函数信号发生器-开题报告

合集下载

基于FPGA的函数信号发生器—开题报告.docx

基于FPGA的函数信号发生器—开题报告.docx
随着数字集成电路和微电子技术的发展,现代的函数发生器尽可能多的采用直接数字频 率合成(DDS)的方法产生所需耍的波形。直接数字频率合成是曲J. Tierney和C. M. Rader于1971年提出的技术,英主要优点是它的输出频率、柑位和幅度能够在数字处理器的控制下 精确而快速地变换,并口相位变化连续,易于集成和调整。采用DDS技术的函数信号发生器山 于灵活而成为软件无线电理想的信号发生器,\hiRM來处理信号的数字电路不会因为热飘 移、老化和元件的变化而受影响,支持快速频率切换,是函数信号发生器发展的方向。基于DDS的函数发生器现在不仅可以执行函数发生器的功能,还可以执行任意函数发生器(Arbitrary Function Generator)的功能,这将给传统测试方案带来一次革命。
幅度调制
图1DDS原理框图
DDS的工作过程为:频率控制字在每个时钟周期累加一次,得到的柑位值被送到ROM中対 其进行查农,ROM将相位值转换为与Z对应的幅度值,该数字化的幅度值序列经数模转换和 低通滤波后得到所需的输出频率。
DDS主要山相位累加器、波形存储器、数模转换器DAC以及低通滤波器LPF组成。
三、预计达到目标
掌握采用可编程逻辑器件实现数字电路与系统的方法,熟悉并掌握采用X订inx_ISE软 件开发可编程器件的过程,利用Xilinx公司的Spartan-3E FPGA芯片设计一个函数信号发 生器°能输出止弦波、矩形波、三角波、锯齿波等。输出信号的频率、幅度等均可调°
四、关键理论和技术
1.
FPGA是在PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。它是作为专用 集成电路(ASIC)领域中的一种半定制电路血出现的,既解决了定制电路的不足,又克服了原 有可编程器件门电路数有限的缺点。

基于FPGA的函数信号发生器—开题报告

基于FPGA的函数信号发生器—开题报告

基于FPGA的函数信号发生器一、课题来源、目的、意义函数信号发生器是广泛应用于系统检测调试、自动测量控制和教学实验等领域的多波形信号源,它可以产生正弦波、三角波、锯齿波、方波等多种波形,由于其输出的波形均可用数学函数描述,故命名为函数信号发生器。

函数信号发生器在工业生产、产品开发、科学研究等实验测试中起着十分重要的作用,除供通信、仪表和自动控制系统测试用外,还广泛用于生物医学等各个领域的测试【1】【2】。

随着电子技术的不断发展与进步,现代的电子测量、通信系统越来越需要有高精度和灵活的信号发生器进行测量和调试。

原有的信号发生器的性能己经难以满足现在的要求,现在不仅要求能产生标准的波形,而且要求函数发生器的输出波形质量好,输出频率范围宽,频率转换速度快并且频率转换时波形的相位需要连续。

为了适应现代电子技术的发展和市场要求,研究制作高性能的函数信号发生器则具有重大的意义。

虽然现在各大芯片制造商都推出了采用先进CMOS工艺生产的高性能专用直接数字频率合成(DDS)芯片,为电路设计者提供了多种选择,但专用的DDS芯片的局限性在于其价格昂贵,不易扩展。

目前,大规模可编程逻辑器件(PLD)得到越来越广泛的应用,其强大的功能也逐步从各种器件中显露出来。

如今的可编程器件在其自身功能愈加强大的同时,更使系统趋于小型化,高集成度和高可靠性。

与此同时,器件所具有的静态可重复编程和动态在系统重构的特性,使得系统设计周期大大缩短,降低了设计费用和设计风险,极大的提高了电子系统设计的灵活性和通用性。

其中现场可编程门阵列(FPGA)编程灵活!应用范围广,而且逻辑功能较复杂的小型系统可以在一片FPGA中实现。

由于FPGA实现DDS技术在一些方面存在着DDS芯片不能取代的优势,并且可以实现多个DDS芯片的功能,除了能满足用户对特殊功能的要求外,还可以在器件选择上有更大的选择余地,所以本文提出基于FPGA实现采用直接数字频率合成技术实现可编程函数信号发生器的实现方案,并给出了详细的设计方法。

电路实验报告 函数信号发生器

电路实验报告 函数信号发生器

电子电路综合设计实验实验一函数信号发生器的设计与调测班级: 2009211108**: ***学号: ********小班序号: 26课题名称函数信号发生器的设计与实现一、摘要函数信号发生器是一种为电子测量提供符合一定要求的电信号的仪器, 可产生不同波形、频率和幅度的信号。

在测试、研究或调整电子电路及设备时, 为测定电路的一些电参量,用信号发生器来模拟在实际工作中使用的待测设备的激励信号。

信号发生器可按照产生信号产生的波形特征来划分:音频信号源、函数信号源、功率函数发生器、脉冲信号源、任意函数发生器、任意波形发生器。

信号发生器用途广泛, 有多种测试和校准功能。

本实验设计的函数信号发生器可产生方波、三角波和正弦波这三种波形, 其输出频率可在1KHz至10KHz范围内连续可调。

三种波形的幅值及方波的占空比均在一定范围内可调。

报告将详细介绍设计思路和与所选用元件的参数的设计依据和方法。

二、关键词函数信号发生器迟滞电压比较器积分器差分放大电路波形变换三、设计任务要求:1、(1)基本要求:2、设计一个可输出正弦波、三角波和方波信号的函数信号发生器。

3、输出频率能在1-10KHZ范围内连续可调, 无明显是真;4、方波输出电压Uopp≥12V, 上升, 下降沿小于10us, 占空比可调范围30%-70%;5、三角波输出电压Uopp≥8V;6、正弦波输出电压Uopp≥1V;设计该电源的电源电路(不要求实际搭建), 用PROTEL软件绘制完整的电路原理图(SCH)。

(2)提高要求:1.三种输出波形的峰峰值Uopp均在1V-10V范围内连续可调。

2.三种输出波形的输出阻抗小于100Ω。

3.用PROTEL软件绘制完整的印制电路板图(PCB)。

(3)探究环节:1.显示出当前输入信号的种类、大小和频率(实验演示或详细设计方案)。

2.提供其他函数信号发生器的设计方案(通过仿真或实验结果加以证明)。

四、设计思路和总体结构框图(1)原理电路的选择及总体思路:根据本实验的要求, 用两大模块实现发生器的设计。

函数信号发生器开题报告

函数信号发生器开题报告

毕业论文(设计)开题报告
课题名称:虚拟仪器-函数信号发生器毕业设计起止时间:年月日~月日(共周)
学生姓名:学号:
专业:班级:
指导教师:
报告日期:
说明:
1.本报告前4项内容由承担毕业论文(设计)课题任务的学生独立撰写;
2.本报告必须在第八学期开学两周内交指导教师审阅并提出修改意见;
3.学生须在小组内进行报告,并进行讨论;
4.本报告作为指导教师、毕业论文(设计)指导小组审查学生能否承担该毕业设计(论文)
课题和是否按时完成进度的检查依据,并接受学校的抽查。

基于ARM的函数信号发生器的设计的开题报告

基于ARM的函数信号发生器的设计的开题报告

基于ARM的函数信号发生器的设计的开题报告一、选题背景信号发生器是电子仪器中最基本的仪器之一,用于产生各种信号,供其他电子仪器使用。

一般的信号发生器的输出频率范围较窄,同时价格较高,不适合一些需要频繁更换工作频率的场合。

因此,本课题旨在设计一种基于ARM的函数信号发生器,能够通过编程产生各种不同的函数信号,并且输出频率范围更加灵活、价格更加实惠。

二、项目目标1. 设计一个基于ARM的函数信号发生器,能够产生多种不同的函数信号,包括正弦、方波、三角波等;2. 实现信号发生器的输出频率可调,并能够进行频率计数;3. 设计一套完善的控制系统,能够方便地控制信号发生器的操作;4. 开发一款用户界面友好、易于操作的控制软件。

三、项目计划本项目分为以下几个阶段:1. 方案设计:确定输入输出接口、主控芯片、信号类型等设计方案,编写开题报告并提交。

2. 硬件设计:完成硬件部分的设计,包括原理图、PCB设计、部件选型等。

3. 软件设计:设计用户界面友好、易于操作的控制软件,并完成控制系统的设计。

4. 合并测试:进行硬件与软件的整合测试,保证信号发生器的性能。

5. 原型制作:根据测试结果制作功能完善、性能稳定的信号发生器原型,并进行测试和优化。

6. 文档编写:编写完整的用户手册和技术文档。

计划完成时间为三个月,其中方案设计阶段为两周,硬件设计阶段为五周,软件设计阶段为四周,合并测试阶段为一周,原型制作阶段为三周,文档编写阶段为两周。

四、技术路线本项目采用ARM作为主控芯片,基于C语言开发控制程序,使用PWM输出控制信号的频率和幅度。

具体技术路线如下:1. 硬件部分:(1) 主控芯片选用力求性价比高、性能稳定的STM32系列芯片,同时配合一块合适的示波器芯片,来完成信号输出工作。

(2) 信号发生器的各种输出信号,以及控制信号和用户操作指令数据交换通过标准接口进行传输。

(3) 软件部分实现对各种输出信号进行精确设定的相关控制逻辑。

数字函数信号发生器的设计与实现的开题报告

数字函数信号发生器的设计与实现的开题报告

数字函数信号发生器的设计与实现的开题报告题目:数字函数信号发生器的设计与实现研究内容:数字函数信号发生器是一种可以产生各种形式的信号的仪器,如正弦波、方波、三角波等。

在电子实验、仪器维修和教学中,常常需要产生这样的信号。

本项目旨在设计一种数字函数信号发生器,使用FPGA实现,能够产生多种不同类型的信号。

具体研究内容包括:1.针对不同类型的信号,研究相应的生成算法。

2.设计基于FPGA的信号发生器架构,包括时钟模块、采样模块、数字信号处理模块等。

3.实现功能模块,包括正弦波、方波、三角波、PWM等信号的产生。

4.进行仿真和基于FPGA硬件平台的实验,在不同频率、不同幅值、不同波形下测试信号发生器的性能。

研究意义:数字函数信号发生器是电子学科的基础仪器之一,在工业上有着广泛的应用。

本课题的研究内容和方法具有一定的创新性和实用性,可以扩展数字电路设计和电子产品的知识面,提高学生的综合素质和动手实践能力。

同时,数字函数信号发生器的设计与实现也对工业界有着一定的参考价值。

研究方法:1. 文献调研法:对数字函数信号发生器的相关文献进行归纳整理,然后进行分析比较,确定设计方案。

2. 系统设计法:以上文献调研为基础,根据不同的功能需要,分析分块的原则,实现设计方案。

3. 软硬件协同设计方法:采用VHDL语言进行设计与仿真,并根据实验要求搭建FPGA硬件平台进行系统验证。

计划进度:第一阶段:系统方案和算法设计(2周)1.1 研究数字函数信号发生器的相关文献,完成方案设计和算法设计。

1.2 着手进行基于FPGA的数字函数信号发生器系统硬件结构设计。

第二阶段:信号发生器模块实现(4周)2.1 完成正弦波、方波、三角波等基本信号的实现模块。

2.2 完成基于PWM调制的方波、三角波的实现模块。

第三阶段:调试和测试(2周)3.1 将设计的数字函数信号发生器实现到FPGA硬件平台上进行测试。

3.2 对波形频率、幅值等进行调试和测试。

最新毕业设计(论文)-函数信号发生器设计

最新毕业设计(论文)-函数信号发生器设计

题目:函数信号发生器设计(2)系(部):信息科学与技术系专业班:通信工程0302班姓名:学号:20031181064指导教师:2007 年5 月25 日毕业设计(论文)开题报告函数信号发生器设计(2)The Design of Function Signal Generating Device (2)摘要函数信号发生器是指能自动产生方波、正弦波、三角波等电压波形的仪器, 它在实验及科学研究中得到了广泛应用。

本课题的任务是设计一个函数信号发生器,使其能自动产生方波、三角波以及正弦波。

本论文主要针对函数信号发生器进行论述,它基本可分为四部分,第一部分主要是对设计中应用到的一些模电数电方面的知识如电压比较器,积分器,差分放大器等进行简单介绍;第二部分的主要内容是提出了以下两种设计方案:第一种方案是基于单片集成芯片MAX038函数信号发生器的设计,第二种方案是基于晶体管、运放IC等函数信号发生器的设计,并且对这两种方案的优点和缺点进行分析比较,最后确定采用第二种方案来完成函数信号发生器的设计。

第三部分就具体介绍了我的设计方案—基于晶体管、运放IC等函数信号发生器的设计,它是本文的核心,该部分讲述了性能指标、原理框图、以及如何通过参数计算来确定设计电路等几个方面的内容;文章第四部分就主要介绍了调试安装的方法,并对设计中出现的故障进行了简要分析。

关键字:函数信号发生器; 差分放大器; 积分器AbstractThe function signal generating device is refers can automatically have voltage waveform the and so on the square-wave, sine wave, triangle wave instrument, it obtained the widespread application in the experiment and the scientific research. This topic duty designs a function signal generating device, enables its automatically to have the square-wave, the triangle wave as well as the sine wave. The present paper mainly aims at the function signal generating device to carry on the elaboration, it is basic may divide into four parts, the first part mainly is to some mold electricity number electricity aspects knowledge like voltage comparators which designs applies, the integrator, the differential amplifier and so on carries on the simple introduction; The second part of main content was proposed following two kind of design proposal: The first kind of plan is based on the monolithic integrated chip MAX038 function signal generating device design, the second kind of plan is based on the transistor, transports puts function signal generating device the and so on the IC design, and carries on the analysis comparison to these two kind of plans merit and the shortcoming, finally determined uses the second kind of plan to complete the function signal generating device the design. The third part specifically introduced my design proposal - based on the transistor, transports puts function signal generating device the and so on the IC design, it is this article core, did this part narrate the performance index, the functional block diagram, how as well as calculates through the parameter determines the design electric circuit and so on several aspects the content; The article fourth part mainly introduced the debugging installment method, and to designed the breakdown which appeared to carry on the brief analysis.Key words: Function signal generating device Differential amplifier Integrator目录摘要 (I)Abstract (II)绪论 (1)1 函数信号发生器相关知识与基本原理 (2)1.1 电压比较器 (2)1.1.1 简单电压比较器 (2)1.1.2 滞回比较器 (3)1.1.3 窗口比较器 (3)1.2 方波发生器 (4)1.3 积分器 (5)1.4 差分放大器 (6)1.4.1 传输特性 (6)1.4.2 共模特性 (7)2 函数发生器设计方案 (9)2.1 基于单片集成芯片MAX038函数信号发生器的设计 (9)2.2 基于晶体管、运放IC等函数信号发生器的设计 (10)2.2.1 方波→三角波产生电路 (10)2.2.2 三角波→正弦波变换电路 (11)3 基于晶体管与运放IC函数信号发生器设计 (14)3.1 性能指标 (14)3.2 参数计算 (14)3.3 原理框图 (15)3.4 设计电路与工作原理 (15)3.4.1 设计所用元器件 (15)3.4.2 电路及工作原理 (16)3.5 相关芯片介绍 (17)3.5.1 uA747双电源通用型双运放 (17)3.5.2 LM78XX与LM79XX (18)4 安装与调试 (20)4.1 设计与调试中使用的主要仪器和设备 (20)4.2 设计的装调 (20)4.2.1 方波→三角波发生器的装调 (20)4.2.2 三角波→正弦波变换电路的装调 (20)4.2.3 自制电源的装调 (21)4.3 故障分析 (22)4.3.1 方波—三角波发生器故障 (22)4.3.2 三角波—正弦波发生器故障 (22)4.3.3 电源部分故障 (22)结论 (23)致谢 (25)参考文献 (26)绪论信号发生器又称信号源或振荡器,各种波形曲线均可以用三角函数方程式来表示。

开题报告,单片机实现一个简单的信号发生器

开题报告,单片机实现一个简单的信号发生器

开题报告,单片机实现一个简单的信号发生器第一篇:开题报告, 单片机实现一个简单的信号发生器单片机实现一个简单的信号发生器一、课题来源及研究的目的和意义1.1课题来源教师虚拟。

1.2研究的目的及意义本课题是基于单片机的信号发生器的设计。

研究本课题可以熟悉c 语言,MATLAB及相关电子器件的功能和用法。

通过对单片机硬件、软件的设计,及硬件与软件的联调后可以进一步熟悉相关的知识,提高利用所学知识解决实际问题的能力。

二、课题所涉及的问题在国内(外)研究现状分析单片微型计算机,简称单片机,是微型计算机的一个分支。

采用超大规模技术把具有数据处理能力(如算术运算、逻辑运算、数据传送、中断处理)的微处理器,随机存取数据存储器,只读程序存储器,输入输出电路等电路集成到一块单块芯片上,构成一个体积小,然而功能较完善的计算机系统。

这些电路能在软件的控制下准确、迅速、高效地完成程序设计者事先规定的任务。

单片机诞生20世纪70年代。

当时微电子技术正处于发展阶段,集成电路也属于中规模发展时期,各种新材料新工艺尚未成熟,单片机仍处在初级的发展阶段,元件集成规模还比较小,功能比较简单。

1976年INTEL公司推出了MCS-48单片机,这个时期的单片机才是真正的8位单片微型计算机,并推向市场。

到了80年代初,单片机已发展到了高性能阶段,像INTEL公司的MCS-51系列。

九十年代以后,单片机获得了飞速的发展,世界各大半导体公司相继开发了功能更为强大的单片机。

美国Microchip公司发布了一种完全不兼容MCS-51的新一代PIC系列单片机,引起了业界的广泛关注,特别它的产品只有33条精简指令集吸引了不少用户。

1990年美国INTEL公司推出了80960超级32位单片机引起了计算机界的轰动,产品相继投放市场,成为单片机发展史上又一个重要的里程碑。

我国的单片机应用始于80年代,虽然发展迅速,但相对于世界市场我国的占有率还很低。

到目前为止,由于我国的微电子技术和制造工艺都比较落后及国外单片机的竞争等原因,我国还没有设计生产出自己的单片机。

基于单片机的函数信号发生器开题报告 长江大学版

基于单片机的函数信号发生器开题报告  长江大学版

研究方案的设计与选择
方案一:采用单片函数发生器(如8038),8038可同时产生正弦 波、方波等,而且方法简单易行,用D/A转换器的输出来改变调制 电压,也可以实现数控调整频率,但产生信号的频率稳定度不高。 方案二:采用锁相式频率合成器,利用锁相环,将压控振荡器( VCO)的输出频率锁定在所需频率上,该方案性能良好,但难以达 到输出频率覆盖系数的要求,且电路复杂。 方案三:采用单片机编程的方法来实现。该方法可以通过编程的 方法来控制信号波形的频率和幅度,而且在硬件电路不变的情况下 ,通过改变程序来实现频率的变换。此外,由于通过编程方法产生 的是数字信号,所以信号的精度可以做的很高。
单片机内部数据只有0、1之分,所产生的信号也都是离散信号。为 了能够让单片机输出所需的数字信号,我们采用对信号采样、量化 的方法来实现由单片机产生所需信号。在本设计中,对信号的四分 之一周期采样19个幅度值,通过反复查表来输出幅度值,而整个信 号是通过正查表和逆向查表来实现的。采样的点越密,信号失真度 也就越小。两次采样点的输出时间间隔是由定时、计数器来控制的 ,因此,通过控制不同的计数初值就可以控制整个信号的频率。计 数时间=信号周期/72。计数次数=计数时间/机器周期。对应的,计 数初值=65536-计数次数。单片机只能产生离散频率的信号,所以 所得到的信号频率不是连续的,而是离散的频率点。正弦波和三角 波的频率控制方法都与上述方法相同,而方波的频率控制是半周期 计数,经过半周期只需改变输出为最大或最小电平即可。本设计为 低频信号发生器,在频率只有几十赫兹的时候计数次数将很大,因 此计数器的工作方式选为工作方式1,每次计数器溢出时需要重新 装入计数初值。
基于单片机的多功能函 数信号发生器设计
学生:*** 指导老师: *** 学 院:电子信息学院 专 业:电气工程及其自动化

函数发生器毕业设计开题报告

函数发生器毕业设计开题报告
参考资料
【1】杨恢先,黄辉先.单片机原理及应用[M].人民邮电出版社,2006.
【2】曾一江.单片机微机原理与接口技术[M].科学出版社,2006.
【3】康华光,陈大钦.电子技术基础[M].高等教育出版社,1998.
【4】穆 兰.单片微型机计算机原理及接口技术[M].北京机械工业出版社
【5】张毅刚,等.MCS-51单片机应用设计[M].哈尔滨工业大学出版社
当今是科学技术及仪器设备高度智能化飞速发展的信息社会,电子技术的进步,给人们带来了根本性的转变,在现代电子领域中,单片机的应用正在不断的走向深入,这必将带来一场仪器设备高度智能化的全面革命。随着集成电路的迅速发展,用集成电路可很方便地构成各种信号波形发生器,而用集成电路实现的信号波形发生器与其它信号波形发生器相比,其波形质量、幅度和频率稳定性等性能指标,都有了很大的提高,特别是单片机应用技术的不断成熟,导致传统控制与检测技术的快速革新。单片机构成的仪器具有高可靠性、高性能价格比,在智能仪表系统和办公自动化等诸多领域中得以极为广泛的应用,特别是在电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域处处可以看见它的应用。
【6】蒋智勇,等.单片微型计算机原理及应用[M].沈阳辽宁科学技术出版社
【7】何立民.单片及应用文集(1)[M].北京航天航空大学出版社李华.MCS-51系列单片机实用接口技术[M].
【8】何立民.单片机应用技术选编[M].
【9】阎石.模拟电子技术基础[M].
【10】张洪润,易涛.单片机应用技术教程[M].清华大学出版社.
毕业设计(论文)开题报告
学生签名:
题目
基于51单片机的函数发生器设计
本课题的
目的意义
波形发生器亦称函数发生器,作为实验用信号源,是现今各种电子电路实验设计应用中必不可少的仪器设备之一。目前,市场上常见的波形发生器多为纯硬件的搭接而成,且波形种类有限,多为锯齿、正弦、方波、三角等波形。

论文 基于单片机的多功能函数信号发生器设计开题报告 长江大学

论文 基于单片机的多功能函数信号发生器设计开题报告   长江大学

基于单片机的多功能函数信号发生器设计学生:xxx,电子信息学院指导教师:xxx,电子信息学院一、课题来源为了实现输出多种波形的功能,基于单片机的控制及各电子器件与单片机间的联合,编写相应的软件,设计一种信号发生器。

以适应各种理论研究。

二、研究的目的和意义函数发生器亦称信号发生器,主要作为实验用信号源,是现今各种电子电路实验设计应用中必不可少的仪器设备之一。

目前,市场上常见的波形发生器多为纯硬件的搭接而成,波形种类多为锯齿、正弦、方波、三角等波形。

用分立元件组成的函数发生器,通常是单函数发生器且频率不高,其工作不很稳定,不易调试;用集成芯片的函数发生器,可达到较高的频率和产生多种波形信号,但电路较为复杂且不易调试。

利用单片集成芯片的函数发生器,能产生多种波形,达到较高的频率,且易于调试;利用专用直接数字合成DDS 芯片的函数发生器,能产生任意波形并达到很高的频率,但成本较高。

函数发生器作为一种常见的应用电子仪器设备,传统的一般可以完全由硬件电路搭接而成,如采用555振荡电路发生正弦波、三角波和方波的电路便是可取的路径之一,不用依靠单片机。

但是这种电路存在波形质量差,控制难,可调范围小,电路复杂和体积大等缺点。

在科学研究和生产实践中,如工业过程控制,生物医学,地震模拟机械振动等领域常常要用到低频信号源。

而由硬件电路构成的低频信号其性能难以令人满意,而且由于低频信号源所需的RC要很大。

大电阻,大电容在制作上有困难,参数的精度亦难以保证。

体积大,漏电,损耗显著更是其致命的弱点。

一旦工作需求功能有增加,则电路复杂程度会大大增加。

利用单片机采用程序设计方法来产生低频信号,其频率底线很低。

具有线路相对简单,结构紧凑,价格低廉,频率稳定度高,抗干扰能力强,用途广泛等优点,并且能够对波形进行细微调整,改良波形,使其满足系统的要求。

只要对电路稍加修改,调整程序,即可完成功能升级。

三、参考文献及资料名称【1】徐爱钧,智能化测量控制仪表原理与设计,北京航空航天大学出版社,2004【2】徐爱钧,单片机原理实用教程-基于Proteus虚拟仿真(第2版),电子工业出版社,2011【3】周润景等,基于PROTEUS的电路的及单片机系统设计与仿真,北京航空航天大学出版社,2006【4】余永权等,单片机在控制系统中的应用,电子工业出版社,2006【5】周灵彬,PROTEUS的单片机教学与应用仿真,单片机与嵌入式系统应用,2008【6】沙占友,单片机外围电路设计,电子工业出版社,2005【7】沈红卫,基于单片机的智能系统设计与实现,电子工业大学出版社,2005【8】朱善君等,单片机接口技术与应用,清华大学出版社,2005【9】张靖武等,单片机系统的PROTEUS设计与仿真,电子工业大学,2007【10】宁成军等,基于Proteus和Keil接口的单片机外围硬件电路仿真,现代电子技术,2006【11】孙德文,微型计算机技术,高等教育出版社,2005(7)【12】汪文等,单片机原理及应用,华中科技大出版社,2007四、国内外发展趋势及研究主攻方向我国的单片机应用始于80年代,虽然发展迅速,但相对于世界市场我国的占有率还很低。

函数信号发生器实验报告

函数信号发生器实验报告

函数信号发生器实验报告实验题目:函数信号发生器的设计与调测班级:电信1017班姓名:钟林耀郭桂洪学号:07101754 071017152012年6月18日函数信号发生器的设计与调测摘要使用运放组成的积分电路产生一定频率和周期的三角波、方波(提高要求中通过改变积分电路两段的积分常数从而产生锯齿波电压,同时改变方波的占空比),将三角波信号接入下级差动放大电路(电流镜提供工作电流),利用三极管线性区及饱和区的放大特性产生正弦波电压并输出。

关键词三角波-正弦波运放积分电路差动放大电路镜像电流源实验内容1、基本要求:a)设计制作一个可输出正弦波、三角波和方波信号的函数信号发生器。

1)输出频率能在1-10KHz范围内连续可调,无明显失真;2)方波输出电压Uopp=12V,上升、下降沿小于10us,占空比可调范围30%-70%;3)三角波Uopp=8V;4)正弦波Uopp>1V。

b)设计该电路的电源电路(不要求实际搭建),用PROTEL软件绘制完整的电路原理图(SCH)2、提高要求:a)三种输出波形的峰峰值Uopp均可在1V-10V范围内连续可调。

b)三种输出波形的输出阻抗小于100欧。

c)用PROTEL软件绘制完整的印制电路板图(PCB)。

实验原理1,方波三角波产生电路如图所示为方波-三角波产生电路,由于采用了运放组成的积分电路,可得到比较理想的方波和三角波。

该电路振荡频率和幅度便于调节,输出方波幅度的大小由稳压管VDW1,VDW2的稳压值决定。

改变R1和Rf的比值可调节Uo2m的大小。

电路与原件的确定:①根据所需振荡频率的高低和对方波前后沿陡度的要求,选择电压转换速率合适的运放。

②根据所需输出方波幅度的要求,选择稳压值合适的稳压管的型号和限流电阻Ro的大小。

③根据输出三角波的幅度要求,确定R1与Rf的大小R1=Uo2m*Rf/(Uz+Ud)2,电流镜偏震差动放大器的设计差动放大器具有很高的共模抑制比,被广泛地应用于集成电路中,常作为输入级或中间放大级。

数控智能函数信号发生器开题报告1

数控智能函数信号发生器开题报告1

附页:一、研究背景随着电子测量及其他部门对各类信号发生器的广泛需求及电子技术的迅速发展,促使信号发生器种类增多,性能提高。

尤其随着70年代微处理器的出现,更促使信号发生器向着自动化、智能化方向发展。

现在,信号发生器带有微处理器,因而具备了自校、自检、自动故障诊断和自动波形形成和修正等功能,可以和控制计算机及其他测量仪器一起方便的构成自动测试系统。

当前信号发生器总的趋势是向着宽频率覆盖、低功耗、高频率、精度、多功能、自动化和智能化方向发展。

在科学研究、工程教育及生产实践中,如工业过程控制、教学实验、机械振动试验、动态分析、材料试验、生物医学等领域,常常需要用到低频信号发生器。

而在我们日常生活中,以及一些科学研究中,锯齿波和正弦波、矩形波信号是常用的基本测试信号。

譬如在示波器、电视机等仪器中,为了使电子按照一定规律运动,以利用荧光屏显示图像,常用到锯齿波产生器作为时基电路。

信号发生器作为一种通用的电子仪器,在生产、科研、测控、通讯等领域都得到了广泛的应用。

但市面上能看到的仪器在频率精度、带宽、波形种类及程控方面都已不能满足许多方面实际应用的需求。

加之各类功能的半导体集成芯片的快速生产,都使我们研制一种低功耗、宽频带,能产生多种波形并具有程控等低频的信号发生器成为可能。

直接数字频率合成技术(DDS)是20世纪末迅速发展起来的一种新的频率合成技术,它将先进的数字处理技术与方法引入信号合成领域,表现出优越的性能和突出的特点。

由于DDS 器件采用高速数字电路和高速D/A转换技术,具有频率转换速度快、频率分辨率高、相位噪声低、频率稳定度高等优点,此外,DDS器件很容易实现对信号的全数字式调制。

因此,直接数字频率合成器以其独有的优势成为当今电子设备和系统频率源的首选器件。

本文介绍了ADI公司出品的AD9850芯片,以单片机AT89S52为控制核心完成信号发生器的可行性设计方案。

二、主要内容系统将信号发生器分四个模块进行设计:(1)信号产生部分:利用AD9850产生正旋信号;(2) 外围电路:实现外围的信号发生芯片和单片机之间的接口技术;(3) 单片机程序:编写单片控制外围信号发生芯片的接口程序,实现单片机的函数信号输出功能,本信号发生器的功能如下:由单片机控制DDS 芯片实现对输出信号频率/相位的调节,且可实现多种频率设定功能,具有跳频、点频、扫频工作模式;(4) 频率显示模块: 通过LED 显示产生波形的频率。

函数信号发生器的设计【开题报告】

函数信号发生器的设计【开题报告】

开题报告电气工程及自动化函数信号发生器的设计一、课题研究意义及现状信号发生器是一种最悠久的测量仪器,早在20年代电子设备刚出现时它就产生了。

随着通信和雷达技术的发展,40年代出现了主要用于测试各种接收机的标准信号发生器,使信号发生器从定性分析的测试仪器发展成定量分析的测量仪器。

同时还出现了可用来测量脉冲电路或用作脉冲调制器的脉冲信号发生器。

由于早期的信号发生器机械结构比较复杂,功率比较大,电路比较简单,因此发展速度比较慢。

直到1964年才出现第一台全晶体管的信号发生器。

自从70年代微处理器出现以后,利用微处理器、模数转换器和数模转换器,硬件和软件使信号发生器的功能扩大,产生比较复杂的波形。

这时期的信号发生器多以软件为主,实质是采用微处理器对DAC的程序控制,就可以得到各种简单的波形。

随着现代电子、计算机和信号处理等技术的发展,极大促进了数字化技术在电子测量仪器中的应用,使原有的模拟信号处理逐步被数字信号处理所代替,从而扩充了仪器信号的处理能力,提高了信号测量的准确度、精度和变换速度,克服了模拟信号处理的诸多缺点,数字信号发生器随之发展起来。

信号发生器用于产生被测电路所需特定参数的电测试信号。

在测试、研究或调整电子电路及设备时,为测定电路的一些电参量,如测量频率响应、噪声系数,为电压表定度等,都要求提供符合所定技术条件的电信号,以模拟在实际工作中使用的待测设备的激励信号。

当要求进行系统的稳态特性测量时,需使用振幅、频率已知的正弦信号源。

当测试系统的瞬态特性时,又需使用前沿时间、脉冲宽度和重复周期已知的矩形脉冲源。

并且要求信号源输出信号的参数,如频率、波形、输出电压或功率等,能在一定范围内进行精确调整,有很好的稳定性,有输出指示。

信号源可以根据输出波形的不同,划分为正弦波信号发生器、矩形脉冲信号发生器、函数信号发生器和随机信号发生器等四大类。

正弦信号是使用最广泛的测试信号。

这是因为产生正弦信号的方法比较简单,而且用正弦信号测量比较方便。

多功能函数信号发生器-开题报告

多功能函数信号发生器-开题报告

一、研究目的与意义研究目的与意义:函数信号发生器是信号源的一种,主要给被测电路提供需要的已知信号,然后同其他仪表测量感兴趣的参数。

它不是测量电路,而是根据使用者的要求作为激励源,仿真各种测量信号,提供给被测电路,以满足测量或各种实际需要。

目前我国在研究信号发生器方面有可喜的成就。

但总的来说,我国信号发生器没有形成真正的产业。

中国函数发生器产业发展中出现的问题中,如产业结果不合理、产业集中于劳动力密集型产品;技术密集型产品明显落后于发达工业国家;生产要素决定性作用正在削弱;产业能量消耗大、产出率低、环境污染严重、对自然资源破坏力大;企业总体规模偏小、技术创新能力薄弱、管理水平落后等。

就目前国内的成熟产品来看,核心部分存在成本高、控制不方便、创新能力小等缺点,因此和国外相比技术存在比较大的差距,所以开发出高性价比的函数发生器,从而与国外技术有所比拼,并且打破国外技术垄断,对目前我国发展中的电子业来说,是具有刻不容缓的作用的。

随着电子技术的发展,电路测试对信号发生器的要求已经越来越高。

除生成标准波形如正弦波、方波、三角波、脉冲波之外,信号发生器还要用于模拟输出一些不规则信号,以生成“实际环境”信号,包括在被测设备离开实验室或车间时可能遇到的毛刺、漂移、噪声和其它异常事件等。

所有这些都要求信号发生器输出信号的参数如频率、波形、输出电压或功率等,能够在一定范围内进行更加精确的调整,并拥有更好的稳定性及输出指示。

目前市场上常见的信号发生器,按照价格与适用性大致可以分成高、中、低端,但由于品牌、型号冗繁,使用者在采购过程中面临很大难题。

低端产品:DDS技术提高产品适用性通常价位在5,000元上下的信号发生器都是定位在普及水平的低端产品,这类产品由于性能指标的限制,多应用于教育和培训,常见如下图1-1所示:普源精仪的DG1000系列、石家庄无线电四厂的TF G2000系列、南京盛普的SPF05/SPF10和台湾固纬的SFG-830。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

89S52 单片机
独立式键盘 LCD 显示
波形选择 相位的调节 频率调节
AD9850
放大电路
波形输出
图 1 系统结构图
主要模块简介: 由于单片机产生的是数字信号,要想得到所需要的波形,就要把数字信号转换成模拟信号,
所以选用价格低廉、接口简单、转换控制容易并具有 8 位分辨率的数模转换器 AD9850。数字信号 可以通过数/模转换器转换成模拟信号,因此可通过产生数字信号再转换成模拟信号的方法来获得
16 位的单片机,对宏单片机和 DSP 等高档的应用还处于初始阶段。
单片机的发展趋势为:低功耗与高性能、低电压、低噪声与高可靠性、采用 CMOS 技术、外
围电路内装、串行扩展技术等。同时,单片机的快速发展也带动着基于单片机的信号发生器的快
速发展。
2、选题研究的方法与主要内容 选题研究的方法:
1、 文献研究法:查阅参考相关文献书籍。 2、 观察法:观察同类型函数信号发生器的工作原理。 3、 调查法:询问相关技术人员。
高,其工作不很稳定,不易调试;用集成芯片的函数发生器,可达到较高的频率和产生多种波形信
号,但电路较为复杂且不易调试。利用单片集成芯片的函数发生器,能产生多种波形,达到较高的
频率,且易于调试;利用专用直接数字合成 DDS 芯片的函数发生器,能产生任意波形并达到很高的
频率,但成本较高。
函数发生器作为一种常见的应用电子仪器设备,传统的一般可以完全由硬件电路搭接而成,
对电路稍加修改,调整程序,即可完成功能升级。
我国的单片机应用始于 80 年代,虽然发展迅速,但相对于世界市场我国的占有率还很低。到
目前为止,由于我国的微电子技术和制造工艺都比较落后及国外单片机的竞争等原因,我国还没
有设计生产出自己的单片机。国内的单片机目前注重的还只是低中档的应用,普遍采用的是 8 或
大电容在制作上有困难,参数的精度亦难以保证。体积大,漏电,损耗显著更是其致命的弱点。
一旦工作需求功能有增加,则电路复杂程度会大大增加。利用单片机采用程序设计方法来产生低
频信号,其频率底线很低。具有线路相对简单,结构紧凑,价格低廉,频率稳定度高,抗干扰能
力强,用途广泛等优点,并且能够对波形进行细微调整,改良波形,使其满足系统的要求。只要
5.指导教师意见:
该函数信号发生器设计符合专业培养要求,具有一定的实际运用意义,该生对该题目分析清 晰,时间分配合理,同意该生开题。
指导教师签名:
6、教学单位意见
教学单位负责人签名(公章): 20 年 月 日
Hale Waihona Puke 毕业设计开题报告学生姓名
学生学号
毕业设计 题目
函数信号发生器
1、 选题背景(含国内外相关研究综述及评价)与意义
函数发生器亦称信号发生器,主要作为实验用信号源,是现今各种电子电实验设计应用中必
不可少的仪器设备之一。目前,市场上常见的波形发生器多为纯硬件的搭接而成,波形种类多为
锯齿、正弦、方波、三角等波形。用分立元件组成的函数发生器,通常是单函数发生器且频率不
所需要的波形并使用独立式键盘进行各种功能的转换和信号幅度的调节。当数字信号经过接口电 路到达转换电路,将其转换成模拟信号也就是所需要的输出波形。从经济的角度出发,显示器件 则采用 LCD 数码管显示器用来显示波形信号的频率,使得整个系统更加合理。
用于控制波形的幅度和频率。
2、软件部分设计
软件程序的功能就是通过程序使整个系统按照人们的设想要求工作起来,本系统中最主要的 部分就是将 AD9850 的 40 位控制字通过单片机写入到 AD9850 芯片内。要根据写入控制字方式的不 同严格按照 AD9850 的时序图来编写控制字写入子程序。
3、关键性问题
(1)系统整体方案的比较和各模块方案的比较; (2)掌握各芯片的工作原理; (3)各模块及电路设计; (4)硬件材料采购和制作。
3、研究条件和可能存在的问题 研究条件:
微机一台、仿真软件(Protues ,Kei 等)、电子元器件(单片机,运放等)
可能存在的问题:
1、会存在一定的误差值。 2、注重的还只是低中档的应用,采用的是 8 或 16 位的单片机,对单片机高档的应用还处于初始 阶段。
主要内容:
函数信号发生器是一种能产生模拟电压波形的设备,这些波形能够校验电子电路的设计。函 数信号发生器广泛用于电子电路、自动控制系统和教学实验等领域。
1、根据设计内容首先选择单片机、信号发生器等主要器件。然后进行单片机系统、信号发生 电路系统、频率显示电路以及放大电路的设计。最后编写单片机控制外围信号发生芯片的接口程 序实现单片机的函数信号输出功能,总体的设计结构图如图 1 所示。
如采用 555 振荡电路发生正弦波、三角波和方波的电路便是可取的路径之一,不用依靠单片机。
但是这种电路存在波形质量差,控制难,可调范围小,电路复杂和体积大等缺点。在科学研究和
生产实践中,如工业过程控制,生物医学,地震模拟机械振动等领域常常要用到低频信号源。而
由硬件电路构成的低频信号其性能难以令人满意,而且由于低频信号源所需的 RC 要很大。大电阻,
相关文档
最新文档