高职类学校,以后做一名高级技师;D .升入中等职业类学校,做一名普通工人就行;E .等待初中毕业,不想再读书了.在该区9000名九年级学生中随机调查了部分学生后整理并制作了如下的统计图: 根据以上信息解答下列问题: (1)补全条形统计图;(2)计算扇形统计图中m =__▲__;C'PC A BD E第16题第17题 y xB A OyxD CBEAO(3)计算扇形统计图中A 区的圆心角的度数. (4)我区想继续升入普通高中 (含四星和三星)的大约有多少人?23.(本题10分) 如图,在四边形ABCD中,A B //,点E 、F 是对角线AC 上两点,且ABF CDE ∠=∠,AE CF =(1)求证:ABF CDE ∆∆≌;(2)当四边形ABCD 的边AB ,AD 满足什么条件时,四边形BFDE 是菱形?说明理由.24. (本题10分)如图,已知()4,A n -,()4,4B n --是直线y kx b =+和双曲线my x=的两个交点,过点A ,B 分别作AC y ⊥轴,BD x ⊥轴,垂足为C ,D . (1)求两个函数的表达式;(2)观察图像,直接写出不等式0mkx b x+-≥的解集; (3)判断CD 与AB 的位置关系,并说明理由.25. (本题10分)动车的开通为江都市民的出行带来更多方便,从江都到南京,路程120公里,某趟动车的平均速度比普通列车快50%,所需时间比普通列车少20分钟,求该动车的平均速度.(1)根据题意填空:①若小慧设 ▲ 为x 公里/小时,列出尚不完整的方程:xx 5.1120120=+( ▲ ); ②若小聪设 ▲ 为y 小时,列出尚不完整的方程:1201201.5y =⨯(▲); (2)请选择其中一名同学的设法,写出完整的解答过程. 26.(本题10分)阅读题:)0,0(≥≥=⋅b a ab b a 逆写为)0,0(≥≥⋅=b a b a ab ;)0,0(>≥=b a b a b a 逆写为)0,0(>≥=b a ba b a ;())0(2≥=a a a 逆写为 ▲ .应用知识:(1).在实数范围内分解因式:BACDEFyxH DEBAFCO=+-3322x x ▲ ; (2).化简:=+-yx yx ▲ ;(3).求值:已知621012331a b c a b c ++---+--=-,求c b a ++的值.27.(本题12分)如图,四边形ABCO 是平行四边形且点()4,0C -,将平行四边形ABCO 绕点A 逆时针旋转得到平行四边形ADEF ,AD 经过点O ,点F 恰好落在x 轴的正半轴上,若点A ,D 在反比例函数xky =的图像上,过A 作AH x ⊥轴,交EF 于点H . (1)证明:AOF ∆是等边三角形,并求k 的值;(2)在x 轴上找点G ,使ACG ∆是等腰三角形,求出G 的坐标; (3)设P ()1,x a ,()2,Q x b ()210x x >>,()1,M m y ,()2,N n y 是双曲线ky x=上的四点,,2a bm k+=122n x x =+,试判断21,y y 的大小,说明理由.28.(本题12分)已知,,45ABC AB AC ABC ∆=∠=︒,点D 为直线BC 上一动点(点D 不与C B ,重合),以AD 为边作正方形ADEF (F E D A ,,,按逆时针排列),连接CF .(1)如图①,当点D 在边BC 上时,求证:CA CD CF 2=+;(2)如图②,当点D 在边BC 的延长线上且其他条件不变时,请写出CA CD CF ,,之间存在的数量关系,并说明理由;(3)如图③,当点D 在边CB 的延长线上且其他条件不变时,补全图形,并直接写出....CA CD CF ,,之间的数量关系;(4)当点D 在直线BC 上运动时,请你用文字语言描述点F 的运动轨迹,并直接写出....DA DC DB ,,之间的数量关系.答案一、 选择题(3×8=24分) 题号 12345678答案B C B D D C C B二、填空题(3×10=30分) 9. 21-≥x 10. 52 11. 32 12.9322m m <≠且 13. 12 14.1或2- 15. 1或23316.︒75 17. 02x <<或6x > 18.5,26,8 三、解答题19.(每题4分,共8分)(1) 22- (2) 22x x --+ 20.(本题8分)2x =- 经检验2x =-是原方程的增根,∴原方程无解21.(本题8分) 原式22a a +=-- 1a ≠-,2a ≠∴当0a =时,原式1=22.(本题8分)(每小题2分) (1)画图45 (2)12 (3)︒=︒⨯14436020080 (4)567020046809000=+⨯23.(本题10分)(1)证明:AB CD //∴BAC DCA ∠=∠ AE CF = ∴AF CE =且ABF CDE ∠=∠∴ABF CDE ∆∆≌(AAS ) …………………………………………4分(2)当四边形ABCD 满足AB AD =时,四边形BFDE 时菱形。
江苏省宿迁市沭阳县八年级下学期末数学试卷 解析版
![江苏省宿迁市沭阳县八年级下学期末数学试卷 解析版](https://img.taocdn.com/s3/m/f7558dc802d276a200292eaa.png)
江苏省宿迁市沭阳县八年级(下)期末数学试卷一、选择题(每小题3分,共8题,总计24分)1.(3分)下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查2.(3分)要反映长沙市一周内每天的最高气温的变化情况,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布直方图3.(3分)在以下式子中,x可以取到3和4的是()A.B.C.D.4.(3分)下列根式是最简二次根式的是()A.B.C.D.5.(3分)估计+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间6.(3分)如图,为测量池塘边A、B两点的距离,小明在池塘的一侧选取一点C,测得CA、CB的中点分别是点M、N,且MN=14米,则A、B间的距离是()A.30米B.28米C.24米D.18米7.(3分)一次函数y1=k1x+b和反比例函数y2=(k1•k2≠0)的图象如图所示,若y1>y2,则x的取值范围是()A.﹣2<x<0或x>1B.﹣2<x<1C.x<﹣2或x>1D.x<﹣2或0<x<18.(3分)如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),双曲线y=(x>0)经过C点,且OB•AC=120,则k的值为()A.24B.32C.48D.60二、填空题(每小题3分,共10题,总计30分)9.(3分)某同学期中考试数学考了150分,则他期末考试数学考150分,(选填“不可能”“可能”或“必然”)10.(3分)化简:﹣=.11.(3分)反比例函数y=的图象经过点(﹣2,3),则k的值为.12.(3分)若=,则=.13.(3分)甲、乙二人做某种机械零件.已知甲每小时比乙多做4个,甲做60个所用的时间与乙做40个所用的时间相等,则乙每小时所做零件的个数为.14.(3分)某农科所在相同条件下做玉米种子发芽实验,结果如下:某位顾客购进这种玉米种子10千克,那么大约有千克种子能发芽.15.(3分)若1<x<4,则化简的结果是.16.(3分)若关于x的分式方程=2的解为非负数,则m的取值范围是.17.(3分)估计与0.5的大小关系是:0.5.(填“>”、“=”、“<”)18.(3分)设函数y=与y=x+4的图象的交点坐标为(a,b),则﹣的值为.三、解答题(共9题,总计96分)19.(10分)(1)计算2(2﹣)+(2)解方程:﹣=120.(10分)请你先化简(﹣a+2)÷,再从﹣2,2,0,中选择一个合适的数代入求值.21.(10分)若x,y是实数,且y>++3,求的值.22.(10分)某校为提高学生身体素质,决定开展足球、篮球、排球、乒乓球四项课外体育活动,并要求学生必须并且只能选择一项.为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并绘制出以下两幅不完整的统计图.请根据统计图回答下列问题.(要求写出简要的解答过程)(1)这次活动一共调查了多少名学生?(2)补全条形统计图.(3)若该学校总人数是1300人,请估计选择篮球项目的学生人数.23.(10分)某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h,求汽车原来的平均速度.24.(10分)如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B (﹣4,n)两点.(1)分别求出一次函数与反比例函数的表达式.(2)过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.25.(12分)如图,在平面直角坐标系中,正方形OABC的顶点O与原点重合,顶点A,C分别在x轴、y轴上,反比例函数y=(k≠0,x>0)的图象与正方形的两边AB、BC 分别交于点M、N,连接OM、ON、MN.(1)若正方形边长为4,点M为AB中点,求k的值;(2)证明△OCN≌△OAM;(3)若∠NOM=45°,MN=2,求点C的坐标.26.(12分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN 交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=8,CF=6,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.27.(12分)阅读理解:对于任意正实数a、b,∵(﹣)2≥0,∴a﹣2+b≥0,∴a+b≥2,∴当a=b时,a+b有最小值2.根据上述内容,回答下列问题(1)若m>0,只有当m=时,m+有最小值;若m>0,只有当m=时,2m+有最小值.(2)如图,已知直线L1:y=x+1与x轴交于点A,过点A的另一直线L2与双曲线y=(x>0)相交于点B(2,m),求直线L2的解析式.(3)在(2)的条件下,若点C为双曲线上任意一点,作CD∥y轴交直线L1于点D,试求当线段CD最短时,点A、B、C、D围成的四边形面积.江苏省宿迁市沭阳县八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共8题,总计24分)1.(3分)下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.(3分)要反映长沙市一周内每天的最高气温的变化情况,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布直方图【分析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【解答】解:根据题意,得要求直观反映长沙市一周内每天的最高气温的变化情况,结合统计图各自的特点,应选择折线统计图.故选:C.【点评】此题根据扇形统计图、折线统计图、条形统计图各自的特点来判断.3.(3分)在以下式子中,x可以取到3和4的是()A.B.C.D.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:中x≠3,A不符合题意;中x≠4B,不符合题意;中x﹣3>0即x>3,C符合题意;中x﹣4>0,即x>4,D不符合题意;故选:C.【点评】本题考查二次根式及分式有意义的条件,判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.4.(3分)下列根式是最简二次根式的是()A.B.C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、是最简二次根式,符合题意;B、=,不符合题意;C、=3,不符合题意;D、=2,不符合题意;故选:A.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.5.(3分)估计+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【分析】根据被开方数越大算术平方根越大,可得答案.【解答】解:∵3<<4,∴4<+1<5,故选:B.【点评】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出3<<4是解题关键,又利用了不等式的性质.6.(3分)如图,为测量池塘边A、B两点的距离,小明在池塘的一侧选取一点C,测得CA、CB的中点分别是点M、N,且MN=14米,则A、B间的距离是()A.30米B.28米C.24米D.18米【分析】根据三角形中位线定理解答.【解答】解:∵点M、N分别是CA、CB的中点,∴AB=2MN=28(米),故选:B.【点评】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.7.(3分)一次函数y1=k1x+b和反比例函数y2=(k1•k2≠0)的图象如图所示,若y1>y2,则x的取值范围是()A.﹣2<x<0或x>1B.﹣2<x<1C.x<﹣2或x>1D.x<﹣2或0<x<1【分析】直接利用两函数图象的交点横坐标得出y1>y2时,x的取值范围.【解答】解:如图所示:若y1>y2,则x的取值范围是:x<﹣2或0<x<1.故选:D.【点评】此题主要考查了反比例函数与一次函数的交点,正确利用函数图象分析是解题关键.8.(3分)如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),双曲线y=(x>0)经过C点,且OB•AC=120,则k的值为()A.24B.32C.48D.60【分析】作CH⊥OA于H.利用菱形的面积公式求出CH,再利用勾股定理求出OH,可得点C坐标即可解决问题;【解答】解:如图,作CH⊥OA于H.=OA•CH=•OB•AC=60,∵S菱形OABC∴CH=6,∵四边形OABC是菱形,∴OC=OA=10,∴OH==8,∴C(8,6),∵双曲线y=(x>0)经过C点,∴k=48,故选:C.【点评】本题考查反比例函数图象上的点的特征,菱形的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.二、填空题(每小题3分,共10题,总计30分)9.(3分)某同学期中考试数学考了150分,则他期末考试数学可能考150分,(选填“不可能”“可能”或“必然”)【分析】据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:某同学期中考试数学考了150分,则他期末考试数学可能考150分,故答案为:可能.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10.(3分)化简:﹣=.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.11.(3分)反比例函数y=的图象经过点(﹣2,3),则k的值为﹣6.【分析】将点(﹣2,3)代入解析式可求出k的值.【解答】解:把(﹣2,3)代入函数y=中,得3=,解得k=﹣6.故答案为:﹣6.【点评】主要考查了用待定系数法求反比例函数的解析式.先设y=,再把已知点的坐标代入可求出k值,即得到反比例函数的解析式.12.(3分)若=,则=.【分析】根据等式的性质1,等式两边都加上1,等式仍然成立可得出答案.【解答】解:根据等式的性质:两边都加1,,则=,故答案为:.【点评】本题主要考查等式的性质,观察要求的式子和已知的式子之间的关系,从而利用等式的性质进行计算.13.(3分)甲、乙二人做某种机械零件.已知甲每小时比乙多做4个,甲做60个所用的时间与乙做40个所用的时间相等,则乙每小时所做零件的个数为8.【分析】设乙每小时做x个,则甲每小时做(x+4)个,甲做60个所用的时间为,乙做40个所用的时间为;根据甲做60个所用的时间与乙做40个所用的时间相等,列方程求解.【解答】解:设乙每小时做x个,则甲每小时做(x+4)个,甲做60个所用的时间为,乙做40个所用的时间为,列方程为:=,解得:x=8,经检验:x=8是原分式方程的解,且符合题意,答:乙每小时做8个.故答案是:8.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.14.(3分)某农科所在相同条件下做玉米种子发芽实验,结果如下:某位顾客购进这种玉米种子10千克,那么大约有8.8千克种子能发芽.【分析】根据某农科所在相同条件下做某作物种子发芽率的试验表,可得大量重复试验发芽率逐渐稳定在0.88左右,据此求出10kg种子中大约有多少kg种子是能发芽的即可.【解答】解:∵大量重复试验发芽率逐渐稳定在0.88左右,∴10kg种子中能发芽的种子的质量是:10×0.88=8.8(kg)故答案为:8.8.【点评】此题主要考查了模拟实验,利用频率估计概率,大量反复试验下频率稳定值即概率,解答此题的关键是判断出:大量重复试验发芽率逐渐稳定在0.88左右.15.(3分)若1<x<4,则化简的结果是3.【分析】根据二次根式的性质解答.【解答】解:∵1<x<4,∴=|x﹣4|+|x﹣1|=4﹣x+x﹣1=3.【点评】本题主要考查了根据二次根式的意义化简.二次根式规律总结:当a≥0时,=a;当a≤0时,=﹣a.16.(3分)若关于x的分式方程=2的解为非负数,则m的取值范围是m≥﹣1且m ≠1.【分析】先解关于x的分式方程,求得x的值,然后再依据“解是非负数”建立不等式求m的取值范围.【解答】解:去分母得,m﹣1=2(x﹣1),∴x=,∵方程的解是非负数,∴m+1≥0即m≥﹣1又因为x﹣1≠0,∴x≠1,∴≠1,∴m≠1,则m的取值范围是m≥﹣1且m≠1.故选:m≥﹣1且m≠1.【点评】本题考查了分式方程的解,由于我们的目的是求m的取值范围,因此也没有必要求得x的值,求得m﹣1=2(x﹣1)即可列出关于m的不等式了,另外,解答本题时,易漏掉m≠1,这是因为忽略了x﹣1≠0这个隐含的条件而造成的,这应引起同学们的足够重视.17.(3分)估计与0.5的大小关系是:>0.5.(填“>”、“=”、“<”)【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【解答】解:∵﹣0.5=﹣=,∵﹣2>0,∴>0.答:>0.5.【点评】此题主要考查了两个实数的大小,其中比较两个实数的大小,可以采用作差法、取近似值法等.18.(3分)设函数y=与y=x+4的图象的交点坐标为(a,b),则﹣的值为2.【分析】把(a,b)代入y=与y=x+4,可得ab=2,b﹣a=4,利用整体代入的思想即可解决问题;【解答】解:∵函数y=与y=x+4的图象的交点坐标为(a,b),∴ab=2,b﹣a=4,∴﹣===2,故答案为2【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是灵活运用所学知识解决问题,学会用整体代入的思想解决问题.三、解答题(共9题,总计96分)19.(10分)(1)计算2(2﹣)+(2)解方程:﹣=1【分析】(1)去括号,化简二次根式,合并可得结论;(2)去分母,去括号,移项、合并同类项,解方程,最后要检验.【解答】解:(1)2(2﹣)+=4﹣2+2=4,(5分)(2)解方程:﹣=1,去分母,两边同时乘以x(x﹣1),得,x2﹣2(x﹣1)=x2﹣x,﹣x=﹣2,x=2,(3分)经检验,x=2是原分式方程的解.(5分)【点评】本题考查了实数的混合运算和解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.20.(10分)请你先化简(﹣a+2)÷,再从﹣2,2,0,中选择一个合适的数代入求值.【分析】根据分式的减法和除法可以化简题目中的式子,然后在﹣2,2,0,中选择一个使得原分式有意义的值代入化简后的式子即可解答本题.【解答】解:(﹣a+2)÷====,当a=时,原式==1﹣.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21.(10分)若x,y是实数,且y>++3,求的值.【分析】根据被开方数是非负数,差的绝对值是大数减小数,可得答案.【解答】解:由题意,得,解得x=1,当x=1时,y>3.==1.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式组是解题关键.22.(10分)某校为提高学生身体素质,决定开展足球、篮球、排球、乒乓球四项课外体育活动,并要求学生必须并且只能选择一项.为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并绘制出以下两幅不完整的统计图.请根据统计图回答下列问题.(要求写出简要的解答过程)(1)这次活动一共调查了多少名学生?(2)补全条形统计图.(3)若该学校总人数是1300人,请估计选择篮球项目的学生人数.【分析】(1)由“足球”人数及其百分比可得总人数;(2)根据各项目人数之和等于总人数求出“篮球”的人数,补全图形即可;(3)用总人数乘以样本中篮球所占百分比即可得.【解答】解:(1)这次活动一共调查学生:140÷35%=400(人);(2)选择“篮球”的人数为:400﹣140﹣20﹣80=160(人),;(3)估计该学校选择篮球项目的学生人数约是:1300×=520(人).【点评】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(10分)某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h,求汽车原来的平均速度.【分析】求的汽车原来的平均速度,路程为420km,一定是根据时间来列等量关系,本题的关键描述语是:从甲地到乙地的时间缩短了2h.等量关系为:原来时间﹣现在时间=2.【解答】解:设汽车原来的平均速度是x km/h,根据题意得:﹣=2,解得:x=70经检验:x=70是原方程的解.答:汽车原来的平均速度70km/h.【点评】本题考查了分式方程的应用.应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.24.(10分)如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B (﹣4,n)两点.(1)分别求出一次函数与反比例函数的表达式.(2)过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.【分析】(1)将点A坐标代入y=可得反比例函数解析式,据此求得点B坐标,根据A、B两点坐标可得直线解析式;(2)根据点B坐标可得底边BC=2,由A、B两点的横坐标可得BC边上的高,据此可得.【解答】解:(1)将点A(2,4)代入y=,得:m=8,则反比例函数解析式为y=,当x=﹣4时,y=﹣2,则点B(﹣4,﹣2),将点A(2,4)、B(﹣4,﹣2)代入y=kx+b,得:,解得:,则一次函数解析式为y=x+2;(2)由题意知BC=2,则△ACB的面积=×2×6=6.【点评】本题主要考查一次函数与反比例函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积求法是解题的关键.25.(12分)如图,在平面直角坐标系中,正方形OABC的顶点O与原点重合,顶点A,C 分别在x 轴、y 轴上,反比例函数y =(k ≠0,x >0)的图象与正方形的两边AB 、BC 分别交于点M 、N ,连接OM 、ON 、MN .(1)若正方形边长为4,点M 为AB 中点,求k 的值; (2)证明△OCN ≌△OAM ;(3)若∠NOM =45°,MN =2,求点C 的坐标.【分析】(1)求出点M 坐标,利用待定系数法即可解决问题;(2)由点M 、N 都在y =的图象上,即可得出S △ONC =S △OAM =|k |,再由正方形的性质可得出OC =OA ,∠OCN =∠OAM =90°,结合三角形的面积公式即可得出CN =AM ,进而即可证出△OCN ≌△OAM (SAS );(3)将△OAM 绕点O 逆时针旋转90°,点M 对应M ′,点A 对应A ′,由旋转和正方形的性质即可得出点A ′与点C 重合,以及N 、C 、M ′共线,通过角的计算即可得出∠M 'ON =∠MON =45°,结合OM ′=OM 、ON =ON 即可证出△M 'ON ≌△MON (SAS ),由此即可得出M ′N =MN =2,再由(1)△OCN ≌△OAM 即可得出CN =AM ,通过边与边之间的关系即可得出BM =BN ,利用勾股定理即可得出BM =BN =,设OC =a ,则M ′N =2CN =2(a ﹣),由此即可得出关于a 的一元一次方程,解方程即可得出点C的坐标;【解答】解:(1)∵四边形ABCO 是正方形, ∴OA =AB =BC =CO =4, ∵M 是AB 中点, ∴AM =BM =2, ∴M (4,2),把M (4,2)代入y =,得到k =8.(2)解:(1)∵点M 、N 都在y =的图象上,∴S △ONC =S △OAM =|k |. ∵四边形ABCO 为正方形,∴OC =OA ,∠OCN =∠OAM =90°,∴OC •CN =OA •AM . ∴CN =AM .在△OCN 和△OAM 中,,∴△OCN ≌△OAM (SAS ).(3)将△OAM 绕点O 逆时针旋转90°,点M 对应M ′,点A 对应A ′,如图所示. ∵OA =OC ,∴OA ′与OC 重合,点A ′与点C 重合. ∵∠OCM ′+∠OCN =180°, ∴N 、C 、M ′共线.∵∠COA =90°,∠NOM =45°, ∴∠CON +∠MOA =45°. ∵△OAM 旋转得到△OCM ′, ∴∠MOA =∠M ′OC , ∴∠CON +∠COM '=45°, ∴∠M 'ON =∠MON =45°. 在△M 'ON 与△MON 中,,∴△M 'ON ≌△MON (SAS ), ∴MN =M 'N =2. ∵△OCN ≌△OAM , ∴CN =AM . 又∵BC =BA ,∴BN=BM.又∠B=90°,∴BN2+BM2=MN2,∴BN=BM=.设OC=a,则CN=AM=a﹣.∵△OAM旋转得到△OCM′,∴AM=CM'=a﹣,∴M'N=2(a﹣),又∵M'N=2,∴2(a﹣)=2,解得:a=+1,∴C(0,+1).【点评】本题考查了全等三角形的判定与性质、旋转的性质以及勾股定理,解题的关键是:(1)求出点M坐标;(2)利用SAS证出△OCN≌△OAM;(3)找出关于a的一元一次方程.本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边角关系是关键.26.(12分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN 交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=8,CF=6,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.【分析】(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案;(2)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF的长,即可得出CO的长;(3)根据平行四边形的判定以及矩形的判定得出即可.【解答】:(1)证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;(2)解:∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°,∵CE=8,CF=6,∴EF==10,∴OC=EF=5;(3)答:当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.【点评】此题主要考查了矩形的判定、平行四边形的判定和直角三角形的判定等知识,根据已知得出∠ECF=90°是解题关键.27.(12分)阅读理解:对于任意正实数a、b,∵(﹣)2≥0,∴a﹣2+b≥0,∴a+b≥2,∴当a=b时,a+b有最小值2.根据上述内容,回答下列问题(1)若m>0,只有当m=1时,m+有最小值2;若m>0,只有当m=2时,2m+有最小值8.(2)如图,已知直线L1:y=x+1与x轴交于点A,过点A的另一直线L2与双曲线y=(x>0)相交于点B(2,m),求直线L2的解析式.(3)在(2)的条件下,若点C为双曲线上任意一点,作CD∥y轴交直线L1于点D,试求当线段CD最短时,点A、B、C、D围成的四边形面积.【分析】(1)利用阅读理解的材料即可得出结论;(2)先确定出点B坐标,再确定出点A坐标,最后用待定系数法即可得出结论;(3)先利用阅读理解的材料确定出n的值,最后用面积的和即和得出结论.【解答】解:(1)根据题意知,m=,即:m=1或m=﹣1(舍)时,m+最小,最小值为2;∵2m+=2m+,根据题意知,2m=,即:m=2或m=﹣2(舍)时,2m+的值最小,最小值为8,故答案为:1,2;2,8;(2)∵B(2,m)在双曲线y=(x>0)上,∴m=﹣4,∴B(2,﹣4),∵直线L1:y=x+1与x轴交于点A,∴A(﹣2,0),设直线L2的解析式为y=kx+b,∴,∴,∴直线L2的解析式为y=﹣x﹣2,(3)如图,设C(n,﹣),∴D(n,n+1),∴CD=n+1+≥2+1=5,此时n=,∴n=4,∴C(4,﹣2),D(4,3),过点B作BE∥y轴交AD于E,则E(2,2),∴BE=2+4=6,∴S四边形ABCD=S△ABE+S四边形BEDC=×6×4+(5+6)×2=23.【点评】此题是反比例函数综合题,主要考查了坐标轴上点的特点,待定系数法,材料的理解和应用,理解材料是解本题的关键.。
苏教版2018-2019学年八年级(下)期末考试数学试卷(含答案详解)
![苏教版2018-2019学年八年级(下)期末考试数学试卷(含答案详解)](https://img.taocdn.com/s3/m/43ad5d240b4e767f5bcfce16.png)
2018~2019学年第二学期期末调研 初二数学本试卷由选择题、填空题和解答题三大题组成,共29小题,满分100分.考试时间120分钟. 注意事项:1. 答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符; 2. 答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3. 考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上......... 1. 下面四个黑体字母中,既是轴对称图形,又是中心对称图形的果A. XB. LC. CD. Z 2. 若分式23x x +-的值为零,则 A.3x = B.3x =- C.2x = D.2x =-3. 一只不透明的袋子中装有一些红球和白球,这些球除颜色外都相同.将球摇匀,从中任意摸出一个球,摸到红球是A.确定事件B.必然事件C.不可能事件D.随机事件 4. 为了解我市老年人的健康状况,下列抽样调查最合理的是 A.在公园调查部分老年人的健康状况 B.在医院调查部分老年人的健康状况 C.利用户籍网调查部分老年人的健康状况 D.在周围邻居中调查部分老年人的健康状况 5. 下列各式成立的是A.2= 3= C.22(3=- 3=6. 若(2)2m =⨯-,则有 A.21m -<<- B.10m -<< C.01m << D.12m <<7. ①平行四边形,②矩形,③菱形,④正方形中,对角线的交点到各边中点的距离都相等的是A. ①②B. ③④C. ②③D.②④8. 在反比例函数2ky x-=的图像上有两点11(,)A x y 、22(,)B x y 。
江苏省宿迁市沭阳县2018-2019年八年级(下)期末数学试卷(含解析)
![江苏省宿迁市沭阳县2018-2019年八年级(下)期末数学试卷(含解析)](https://img.taocdn.com/s3/m/1da1de123c1ec5da50e270f5.png)
2018-2019学年江苏省宿迁市沭阳县八年级(下)期末数学试卷姓名: 得分: 日期:一、选择题(本大题共 8 小题,共 24 分)1、(3分) 下列图标中,是中心对称图形的是( )A.B. C. D.2、(3分) 下列各式:x π+2,5p 2q ,a 2−b 22,1m +m ,其中分式共有( ) A.1个 B.2个C.3个D.4个3、(3分) 下列调查适合做普查的是( )A.了解初中生晚上睡眠时间B.百姓对推广共享单车的态度C.了解某中学某班学生使用手机的情况D.了解初中生在家玩游戏情况4、(3分) “十次投掷一枚硬币,十次正面朝上”这一事件是( )A.必然事件B.随机事件C.确定事件D.不可能事件5、(3分) 某反比例函数的图象经过点(-2,3),则此函数图象也经过点( )A.(2,-3)B.(-3,-3)C.(2,3)D.(-4,6)6、(3分) 菱形具有而一般平行四边形不具有的性质是( )A.对边相等B.对角相等C.对角线互相垂直D.对角线互相平分7、(3分) 下列二次根式中属于最简二次根式的是( )A.√24B.√36C.√a bD.√28、(3分) 如图,A ,B 是反比例函数y=4x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A.4B.3C.2D.1二、填空题(本大题共 10 小题,共 30 分)9、(3分) 二次根式√a −1中,a 的取值范围是______.10、(3分) 一个袋中装有6个红球,4个黄球,1个白球,每个球除颜色外都相同,任意摸出一球,摸到______球的可能性最大.11、(3分) 正方形的对角线长为1,则正方形的面积为______. 12、(3分) 反比例函数y =m−1x 的图象在第一、三象限,则m 的取值范围是______.13、(3分) 若√m −3+(n +1)2=0,则m-n 的值为______.14、(3分) 某班级40名学生在期中学情分析考试中,分数段在90~100分的频率为0.2,则该班级在这个分数段内的学生有______人.15、(3分) 若关于x 的分式方程x x−1=3a 2x−2-2有非负数解,则a 的取值范围是______.16、(3分) 如图,点O 是矩形ABCD 的对角线AC 的中点,OM∥AB 交AD 于点M ,若OM=2,BC=6,则OB 的长为______. 17、(3分) 如图,B (3,-3),C (5,0),以OC ,CB 为边作平行四边形OABC ,则经过点A的反比例函数的解析式为______.18、(3分) 如图,已知点A ,B 在双曲线y=k x (x >0)上,AC⊥x 轴于点C ,BD⊥y 轴于点D ,AC 与BD 交于点P ,P 是AC 的中点.若△ABP 的面积为4,则k=______.三、解答题(本大题共 9 小题,共 88 分)19、(8分) 计算:(1)|1−√2|+(2018−π)0−√18(2)√3(√2−√3)−√24−|√6−3|20、(8分) 先化简,再求值:(x2x−1+11−x)÷1x,其中x=√2-1.21、(8分) 已知:如图,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF.求证:AF=CE.22、(10分) 某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)被调查的学生共有______人,并补全条形统计图;(2)在扇形统计图中,m=______,n=______,表示区域C的圆心角为______度;(3)全校学生中喜欢篮球的人数大约有多少?23、(10分) 某商场计划购进冰箱、彩电相关信息如表:若商场用80000元购进冰箱的数量与用64000元购进彩电的数量相等,求表中a的值.24、(10分) 如图,一次函数y=x+m的图象与反比例函数y=k的图象交于A,B两点,且与xx轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求点C的坐标,并结合图象写出不等式组0<x+m≤k的解集.x25、(10分) 驾驶员血液中每毫升的酒精含量大于或等于200微克即为酒驾,某研究所经实验测得:成人饮用某品牌38度白酒后血液中酒精浓度y(微克/毫升)与饮酒时间x(小时)之间函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中酒精浓度上升和下降阶段y与x之间的函数表达式.(2)问血液中酒精浓度不低于200微克/毫升的持续时间是多少小时?26、(12分) 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+2√2=(1+√2)2,善于思考的小明进行了以下探索:设a+b√2=(m+n√2)2(其中a、b、m、n均为整数),则有:a+b√2=m2+2n2+2mn√2,∴a=m2+2n2,b=2mn,这样小明就找到了一种把类似a+b√2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b√3=(m+n√3)2,用含m、n的式子分别表示a、b得:a=______,b=______;(2)利用所探索的结论,用完全平方式表示出:7+4√3=______.(3)请化简:√12−6√327、(12分) 如图,在平面直角坐标系xOy 中,△OAB 如图放置,点P 是AB 边上的一点,过点P 的反比例函数y=k x (k >0,x >0)与OA 边交于点E ,连接OP .(1)如图1,若点A 的坐标为(3,4),点B 的坐标为(5,0),且△OPB 的面积为5,求直线AB 和反比例函数y=k x 的解析式;(2)如图2,若∠AOB=60°,过P 作PC∥OA ,与OB 交于点C ,若OE=4,并且△OPC 的面积为3√32,求反比例函数y=kx 的解析式及点P 的坐标.四、计算题(本大题共 1 小题,共 8 分)28、(8分) 解方程: (1)2x+3=1x(2)x+1x−1−4x 2−1=12018-2019学年江苏省宿迁市沭阳县八年级(下)期末数学试卷D【解析】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选:D.根据中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.【第 2 题】【答案】B【解析】解:5p 2q ,1m+m是分式,故选:B.根据分式的定义即可求出答案.本题考查分式的定义,解题的关键是正确理解分式的定义,本题属于基础题型.【第 3 题】【答案】C【解析】解:A、了解初中生晚上睡眠时间,人数较多,适合抽查,故选项错误;B、百姓对推广共享单车的态度,人数较多,不容易普查,适合抽查,故选项错误;C、了解某中学某班学生使用手机的情况,人数不多,容易普查,选项正确;D、了解初中生在家玩游戏情况,人数较多,适合抽查,故选项错误.故选:C.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.B【解析】解:“十次投掷一枚硬币,十次正面朝上”可能发生,这一事件是随机事件,故选:B.根据随机事件的概念可知是随机事件.本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.【第 5 题】【答案】A【解析】,将点(-2,3)代入解析式得k=-2×3=-6,解:设反比例函数解析式为y=kx符合题意的点只有点A:k=2×(-3)=-6.故选:A.即可求出k的值,再根据k=xy解答即可.将(-2,3)代入y=kx本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.【第 6 题】【答案】C【解析】解:∵菱形具有的性质是:对边相等,对角相等,对角线互相垂直且平分;平行四边形具有的性质是:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:对角线互相垂直.故选:C.由菱形具有的性质是:对边相等,对角相等,对角线互相垂直且平分;平行四边形具有的性质是:对边相等,对角相等,对角线互相平分;即可求得答案.此题考查了菱形的性质以及平行四边形的性质.注意熟记定理是解此题的关键.D【 解析 】解:(A )原式=2√6,故A 错误;(B )原式=6,故B 错误;(C )原式=√ab b ,故C 错误;故选:D .根据最简二次根式的定义即可求出答案.本题考查最简二次根式,解题的关键是正确理解最简二次根式,本题属于基础题型.【 第 8 题 】【 答 案 】B【 解析 】解:∵A ,B 是反比例函数y=4x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,∴当x=2时,y=2,即A (2,2),当x=4时,y=1,即B (4,1).如图,过A ,B 两点分别作AC⊥x 轴于C ,BD⊥x 轴于D ,则S △AOC =S △BOD =12×4=2.∵S 四边形AODB =S △AOB +S △BOD =S △AOC +S 梯形ABDC ,∴S △AOB =S 梯形ABDC ,∵S 梯形ABDC =12(BD+AC )•CD=12(1+2)×2=3, ∴S △AOB =3.故选:B .先根据反比例函数图象上点的坐标特征及A ,B 两点的横坐标,求出A (2,2),B (4,1).再过A ,B 两点分别作AC⊥x 轴于C ,BD⊥x 轴于D ,根据反比例函数系数k 的几何意义得出S △AOC =S △BOD =12×4=2.根据S 四边形AODB =S △AOB +S △BOD =S △AOC +S 梯形ABDC ,得出S △AOB =S 梯形ABDC ,利用梯形面积公式求出S 梯形ABDC=12(BD+AC )•CD=12(1+2)×2=3,从而得出S △AOB =3. 本题考查了反比例函数y =k x 中k 的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12|k|.也考查了反比例函数图象上点的坐标特征,梯形的面积.【 第 9 题 】【 答 案 】a≥1【 解析 】解:由题意得,a-1≥0,解得,a≥1,故答案为:a≥1.根据二次根式有意义的条件列出不等式,解不等式即可.本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.【 第 10 题 】【 答 案 】红【 解析 】解:∵袋中装有6个红球,4个黄球,1个白球,∴总球数是:6+4+1=11个, ∴摸到红球的概率是=611;摸到黄球的概率是411;摸到白球的概率是111;∴摸出红球的可能性最大.故答案为:红.先求出总球的个数,再分别求出摸出各种颜色球的概率,即可比较出摸出何种颜色球的可能性最大.本题主要考查可能性的大小,只需求出各自所占的比例大小即可,求比例时,应注意记清各自的数目.【 第 11 题 】【 答 案 】12【 解析 】解:∵正方形对角线相等且互相垂直平分,而正方形的对角线长为1,11故答案为12. 根据正方形的性质得到正方形对角线相等且互相垂直平分,则正方形的面积等于对角线乘积的一半.本题考查了正方形的性质:正方形的四边相等,四个角都为90°,对角线相等且互相垂直平分.【 第 12 题 】【 答 案 】m >1【 解析 】解:∵反比例函数y =m−1x 的图象在第一、三象限,∴m -1>0,解得m >1.故答案为:m >1.先根据反比例函数所在的象限列出关于m 的不等式,求出m 的取值范围即可.本题考查的是反比例函数的性质,即反比例函数y=k x (k≠0)的图象是双曲线,当k >0时,双曲线的两支分别位于第一、第三象限.【 第 13 题 】【 答 案 】4【 解析 】解:根据题意得:{m −3=0n +1=0, 解得:{m =3n =−1. 则m-n=3=(-1)=4.故答案是:4.根据任何非负数的平方根以及偶次方都是非负数,两个非负数的和等于0,则这两个非负数一定都是0,即可得到关于m .n 的方程,从而求得m ,n 的值,进而求解.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.【 第 14 题 】【 答 案 】8【 解析 】解:40×0.2=8,故答案为:8.利用频数=总数×频率可得答案.此题主要考查了频数与频率,关键是掌握频率=频数总数.【 第 15 题 】【 答 案 】a ≥−43且a ≠23【 解析 】解:分式方程去分母得:2x=3a-4(x-1),移项合并得:6x=3a+4,解得:x=3a+46,∵分式方程的解为非负数, ∴3a+46≥0且3a+46-1≠0,解得:a≥-43且a≠23.故答案为:a ≥−43且a ≠23.将a 看做已知数,表示出分式方程的解,根据解为非负数列出关于a 的不等式,求出不等式的解集即可得到a 的范围.此题考查了分式方程的解,分式方程的解即为能使方程左右两边相等的未知数的值,本题注意x-1≠0这个隐含条件.【 第 16 题 】【 答 案 】 √13【 解析 】解:∵四边形ABCD 是矩形,∴∠D=90°,∵O 是矩形ABCD 的对角线AC 的中点,OM∥AB ,∴OM 是△ADC 的中位线,∵OM=2,∴DC=4,∵AD=BC=6,∴AC=√AD 2+CD 2=2√13, ∴BO=12AC=√13,故答案为:√13已知OM 是△ADC 的中位线,再结合已知条件则DC 的长可求出,所以利用勾股定理可求出AC的长,由直角三角形斜边上中线的性质则BO 的长即可求出.本题考查了矩形的性质,勾股定理的运用,直角三角形斜边上中线的性质以及三角形的中位线的应用,解此题的关键是求出AC 的长.【 第 17 题 】【 答 案 】y=6x【 解析 】解:设A 坐标为(x ,y ),∵B (3,-3),C (5,0),以OC ,CB 为边作平行四边形OABC ,∴x+5=0+3,y+0=0-3,解得:x=-2,y=-3,即A (-2,-3),设过点A 的反比例解析式为y=k x ,把A (-2,-3)代入得:k=6,则过点A 的反比例解析式为y=6x ,故答案为:y=6x设A 坐标为(x ,y ),根据四边形OABC 为平行四边形,利用平移性质确定出A 的坐标,利用待定系数法确定出解析式即可.此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.【 第 18 题 】【 答 案 】16【 解析 】解:∵△ABP 的面积为12•BP•AP=4,∴BP•AP=8,∵P 是AC 的中点,∴A 点的纵坐标是B 点纵坐标的2倍,又∵点A 、B 都在双曲线y=k x (x >0)上, ∴B 点的横坐标是A 点横坐标的2倍,∴OC=DP=BP ,∴k=OC•AC=BP•2AP=16.故答案为:16.由△ABP 的面积为4,知BP•AP=8.根据反比例函数y=k x 中k 的几何意义,知本题k=OC•AC ,由反比例函数的性质,结合已知条件P 是AC 的中点,得出OC=BP ,AC=2AP ,进而求出k 的值.主要考查了反比例函数y=kx中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.【第 19 题】【答案】解:(1)原式=√2-1+1-3√2=4√2;(2)原式=√6-3-2√6+√6-3=-6.【解析】(1)利用绝对值和零指数幂的意义计算;(2)先进行二次根式的乘法运算,然后去绝对值后合并即可.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.【第 20 题】【答案】解:原式=x 2−1x−1•x=x2+x,当x=√2-1时,原式=(√2-1)2+(√2-1)=2+1-2√2+√2-1=2-√2.【解析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.【第 21 题】【答案】证明:∵四边形ABCD是矩形,∴DC∥AB,DC=AB,∴CF∥AE,∵DF=BE,∴CF=AE,∴四边形AFCE是平行四边形,∴AF=CE.【解析】根据矩形的性质得出DC∥AB,DC=AB,求出CF=AE,CF∥AE,根据平行四边形的判定得出四边形AFCE是平行四边形,即可得出答案.本题考查了平行四边形的性质和判定,矩形的性质的应用,注意:矩形的对边相等且平行,平行四边形的对边相等.【第 22 题】【答案】解:(1)观察统计图知:喜欢乒乓球的有20人,占20%,故被调查的学生总数有20÷20%=100人,喜欢跳绳的有100-30-20-10=40人,条形统计图为:(2)∵A组有30人,D组有10人,共有100人,∴A组所占的百分比为:30%,D组所占的百分比为10%,∴m=30,n=10;×360°=144°;表示区域C的圆心角为40100(3)∵全校共有2000人,喜欢篮球的占10%,∴喜欢篮球的有2000×10%=200人.【解析】(1)用B组频数除以其所占的百分比即可求得样本容量;(2)用A组人数除以总人数即可求得m值,用D组人数除以总人数即可求得n值;(3)用总人数乘以D类所占的百分比即可求得全校喜欢篮球的人数;本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.【 第 23 题 】【 答 案 】解:依题意,得:80000a =64000a−400,解得:a=2000,经检验,a=2000是原方程的解,且符合题意.答:表中a 的值为2000.【 解析 】根据数量=总价÷单价结合用80000元购进冰箱的数量与用64000元购进彩电的数量相等,即可得出关于a 的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.【 第 24 题 】【 答 案 】解:(1)由题意可得:点A (2,1)在函数y=x+m 的图象上,∴2+m=1即m=-1,∵A (2,1)在反比例函数y =k x 的图象上,∴k 2=1, ∴k=2;(2)∵一次函数解析式为y=x-1,令y=0,得x=1,∴点C 的坐标是(1,0),由图象可知不等式组0<x+m≤k x 的解集为1<x≤2.【 解析 】(1)把点A 坐标代入一次函数y=x+m 与反比例函数y=k x ,分别求得m 及k 的值;(2)令直线解析式的函数值为0,即可得出x 的值,从而得出点C 坐标,根据图象即可得出不等式组0<x+m≤k x 的解集.本题考查了反比例函数和一次函数的交点问题,掌握用待定系数法求一次函数和反比例函数是解题的关键.【 第 25 题 】【 答 案 】解:(1)当0≤x≤4时,设直线解析式为:y=kx ,将(4,400)代入得:400=4k , 解得:k=100,故直线解析式为:y=100x , 当4≤x≤10时,设反比例函数解析式为:y=a x ,将(4,400)代入得:400=a 4,解得:a=1600,故反比例函数解析式为:y=1600x ;因此血液中药物浓度上升阶段的函数关系式为y=100x (0≤x≤4),下降阶段的函数关系式为y=1600x (4≤x≤10).(2)当y=200,则200=100x ,解得:x=2,当y=200,则200=1600x ,解得:x=8,∵8-2=6(小时),∴血液中药物浓度不低于200微克/毫升的持续时间6小时.【 解析 】(1)当0≤x≤4时,设直线解析式为:y=kx ,当4≤x≤10时,设反比例函数解析式为:y=a x ,利用待定系数法即可解决问题;(2)分别求出y=200时的两个函数值,再求时间差即可解决问题.本题考查一次函数的应用、反比例函数的应用等知识,解题的关键是灵活应用待定系数法解决问题,学会利用函数图象解决实际问题,属于中考常考题型.【 第 26 题 】【 答 案 】解:(1)(m+n √3)2=m 2+3n 2+2√3mn ,∴a=m 2+3n 2,b=2mn .故答案为m 2+3n 2,2mn ;(2)7+4√3=(2+√3)2;故答案为:(2+√3)2;(3)∵12-6√3=(3-√3)2,∴√12−6√3=√(3−√3)2=3-√3.【 解析 】(1)利用完全平方公式展开得到(m+n √3)2=m 2+3n 2+2√3mn ,从而可用m 、n 表示a 、b ;(2)直接利用完全平方公式,变形得出答案;(3)直接利用完全平方公式,变形化简即可.本题考查了二次根式的性质与化简,完全平方公式,解决本题的关键是熟记完全平方公式.【 第 27 题 】【 答 案 】解:(1)如图1,过点P 作PQ⊥x 轴交x 轴于点Q ,∵点A 的坐标为(3,4),点B 的坐标为(5,0),∴设直线AB 的解析式为y=kx+b (k≠0), ∴{3k +b =45k +b =0,解得{k =−2b =10, ∴直线AB 的解析式为:y=-2x+10.∵点B 的坐标为(5,0),且△OPB 的面积为5,∴PQ=2,点P 纵坐标为2.∵点P 在直线AB 上-2x+10=2,解得x=4,∴点P 坐标为(4,2) ∴此反比例函数的解析式为y=8x ; (2)如图2,过点E 作EF⊥x 轴交x 轴于点F ,过点P 作PS⊥x 轴交x 轴于点S ,∵∠AOB=60°,∠EFO=90°,OE=4,∴OF=2,EF=2√3,∴此反比例函数的解析式为y=4√3x. ∵S △OCP =3√32=12OC•PS , ∴OC•PS=3√3.∵OS•PS=4√3,∴CS•PS=√3.∵∠AOB=60° PC∥OA ,∴∠PCS=60°,∴PS=√3CS ,∴CS=1.∴点P 坐标为(4,√3).【 解析 】(1)过点P 作PQ⊥x 轴交x 轴于点Q ,利用待定系数法求出直线AB 的解析式,根据△OPB 的面积为5求出PQ 的长,代入直线AB 的解析式可得出P 点坐标,进而可得出反比例函数的解析式;(2)过点E 作EF⊥x 轴交x 轴于点F ,过点P 作PS⊥x 轴交x 轴于点S ,利用锐角三角函数的定义求出OF 及EF 的长,故可得出反比例函数的解析式,根据△OPC 的面积为3√32求出OC•PS 的长,再由锐角三角函数的定义得出PS 的长,进而可得出P 点坐标.本题考查的是反比例函数与一次函数的交点问题,根据题意作出辅助线,构造出直角三角形,利用锐角三角函数的定义求解是解答此题的关键.【 第 28 题 】【 答 案 】解:(1)去分母得:2x=x+3,解得:x=3经检验x=3是分式方程的解;(2)去分母得:x 2+2x+1-4=x 2-1,解得:x=1,经检验x=1是增根,分式方程无解.【 解析 】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.。
江苏省宿迁市八年级下学期数学期末考试试卷
![江苏省宿迁市八年级下学期数学期末考试试卷](https://img.taocdn.com/s3/m/6f4746d027d3240c8447efed.png)
江苏省宿迁市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018八上·深圳期中) 对于函数,下列说法正确的是A . 它与y轴的交点是B . y值随着x值增大而减小C . 它的图象经过第二象限D . 当时,2. (2分) (2018八下·永康期末) 下列计算正确的是()A . =3B . =﹣3C . =±3D . (﹣)2=33. (2分)(2017·岱岳模拟) 如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE、BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD= AE2;④∠DFE=2∠DAC;⑤若连接CH,则CH∥EF,其中正确的个数为()A . 2个B . 3个C . 4个D . 5个4. (2分)(2019·上城模拟) 有一组数据:2,0,2,1,﹣2,则这组数据的中位数、众数分别是()A . 1,2B . 2,2C . 2,1D . 1,15. (2分)(2019·梁平模拟) 下列计算正确的是()A . =×B . =﹣C . =D . =6. (2分)如图是2002年在北京召开的国际数学家大会的会徽,它由4个相同的直角三角形拼成,已知直角三角形的两条直角边长分别为3和4,则大正方形ABCD和小正方形EFGH的面积比是()A . 1:5B . 1:25C . 5:1D . 25:17. (2分)下列命题是假命题的是()A . 四个角相等的四边形是矩形B . 对角线互相平分的四边形是平行四边形C . 四条边相等的四边形是菱形D . 对角线互相垂直且相等的四边形是正方形8. (2分)如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴,y轴上,连OB,将纸片OABC沿OB折叠,使点A落在A′的位置,若OB=,tan∠BOC=,则点A′的坐标()A . (﹣,)B . (﹣,)C . (﹣,)D . (﹣,)9. (2分)如图,直线y=kx+b经过A(2,1),B(﹣1,﹣2)两点,则不等式x>kx+b>﹣2的解集为()A . x<2B . x>﹣1C . x<1或x>2D . ﹣1<x<210. (2分)如图,矩形ABCD沿AE折叠,使D点落在BC边上的点F处,如果∠BAF=60°,则∠DAE等于()A . 15°B . 30°C . 45°D . 60°二、填空题 (共6题;共6分)11. (1分)(2018·镇江) 计算: =________.12. (1分)在平行四边形ABCD中,点O是对角线AC、BD的交点,AC⊥BC,且AB=10cm,AD=6cm,则AO=________cm.13. (1分) (2018八上·建湖月考) 将一次函数y=2x+3的图象平移后过点(1,4),则平移后得到的函数关系式为________.14. (1分)如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A⇒B⇒C所走的路程为________m.15. (1分) (2019八下·温州期末) 要使二次根式有意义,则a的取值范围是________.16. (1分) (2019八下·卢龙期中) 如图,将边长为2的等边三角形沿x轴正方向连续翻折2016次,依次得到点P1 , P2 , P3 ,…,P2016 ,则点P2016的坐标是________.三、解答题 (共9题;共110分)17. (10分)(1)计算:(2)用配方法解方程:.18. (10分) (2016八下·广饶开学考) 如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是E、F,并且DE=DF.求证:(1)△ADE≌△CDF;(2)四边形ABCD是菱形.19. (15分) (2016九上·夏津期中) 如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC 绕点A逆时针旋转后,得到△P′AB.(1)求点P与点P′之间的距离;(2)求∠APB的度数.20. (15分)(2019·盐城)(1)【生活观察】甲、乙两人买菜,甲习惯买一定质量的菜,乙习惯买一定金额的菜,两人每次买菜的单价相同,例如:①完成上表;②计算甲两次买菜的均价和乙两次买菜的均价.(均价=总金额÷总质量)(2)【数学思考】设甲每次买质量为m千克的菜,乙每次买金额为n元的菜,两次的单价分别是a元/千克、b元/千克,用含有m、n、a、b的式子,分别表示出甲、乙两次买菜的均价、 .比较、的大小,并说明理由.(3)【知识迁移】某船在相距为s的甲、乙两码头间往返航行一次,在没有水流时,船的速度为v所需时间为:如果水流速度为p时(p<v),船顺水航行速度为(v+p),逆水航行速度为(v-p),所需时间为请借鉴上面的研究经验,比较、的大小,并说明理由.21. (10分)(2018·龙岩模拟) 如图,在中,,垂足为,过的⊙O分别与交于点,连接.(1)求证:≌ ;(2)当与⊙O相切时,求⊙O的面积.22. (10分) (2020八上·金山期末) 已知:如图,△ABC中,AD⊥BC,点D为垂足,AD=BD,点E在AD上,BE=AC(1)求证:△BDE≌△ADC(2)若M、N分别是BE、AC的中点,分别联结DM、DN. 求证:DM⊥DN23. (10分) (2017八下·丰台期中) 实验与探究:(1)由图观察易知关于直线的对称点的坐标为,请在图中分别标明、关于直线的对称点、的位置,并写出他们的坐标: ________、 ________.归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点关于第一、三象限的角平分线的对称点的坐标为________(不必证明).运用与拓广:(3)已知两点、,试在直线上确定一点,使点到、两点的距离之和最小,并求出点坐标.24. (15分)(2018·长春) 某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是________立方米,从打开输入口到关闭输出口共用的时间为________分钟.25. (15分) (2019八下·襄城月考) 已知直角△ABC,∠BAC=90°,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF连接EF(1)如图1,求证:∠BED=∠AFD;(2)求证:BE2+CF2=EF2;(3)如图2,当∠ABC=45°,若BE=12,CF=5,求△DEF的面积.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共110分)17-1、18-1、18-2、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、。
2018—2019学年度第二学期期末教学质量检测八年级数学试题及答案
![2018—2019学年度第二学期期末教学质量检测八年级数学试题及答案](https://img.taocdn.com/s3/m/4aff9f6e482fb4daa58d4bf7.png)
2018—2019学年度第二学期期末教学质量检测八年级数学试题(满分120分,时间:120分钟)一、选择题:本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项A 、B 、C 、D 中,只有一项是正确的,请把正确的选项填在答题卡的相应位置1.在数轴上与原点的距离小于8的点对应的x 满足A.x <8B.x >8C.x <-8或x >8D.-8<x <82.将多项式﹣6a 3b 2﹣3a 2b 2+12a 2b 3分解因式时,应提取的公因式是A .-3a 2b 2B .-3abC .-3a 2bD .-3a 3b 33.下列分式是最简分式的是A .11m m --B .3xy y xy -C .22x y x y -+D .6132m m- 4.如图,在Rt △ABC 中,∠C=90°,∠ABC=30°,AB=8,将△ABC 沿CB 方向向右平移得到△DEF.若四边形ABED 的面积为8,则平移距离为A .2B .4C .8D .165.如图所示,在△ABC 中,AB=AC ,AD 是中线,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,则下列四个结论中:①AB 上任一点与AC 上任一点到D 的距离相等;②AD 上任一点到AB 、AC 的距离相等;③∠BDE=∠CDF ;④∠1=∠2.正确的有A.1个B.2个C.3个D.4个6.每千克m 元的糖果x 千克与每千克n 元的糖果y 千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为 A.y x my nx ++元 B.yx ny mx ++元 C.y x n m ++元 D.12x y m n ⎛⎫+ ⎪⎝⎭元 7.如图,□ABCD 的对角线AC ,BD 交于点O ,已知AD=8,BD=12,AC=6,则△OBC 的周长为A .13B .26C .20D .178.如图,DE 是△ABC 的中位线,过点C 作CF ∥BD 交DE 的延长线于点F ,则下列结论正确的是A .EF=CFB .EF=DEC .CF <BD D .EF >DE二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后的结果填写在答题卡的相应区域内)9.利用因式分解计算:2012-1992= ;10.若x+y=1,xy=-7,则x 2y+xy 2= ;11.已知x=2时,分式31x k x ++的值为零,则k= ; 12.公路全长为skm ,骑自行车t 小时可到达,为了提前半小时到达,骑自行车每小时应多走 ;13.一个多边形的内角和是外角和的2倍,则这个多边形的边数为 ;14.如图,△ACE 是以□ABCD 的对角线AC 为边的等边三角形,点C 与点E 关于x 轴对称.若E 点的坐标是(7,﹣D 点的坐标是 .三、解答题(本大题共78分,解答要写出必要的文字说明、演算步骤)15.(6分)分解因式(1)20a 3-30a 2 (2)25(x+y )2-9(x-y )216.(6分)计算:(1)22122a a a a+⋅-+ (2)211x x x -++ 17.(6分)A 、B 两地相距200千米,甲车从A 地出发匀速开往B 地,乙车同时从B 地出发匀速开往A 地,两车相遇时距A 地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.18.(7分)已知:如图,在△ABC 中,AB=AC ,点D 是BC 的中点,作∠EAB=∠BAD ,AE 边交CB 的延长线于点E ,延长AD 到点F ,使AF=AE ,连结CF .求证:BE=CF .19.(8分) “二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.20.(8分)如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别在AB ,AC 上,CE=BC ,连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得CF ,连接EF.(1)补充完成图形;(2)若EF ∥CD ,求证:∠BDC=90°.21.(8分)下面是某同学对多项式(x 2-4x+2)(x 2-4x+6)+4进行因式分解的过程.解:设x 2-4x=y ,原式=(y+2)(y+6)+4(第一步)=y 2+8y+16 (第二步)=(y+4)2(第三步)=(x 2-4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的 .A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式(2)该同学因式分解的结果是否彻底? .(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果 .(3)请你模仿以上方法尝试对多项式(x 2-2x)(x 2-2x+2)+1进行因式分解.22.(8分)如图,四边形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别在OA ,OC 上(1)给出以下条件;①OB=OD ,②∠1=∠2,③OE=OF ,请你从中选取两个条件证明△BEO ≌△DFO ;(2)在(1)条件中你所选条件的前提下,添加AE=CF ,求证:四边形ABCD 是平行四边形.23.(10分)如图,在□ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF ;(2)连接DE ,若AD=2AB ,求证:DE ⊥AF .24.(11分)如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,且AD=12cm ,AB=8cm ,DC=10cm ,若动点P 从A 点出发,以每秒2cm 的速度沿线段AD 向点D 运动;动点Q 从C 点出发以每秒3cm 的速度沿CB 向B 点运动,当P 点到达D 点时,动点P 、Q 同时停止运动,设点P 、Q 同时出发,并运动了t 秒,回答下列问题:(1)BC= cm ;(2)当t 为多少时,四边形PQCD 成为平行四边形?(3)当t 为多少时,四边形PQCD 为等腰梯形?(4)是否存在t ,使得△DQC 是等腰三角形?若存在,请求出t 的值;若不存在,说明理由.八年级数学试题参考答案一、选择题(每小题3分,共24分)1、D2、A3、C4、A5、C6、B7、D8、B二、填空题(每小题3分,共18分)9. 800 10.-7 11.-6 12.221s t --s t 13.6(六) 14.(5,0) 三、解答题 (共78分)15.(1)解:20a 3﹣30a 2=10a 2(2a ﹣3)…………………………………………3分(2)解:25(x+y )2﹣9(x ﹣y )2=[5(x+y )+3(x ﹣y )][5(x+y )﹣3(x ﹣y )]=(8x+2y )(2x+8y );=4(4x+y)(x+4y)……………………………………………………………3分16.(1)解:22122a a a a+⋅-+ =2(2)(2)a a a a +-⋅+ =212a a -1(2)a a -或………………………………………………3分 (2)211x x x -++ =2(1)1x x x --+ =2(1)(1)11x x x x x -+-++ =2(1)(1)1x x x x --++=11x +…………………………………………………………………………3分 17.设甲车的速度是x 千米/时,乙车的速度为(x+30)千米/时,……………1分308020080+-=x x ………………………………………………………………………3分 解得,x=60,………………………………………………………………………4分经检验,x=60是原方程的解.……………………………………………………5分则x+30=90,即甲车的速度是60千米/时,乙车的速度是90千米/时.……………………6分18.证明:∵AB=AC ,点D 是BC 的中点,∴∠CAD=∠BAD .…………………………………………………………………2分 又∵∠EAB=∠BAD ,∴∠CAD=∠EAB .…………………………………………………………………4分 在△ACF 和△ABE 中,∴△ACF ≌△ABE (SAS ).∴BE=CF .……………………………………………………………………………7分19.解:(1)设“益安”车队载重量为8吨、10吨的卡车分别有x 辆、y 辆,根据题意得:,解之得:. 答:“益安”车队载重量为8吨的卡车有5辆,10吨的卡车有7辆;…………………4分(2)设载重量为8吨的卡车增加了z 辆,依题意得:8(5+z )+10(7+6﹣z )>165,解之得:z <,………………………………………………………………………………6分 ∵z ≥0且为整数,∴z=0,1,2;∴6﹣z=6,5,4.∴车队共有3种购车方案:①载重量为8吨的卡车购买1辆,10吨的卡车购买5辆;②载重量为8吨的卡车购买2辆,10吨的卡车购买4辆;③载重量为8吨的卡车不购买,10吨的卡车购买6辆.………………………………8分20.(1)解:补全图形,如图所示.………………………………………………………3分(2) 证明:由旋转的性质得∠DCF=90°,DC=FC ,∴∠DCE +∠ECF=90°.………………………………………………………………4分∵∠ACB=90°,∴∠DCE +∠BCD=90°,∴∠ECF=∠BCD∵EF ∥DC ,∴∠EFC +∠DCF=180°,∴∠EFC=90°.………………………………………………………………………6分在△BDC 和△EFC 中,⎩⎪⎨⎪⎧DC =FC ,∠BCD =∠ECF ,BC =EC ,∴△BDC ≌△EFC(SAS),∴∠BDC=∠EFC=90°.………………………………………………………………8分21.解:(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;故选:C ;……………………………………………………………………………2分(2)该同学因式分解的结果不彻底,原式=(x 2﹣4x+4)2=(x ﹣2)4;故答案为:不彻底,(x ﹣2)4…………………………………………………………4分(3)(x 2﹣2x )(x 2﹣2x+2)+1=(x 2﹣2x )2+2(x 2﹣2x )+1=(x 2﹣2x+1)2=(x ﹣1)4.………………………………………………………………………………8分22.证明:(1)选取①②,∵在△BEO和△DFO中,∴△BEO≌△DFO(ASA);……………………………………………………………………4分(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四边形ABCD是平行四边形.……………………………………………………………8分23.证明:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠ABE=∠FCE,∵E为BC中点,∴BE=CE,在△ABE与△FCE中,,∴△ABE≌△FCE(ASA),∴AB=FC;………………………………………………………………………………6分(2)∵AD=2AB,AB=FC=CD,∴AD=DF,∵△ABE≌△FCE,∴AE=EF,∴DE⊥AF.………………………………………………………………………………10分24.解:根据题意得:PA=2t,CQ=3t,则PD=AD-PA=12-2t.(1)如图,过D点作DE⊥BC于E,则四边形ABED为长方形,DE=AB=8cm,AD=BE=12cm,在直角△CDE中,∵∠CED=90°,DC=10cm,DE=8cm,∴EC=,∴BC=BE+EC=18cm.…………………………………………………………………2分(直接写出最后结果18cm即可)(2)∵AD∥BC,即PD∥CQ,∴当PD=CQ时,四边形PQCD为平行四边形,即12-2t=3t,解得t=125秒,故当t=125秒时四边形PQCD为平行四边形;………………………………………4分(3)如图,过D点作DE⊥BC于E,则四边形ABED为长方形,DE=AB=8cm,AD=BE=12cm,当PQ=CD时,四边形PQCD为等腰梯形.过点P作PF⊥BC于点F,过点D作DE⊥BC于点E,则四边形PDEF是长方形,EF=PD=12-2t,PF=DE.在Rt△PQF和Rt△CDE中,PQ CD PF DE ==⎧⎨⎩, ∴Rt △PQF ≌Rt △CDE (HL ),∴QF=CE ,∴QC-PD=QC-EF=QF+EC=2CE ,即3t-(12-2t )=12,解得:t=245, 即当t=245时,四边形PQCD 为等腰梯形;……………………………………………8分 (4)△DQC 是等腰三角形时,分三种情况讨论:①当QC=DC 时,即3t=10,∴t=103; ②当DQ=DC 时,362t = ∴t=4; ③当QD=QC 时,3t ×6510= ∴t=259. 故存在t ,使得△DQC 是等腰三角形,此时t 的值为103秒或4秒或259秒.………11分③在Rt△DMQ中,DQ2=DM2+QM2222 (3)8(38) t t=+-36t=100t=259第11 页共11 页。
2019年宿迁市初二数学下期末试卷(及答案)
![2019年宿迁市初二数学下期末试卷(及答案)](https://img.taocdn.com/s3/m/1ae9f0fb1eb91a37f0115c46.png)
2019年宿迁市初二数学下期末试卷(及答案)一、选择题1.已知M 、N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形2.一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >3.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形 ③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有( )个. A .4B .3C .2D .14.如图,平行四边形ABCD 中,M 是BC 的中点,且AM=9,BD=12,AD=10,则ABCD的面积是( )A .30B .36C .54D .725.小强所在学校离家距离为2千米,某天他放学后骑自行车回家,先骑了5分钟后,因故停留10分钟,再继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离s (千米)与所用时间t (分)之间的关系( )A .B .C .D .6.已知一次函数y=-0.5x+2,当1≤x≤4时,y 的最大值是( ) A .1.5B .2C .2.5D .-67.若函数()0y kx k =≠的值随自变量的增大而增大,则函敷2y x k =+的图象大致是( )A .B .C .D .8.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( ) A .众数 B .平均数C .中位数D .方差9.为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表: 尺码(厘米)2525.52626.527购买量(双)12322则这10双运动鞋尺码的众数和中位数分别为( ) A .25.5厘米,26厘米 B .26厘米,25.5厘米 C .25.5厘米,25.5厘米D .26厘米,26厘米10.如图,D 3081次六安至汉口动车在金寨境内匀速通过一条隧道(隧道长大于火车长),火车进入隧道的时间x 与火车在隧道内的长度y 之间的关系用图象描述大致是( )A .B .C .D .11.下列各组数,可以作为直角三角形的三边长的是( ) A .2,3,4B .7,24,25C .8,12,20D .5,13,1512.一列火车由甲市驶往相距600km 的乙市,火车的速度是200km/时,火车离乙市的距离s(单位:km)随行驶时间t(单位:小时)变化的关系用图象表示正确的是( )A .B .C .D .二、填空题13.如图,在ABC 中,AC BC =,点D E ,分别是边AB AC ,的中点,延长DE 到点F ,使DE EF =,得四边形ADCF .若使四边形ADCF 是正方形,则应在ABC 中再添加一个条件为__________.14.如图,在▱ABCD 中,E 为CD 的中点,连接AE 并延长,交BC 的延长线于点G ,BF ⊥AE ,垂足为F ,若AD =AE =1,∠DAE =30°,则EF =_____.15.如图,在正方形ABCD 的外侧,作等边△ADE ,则∠AEB=_________°.16.如图,在▱ABCD 中,∠D =120°,∠DAB 的平分线AE 交DC 于点E ,连接BE.若AE=AB ,则∠EBC 的度数为_______.17.一个三角形的三边长分别为15cm 、20cm 、25cm ,则这个三角形最长边上的高是_____ cm .18.某汽车生产厂对其生产的A 型汽车进行油耗试验,试验中汽车为匀速行驶汽在行驶过程中,油箱的余油量y (升)与行驶时间t (小时)之间的关系如下表: t (小时) 0 1 2 3 y (升)100928476由表格中y 与t 的关系可知,当汽车行驶________小时,油箱的余油量为0.19.如图:长方形ABCD 中,AD=10,AB=4,点Q 是BC 的中点,点P 在AD 边上运动,当△BPQ 是等腰三角形时,AP 的长为___.20.已知3a b +=,2ab =a bb a的值为_________. 三、解答题21.某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在五天中进球数(单位:个)进行统计,结果如下: 甲 10 6 10 6 8 乙79789经过计算,甲进球的平均数为8,方差为3.2. (1)求乙进球的平均数和方差;(2)如果综合考虑平均成绩和成绩稳定性两方面的因素,从甲、乙两名队员中选出一人去参加定点投篮比赛,应选谁?为什么?22.如图,在Rt △ABC 中,∠A=90°,∠B=30°,D 、E 分别是AB 、BC 的中点,若DE=3,求B C 的长.23.如图,点B 、E 、C 、F 在一条直线上,AB =DF ,AC =DE ,BE =FC . (1)求证:△ABC ≌△DFE ;(2)连接AF 、BD ,求证:四边形ABDF 是平行四边形.24.若一次函数y kx b =+,当26x -≤≤时,函数值的范围为119y -≤≤,求此一次函数的解析式?25.如图,正方形ABCD 中,E 是BC 上的一点,连接AE ,过B 点作BH ⊥AE ,垂足为点H ,延长BH 交CD 于点F ,连接AF . (1)求证:AE=BF .(2)若正方形边长是5,BE=2,求AF 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】依据作图即可得到AC =AN =4,BC =BM =3,AB =2+2+1=5,进而得到AC 2+BC 2=AB 2,即可得出△ABC 是直角三角形. 【详解】如图所示,AC =AN =4,BC =BM =3,AB =2+2+1=5, ∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,且∠ACB =90°, 故选B .【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.2.B解析:B 【解析】 【分析】根据两函数图象平行k 相同,以及平移规律“左加右减,上加下减”即可判断 【详解】∵将直线1l 向下平移若干个单位后得直线2l , ∴直线1l ∥直线2l , ∴12k k =,∵直线1l 向下平移若干个单位后得直线2l , ∴12b b >,∴当x 5=时,12y y > 故选B . 【点睛】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.3.C解析:C 【解析】 【分析】 【详解】∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个,故选C.考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.4.D解析:D【解析】【分析】求▱ABCD的面积,就需求出BC边上的高,可过D作DE∥AM,交BC的延长线于E,那么四边形ADEM也是平行四边形,则AM=DE;在△BDE中,三角形的三边长正好符合勾股定理的逆定理,因此△BDE是直角三角形;可过D作DF⊥BC于F,根据三角形面积的不同表示方法,可求出DF的长,也就求出了BC边上的高,由此可求出四边形ABCD的面积.【详解】作DE∥AM,交BC的延长线于E,则ADEM是平行四边形,∴DE=AM=9,ME=AD=10,又由题意可得,BM=12BC=12AD=5,则BE=15,在△BDE中,∵BD2+DE2=144+81=225=BE2,∴△BDE是直角三角形,且∠BDE=90°,过D作DF⊥BE于F,则DF=365 BD DEBE⋅=,∴S▱ABCD=BC•FD=10×365=72.故选D.【点睛】此题主要考查平行四边形的性质和勾股定理的逆定理,正确地作出辅助线,构造直角三角形是解题的关键.5.D解析:D【解析】【分析】根据描述,图像应分为三段,学校离家最远,故初始时刻s 最大,到家,s 为0,据此可判断. 【详解】因为小明家所在学校离家距离为2千米,某天他放学后骑自行车回家,行使了5分钟后,因故停留10分钟,继续骑了5分钟到家,所以图象应分为三段,根据最后离家的距离为0,由此可得只有选项DF 符合要求.故选D . 【点睛】本题要求正确理解函数图象与实际问题的关系,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.6.A解析:A 【解析】 【分析】根据一次函数的系数k=-0.5<0,可得出y 随x 值的增大而减小,将x=1代入一次函数解析式中求出y 值即可. 【详解】在一次函数y=-0.5x+2中k=-0.5<0, ∴y 随x 值的增大而减小,∴当x=1时,y 取最大值,最大值为-0.5×1+2=1.5, 故选A . 【点睛】本题考查了一次函数的性质,牢记“k <0,y 随x 的增大而减小”是解题的关键.7.C解析:C 【解析】 【分析】根据正比例函数和一次函数的图像与性质逐项判断即可求解. 【详解】∵函数()0y kx k =≠的值随自变量的增大而增大, ∴k >0,∵一次函数2y x k =+, ∴1k =1>0,b=2k >0,∴此函数的图像经过一、二、四象限; 故答案为C. 【点睛】本题考查了正比例函数和一次函数的图像与性质,熟练掌握正比例函数和一次函数的图像特点是解题的关键.8.D解析:D【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。
2019年苏教版八年级(下)期末考试数学试卷含答案详解
![2019年苏教版八年级(下)期末考试数学试卷含答案详解](https://img.taocdn.com/s3/m/237ef510ec3a87c24128c40c.png)
2018~2019学年度第二学期期末考试试卷初二数学本试卷由填空题、选择题和解答题三大题组成,共28题,满分130分。
考试用时120分钟。
注意事项:1.答卷前考生务必将自己的学校、班级、姓名、考场号、考试号使用0 5毫米黑色签字笔书写在答题卷的相应位置上,并将考试号用2B 铅笔正确填涂.2.答选择题必须用2B 铅笔把答题卷上对应题目的答案标号涂黑;答非选择题必须用0.5mm 的黑色墨水签字笔写在答题卷指定的位置上,不在答题区域的答案一律无效,不得用其他笔答题。
3.考生答题必须在答题卷上,答在试卷上和草稿纸上一律无效.一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卷上将该项涂黑.) 1.若代数式13x +在实数范围内有意义,则实数x 的取值范围是 A. 3x =- B. 3x ≠- C. 3x <- D. 3x >- 2.下列各点中,在双曲线上12y x=的点是 A .(4,-3) B. (3,-4) C. (-4,3) D.(-3,-4) 3.化简2(5)-的结果是A .5 B. -5 C. ±5 D. 25 4.菱形对角线不.具有的性质是 A .对角线互相垂直 B. 对角线所在直线是对称轴 C .对角线相等 D. 对角线互相平分5.苏州市5月中旬每天平均空气质量指数(AQI)分别为:84,89,83,99,69,73,78,81,89,82,为了描述这十天空气质量的变化情况,最适合用的统计图是A .折线统计图B .频数分布直方图C .条形统计图D .扇形统计图 6.如图,//DE BC 在下列比例式中,不能..成立的是 A .AD AE DB EC = B.DE AEBC EC = C.AB AC AD AE = D.DB ABEC AC=7.有五张卡片(形状、大小、质地都相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④圆;⑤菱形.将卡片背面朝上洗匀,从中抽取一张,其正面图形既是轴对称图形,又是中心对称图形的概率是 A.15 B.25 C.35 D.458.如图, 在正方形ABCD 中,AC 为对角线,点E 在AB 边上,EF AC ⊥于点F ,连接EC ,3,AF EFC =∆的周长为12,则EC 的长为A.722B.32C.5D.6 9.如图,路灯灯柱OP 的长为8米,身高1.6米的小明从距离灯的底部(点O 20米的点A 处,沿AO 所在的直线行走14米到点B 处时,人影的长度 A .变长了1.5米 B .变短了2.5米 C .变长了3.5米 D. 变短了3.5米10.如图所示,在Rt AOB ∆中,90,23AOB OB OA ∠=︒=,点A 在反比例函数2y x =的图象上,若点B 在反比例函数k y x=的 图象上,则k 的值为A .3 B. -3C. 94-D. 92-二、填空题:(本大题共8小题,每小题3分,共24分) 11.计算:2633⋅= . 12.一个不透明的盒子中装有3个红球,2个黄球,这些球除了颜色外其余都相同,从中随机摸出3个小球,则事件“所摸3个球中必含有红球”是 (填“必然事件”、“随机事件”或 “不可能事件”).13.某建筑物的窗户为黄金矩形,已知它较长的一边长为l 米,则较短的一边长为 米.(结果保留根号或者3位小数)14.如图,在四边形ABCD 中,AC 平分BCD ∠,要ABCDAC ∆∆,还需添加一个条件,你添加的条件是 .(只需写一个条件,不添加辅助线和字母)15.如图,E 是矩形ABCD 的对角线的交点,点F 在边AE 上,且DF DC =,若25ADF ∠=︒,则ECD ∠= °. 16.关于x 的方程122x ax x +=--有增根,则a 的值为 . 17.如图,在ABC ∆中,90,16C BC ∠=︒=cm ,AC =12cm ,点P 从点B 出发,沿BC 以2cm/s 的速度向点C 移动,点Q 从点C 出发,沿CA 以lcm/s 的速度向点A 移动,若点P 、Q 分别从点B 、C 同时出发,设运动时间为t s ,当t = 时,//AB PQ .18.如图,直线2y x =与反比例函数ky x=的图象交于点(3,)A m ,点B 是线段OA 的中点,点(,4)E n 在反比例函数的图象上,点F 在x 轴上,若EAB EBF AOF ∠=∠=∠,则点F 的横坐标为 .三、解答题:(本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明).19.(本题满分6分)己知22()4(0()a b abA ab ab a b +-=≠-且)a b ≠. (1)化简A ;(2)若点(,)P a b 在反比例函数5y x=-的图象上,求A 的值20.(本题满分6分)为了加强学生的安全意识,某校组织了学生参加安全知识竞赛.从中抽取了部分学生成绩(得分数取正整数,满分为100分)进行统计,已知A 组的频数a 比B 组的频数b 小24,绘制统计频数分布直方图(未完成)和扇形图如下,请解答下列问题: (1)样本容量为: ,a 为 ; (2)n 为 °,E 组所占比例为 %; (3)补全频数分布直方图:(4)若成绩在80分以上记作优秀,全校共有2000名学生,估计成绩优秀学生有 名.21.(本题满分6分)请你阅读小红同学的解题过程,并回答所提出的问题. 计算:23311x x x-+-- (1)问:小红在第 步开始出错(写出序号即可); (2)请你给出正确解答过程.22.(本题满分8分)如图所示,在4×4的正方形万格中,ABC ∆和DEF ∆的顶点都在边长为1的小正方形的顶点上.(1)填空:ABC ∠= °,BC = ; (2)判断ABC ∆与DEF ∆是否相似?并证明你的结论.23.(本题满分8分)已知17178a a b -+-=+.(1)求a 的值; (2)求22a b -的平方根.24.(本题满分8分)己知, 121,y y y y =+与x 成正比例,2y 与x 成反比例,并且当1x =-时,1y =-,当2x =时,5y =.(1)求y 关于x 的函数关系式; (2)当0y =时,求x 的值.25.(本题满分8分)如图,在ABC ∆中, 90,BAC AD ∠=︒是斜边上的中线,E 是AD 的中点,过点A 作//AF BC 交BE 的的延长线于F ,连接CF .2-1-c-n-j-y (1)求证:BD AF =;(2)判断四边形ADCF 的形状,并证明你的结论.26.(本题满分8分)如图,反比例函数4y x=的图象与一次函数3y kx =-的图象在第一象限内相交于点A ,且点A 的横坐标为 4. (1)求点A 的坐标及一次函数解析式;(2)若直线2x =与反比例函数和一次函数的图象分别 交于点B 、C ,求ABC ∆的面积.27.(本题满分8分)如图,在平行四边形ABCD 中,F 是AD 的中点,延长BC 到点E ,使12CE BC =,连接,DE CF . (1)求证: DE CF =;(2)若4,6,60AB AD B ==∠=︒,求DE 的长.28.(本题满分10分)如图,在平面直角坐标系中,一次函数6y kx =+的图象分别与x 轴,y 轴交于点,A B ,点A 的坐标为(-8,0).(1)点B 的坐标为 ;(2)在第二象限内是否存在点P ,使得以P 、O 、A 为顶 点的三角彤与OAB ∆相似?若存在,请求出所有符台 条件的点P 的坐标:若不存在,请说明理由.。
2018-2019学年度八年级下期末数学试卷及答案
![2018-2019学年度八年级下期末数学试卷及答案](https://img.taocdn.com/s3/m/d21b45ff80eb6294dd886c30.png)
八年级下期 末 考 试 数 学 试 卷本试卷满分为100分,考试时间为90分钟.一、选择题(本大题共16个小题;1~6小题,每小题2分,7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将对应题目的答案标号填在下表中)1.不等式组⎩⎨x ≤1x >-1的解集是A .x >-1B .x ≤1C .x <-1D .-1<x ≤12.下列分解因式正确的是A .-a +a 3=-a (1+a 2)B .2a -4b +2=2(a -2b )C .a 2-4=(a -2)2D .a 2-2a +1=(a -1)23.若分式3xx -1有意义,则x 应满足 A .x =0B .x ≠0C .x =1D .x ≠14.如图,△ABC中,D ,E 分别是边AB ,AC 的中点.若DE =2,则BC =A .2B .3C .4D .55.方程x (x -2)+x -2=0的解是A .2B .-2,1C .-1D .2,-16.一元二次方程ax 2+bx +c =0(a ≠0)有两个不相等...的实数根,则b 2-4ac 满足的条件是 A .b 2-4ac =0B .b 2-4ac >0C .b 2-4ac <0D .b 2-4ac ≥07.分式方程xx -3=x +1x -1的解为( )A .1B .-1C .-2D .-38.如图,直线l 经过第二、三、四象限,l 的解析式是y =(m -2)x +n ,则m 的取值范围在数轴上表示为9.如图所示,DE 是线段AB 的垂直平分线,下列结论一定成立的是A .ED =CDB .∠DAC =∠BC .∠C >2∠BD .∠B +∠ADE =90°10.如图,在平行四边形中,阴影部分的面积与平行四边形面积之比为 A .12B .23C .13D .无法确定11.如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是 A .-3,2 B .3,-2 C .2,-3 D.2,3 12.通过尺规作图作一个角的平分线的的理论依据是A .SASB .SSSC .ASAD .AAS13.据调查,某市的2012年房价均价为7600/m 2,2014年同期将达到8200/m 2,假设这两年该市房价的平均增长率为x ,根据题意,所列方程为A .7600(1+x %)2=8200B .7600(1-x %)2=8200C .7600(1+x )2=8200D .7600(1-x )2=8200A .2mm 2-1B .-2mm 2-1C .-2m 2-1D .2m 2-115.如图,在矩形ABCD 中,AD =2AB ,点M 、N 分别在边AD 、BC 是,连接BM 、DN ,若四边形MBND 是菱形,则AMMD等于 ( )A .38B .23C .35D .458题 9题 10题 15题 16.如图,矩形ABCD 的面积为20cm 2,对角线交于点O ;以AO 1为邻边做平行四边形AO 1C 2B ;…;依此类推,则平行四边形AO 4C 5B 的面积为( ) A .54cm 2B .58cm 2 C .516cm 2D .532cm 2二、填空题(本大题共4个小题;每小题3分,共12分.把答案写在题中横线上)17.一个多边形的每个内角均为108°,则这个多边形是_____边形.18.已知函数f (x )=3x 2+1,那么f (2)= __________.19.已知△ABC 为等边三角形,BD 为中线,延长BC 至E ,使CE =CD =1,连接DE ,则DE = .20.如图,正方形ABCD 的边长为3,点E ,F 分别在边AB ,BC 上,AE =BF =1,小球P 从点E 出发沿直线向点F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P 第一次碰到点E 时, 小球P 与正方形的边碰撞的次数为 .三、解答题(共5个题,共46分.解答应写出文字说明、证明过程或演算步骤)10分,其中第(1)(2)小题每题3分,第(3)题4分)(3(1)解不等式组:并写出该不等式组的整数解23(本小题满分9分)如图,△ABC 中,AB =AC ,∠BAC =40°,将△ABC 绕点A 按逆时针方向旋转100°得到△ADE ,连接BD ,CE 交于点F .(1)求证:△ABD ≌△ACE ; (2)求∠ACE 的度数;(3)请直接写出四边形ABFE 是哪种特殊的四边形. 24(本小题满分10分)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计费价格表的部分信息:(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元. (1)求a 、b 的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?,(a>b),且满足a=5b+m,b=4m.请直接写出矩形是几阶参考答案一、选择题DDDCA DBCCB二、填空11.012.2.5 10-613.59°,对顶角相等 14.8 15.相等,同角的余角相等 16.m 2-9n 217.1218.40°19.T =30+7t 20.PN 边或QM 边 三、解答题 21.(1)-278··········································································································· 5分(2)-6m 2+m +2 ································································································ 5分 (3)4mn ············································································································ 5分 (4)-xy当x =10,y =-125时原式=25······································································································· 5分 22.答案略 ············································································································ 8分23.证明:如图 ∵DF ∥AC ∴∠C =∠CEF ∵∠C =∠D∴∠D =∠CEF∴BD ∥CE ··································································································· 6分FEDCBA24.··························· 10分25.(1)m-n;(2)方法1:(m+n)2;方法2:(m-n)2+4mn;(3)(m+n)2=(m-n)2+4mn(4)∵(a+b)2=(a-b)2-4ab∴49=(a-b)2-20∴(a-b)2=69 ························································································ 8分。
2018-2019学年八年级下期末数学试卷含答案解析
![2018-2019学年八年级下期末数学试卷含答案解析](https://img.taocdn.com/s3/m/86d12323580216fc700afd6f.png)
2018-2019学年八年级(下)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.2.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等 D.对角线互相平分3.下列四组线段中,可以组成直角三角形的是()A.4,5,6 B.3,4,5 C.5,6,7 D.1,,34.小明和小李两位同学这学期数学六次测试的平均成绩恰好都是85分,方差分别为S小明2=1.5,S小李2=2,则成绩最稳定的是()A.小明B.小李C.小明和小李 D.无法确定5.正方形的一条对角线长为6,则正方形的面积是()A.9 B.36 C.18 D.36.在函数y=中,自变量x的取值范围是()A.x≥1 B.x≤1 C.x≤1且x≠5 D.x≥1且x≠57.一次函数y=3x+5的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.不能判断四边形ABCD是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CD C.AB=CD,AD∥BC D.AB ∥CD,AD∥BC9.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则AC的长为()A.2 B.4 C.6 D.810.菱形两条对角线长为6和8,菱形的边长为a,面积为S,则下列正确的是()A.a=5,S=24 B.a=5,S=48 C.a=6,S=24 D.a=8,S=4811.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.28 B.20 C.14 D.1812.小明为备战体育中考,每天早晨坚持锻炼,他花20分钟慢跑到离家900米的江边,在江边休息10分钟后,再用15分钟快跑回家,下列图中表示小明离家的距离y(米)与时间x(分)的函数图象是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)13.当x时,有意义.14.一组数据1,3,2,5,x的平均数为3,那么这组数据的方差是.15.如图,在▱ABCD中,已知AD=6cm,AB=4cm,AE平分∠BAD交BC边于点E,则EC=cm.16.直线y=﹣3x+5向下平移6个单位得到直线.17.已知一个直角三角形的两条直角边分别为6和8,则它斜边上的中线的长为.18.一次函数y=(m﹣8)x+5中,y随x的增大而减小,则m的取值范围是.三、解答题(共6小题,满分46分)19.计算:﹣|﹣2|﹣(2﹣π)0+(﹣1)2017.20.如图,在▱ABCD中,E、F分别为BC、AD边上的一点,BE=DF.求证:AE=CF.21.某校举办的“读好书、讲礼仪”活动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书,下面是八年级(1)班全体同学捐献图书的情况统计图:请你根据以上统计图中的信息,解答下列问题:(1)该班有学生多少人?(2)补全条形统计图;(3)八(1)班全体同学所捐图书的中位数和众数分别是多少?22.已知:如图,O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,DE、CE交于点E.(1)猜想:四边形CEDO是什么特殊的四边形?(2)试证明你的猜想.23.某长途汽车站规定,乘客可以免费携带一定质量的行李,若超过该质量则需购买行李票,且行李票y(元)与行李质量x(千克)间的一次函数关系式为y=kx ﹣5(k≠0),现知贝贝带了60千克的行李,交了行李费5元.(1)若京京带了84千克的行李,则该交行李费多少元?(2)旅客最多可免费携带多少千克的行李?24.甲乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系,折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.【考点】74:最简二次根式.【分析】根据最简二次根式的概念即可求出答案.【解答】解:(A)原式=2,故A不是最简二次根式;(B)原式=4,故B不是最简二次根式;(C)原式=,故C不是最简二次根式;故选(D)2.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等 D.对角线互相平分【考点】LB:矩形的性质;L5:平行四边形的性质.【分析】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.【解答】解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:C.3.下列四组线段中,可以组成直角三角形的是()A.4,5,6 B.3,4,5 C.5,6,7 D.1,,3【考点】KS:勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、42+52≠62,不能构成直角三角形,故不符合题意;B、32+42=52,能构成直角三角形,故符合题意;C、52+62≠72,不能构成直角三角形,故不符合题意;D、12+()2≠32,不能构成直角三角形,故不符合题意.故选B.4.小明和小李两位同学这学期数学六次测试的平均成绩恰好都是85分,方差分别为S小明2=1.5,S小李2=2,则成绩最稳定的是()A.小明B.小李C.小明和小李 D.无法确定【考点】W7:方差;W1:算术平均数.【分析】方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,据此判断即可.【解答】解:∵1.5<2,∴S小明2<S小李2,∴成绩最稳定的是小明.故选:A.5.正方形的一条对角线长为6,则正方形的面积是()A.9 B.36 C.18 D.3【考点】LE:正方形的性质.【分析】根据正方形的面积=对角线的乘积的一半.【解答】解:因为正方形的对角线互相垂直且相等,所以正方形的面积=对角线的乘积的一半=×6×6=18,故选C.6.在函数y=中,自变量x的取值范围是()A.x≥1 B.x≤1 C.x≤1且x≠5 D.x≥1且x≠5【考点】E4:函数自变量的取值范围.【分析】根据被开方数是非负数且分母不能为零,可得答案.【解答】解:由题意,得x﹣1≥0且x﹣5≠0,解得x≥1且x≠5,故选:D.7.一次函数y=3x+5的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【考点】F5:一次函数的性质.【分析】利用一次函数的性质求解.【解答】解:∵k=3>0,b=5>0,∴一次函数y=3x+5的图象经过第一、二、三象限.故选D.8.不能判断四边形ABCD是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CD C.AB=CD,AD∥BC D.AB ∥CD,AD∥BC【考点】L6:平行四边形的判定.【分析】A、B、D,都能判定是平行四边形,只有C不能,因为等腰梯形也满足这样的条件,但不是平行四边形.【解答】解:根据平行四边形的判定:A、B、D可判定为平行四边形,而C不具备平行四边形的条件,故选:C.9.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则AC的长为()A.2 B.4 C.6 D.8【考点】LB:矩形的性质.【分析】只要证明△AOB是等边三角形即可解决问题.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=2,∴AC=2OA=4,故选B.10.菱形两条对角线长为6和8,菱形的边长为a,面积为S,则下列正确的是()A.a=5,S=24 B.a=5,S=48 C.a=6,S=24 D.a=8,S=48【考点】L8:菱形的性质.【分析】画出几何图形,利用菱形的面积等于对角线乘积的一半即可得到此菱形的面积,根据菱形的性质得AC⊥BD,AO=OC=4,OB=OD=3,然后根据勾股定理计算AB即可.【解答】解:如图,菱形ABCD的对角线AC=8,BD=6,菱形的面积=•AC•BD=×8×6=24,∵四边形ABCD为菱形,∴AC⊥BD,AO=OC=4,OB=OD=3,在Rt△AOB中,AB===5,即菱形的边长为5.∴a=5,S=24,故选A.11.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.28 B.20 C.14 D.18【考点】KP:直角三角形斜边上的中线;KH:等腰三角形的性质.【分析】根据等腰三角形三线合一的性质可得AD⊥BC,CD=BD,再根据直角三角形斜边上的中线等于斜边的一半可得DE=CE=AC,然后根据三角形的周长公式列式计算即可得解.【解答】解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=BC=4,∵点E为AC的中点,∴DE=CE=AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.故选C.12.小明为备战体育中考,每天早晨坚持锻炼,他花20分钟慢跑到离家900米的江边,在江边休息10分钟后,再用15分钟快跑回家,下列图中表示小明离家的距离y(米)与时间x(分)的函数图象是()A.B.C.D.【考点】E6:函数的图象.【分析】在江边休息10分钟后,应是一段平行与x轴的线段,B是10分钟,而A是20分钟,依此即可作出判断.【解答】解:根据题意,从20分钟到30分钟在江边休息,离家距离没有变化,是一条平行于x轴的线段.故选B.二、填空题(共6小题,每小题3分,满分18分)13.当x≥2时,有意义.【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件可得3x﹣6≥0,再解不等式即可.【解答】解:由题意得:3x﹣6≥0,解得:x≥2,故答案为:≥2.14.一组数据1,3,2,5,x的平均数为3,那么这组数据的方差是2.【考点】W7:方差;W1:算术平均数.【分析】先由平均数的公式计算出x的值,再根据方差的公式计算.一般地设n个数据,x1,x2,…x n的平均数为,=(x1+x2+…+x n),则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].【解答】解:x=5×3﹣1﹣3﹣2﹣5=4,s2= [(1﹣3)2+(3﹣3)2+(2﹣3)2+(5﹣3)2+(4﹣3)2]=2.故答案为2.15.如图,在▱ABCD中,已知AD=6cm,AB=4cm,AE平分∠BAD交BC边于点E,则EC=2cm.【考点】L5:平行四边形的性质.【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,根据AD、AB的值,求出EC的长.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴BE=AB=4cm,∵BC=AD=6cm,∴EC=BC﹣BE=2cm,故答案为:2.16.直线y=﹣3x+5向下平移6个单位得到直线y=﹣3x﹣1.【考点】F9:一次函数图象与几何变换.【分析】直接根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,y=﹣3x+5向下平移6个单位,所得直线解析式是:y=﹣3x+5﹣6,即y=﹣3x﹣1.故答案为:y=﹣3x﹣1.17.已知一个直角三角形的两条直角边分别为6和8,则它斜边上的中线的长为5.【考点】KQ:勾股定理;KP:直角三角形斜边上的中线.【分析】根据勾股定理求得斜边的长,从而不难求得斜边上和中线的长.【解答】解:∵直角三角形两条直角边分别是6、8,∴斜边长为10,∴斜边上的中线长为5.18.一次函数y=(m﹣8)x+5中,y随x的增大而减小,则m的取值范围是m <8.【考点】F5:一次函数的性质.【分析】先根据一次函数的增减性判断出(m﹣8)的符号,再求出m的取值范围即可.【解答】解:∵一次函数y=(m﹣8)x+5中,若y的值随x值的增大而减小,∴m﹣8<0,∴m<8.故答案为:m<8.三、解答题(共6小题,满分46分)19.计算:﹣|﹣2|﹣(2﹣π)0+(﹣1)2017.【考点】2C:实数的运算;6E:零指数幂.【分析】首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:﹣|﹣2|﹣(2﹣π)0+(﹣1)2017=3﹣2﹣×1﹣1=﹣﹣1=﹣120.如图,在▱ABCD中,E、F分别为BC、AD边上的一点,BE=DF.求证:AE=CF.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】根据平行四边形的性质得出AB=CD,∠B=∠D,根据SAS证出△ABE ≌△CDF即可推出答案.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,∵BE=DF,∴△ABE≌△CDF,∴AE=CF.21.某校举办的“读好书、讲礼仪”活动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书,下面是八年级(1)班全体同学捐献图书的情况统计图:请你根据以上统计图中的信息,解答下列问题:(1)该班有学生多少人?(2)补全条形统计图;(3)八(1)班全体同学所捐图书的中位数和众数分别是多少?【考点】VC:条形统计图;VB:扇形统计图;W4:中位数;W5:众数.【分析】(1)用2册的人数除以其所占百分比可得;(2)总人数减去其余各项目人数可得答案;(3)根据中位数和众数定义求解可得.【解答】解:(1)15÷30%=50,答:该班有学生50人;(2)捐4册的人数为50﹣(10+15+7+5)=13,补全图形如下:(3)八(1)班全体同学所捐图书的中位数=3(本),众数为2本.22.已知:如图,O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,DE、CE交于点E.(1)猜想:四边形CEDO是什么特殊的四边形?(2)试证明你的猜想.【考点】L8:菱形的性质;JA:平行线的性质.【分析】(1)猜想:四边形CEDO是矩形;(2)根据平行四边形的判定推出四边形是平行四边形,根据菱形性质求出∠DOC=90°,根据矩形的判定推出即可;【解答】(1)解:猜想:四边形CEDO是矩形.(2)证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠DOC=90°,∴四边形OCED是矩形.23.某长途汽车站规定,乘客可以免费携带一定质量的行李,若超过该质量则需购买行李票,且行李票y(元)与行李质量x(千克)间的一次函数关系式为y=kx ﹣5(k≠0),现知贝贝带了60千克的行李,交了行李费5元.(1)若京京带了84千克的行李,则该交行李费多少元?(2)旅客最多可免费携带多少千克的行李?【考点】FH:一次函数的应用.【分析】把x=60,y=5代入里待定系数法求解即可得到解析式,再把x=84代入求解即可;令y=0,即可求得旅客最多可免费携带30千克行李.【解答】解:(1)将x=60,y=5代入了y=kx﹣5中,解得,∴一次函数的表达式为,将x=84代入中,解得y=9,∴京京该交行李费9元;(2)令y=0,即,解得,解得x=30,∴旅客最多可免费携带30千克行李.答:京京该交行李费9元,旅客最多可免费携带30千克行李.24.甲乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系,折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.【考点】FH:一次函数的应用.【分析】(1)根据图象可知货车5小时行驶300千米,由此求出货车的速度为60千米/时,再根据图象得出货车出发后4.5小时轿车到达乙地,由此求出轿车到达乙地时,货车行驶的路程为270千米,而甲、乙两地相距300千米,则此时货车距乙地的路程为:300﹣270=30千米;(2)设CD段的函数解析式为y=kx+b,将C(2.5,80),D(4.5,300)两点的坐标代入,运用待定系数法即可求解.=60(千米/时).【解答】解:(1)根据图象信息:货车的速度V货=∵轿车到达乙地的时间为货车出发后4.5小时,∴轿车到达乙地时,货车行驶的路程为:4.5×60=270(千米),此时,货车距乙地的路程为:300﹣270=30(千米).答:轿车到达乙地后,货车距乙地30千米;(2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其图象上,∴,解得,∴CD段函数解析式:y=110x﹣195(2.5≤x≤4.5).。
2018-2019学年苏教版八年级(下)期末考试数学试卷含答案详解
![2018-2019学年苏教版八年级(下)期末考试数学试卷含答案详解](https://img.taocdn.com/s3/m/a7ee1cd269eae009591bec7d.png)
2018-2019学年苏教版八年级(下)期末考试数学试卷一、选择题(本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,只有一项是符合题目要求的)21.下列式子中,为最简二次根式的是( ) A .4 B .10 C .D .2.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是( ) A .至少有2个球是黑球B .至少有1个球是白球C .至少有1个球是黑球D .至少有2个球是白球 3.与分式﹣的值相等的是( ) A .﹣B .﹣C .D .4.如图,在矩形ABCD 中,点E 在AD 上,且EC 平分∠BED ,AB =2,∠ABE =45°,则DE 的长为( )2第4题第5题第11题A .2-2 B .-1 C . -1D .2-5.反比例函数的图象如图所示,则这个反比例函数的解析式可能是( ) A . xy 2=B .x y 6=C .x y 7=D .xy 9= 6.若分式方程+1=有增根,则a 的值是( ) A .4B .0或4C .0D .0或﹣4二、填空题:(本大题共10小题,每小题3分,计30分) 7.使22-x 有意义的x 的取值范围是______.8.分式392--x x 的值为0,那么x 的值为______;9.某班级40名学生在期中学情分析考试中,分数段在90~100分的频率为0.2,则该班级在这个分数段内的学生有 人.10.若一元二次方程ax 2-(b -1)x ﹣2017=0有一根为x =﹣1,则a +b 的值为______;11.如图,在Rt △ABC 中,∠ACB =90°,点D 、E 、F 分别为AB 、AC 、BC 的中点.若CD =5,则EF 的长为______.12.如图,在Rt △ABC 中,∠ABC =90°,AB =BC ,将△ABC 绕点C 逆时针旋转α(0°<α<90°),得到△MNC ,连接BM ,当 BM ⊥AC ,则旋转角α的度数为______.13.已知菱形的周长为40cm ,两条对角线之比3:4,则菱形面积为______________cm 2.14.一次函数y =-x +1与反比例函数xky =(k <0)中,x 与y 的部 分对应值如下表:x -3 -2 -1 1 2 3 y =-x +143 2 0 -1 -2xk y =32 12-2-132- 则不等式1-+x x>0的解集为____________________________. 15.已知关于x 的方程=3的解是正数,那么m 的取值范围为___________16.正方形ABCD 中,直线l 经过点A ,过点B 、D 分别作直线l 的垂线,垂足分别为E 、F ,若BE =7,DF =4,则DE 的长度为___________________________. 三、解答题:(本大题共10小题,计78分) 17.(3分×2=6分)化简与计算: (1)( x ≥0,y ≥0); (2)×+÷.18.(4分×2=8分) 解方程:(1) (x -2)(x -5)=-2 (2)xx x 101317=-++19.(6分)先化简,再求值:(a a 112--)÷1222+-+a a aa ,其中a 2+a -2=0.20.(8分) 某学校校园读书节期间,学校准备购买一批课外读物.为使购买的课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别对部分同学进行了抽样调查(每位同学只选一类).下图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息解答下列问题:(1) 本次抽样调查一共抽查了_______名同学;(2) 条形统计图中,m=_______,n=_______;(3) 扇形统计图中,艺术类读物所在扇形的圆心角是_______度;(4) 学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?21.(6分)已知关于x的方程x2﹣4mx+4m2﹣9=0.(1) 求证:此方程有两个不相等的实数根;(2) 设此方程的两个根分别为x1,x2,其中x1<x2.若2x1=x2+1,求m的值.ABCD E第22题图22.(6分)如图,在△ABC 中,AB =AC ,D 为边BC 上一点,将线段AB 平移至DE ,连接AE 、AD 、E C . (1) 求证:AD =EC ; (2) 当点D 是BC 的中点时, 求证:四边形ADCE 是矩形.23.(8分)一儿童服装商店在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六·一”儿童节,商店决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装上盈利1200元,那么每件童装应降价多少元?x24.(8分)如图,点B 在反比例函数y =4x(x >0)的图像上,点A 、C 分别在x 轴、y 轴正 半轴上,且四边形OABC 为正方形. (1) 求点B 的坐标; (2) 点P 是y =x4在第一象限的图像上点B 右侧一动点, 且S △POB =S △AOB ,求点P 的坐标.25.(10分)四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.2·1·c·n·j·y(1) 如图1,求证:矩形DEFG是正方形;(2) 若AB=2,CE=2,求CG的长度;(3) 当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.26.(12分)如图,O 为坐标原点,四边形OABC 为矩形,A (10,0),C (0,8),点P 在边BC 上以每秒1个单位长的速度由点C 向点B 运动,同时点Q 在边AB 上以每秒a 个单位长的速度由点A 向点B 运动,运动时间为t 秒(t >0).(1) 若反比例函数xm y 图像经过P 点、Q 点,求a 的值;(2) 若OQ 垂直平分AP ,求a 的值;(3) 当Q 点运动到AB 中点时,是否存在a 使△OPQ 为直角三角形?若存在,求出a 的值;若不存在,请说明理由;参考答案1.B 2.C 3.D 4.A 5.C 6.A 7.X ≥1 8.- 3 9.8 10.2018 11.5 12.6013.24 14.-1<x <0或x >2 15.m >-6且m ≠-4 16.5或137 17.(1)5xy x 3 (2)1118.(1)x 1=3, x 2=4 (2)x =25(不检验扣1分) 19.21aa -(3分) a =-2 (a =1舍去)(2分) 43-(1分)20.(1)200 (2)m =40, n =60 (3) 72 (4)900 (每题2分)21.(1)证明(略) (2分) (2)x 1=2m -3 x 2=2m +3 (判断1分共2分)m =5 (2分)w 22.(1)证明(略)(3分)(2)证明(略)(3分) 23.设每件童装应降价x 元,根据题意得(40-x )(20+2x )=1200 (4分) x 1=20 x 2=10 (2分)因为要尽快减少库存,则x =10舍去则x =20 (1分) 答:每件童装应降价20元.(1分)(其他方法参照执行)224. (1)B (2,2) (4分) (2) P (1+, 1-+) (4分)25.(1)证明(略) (3分) (2) CG =2 (3分) (3)120°或30°(4分)【 26.(1)a =54(2分) (2)a =65(4分)(3)①当t >0时∠POQ <∠AOB =90°,则∠POQ 不为直角; (1分) ②当∠OPQ =90°时, OP 2+PQ 2=OQ 2∴82+t 2+42+(10-t )2=42+102 t 2-10t +32=0此方程无实数解,则∠OPQ 不为直角 (2分) ③当∠OQP =90°时OP 2=PQ 2+OQ 2 ∴82+t 2=42+(10-t )2+42+102t =542(2分)∵at =4 ∴a =2110(1分)。
最新江苏省2018-2019年八年级下期末数学试卷
![最新江苏省2018-2019年八年级下期末数学试卷](https://img.taocdn.com/s3/m/52471fed4693daef5ff73d09.png)
八年级(下)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.下列二次根式中,属于最简二次根式的是()A. √5B. √12C. √0.2D. √27【答案】A【解析】解:A、是最简二次根式,故本选项符合题意;B、√12=12√2,不是最简二次根式,故本选项不符合题意;C、√0.2=√14=15√5,不是最简二次根式,故本选项不符合题意;D、√27=3√3,不是最简二次根式,故本选项不符合题意;故选:A.根据最简二次根式的定义逐个判断即可.本题考查了最简二次根式的定义,能熟记最简二次根式的定义的内容是解此题的关键.2.下列各组线段a、b、c中,能组成直角三角形的是()A. a=4,b=5,c=6B. a=1,b=√3,c=2C. a=1,b=1,c=3D. a=5,b=12,c=12【答案】B【解析】解:A、∵42+52≠62,∴该三角形不是直角三角形,故此选项不符合题意;B、∵12+√32=22,∴该三角形是直角三角形,故此选项符合题意;C、∵12+12≠32,∴该三角形不是直角三角形,故此选项不符合题意;D、∵52+122≠122,∴该三角形不是直角三角形,故此选项不符合题意.故选:B.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.下列各式中,y不是x的函数的是()A. y=|x|B. y=xC. y=−x+1D. y=±x【答案】D【解析】解:A、y=|x|对于x的每一个取值,y都有唯一确定的值,故A错误;B、y=x对于x的每一个取值,y都有唯一确定的值,故B错误;C、y=−x+1对于x的每一个取值,y都有唯一确定的值,故C错误;D、y=±x对于x的每一个取值,y都有两个值,故D正确;故选:D.根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4.用配方法解方程x2−4x−2=0变形后为()A. (x−2)2=6B. (x−4)2=6C. (x−2)2=2D. (x+2)2=6【答案】A【解析】解:把方程x2−4x−2=0的常数项移到等号的右边,得到x2−4x=2方程两边同时加上一次项系数一半的平方,得到x2−4x+4=2+4配方得(x−2)2=6.故选:A.在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数−4的一半的平方.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.一次函数y=x+2的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】解:∵k=1>0,图象过一三象限,b=2>0,图象过第二象限,∴直线y=x+2经过一、二、三象限,不经过第四象限.故选:D.根据k,b的符号确定一次函数y=x+2的图象经过的象限.本题考查一次函数的k>0,b>0的图象性质.需注意x的系数为1.6.一元二次方程x2−8x+20=0的根的情况是()A. 没有实数根B. 有两个相等的实数根C. 只有一个实数根D. 有两个不相等的实数根【答案】A【解析】解:∵△=(−8)2−4×20×1=−16<0,∴方程没有实数根.故选:A.先计算出△,然后根据判别式的意义求解.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.7.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,下列说法正确的是()A. y1>y2B. y1<y2C. y1=y2D. 不能确定【答案】A【解析】解:∵一次函数y=kx中,k<0,∴函数图象经过二、四象限,且y随x的增大而减小,∵x1<x2,∴y1>y2.故选:A.先根据题意判断出一次函数的增减性,再根据x1<x2即可得出结论.本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8.菱形的两条对角线长分别为6和8,则菱形的面积是()A. 10B. 20C. 24D. 48【答案】C【解析】解:∵菱形的两条对角线的长分别是6和8, ∴这个菱形的面积是:12×6×8=24.故选:C .由菱形的两条对角线的长分别是6和8,根据菱形的面积等于对角线积的一半,即可求得答案. 此题考查了菱形的性质.菱形的面积等于对角线积的一半是解此题的关键.9. 已知一次函数y =kx +b 的图象如图所示,当x <2时,y 的取值范围是( )A. y <−4B. −4<y <0C. y <2D. y <0 【答案】D【解析】解:将(2,0)、(0,−4)代入y =kx +b 中, 得:{−4=b 0=2k+b,解得:{b =−4k=2,∴一次函数解析式为y =2x −4. ∵k =2>0,∴该函数y 值随x 值增加而增加, ∴y <2×2−4=0. 故选:D .由函数图象找出点的坐标,利用待定系数法即可求出函数解析式,再根据函数的性质找出函数的单调性,代入x <2即可得出结论.本题考查了待定系数法求出函数解析式以及一次函数的性质,解题的关键是找出该一次函数的单调性.本题属于基础题,难度不大,解决该题型题目时,根据函数图象找出点的坐标,利用待定系数法求出函数解析式是关键.10. 如图,点O 是矩形ABCD 的对角线AC 的中点,M 是CD 边的中点.若AB =8,OM =3,则线段OB 的长为( ) A. 5 B. 6 C. 8 D. 10 【答案】A 【解析】解:∵四边形ABCD 是矩形, ∴∠D =90∘,∵O 是矩形ABCD 的对角线AC 的中点,OM//AB , ∴OM 是△ADC 的中位线, ∵OM =3, ∴AD =6,∵CD =AB =8,∴AC =√AD 2+CD 2=10, ∴BO =12AC =5.故选:A .已知OM 是△ADC 的中位线,再结合已知条件则DC 的长可求出,所以利用勾股定理可求出AC 的长,由直角三角形斜边上中线的性质则BO 的长即可求出.本题考查了矩形的性质,勾股定理的运用,直角三角形斜边上中线的性质以及三角形的中位线的应用,解此题的关键是求出AC 的长.11. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售,尽快减少库存,商场决定釆取降价措施,调查发现,每件衬衫,每降价1元,平均每天可多销售2件,若商场每天要盈利1200元,每件衬衫应降价( ) A. 5元 B. 10元 C. 20元 D. 10元或20元 【答案】C【解析】解:设每件衬衫应降价x 元,则每天可销售(20+2x)件, 根据题意得:(40−x)(20+2x)=1200, 解得:x 1=10,x 2=20. ∵扩大销售,减少库存, ∴x =20. 故选:C .设每件衬衫应降价x 元,则每天可销售(20+2x)件,根据每件的利润×销售数量=总利润,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.12. 如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 的坐标为(2,0),点B 的坐标为(0,1),点C 在第一象限,对角线BD 与x 轴平行.直线y =x +3与x 轴、y 轴分别交于点E ,F.将菱形ABCD 沿x 轴向左平移m 个单位,当点D 落在△EOF 的内部时(不包括三角形的边),m 的值可能是( ) A. 3 B. 4 C. 5 D. 6 【答案】C【解析】解:∵菱形ABCD 的顶点A(2,0),点B(1,0), ∴点D 的坐标为(4,1), 当y =1时,x +3=1, 解得x =−2,∴点D 向左移动2+4=6时,点D 在EF 上, ∵点D 落在△EOF 的内部时(不包括三角形的边), ∴4<m <6,∴m 的值可能是5. 故选:C .根据菱形的对角线互相垂直平分表示出点D 的坐标,再根据直线解析式求出点D 移动到MN 上时的x 的值,从而得到m 的取值范围,再根据各选项数据选择即可.本题是一次函数综合题型,主要利用了一次函数图象上点的坐标特征,菱形的性质,比较简单,求出m 的取值范围是解题的关键.二、填空题(本大题共6小题,共18.0分)13. 若√x −2在实数范围内有意义,则x 的取值范围为______. 【答案】x ≥2【解析】解:由题意得:x −2≥0, 解得:x ≥2, 故答案为:x ≥2.根据二次根式有意义的条件可得x−2≥0,再解即可.此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.14.将直线y=−2x+4向下平移5个单位长度,平移后直线的解析式为______.【答案】y=−2x−1【解析】解:直线y=−2x+4向下平移5个单位长度后:y=−2x+4−5,即y=−2x−1.故答案为:y=−2x−1.直接根据“上加下减”的平移规律求解即可.本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.15.已知关于x的方程x2−kx−6=0的一个根为x=3,则实数k的值为______.【答案】1【解析】解:∵x=3是方程的根,由一元二次方程的根的定义,可得32−3k−6=0,解此方程得到k=1.本题根据一元二次方程的根的定义、一元二次方程的定义求解.本题逆用一元二次方程解的定义易得出k的值.16.如图是某地区出租车单程收费y(元)与行驶路程x(km)之间的函数关系图象,根据图象回答下列问题:(Ⅰ)该地区出租车的起步价是______元;(Ⅱ)求超出3千米,收费y(元)与行驶路程x(km)(x>3)之间的函数关系式______.【答案】8;y=2x+2【解析】解:(Ⅰ)该城市出租车3千米内收费8元,即该地区出租车的起步价是8元;故答案为:8;(Ⅱ)依题意设y与x的函数关系为y=kx+b,∵x=3时,y=8,x=8时,y=18;∴{8k+b=183k+b=8,解得{b=2k=2;所以所求函数关系式为:y=2x+2(x>3).故答案为:y=2x+2.(Ⅰ)利用折线图即可得出该城市出租车3千米内收费8元,(Ⅱ)利用待定系数法求出一次函数解析式即可.此题主要考查了一次函数的应用,根据待定系数法求出一次函数的解析式是解题关键.17.如图,在△BC中,AC=BC,点D、E分别是边AB、AC的中点.延长DE到点F,使DE=EF,得四边形ADCF.若使四边形ADCF是正方形,则应在△ABC中再添加一个条件为______.【答案】∠ACB=90∘【解析】解:∠ACB=90∘时,四边形ADCF是正方形,理由:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE =12BC ,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形,点D、E分别是边AB、AC的中点,∴DE//BC,∵∠ACB=90∘,∴∠AED=90∘,∴矩形ADCF是正方形.故答案为:∠ACB=90∘.先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90∘得出答案即可.本题考查了矩形的判定、等腰三角形的性质、平行四边形的判定、三角形中位线定理、正方形的判定;熟记对角线相等的平行四边形是矩形是解决问题的关键.18.如图,在每个小正方形的边长为1的网格中,A,B,C,D均为格点.(Ⅰ)∠ABC的大小为______(度);(Ⅱ)在直线AB上存在一个点E,使得点E满足∠AEC=45∘,请你在给定的网格中,利用不带刻度的直尺作出∠AEC.【答案】90【解析】解:(Ⅰ)如图,∵△ABM是等腰直角三角形,∴∠ABM=90∘故答案为90;(Ⅱ)构造正方形BCDE,∠AEC即为所求;(Ⅰ)如图,根据△ABM是等腰直角三角形,即可解决问题;(Ⅱ)构造正方形BCDE即可;本题考查作图−应用与设计,解题的关键是寻找特殊三角形或特殊四边形解决问题,属于中考常考题型.三、计算题(本大题共2小题,共12.0分)19.计算下列各题:(Ⅰ)√12+3√2×√6;(Ⅱ)(√5+√2)(√5−√2)−(√3+√2)2.【答案】解:(Ⅰ)原式=2√3+3√3=5√3;(Ⅱ)原式=(√5)2−(√2)2−(5+2√6)=5−2−5−2√6=−2−2√6.【解析】(Ⅰ)先化简二次根式、计算乘法,再合并同类二次根式即可得;(Ⅱ)先利用平方差公式和完全平方公式计算,再去括号、合并同类二次根式即可得.本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.20.某校运动会需购买A、B两种奖品共100件,其中A种奖品的单价为10元,B种奖品的单价为15元,且购买的A种奖品的数量不大于B种奖品的3倍设购买A种奖品x件.(Ⅰ)根据题意,填写下表:购买A种奖品的数量/件 3070 x购买A种奖品的费用/元 300______ ______购买B种奖品的费用/元______ 450______(Ⅱ)设购买奖品所需的总费用为y元,试求出总费用y与购买A种奖品的数量x的函数解析式;(Ⅲ)试求A、B两种奖品各购买多少件时所需的总费用最少?此时的最少费用为多少元?【答案】700;10x;1050;1500−15x【解析】解:(Ⅰ)由题意可得,当购买A种奖品30件时,购买A种奖品的费用是30×10=300(元),购买B种奖品的费用是15×(100−30)=1050(元),当购买A种奖品70件时,购买A种奖品的费用是70×10=700(元),购买B种奖品的费用是15×(100−70)=450(元),当购买A种奖品x件时,购买A种奖品的费用是30x(元),购买B种奖品的费用是15×(100−x)=(1500−15x)(元),故答案为:700、10x、1050、1500−15x;(Ⅱ)由题意可得,y=10x+15(100−x)=−5x+1500,即总费用y与购买A种奖品的数量x的函数解析式是y=−5x+1500;(Ⅲ)∵购买的A种奖品的数量不大于B种奖品的3倍,∴x≤3(100−x),解得,x≤75,∵y=−5x+1500,∴当x=75时,y取得最小值,此时y=−5×75+1500=1125,100−x=25,答:购买的A种奖品75件,B种奖品25件时,所需的总费用最少,最少费用是1125元.(Ⅰ)根据题意和表格中的数据可以将表格中缺失的数据补充完整;(Ⅱ)根据题意可以写出y与x的函数关系式;(Ⅲ)根据题意可以列出相应的不等式,求出x的取值范围,再根据一次函数的性质即可解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.四、解答题(本大题共5小题,共40.0分)21.解下列方程:(Ⅰ)x2+3=2√3x(Ⅱ)x(x−2)+x−2=0.【答案】解:(I)移项得:x2−2√3x+3=0,配方得:(x−√3)2=0,开方得:x−√3=0,即x1=x2=√3;(II)x(x−2)+x−2=0,(x−2)(x+1)=0,x−2=0,x+1=0,x1=2,x2=−1.【解析】(I)移项,配方,开方,即可求出答案;(II)先分解因式,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元一次方程,能选择适当的方法解一元二次方程是解此题的关键.22.如图,在Rt△ABC中,∠ACB=90∘,BC=3,AC=4,在边BC上有一点M,将△ABM沿直线AM折叠,点B恰好落在AC延长线上的点D处.(Ⅰ)AB的长=______;(Ⅱ)CD的长=______;(Ⅲ)求CM的长.【答案】5;1【解析】解:(Ⅰ)∵∠ACB=90∘,BC=3,AC=4∴AB=5(Ⅱ)∵折叠∴AB=AD=5且AC=4∴CD=1(Ⅲ)连接DM∵折叠∴BM=DM在Rt△CDM中,DM2=CD2+CM2∴(3−CM)2=1+CM2∴CM =4 3(Ⅰ)由勾股定理可得AB的长.(Ⅱ)由折叠可得AD=AB,即可求CD的长.(Ⅲ)在直角三角形CDM中,根据勾股定理可得方程,可求出CM的长.本题考查了折叠问题,勾股定理的运用,关键是灵活运用折叠的性质解决问题.23.在▱ABCD中,点E,F分别在边BC,AD上,且AF=CE.(Ⅰ)如图①,求证四边形AECF是平行四边形;(Ⅱ)如图②,若∠BAC=90∘,且四边形AECF是边长为6的菱形,求BE的长.【答案】解:(I)证明:∵四边形ABCD是平行四边形,∴AD//BC,∵AF=CE,∴四边形AECF是平行四边形;(II)如图:∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠BAC=90∘,∴∠2+∠3=90∘∠1+∠B=90∘,∴∠3=∠B,∴AE=BE,∵AE=6,∴BE=6.【解析】(I)根据平行四边形的性质得出AD//BC,根据平行四边形的判定推出即可;(II)根据菱形的性质求出AE=6,AE=EC,求出AE=BE即可.本题考查了平行四边形的性质,等腰三角形的性质,菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.24.如图,在Rt△ABC中,∠ABC=90∘,∠C=30∘,AC=12cm,点E从点A出发沿AB以每秒lcm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.(I)试用含t的式子表示AE、AD、DF的长;(Ⅱ)如图①,连接EF,求证四边形AEFD是平行四边形;(Ⅲ)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.【答案】解:(I)由题意得,AE=t,CD=2t,则AD=AC−CD=12−2t,∵DF⊥BC,∠C=30∘,∴DF=12CD=t;(Ⅱ)∵∠ABC=90∘,DF⊥BC,∴AB//DF,∵AE=t,DF=t,∴AE=DF,∴四边形AEFD是平行四边形;(Ⅲ)当t=3时,四边形EBFD是矩形,理由如下:∵∠ABC=90∘,∠C=30∘,∴BC=12AC=6cm,∵BE//DF,∴BE=DF时,四边形EBFD是平行四边形,即6−t=t,解得,t=3,∵∠ABC=90∘,∴四边形EBFD是矩形,∴t=3时,四边形EBFD是矩形.【解析】(I)根据题意用含t的式子表示AE、CD,结合图形表示出AD,根据直角三角形的性质表示出DF;(Ⅱ)根据对边平行且相等的四边形是平行四边形证明;(Ⅲ)根据矩形的定义列出方程,解方程即可.本题考查的是直角三角形的性质、平行四边形的判定、矩形的判定,掌握平行四边形、矩形的判定定理是解题的关键.25.在平面直角坐标系中,直线l1:y=−12x+4分别与x轴、y轴交于点A、点B,且与直线l2:y=x于点C.(Ⅰ)如图①,求出B、C两点的坐标;(Ⅱ)若D是线段OC上的点,且△BOD的面积为4,求直线BD的函数解析式.(Ⅲ)如图②,在(Ⅱ)的条件下,设P是射线BD上的点,在平面内是否存在点Q,使以O、B、P、Q 为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.【答案】解:(Ⅰ)对于直线:y =−12x +4,令x =0,得到y =4, ∴B(0,4),由{y =x y =−12x +4,解得{x =83y =83,∴C(83,83).(Ⅱ)∵点D 在直线y =x 上,设D(m,m), ∵△BOD 的面积为4, ∴12×4×m =4,解得m =2, ∴D(2,2).设直线BD 的解析式为y =kx +b ,则有{2k +b =2b=4, 解得{b =4k=−1,∴直线BD 的解析式为y =−x +4.(Ⅲ)如图②中,①当OB 为菱形的边时,OB =PB =4,可得P(2√2,4−2√2),Q(2√2,−2√2). ②当P′B 为菱形的对角线时,四边形OBQ′P′是正方形,此时Q(4,4).③当OB 为菱形的边时,点P″与D 重合,P 、Q 关于y 轴对称,Q″(−2,2), 综上所述,满足条件的Q 的坐标为(2√2,−2√2)或(−2,2)或(4,4).【解析】(Ⅰ)利用待定系数法求出点B 坐标,利用方程组求出点C 坐标即可;(Ⅱ)设D(m,m),构建方程求出m 即可解决问题,再利用待定系数法求出直线的解析式; (Ⅲ)分三种情形分别求解即可解决问题;本题主要考查了一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式,解二元一次方程组,菱形的性质,三角形的面积等知识点,解此题的关键是熟练地运用知识进行计算.此题是一个综合性很强的题目.。
2018-2019学年苏科版八年级数学第二学期期末检测试卷(附答案)
![2018-2019学年苏科版八年级数学第二学期期末检测试卷(附答案)](https://img.taocdn.com/s3/m/d16e2247960590c69fc3763b.png)
2018-2019学年八年级(下)期末数学试卷、选择题(本大题共 6小题,每小题2分) 1.( 2分)利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简2. ( 2分)某市今年共有 6万名考生参加中考,为了了解这抽取了 1000名考生的数学成绩进行统计分析,以下说法: ① 这种调查采用了抽样调查的方式; ② 6万名考生是总体;③ 1000名考生的数学成绩是总体的一个样本;④ 样本容量是1000名. 其中正确的有( ) A . 0个 B . 1个C . 2个D . 3个3.( 2分)下列命题中正确的是()A .有一组邻边相等的四边形是菱形B .有一个角是直角的四边形是矩形C .对角线互相垂直的平行四边形是正方形D .对角线互相平分的四边形是平行四边形 4.( 2分)“黄金分割”是一条举世公认的美学定律,例如在摄影中,人们常依据黄金分 害甌行构图,使画面整体和谐.目前,照相机和手机自带的九宫格就是黄金分割的简化版,要拍摄草坪上的小狗,按照黄金分割的原则,应该使小狗置于画面中的单图形,其中是轴对称但不是中心对称的图形是(A6万名考生的数学成绩,从中 D .A .①位置(B.②5. (2分)如图,在菱形ABCD中,/ A= 60°, AD = 4,点P是AB边上的一个动点,点E、F分别是DP、BP的中点,则线段EF的长为()6. (2分)如图,点A, B是反比例函数y=「(x> 0)图象上的两点,过点A, B分别作XAC丄x轴于点C, BD丄x轴于点D,连接OA、BC,已知点C (2, 0), BD = 3, S^BCDA. 2B. 3C. 4D. 6二、填空题(本大题共10小题,每小题2分)7. ________________________________________ (2分)已知AB// CD,添加一个条件,使得四边形ABCD为平行四边形.28. (2分)在比例尺1: 500000的地图上,测得甲地在图上的面积约为10cm,则甲地实际面积为_______ 平方千米.9.(2分)空气质量指数,简称AQI,如果AQI在0〜50空气质量类别为优,在51〜100空气质量类别为良,在101〜150空气质量类别为轻度污染,按照某市最近一段时间的AQI画出的频数分布直方图如图所示•已知每天的AQI都是整数,那么空气质量类别为优和良的天数占总天数的百分比为_________ % .天数10. (2分)在温度不变的条件下,一定质量的气体的压强p与它的体积V成反比例.当V=200 时,p= 50,则当p= 100 时,V = ____________ .11. (2分)如图,在Rt △ ABC中,/ ACB= 90°,点G是厶ABC的重心,GE丄AC于E ,若BC = 6cm,贝U GE = cm.i 2 212. (2分)已知:点P (m, n)在直线y=- x+2上,也在双曲线y=——上,贝U m +nx 的值为_______13. (2分)如图,在?ABCD中,E、F分别是AB、DC边上的点,AF与DE交于点P,BF与CE交于点Q,若S A APD = 20cm2, S^BQC= 30cm2,则图中阴影部分的面积为214. (2分)点(a- 1, y1)、(a+1, y?)在反比例函数y= 一(k v 0)的图象上,若>y2,则a的取值范围是__________ .15. (2分)如图,E、F分别是矩形ABCD的边BC、CD的中点,连接AC、AF、EF ,若AF丄EF , AC = 「,贝U AB的长为 _____ .16.(2 分)如图,Rt △ ABC 中,/ ACB = 90°, CA= CB = 2, CD 丄AB 于D,点P 是线段CD上的一个动点,以点P为直角顶点向下作等腰直角△ PBE,连接DE,则DE的最小值为_______17. ( 6分)如图,△ ABC的顶点坐标分别为A ( 1, 1), B (2, 3), C ( 3, 0).(1)画出△ ABC绕点0逆时针旋转90°后得到的厶DEF ;(2)以点0为位似中心,在第三象限内把△ ABC按相似比2:1放大(即所画厶PQR 与厶ABC的相似比为2:1).(3 )在(2 )的条件下,若M (a, ABC边上的任意一点,则△ PQR的边上与点M对应的点M '的坐标为___________ .18. ( 6分)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查•结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.破抽拦学生舞志辱活动情况祈超计囹被掠样学生事与志是看活戢情况扃形统计圉(1) 被随机抽取的学生共有多少名? (2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;(3) 该校共有学生2000人,估计其中参与了 4项或5项活动的学生共有多少人? 19. ( 6分)李先生参加了新月电脑公司推出的分期付款购买电脑活动,他购买的电脑价格 为1.2万元,交了首付4000元之后每期付款y 元,x 个月结清余款. (1) 写出y 与x 的函数关系式.(2) 李先生若用4个月结清余款,每月应付多少元?(3) 如打算每月付款不超过 500元,李先生至少几个月才能结清余款?20. ( 6分)在一次数学活动课上,小芳到操场上测量旗杆的高度,她的测量方法是:拿一根高3.5米的竹竿直立在离旗杆 27米的C 处(如图),然后沿 BC 方向走到D 处,这时 目测旗杆顶部 A 与竹竿顶部E 恰好在同一直线上,又测得 C 、D 两点的距离为3米,小 芳的目高为1.5米,利用她所测数据,求旗杆的高..4匚P lBc n21.( 8分)如图,矩形 ABCD 的两边AD 、AB 的长分别为3、8, E 是DC 的中点,反比 例函数y =工的图象经过点 E ,与AB 交于点F .Jrf* ? i 斗5 60864208642 rs hl —T-l.T -l顼项 项5(1) 若点B坐标为(-6, 0),求m的值及图象经过A、E两点的一次函数的表达式;(2) 若AF - AE = 2,求反比例函数的表达式.22.( 8分)如图,已知四边形ABCD是平行四边形,点E, F分别是AB, BC上的点,AE = CF,并且/ AED = Z CFD .求证:(“)△ AED CFD ;(2)四边形ABCD是菱形.23.( 8分)如图,一次函数y= kx+b与反比例函数y=—的图象交于A (2, 4), B (- 4,n)两点,交x轴于点C.(1 )求m、n的值;(2)请直接写出不等式kx+b v二的解集;x(3 )将x轴下方的图象沿x轴翻折,点B落在点B'处,连接AB'、B' C,求厶AB '24.( 10分)矩形AOBC中,0B = 8, OA = 4.分别以OB, OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系. F是BC边上一个动点(不与B, C重合),过点F 的反比例函数y= ' ( k> 0)的图象与边AC交于点E.* 1y ;JVCCJA.飞JqB XG BX團1图2(1)当点F 运动到边BC 的中点时,求点 E 的坐标; (2) 连接 EF 、AB ,求证:EF // AB ;(3) 如图2,将厶CEF 沿EF 折叠,点C 恰好落在边 0B 上的点G 处,求此时反比例函 数的解析式.25.( 10分)如图,正方形 ABCD 中,对角线 AC 、BD 交于点O , E 为0C 上动点(与点 0不重合),作 AF 丄BE ,垂足为 G ,交B0于H •连接 0G 、CG . (1) 求证:AH = BE ;(2) 试探究:/ AG0的度数是否为定值?请说明理由; (3) 若 0G 丄CG , BG = 3「,求△ 0GC 的面积.A D2018-2019学年八年级(下)期末数学试卷参考答案与试题解析、选择题(本大题共 6小题,每小题2分)1.( 2分)利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【解答】解:A 、图形不是中心对称轴图形,是轴对称图形,此选项正确;B 、 图形是中心对称轴图形,也是轴对称图形,此选项错误;C 、 图形是中心对称轴图形,不是轴对称图形,此选项错误;D 、图形是中心对称轴图形,也是轴对称图形,此选项错误;故选:A .【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称 轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2. ( 2分)某市今年共有 6万名考生参加中考,为了了解这 抽取了 1000名考生的数学成绩进行统计分析,以下说法: ① 这种调查采用了抽样调查的方式; ② 6万名考生是总体;③ 1000名考生的数学成绩是总体的一个样本; ④ 样本容量是 1000名.其中正确的有()6万名考生的数学成绩,从中B . 1个C . 2个D . 3个单图形,其中是轴对称但不是中心对称的图形是( )【分析】直接利用总体、个体、样本、样本容量的定义分析得出答案.【解答】解:某市今年共有6万名考生参加中考,为了了解这6万名考生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析,①这种调查采用了抽样调查的方式,正确;②6万名考生的数学成绩是总体,故原题错误;③1000名考生的数学成绩是总体的一个样本,正确;④样本容量是1000,故原题错误.故选:C.【点评】此题主要考查了总体、个体、样本、样本容量的定义,正确把握相关定义是解题关键.3. (2分)下列命题中正确的是()A .有一组邻边相等的四边形是菱形B. 有一个角是直角的四边形是矩形C .对角线互相垂直的平行四边形是正方形D.对角线互相平分的四边形是平行四边形【分析】根据平行四边形的判定定理、矩形的判定定理、正方形和菱形的判定定理判断即可.【解答】解:A、有一组邻边相等的平行四边形是菱形,错误;B、有一个角是直角的平行四边形是矩形,错误;C、对角线互相垂直且相等的平行四边形是正方形,错误;D、对角线互相平分的四边形是平行四边形,正确;故选:D.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4. (2分)“黄金分割”是一条举世公认的美学定律,例如在摄影中,人们常依据黄金分害甌行构图,使画面整体和谐.目前,照相机和手机自带的九宫格就是黄金分割的简化版,要拍摄草坪上的小狗,按照黄金分割的原则,应该使小狗置于画面中的位置(A.①B.②二'【解答】解:观察图象可知,AC~ 0.618AB, DE〜0.618CD ,A B•••按照黄金分割的原则,应该使小狗置于画面中的位置②,故选:B.【点评】本题考查黄金分割(0.618)的应用,解题的关键是记住黄金分割的比值是0.618 .5. (2分)如图,在菱形ABCD中,/ A= 60°, AD = 4,点P是AB边上的一个动点, 点E、F分别是DP、BP的中点,则线段EF的长为()A. 2B. 4C. 2D. 2【分析】如图连接BD .首先证明△ ADB是等边三角形,可得BD = 4,再根据三角形的中位线定理即可解决问题.【解答】解:如图连接BD .•••四边形ABCD是菱形,.• AD = AB= 4,•••/ A= 60°,• △ ABD是等边三角形,BD = AD= 4,•/ PE = ED , PF = FB,EF = BD = 2.2故选:A.【点评】本题考查菱形的性质、三角形的中位线定理、等边三角形的判定和性质等知识,ADB是等边三角形.解题的关键是学会添加常用辅助线,本题的突破点是证明厶6. ( 2分)如图,点A, B是反比例函数丫=皂(x> 0)图象上的两点,过点A, B分别作XAC丄x轴于点C, BD丄x轴于点D,连接OA、BC,已知点C (2, 0), BD = 3, S^BCDA. 2B. 3C. 4D. 6【分析】根据三角形的面积公式求出CD,推出点B坐标,求出k的值,根据反比例函数系数k的几何意义即可解决问题;【解答】解:在Rt△ BCD中,X CD X BD = 3,2X CD X 3= 3,:- ,••• CD = 2,•- C (2, 0),•OC = 2,•OD = 4,•- B (4, 3),•••点B是反比例函数y= ' (x> 0)图象上的点,x•k = 12,•/ AC丄x轴,•S^AOC= ~7= 6,故选:D.【点评】本题考查反比例函数系数k的几何意义,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.、填空题(本大题共10小题,每小题2分)7. (2分)已知AB// CD,添加一个条件AB= CD ,使得四边形ABCD为平行四边形.【分析】已知AB // CD,可根据有一组对边平行且相等的四边形是平行四边形来判定.【解答】解:可添加的条件是:AB= DC .理由如下:•••在四边形ABCD 中,AB / CD , AB= DC,•••四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形)故答案为:AB= CD (本题答案不唯一).【点评】此题主要考查学生对平行四边形的判定方法的理解能力,常用的平行四边形的判定方法有:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)—组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形. (5)对角线互相平分的四边形是平行四边形.注意本题答案不唯一,还可以添加一个条件AD // BC或/ A=Z C或/ B=Z D或/ A+Z B =180°或Z C+Z D = 180°.28. (2分)在比例尺1: 500000的地图上,测得甲地在图上的面积约为10cm,则甲地实际面积为250平方千米.【分析】面积比是比例尺的平方比,依题意可得出甲地实际的面积【解答】解:根据相似多边形的面积比是相似比的平方,得:11 12 2 2实际面积是10X 2.5X 10 = 2.5X 10 (cm )= 250 (km ),故填250.【点评】注意面积比是比例尺的平方比,这里特别注意单位的换算.9. (2分)空气质量指数,简称AQI,如果AQI在0〜50空气质量类别为优,在51〜100空气质量类别为良,在101〜150空气质量类别为轻度污染,按照某市最近一段时间的AQI画出的频数分布直方图如图所示.已知每天的AQI都是整数,那么空气质量类别为优和良的天数占总天数的百分比为80 % .天数【分析】用空气质量类别为优和良的天数之和除以被抽查的总天数即可得.【解答】解:空气质量类别为优和良的天数占总天数的百分比为 80% ,故答案为:80.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;禾U 用统计图 获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题. 10. (2分)在温度不变的条件下,一定质量的气体的压强 p 与它的体积V 成反比例•当V=200 时,p = 50,则当 p = 100 时,V = 100 .【分析】直接求出压强 p 与它的体积V 得关系式,进而得出 V 的值.【解答】解:T 一定质量的气体的压强 p 与它的体积 V 成反比例,当V = 200时,p = 50, •••设 P =:,则 m = 200 X 50= 10000,则 p =100时,V =:=100故答案为:100.【点评】此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.11. ( 2分)如图,在 Rt △ ABC 中,/ ACB = 90°,点G 是厶ABC 的重心,GE 丄AC 于E , 若 BC = 6cm,贝V GE =2 cm .【分析】如图,连接 DF .由题意可知 DF 是厶ABC 的中位线,利用平行线分线段成比 例定理即可解决问题;【解答】解:如图,连接 DF .100% =10+14+6••• AD = DB, CF = BF ,••• DF // AC, AC = 2DF , DFACAGAFFG_ 1AG 2'23,•/ EG // CF , CF _ FB _ 3cm,.理= 22 = 2• _「_ :,.• EG _ 2cm ,故答案为2.【点评】本题考查三角形的重心、三角形的中位线定理、平行线分线段成本定理定理等知识,解题的关键是学会添加常用辅助线,构造三角形的中位线解决问题,属于中考常考题型.2 2 12.( 2分)已知:点P ( m , n)在直线y_- x+2上,也在双曲线y_-—上,贝U m +n 的值为6【分析】直接利用一次函数图象上点的坐标特征以及反比例函数图象上点的特征得出n+m以及mn的值,再利用完全平方公式将原式变形得出答案.【解答】解:•点P (m , n)在直线y_- x+2上,•n+m_ 2 ,•••点P (m , n )在双曲线y_- 上,x•mn_- 1 ,2 2 2m+n_( n+m) —2mn_ 4+2_6.故答案为:6.>y 2,贝y a 的取值范围是—1v a v 1【点评】此题主要考查了一次函数图象上点的坐标特征以及反比例函数图象上点的特征, 正确得出m ,n 之间关系是解题关键.13.( 2分)如图,在?ABCD 中,E 、F 分别是 AB 、DC 边上的点,AF 与DE 交于点P , BF 与CE 交于点Q ,若S MPD = 20cm 2, S ^BQC = 30cm 2,则图中阴影部分的面积为502cm .【分析】连接E 、F 两点,由三角形的面积公式我们可以推出S "FC= S ^BCQ , 比 EFD =S A ADF ,所以S ^EF G = S ^BCQ , S ^EFP = S ^ADP ,因此可以推出阴影部分的面积就是s ^APD +S【解答】解:连接 E 、F 两点, •••四边形ABCD 是平行四边形, ••• AB // CD ,•••△EFC 的FC 边上的高与△ BCF 的FC 边上的高相等,•- S ^EFC =SA BCF,•- S ^EFQ = S/CQ , 同理:SA EFD=SA ADF ,•- S ^EFP = S ^ADP ,••• S A APD = 20cm 2, S A BQC = 30cm 2,2•- S 四边形 EPFQ = 50cm , 【点评】本题主要考查了平行四边形的性质,题目综合性较强,主要考查了平行四边形的性质,解答此题关键是作出辅助线,找出同底等高的三角形. 14.( 2分)点(a - 1, y i )、( a+1, y 2)在反比例函数y =( k v 0 )的图象上,若 y i 故答案为:50.【分析】根据反比例函数的性质分两种情况进行讨论, ①当点(a - 1, y i)、(a+1, y?) 在图象的同一支上时,②当点(a- 1, y i)、(a+1, y2)在图象的两支上时.【解答】解:••• k v 0,•••在图象的每一支上,y随x的增大而增大,①当点(a- 1, y i)、(a+1, y?)在图象的同一支上,••• y1> y2,•a —1> a+1,解得:无解;②当点(a—1, y1)、(a+1, y2)在图象的两支上,••• y1> y2,•a —1v0, a+1 >0,解得:-1 v a v 1,故答案为:-1v a v 1.【点评】此题主要考查了反比例函数的性质,关键是掌握当k v 0时,在图象的每一支上,y随x的增大而增大.15.(2分)如图,E、F分别是矩形ABCD的边BC、CD的中点,连接AC、AF、EF , 若AF丄EF , AC = 「,贝U AB的长为2 .【分析】根据矩形的性质得到/ D = Z ECF = 90°,根据相似三角形的性质和勾股定理即可得到结论.【解答】解:•••四边形ABCD是矩形,:丄 D =Z ECF = 90°,• / DAF + / AFD = 90°,•/ AF 丄EF ,:丄 AFE = 90°,:丄 DAF =Z EFC ,•••△ADF s\ FCE ,•r :■,•/ E、F分别是矩形ABCD的边BC、CD的中点,•••设DF = CF = x, CE = y,则AD = 2y,•-… ,K y2 2••• x = 2y ,•/ AD2+CD2= AC2,• 4y2+4x2= 6,•- x = 1, y=宁,AB= CD = 2.故答案为:2.【点评】本题考查了矩形的性质,勾股定理,相似三角形的判定和性质,熟练掌握矩形的性质是解题的关键.16.(2 分)如图,Rt △ ABC 中,/ ACB = 90°, CA= CB = 2, CD 丄AB 于D,点P 是线段CD上的一个动点,以点P为直角顶点向下作等腰直角△ PBE,连接DE,则DE的最小值为1 .【分析】当DE丄AE时,DE的有最小值,根据等腰直角三角形的性质即可得到结论.• “ ■ …二 ,•••/ ABE = Z CBP ,• △ ABE s\ CBP ,•••/ BAE = Z BCP = 45 •••/ BAE = Z CBA ,• AE // BC ,• E 点的运动轨迹为射线 AE , ••• DE 最短时,DE 丄AE 时, 即当DE 丄AE 时,DE 的有最小值,•••在 Rt △ ABC 中,/ ACB = 90°, AC = BC = 2, ••• AD = AB =_,2 3•••/ DAE = 45°,•••△ ADE 是等腰直角三角形, • DE = 1,• DE 的最小值是1. 故答案为:1【点评】本题考查了等腰直角三角形的性质,熟练掌握等腰直角三角形的性质是解题的 关键. 三、解答题:17. ( 6分)如图,△ ABC 的顶点坐标分别为 A ( 1, 1), B (2, 3), C ( 3, 0).(1) 画出△ ABC 绕点0逆时针旋转90°后得到的厶DEF ; (2)以点0为位似中心,在第三象限内把△ ABC 按相似比2: 1放大(即所画厶PQR【解答】解:连接AE ,与厶ABC的相似比为2: 1)(3 )在(2 )的条件下,若M (a, ABC边上的任意一点,则△ PQR的边上与点M对应的点M '的坐标为(-2a,- 2b) .【分析】(1)先依据旋转变换得到△ ABC绕点0逆时针旋转90°后的对应点,进而得到的△ DEF ;(2)以点0为位似中心,在第三象限内把△ ABC按相似比2: 1放大即可得到△ PQR;(3)依据位似的性质,即可得到△ PQR的边上与点M对应的点M '的坐标.【解答】解:(1)如图所示,△ DEF即为所求;(2)如图所示,△ PQR即为所求;(3)由图可得,△ PQR的边上与点M对应的点M '的坐标为(-2a,- 2b), 故答案为:(-2a,- 2b).【点评】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于 k 或-k .18. ( 6分)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动, 活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服 务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查•结果发现, 被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了 5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.械抽样学生参孟湮者活动情宛吊竣计圉被抽样学主参与志恿者活戢情;兄扇形统计圏(1)被随机抽取的学生共有多少名?(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数, 并补全折线统计图;(3)该校共有学生2000人,估计其中参与了 4项或5项活动的学生共有多少人?【分析】(1)利用活动数为2项的学生的数量以及百分比,即可得到被随机抽取的学生 数; (2)利用活动数为3项的学生数,即可得到对应的扇形圆心角的度数,禾U 用活动数为 5项的学生数,即可补全折线统计图; (3)利用参与了 4项或5项活动的学生所占的百分比,即可得到全校参与了 4项或5 项活动的学生总数.【解答】解:(1)被随机抽取的学生共有 14- 28% = 50 (人); (2)活动数为3项的学生所对应的扇形圆心角= .X 360°= 72°,50活动数为5项的学生为:50 - 8- 14 - 10 - 12= 6, 如图所示:0864208642211111项3项28%1项4项5项(3)参与了 4项或5项活动的学生共有 *X 2000 = 720 (人).50【点评】本题主要考查折线统计图与扇形统计图及概率公式,根据折线统计图和扇形统 计图得出解题所需的数据是解题的关键.19. ( 6分)李先生参加了新月电脑公司推出的分期付款购买电脑活动,他购买的电脑价格 为1.2万元,交了首付4000元之后每期付款y 元,x 个月结清余款. (1) 写出y 与x 的函数关系式.(2) 李先生若用4个月结清余款,每月应付多少元? (3)如打算每月付款不超过 500元,李先生至少几个月才能结清余款?【分析】(1)根据购买的电脑价格为1.2万元,交了首付4000元之后每期付款y 元,x个月结清余款,得出 xy+4000 = 12000,即可求出解析式. (2) 利用(1 )中解析式,由当 x =4时,即可求出函数值. (3) 根据y w 500,利用解析式即可求出自变量x 的取值范围.【解答】解:(1)v 购买的电脑价格为 1.2万元,交了首付4000元之后每期付款y 元,x 个月结清余款, xy+4000 = 12000,8000.y =—(2)当 x = 4 时,y =^—= 2000 (元), 答:每月应付 2000元./7)1 :4 5 60864.208642 211X11(3 )当y w 500 时,w 500,答:李先生至少16个月才能结清余款.【点评】此题主要考查了反比例函数的应用,解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,会用不等式解决实际问题.20. (6分)在一次数学活动课上,小芳到操场上测量旗杆的高度,她的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时目测旗杆顶部A与竹竿顶部E恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,利用她所测数据,求旗杆的高.B c n【分析】根据已知得出过F作FG丄AB于G,交CE于H,利用相似三角形的判定得出△ AGFEHF,再利用相似三角形的性质得出即可.【解答】解:设旗杆高AB= x.过F作FG丄AB于G,交CE于H (如图).所以△ AGF EHF .因为FD = 1.5, GF = 27+3 = 30, HF = 3,所以EH = 3.5 — 1.5 = 2, AG = X— 1.5.由厶AGF EHF ,所以x— 1.5 = 20,解得x= 21.5 (米)答:旗杆的高为21.5米..4根据已知得出△ AGFEHF是解【点评】此题主要考查了相似三角形的判定与性质, 题关键.21.(8分)如图,矩形ABCD的两边AD、AB的长分别为3、8, E是DC的中点,反比例函数y=兰的图象经过点E,与AB交于点F .(1)若点B坐标为(-6, 0),求m的值及图象经过A、E两点的一次函数的表达式;(2)根据勾股定理,可得AE的长,根据线段的和差,可得FB,可得F点坐标,根据待定系数法,可得m的值,可得答案.【解答】解:(1)点B坐标为(-6,0),AD = 3,AB= 8,E为CD的中点,•••点 A (- 6,8),E (- 3,4),函数图象经过E点,•m=- 3X 4=- 12,设AE的解析式为y= kx+b,根据待定系数法,可得答案;-6k+b=8—3k+b=4,解得 :,)b=04•一次函数的解析式为y=- .x;(2) AD= 3,DE = 4,•AE = J ' [. = 5,•/ AF - AE = 2,• AF = 7,BF = 1,设E点坐标为(a, 4),则F点坐标为(a- 3, 1),•/ E, F两点在函数y=「图象上,x4a= a - 3,解得a=- 1,•-E (- 1, 4),1)的关键是利用待定系数法,又利用了矩形的性m=- 1 X 4=- 4,质;解(2)的关键利用E,F两点在函数y=「图象上得出关于a的方程.x22. (8分)如图,已知四边形ABCD是平行四边形,点E, F分别是AB, BC上的点,AE = CF,并且/ AED = / CFD .求证:(“)△ AED ◎△ CFD ;(2)四边形ABCD是菱形.B【分析】(1)由全等三角形的判定定理ASA证得结论;(2)由“邻边相等的平行四边形为菱形”证得结论.【解答】(1)证明:•••四边形ABCD是平行四边形,A=Z C.在厶AED与厶CFD中,^ZA=ZC,AE=CFZAED-ZCFD•••△AED CFD (ASA);(2)由(1)知,△ AED ◎△ CFD,贝U AD = CD .又•••四边形ABCD是平行四边形,•••四边形ABCD是菱形.【点评】考查了菱形的判定,全等三角形的判定与性质以及平行四边形的性质,解题的关键是掌握相关的性质与定理.23. ( 8分)如图,一次函数y= kx+b与反比例函数y=—的图象交于A (2, 4), B (- 4,n)两点,交x轴于点C.(1 )求m、n的值;(2)请直接写出不等式kx+bv M的解集;x(3 )将x轴下方的图象沿x轴翻折,点B落在点B'处,连接AB'、B' C,求厶AB '【分析】(1)利用待定系数法即可解决问题;(2)利用图象法即可解决问题,写出直线的图象在反比例函数的图象下方的自变量的取值范围即可;(3)首先证明/ ACB ' = 90°,求出CB ' , AC即可解决问题;【解答】解:(1)把点A (2, 4)代入y「,得到m= 8,O把B (- 4, n)代入y='得到n=- 2,xm= 8, n=- 2(2)观察图象可知:不等式kx+b v二的解集为:x v- 4或O v x v 2;(3)如图,设AB交y轴于D.把 A (2, 4), B (- 4,- 2)代入y= kx+b,得到; ,-4k+b=-2解得匕1I b=2•••直线AB的解析式为y= x+2,••• D (0, 2), C (- 2, 0),OC = OD= 2,:丄 DCO = 45°,••• B与B '关于x轴对称,••• BC= CB',/ DCB '= 90°,• BC= 2 二AC = 4 7,•••△ACB'的面积=「7X ~= 8.£【点评】本题考查一次函数与反比例函数的交点问题,待定系数法等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.( 10分)矩形AOBC中,OB = 8, OA = 4•分别以OB, OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系. F是BC边上一个动点(不与B, C重合),过点F的反比例函数y=^ ( k> 0)的图象与边AC交于点E.團1 图2(1)当点F运动到边BC的中点时,求点E的坐标;(2)连接EF、AB,求证:EF // AB;(3)如图2,将厶CEF沿EF折叠,点C恰好落在边0B上的点G处,求此时反比例函数的解析式.【分析】(1)首先确定点B坐标,再根据中点的定义求出点E坐标即可;(2)连接AB,分别求出/ EFC,/ ABC的正切值即可解决问题;(3)先作出辅助线判断出Rt△ MED s Rt △ BDF,再确定出点E, F坐标进而EG = 8 -'■ , GF = 4-[,求出BD,最后用勾股定理建立方程求出k即可得出结论;【解答】解:(1)v四边形OACB是矩形,0B = 8, 0A = 4,二 C (8, 4),•/ AE = EC,•-E (4, 4),•••点E在y=—上,x二 E (4, 4).k = 8a,二 E (2a, 4),CF = 4-a, EC = 8 -2a,在Rt△ ECF 中,tan/ EFC = = 1 = 2,FC 4-a在Rt△ ACB 中,tan/ ABC = = 2,BC.tan / EFC = tan / ABC,•••/ EFC = / ABC,••• EF // AB.•/ EGF =/ C= 90°, EC = EG , CF = GF ,•/ MGE +/ FGB = 90°,过点E作EM丄OB,•/ MGE +/ MEG = 90°,•/ MEG =/ FGB ,•Rt△MEG s Rt △BGF ,OB上的G点处, •型=12•= ■',•••点 E (一二,4) , F (8,三),Lr Lr•EC = AC - AE = 8 - , CF = BC- BF = 44 8Lr Lr•EG = EC = 8- ' , GF = CF = 4-三•••EM = 4 ,GB••• GB = 2,在Rt△ GBF 中,GF2= GB2+BF2,• k = 12,•反比例函数表达式为y= .【点评】此题是反比例函数综合题,主要考查了根据条件求反比例函数解析式及其应用,利用图形性质表示出相关点的坐标,根据点与函数的关系找出关系式,涉及内容有锐角三角函数,三角形相似的性质和判定,勾股定理的应用,注意点(m, n)在函数y='的x 图象上,则mn= k的利用是解本题的关键.25.( 10分)如图,正方形ABCD中,对角线AC、BD交于点O, E为0C上动点(与点0不重合),作AF丄BE,垂足为G ,交B0于H •连接0G、CG .(1)求证:AH = BE ;(2)试探究:/ AGO的度数是否为定值?请说明理由;(3 )若0G丄CG , BG= 3 二求△ OGC的面积.A D【分析】(1)方法一:只要证明△ AOH ◎△ BOE即可.方法二;只要证明厶ABH ◎△BCE即可;(2)方法一:想办法证明△ OHG AHB,可得/ AGO = ZABO = 45 ° .方法二:如图,取AB中点M,连接MO, MG .利用圆周角定理,即可解决问题;(3)由厶ABGBFG ,推出乡=昊,可得AG?GF = BG 2= 18,由厶AGOCGF ,BG GF推出二可得GO?CG= AG?GF = 18.由此即可解决问题;L T F CG。
江苏省宿迁市数学八年级下学期期末考试试卷
![江苏省宿迁市数学八年级下学期期末考试试卷](https://img.taocdn.com/s3/m/d4095c13ad51f01dc381f13f.png)
江苏省宿迁市数学八年级下学期期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)要使代数式有意义,则x的取值范围是()A . x>2B . x≥2C . x≤2D . x≤-22. (2分)方程(x-2)(x+3)=0的解是()A . x=2B . x=-3C . x1=-2,x2=3D . x1=2,x2=-33. (2分)某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误的是()A . 众数是80B . 中位数是75C . 平均数是80D . 极差是154. (2分)一个多边形的外角和是内角和的,这个多边形的边数为()A . 5B . 6C . 7D . 85. (2分) (2019八下·郑州月考) 用反证法证明:“一个三角形中至多有一个角不小于90°”时,应假设()A . 一个三角形中至少有两个角不小于90°B . 一个三角形中至多有一个角不小于90°C . 一个三角形中至少有一个角不小于90°D . 一个三角形中没有一个角不小于90°6. (2分)已知点P(-1,4)在反比例函数的图象上,则k的值是()A .B .C . 4D . -47. (2分) (2016八下·广州期中) 若O是四边形ABCD对角线的交点且OA=OB=OC=OD,则四边形ABCD是()A . 平行四边形B . 矩形C . 正方形D . 菱形8. (2分) (2017八下·汶上期末) 如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A . 4B . 6C . 8D . 109. (2分) (2019七上·扬中期末) 如图,正方形硬纸片ABCD的边长是8,点E、F分别是AB、BC的中点,若沿图中的虚线剪开,拼成如图的一座“小房子”,则图中阴影部分的面积是()A . 4B . 8C . 16D . 3210. (2分)直角三角形的两条直角边长分别为6cm和8cm,则连接这两条直角边中点线段的长为()A . 3cmB . 4cmC . 5cmD . 12cm二、填空题 (共6题;共6分)11. (1分) (2016八下·寿光期中) 实数a,b在数轴上的位置如图所示,化简|a﹣b|+ =________.12. (1分) (2019八上·下陆期末) n边形的内角和等于540°,则n=________.13. (1分)(2018·青岛模拟) 如图,把一个边长为1的正方形经过三次对折后沿中位线(虚线)剪开,则下图展开得到的图形的面积为________14. (1分)若一元二次方程(m﹣1)x2﹣4x﹣5=0没有实数根,则m的取值范围是________.15. (1分)(2017·昆都仑模拟) 如图,在菱形ABCD中,AB=BD,点E、F分别在BC、CD上,且BE=CF,连接BF、DE交于点M,延长ED到H使DH=BM,连接AM,AH,则以下四个结论:①△BDF≌△DCE;②∠BMD=120°;③△AMH是等边三角形④S四边形ABMD= AM2 .其中正确结论的是________.16. (1分)(2017·雁江模拟) 如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF 为等边三角形,则t的值为________.三、解答题 (共7题;共66分)17. (10分)解方程:(1) x2+2 x﹣4=0;(2) x﹣3=4(x﹣3)2.18. (6分)(2018·乐山) 某校八年级甲、乙两班各有学生50人,为了了解这两个班学生身体素质情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个班各随机抽取10名学生进行身体素质测试,测试成绩(百分制)如下:甲班65 75 75 80 60 50 75 90 85 65乙班90 55 80 70 55 70 95 80 65 70(1)整理描述数据按如下分数段整理、描述这两组样本数据:在表中:m=________,n=________.(2)分析数据①两组样本数据的平均数、中位数、众数如表所示:在表中:x=________,y=________.②若规定测试成绩在80分(含80分)以上的叙述身体素质为优秀,请估计乙班50名学生中身体素质为优秀的学生有________人.③现从甲班指定的2名学生(1男1女),乙班指定的3名学生(2男1女)中分别抽取1名学生去参加上级部门组织的身体素质测试,用树状图和列表法求抽到的2名同学是1男1女的概率.________19. (5分)如图1,在△ABC中,AB=AC,∠ABC=α,D是BC边上一点,以AD为边作△ADE,使AE=AD,∠DAE+∠BAC=180°.(1)直接写出∠ADE的度数(用含α的式子表示);(2)以AB,AE为边作平行四边形ABFE,①如图2,若点F恰好落在DE上,求证:BD=CD;②如图3,若点F恰好落在BC上,求证:BD=CF.20. (5分)在平面直角坐标系中,四边形ABCD的位置如图所示,解答下列问题:①将四边形先向左平移4个单位,再向下平移6个单位,得到四边形,画出平移后的四边形;②将四边形绕点逆时针旋转,得到四边形,画出旋转后的四边形,并写出点的坐标.21. (15分) (2018九上·来宾期末) 如图,一次函数y=kx+b与反比例函数y= 的图象相较于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S△ABC.22. (15分)(2017·盘锦模拟) 如图,要设计一个等腰梯形的花坛,花坛上底120米,下底180米,上下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等.设甬道的宽为x米.(1)用含x的式子表示横向甬道的面积;(2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽;(3)根据设计的要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?23. (10分)(2018·青海) 如图,在平行四边形ABCD中,E为AB边上的中点,连接DE并延长,交CB的延长线于点F.(1)求证:;(2)若平行四边形ABCD的面积为32,试求四边形EBCD的面积.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共7题;共66分)17-1、17-2、18-1、18-2、19-1、20-1、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年江苏省宿迁市沭阳县八年级(下)期末数学试卷
一、选择题(本大题共 8 小题,共 24 分)
1、(3分) 下列图标中,是中心对称图形的是( )
A.
B. C. D.
2、(3分) 下列各式:x π+2,
5p 2q ,a 2−b 22,1m +m ,其中分式共有( ) A.1个 B.2个
C.3个
D.4个
3、(3分) 下列调查适合做普查的是( )
A.了解初中生晚上睡眠时间
B.百姓对推广共享单车的态度
C.了解某中学某班学生使用手机的情况
D.了解初中生在家玩游戏情况
4、(3分) “十次投掷一枚硬币,十次正面朝上”这一事件是( )
A.必然事件
B.随机事件
C.确定事件
D.不可能事件
5、(3分) 某反比例函数的图象经过点(-2,3),则此函数图象也经过点( )
A.(2,-3)
B.(-3,-3)
C.(2,3)
D.(-4,6)
6、(3分) 菱形具有而一般平行四边形不具有的性质是( )
A.对边相等
B.对角相等
C.对角线互相垂直
D.对角线互相平分
7、(3分) 下列二次根式中属于最简二次根式的是( )
A.√24
B.√36
C.√a b
D.√2
8、(3分) 如图,A ,B 是反比例函数y=4x 在第一象限内的图象上的两点,且A ,B 两点的横坐
标分别是2和4,则△OAB 的面积是( )
A.4
B.3
C.2
D.1
二、填空题(本大题共 10 小题,共 30 分)
9、(3分) 二次根式√a −1中,a 的取值范围是______.
10、(3分) 一个袋中装有6个红球,4个黄球,1个白球,每个球除颜色外都相同,任意摸出一球,摸到______球的可能性最大.
11、(3分) 正方形的对角线长为1,则正方形的面积为______.
12、(3分) 反比例函数y =m−1
x 的图象在第一、三象限,则m 的取值范围是______.
13、(3分) 若√m −3+(n +1)2=0,则m-n 的值为______.
14、(3分) 某班级40名学生在期中学情分析考试中,分数段在90~100分的频率为0.2,则该班级在这个分数段内的学生有______人.
15、(3分) 若关于x 的分式方程x x−1=3a
2x−2-2有非负数解,则a 的取值范围是______.
16、(3分) 如图,点O 是矩形ABCD 的对角线AC 的中点,OM∥AB 交AD 于点M ,若OM=2,BC=6,则OB 的长为______.
17、(3分) 如图,B (3,-3),C (5,0),以OC ,CB 为边作平行四边形OABC ,则经过点A 的反比例函数的解析式为______.
18、(3分) 如图,已知点A ,B 在双曲线y=k
x (x >0)上,AC⊥x 轴于点C ,BD⊥y 轴于点D ,AC 与BD 交于点P ,P 是AC 的中点.若△ABP 的面积为4,则k=______.
三、解答题(本大题共 9 小题,共 88 分)
19、(8分) 计算:
(1)|1−√2|+(2018−π)0−√18
(2)√3(√2−√3)−√24−|√6−3|
20、(8分) 先化简,再求值:(x 2
x−1+1
1−x
)÷1
x
,其中x=√2-1.
21、(8分) 已知:如图,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF.求证:AF=CE.
22、(10分) 某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.
根据以上信息,解答下列问题:
(1)被调查的学生共有______人,并补全条形统计图;
(2)在扇形统计图中,m=______,n=______,表示区域C的圆心角为______度;
(3)全校学生中喜欢篮球的人数大约有多少?
23、(10分) 某商场计划购进冰箱、彩电相关信息如表:
若商场用80000元购进冰箱的数量与用64000元购进彩电的数量相等,求表中a的值.
24、(10分) 如图,一次函数y=x+m的图象与反比例函数y=k
的图象交于A,B两点,且与x轴
x
交于点C,点A的坐标为(2,1).
(1)求m及k的值;
的解集.
(2)求点C的坐标,并结合图象写出不等式组0<x+m≤k
x
25、(10分) 驾驶员血液中每毫升的酒精含量大于或等于200微克即为酒驾,某研究所经实验测得:成人饮用某品牌38度白酒后血液中酒精浓度y(微克/毫升)与饮酒时间x(小时)之间函数关系如图所示(当4≤x≤10时,y与x成反比例).
(1)根据图象分别求出血液中酒精浓度上升和下降阶段y与x之间的函数表达式.
(2)问血液中酒精浓度不低于200微克/毫升的持续时间是多少小时?
26、(12分) 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+2√2=(1+√2)2,善于思考的小明进行了以下探索:
设a+b √2=(m +n √2)2(其中a 、b 、m 、n 均为整数),则有:a+b √2=m 2+2n 2+2mn √2,∴a=m 2+2n 2,b=2mn ,这样小明就找到了一种把类似a+b √2的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题:
(1)当a 、b 、m 、n 均为正整数时,若a+b √3=(m +n √3)2,用含m 、n 的式子分别表示a 、b 得:a=______,b=______;
(2)利用所探索的结论,用完全平方式表示出:7+4√3=______.
(3)请化简:√12−6√3
27、(12分) 如图,在平面直角坐标系xOy 中,△OAB 如图放置,点P 是AB 边上的一点,过点P 的反比例函数y=k x (k >0,x >0)与OA 边交于点E ,连接OP .
(1)如图1,若点A 的坐标为(3,4),点B 的坐标为(5,0),且△OPB 的面积为5,求直线AB 和反比例函数y=k x 的解析式;
(2)如图2,若∠AOB=60°,过P 作PC∥OA,与OB 交于点C ,若OE=4,并且△OPC 的面积为3√32,求反比例函数y=k x 的解析式及点P 的坐标.
四、计算题(本大题共 1 小题,共 8 分)
28、(8分) 解方程:
(1)2
x+3=1
x
(2)x+1
x−1−4
x2−1
=1。