三年级下册数学公式定理定义大全
数学公式定律大全
数学公式定律大全1、定理:加法交换律两边加上相同的数都会得到同样的结果,即a+b=b+a2、定理:乘法交换律两边乘以相同的数也会得到同样的结果,即a*b=b*a3、定理:乘法分配律乘法可以分配给加法,即a*(b+c)=a*b+a*c4、定理:乘法结合律加法可以结合乘法,即a*(b*c)=(a*b)*c5、定理:乘方律数的平方等于这个数乘以它本身,即a^2=a*a6、定理:乘方公式三个数的乘方相加等于这三个数乘以它们的积,即a^3+b^3+c^3=(a*b*c)^37、定理:算术和的计算公式一个有n项的等差数列和可表示为 Sn = n * (a1 + an) / 28、定理:算术积的计算公式一个有n项的等差数列的积可表示为 Pn = (an - a1) * (a2 - a1) * (a3 - a1) *…* (an - an - 1)9、定理:立方和公式一个有n项的立方数列和可表示为 Sn = n * (a1^3 + an^3) / 210、定理:立方积公式一个有n项的立方数列的积可表示为 Pn = (an - a1)^3 * (a2 - a1)^3 * (a3 - a1)^3 *…* (an - an - 1)^311、定理:平方差公式设a1,a2,a3,…,an为n个数,则它们的平方差为:A2 = (a1 -a2)^2 + (a2 - a3)^2 + …+ (an - an - 1)^212、定理:立方差公式设a1,a2,a3,…,an为n个数,则它们的立方差为:A2 = (a1 -a2)^3 + (a2 - a3)^3 + … + (an - an - 1)^313、定理:二次根式定理一元二次方程的一般解为:ax^2 + bx + c = 0,其中a≠0。
数学定义定理公式大全
数学定义、定理、公式大全1. 数学定义1.1 数集•有限集:指元素个数有限的集合,记作A={a₁,a₂,…,an}。
•无限集:指元素个数无限的集合,记作A={a₁,a₂,…,an,…}。
•空集:不含任何元素的集合,记作∅或{}。
•子集:若集合A中的每个元素都是集合B中的元素,则称A为B的子集,记作A⊆B。
1.2 常用数系•自然数:正整数,记作N={1,2,3,4,…}。
•整数:正整数、负整数和0的集合,记作Z={…, -2,-1,0,1,2,…}。
•有理数:可以写成两个整数的比的数,记作Q。
•实数:包含有理数和无理数的数,记作R。
1.3 函数•函数:指定了集合A到集合B的一种关联规则,记作f:A→B。
•定义域:函数f中所有可能输入的集合,记作D(f)或Dom(f)。
•值域:函数f中所有可能输出的集合,记作R(f)或Ran(f)。
•逆函数:对于函数f:A→B,如果任意b∈B,都有唯一的a∈A,使得f(a)=b,则函数g:B→A称为f的逆函数,记作g=f⁻¹。
2. 数学定理2.1 代数定理•因式分解定理:每个整数都可以唯一地表示为素数的乘积。
•二次根定理:若在实数域上,对于方程ax²+bx+c=0,当b²-4ac>0时,方程有两个不相等的实根;当b²-4ac=0时,方程有两个相等的实根;当b²-4ac<0时,方程没有实根。
2.2 几何定理•勾股定理:对于直角三角形,斜边的平方等于两直角边的平方和。
•正弦定理:在任意三角形ABC中,边长a、b、c与对应的角A、B、C之间存在以下关系:a/sinA=b/sinB=c/sinC。
•余弦定理:在任意三角形ABC中,边长a、b、c与对应的角A、B、C之间存在以下关系:c²=a²+b²-2abcosC。
2.3 微积分定理•基本定理:若函数f在区间[a,b]上连续,并且F是f的任意一个原函数,则∫[a,b]f(x)dx=F(b)-F(a)。
最新整理版小学三年级上下册数学公式(全)
小学三年级上数学公式、定理大全一、测量1.长度单位有毫米、厘米、分米、米、千米(公里)。
1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米1米=10分米=100厘米=1000毫米2.重量单位有:克、千克、吨。
1吨=1000千克 1千克= 1000克3、面积单位:1平方千米=100公顷 1公顷=10000平方米1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米4、时间单位:年、月、日时、分、秒1年=4季 1年=12个月 1季度=3个月二月(平年二月28天闰年二月29天)3.周长:封闭图形一周的长度,叫做周长。
长方形的周长 =(长+宽)×2 长方形的面积= 长×宽正方形的周长 = 边长×4 正方形的面积=边长×边长第四单元有余数除法1、被除数÷除数=商……除数2、被除数=商×除数+余数3、余数一定要比除数小。
第五单元时、分、秒1、时间单位有:时、分、秒 1时=60分 1分=60秒2、1天=24小时(也就是说时针一天要走2圈。
)1年=12月第七单元分数的初步认识1.分数:把一个物体平均分成几分,每份就表示它的几分之一,这样的数叫做分数。
2.比较分数的大小:分母相同,分子大的那个分数就大。
分子相同,分母小的那个分数反而大。
3.同分母分数相加减的运算规则:分母不变,把分子相加减。
三年级下数学复习提纲2526一单元位置与方向271.东与西相对,南与北相对。
东→南→西→北,按顺时针方向转。
282.地图通常是按上北下南,左西右东绘制的。
293.30二单元除数是一位数的除法311.笔算除法顺序:确定商的位数,试商,检查,验算。
322.被除数÷除数=商被除数÷除数=商……余数33商×除数=被除数商×除数+余数=被除数34被除数÷商=除数(被除数—余数)÷商=除数35363.0除以任何数(0除外)都等于0,0乘以任何数都得0,0加任何数都得任何数本身,任何数减0都得任何数本身。
人教版三年级下册数学必背公式+概念
人教版三年级下册数学必背公式+概念第一单元位置与方向1、口诀要牢记:上北下南,左西右东。
2、东与西相对,南与北相对。
(东北对西南,东南对西北)东→南→西→北,是按顺时针方向转。
3、地图通常是按上北下南,左西右东绘制的。
一共有8个方向:东、南、西、北、东北、东南、西北和西南。
南与北相对,东与西相对,西北与东南相对,东北与西南相对。
4、知道其中一个方向,可以通过顺时针方向按东、南、西、北的顺序确定其它的方向。
5、判断一个地方在什么方向,先要找到一个物体为观察点,再进行判断。
6、判断方向我们一般使用:指南针和借助身边的事物。
我国早在两千多年就发明了指示方向的——司南。
第二单元除数是一位数的除法1、口算时要注意:(1)0除以任何数(0除外)都等于0;(2)0乘以任何数都得0;(3)0加任何数都得原数;(4)任何数减0都得原数。
(5)整十、整百数除以一位数的口算,先用0前面的数除以一位数,再看被除数的末尾有几个0,就在得数的末尾加上几个0.2、验算除法:(1)被除数÷除数=商(2)被除数÷除数=商……余数商×除数=被除数商×除数+余数=被除数被除数÷商=除数(被除数—余数)÷商=除数3、笔算除法的顺序:确定商的位数,试商,检查,验算。
4、笔算除法时,那一位上不够商1,就用0占位。
(最高位不够除,就向后退一位写商。
)5、计算除法时,记住每一次减得的余数一定要比除数小。
第三单元统计1、有两组或两组以上统计项目的统计表,叫做复式统计表。
2、复式统计表的优点是更有利于数据的观察、比较和分析。
3、复式统计表的制作步骤:(1)确定统计表的名称。
(2)确定统计表的行列内容和行数、列数。
(3)制作表头(一般分为三栏)。
4、填写数据并核对。
第四单元两位数乘两位数1、口算乘法:整十、整百的数相乘,先把0前面数字相乘,再看两个因数一共有几个0,就在结果后面添上几个0。
小学数学各位公式定义定律大全
小学数学公式大全1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽S=ab4、正方形的面积=边长×边长S=a.a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a +b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径?=πr11、长方体的表面积=(长×宽+长×高+宽×高)×212、长方体的体积=长×宽×高V =abh13、正方体的表面积=棱长×棱长×6 S =6a14、正方体的体积=棱长×棱长×棱长V=a.a.a= a15、圆柱的侧面积=底面圆的周长×高S=ch16、圆柱的表面积=上下底面面积+侧面积S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch17、圆柱的体积=底面积×高V=ShV=πr h=π(d÷2) h=π(C÷2÷π) h18、圆锥的体积=底面积×高÷3V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷319、长方体(正方体、圆柱体)的体1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 、正方形C周长S面积a边长周长=边长×4 C=4a 面积=边长×边长S=a×a2 、正方体V:体积a:棱长表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a3 、长方形C周长S面积a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 、长方体V:体积s:面积a:长b: 宽h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积a底h高面积=底×高s=ah7 梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)× h÷28 圆形S面积C周长∏ d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9 圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒积=底面积×高V=Sh第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
小学数学公式定理定义大全
送给愿意学好数学的小朋友之—————小学数学公式定理定义第一部分:概念、定义定理1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O 前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、等式:等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、方程式:含有未知数的等式叫方程式。
9、一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
即分母乘以这个整数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
小学数学公式定理总结大全
小学数学公式定理总结大全以下是一些常用的小学数学公式和定理总结:1. 加法公式:- 加法交换律:a + b = b + a- 加法结合律:(a + b) + c = a + (b + c)- 加法零元:a + 0 = a2. 减法公式:- 减法定义:a - b = c,其中 b + c = a3. 乘法公式:- 乘法交换律:a × b = b × a- 乘法结合律:(a × b) × c = a × (b × c)- 乘法分配律:- a × (b + c) = a × b + a × c- (a + b) × c = a × c + b × c- 乘法零元:a × 0 = 04. 除法公式:- 除法定义:a ÷ b = c,其中 b × c = a5. 平方公式:- (a + b)² = a² + 2ab + b²- (a - b)² = a² - 2ab + b²- (a + b) × (a - b) = a² - b²6. 三角形公式:- 三角形内角和定理:三个内角之和为180度- 直角三角形定理:直角三角形两直角边平方和等于斜边平方(勾股定理):a² + b ² = c²- 等腰三角形定理:等腰三角形底角相等,等腰线段相等- 等边三角形定理:等边三角形三个内角都是60度- 同位角定理:如果两条直线被一条截线分成两个同位角,则这两个同位角相等- 同旁内角定理:同旁内角互补,即两个同旁内角之和为180度7. 数列公式:- 等差数列通项公式:an = a1 + (n - 1)d- 等差数列求和公式:Sn = n/2(a1 + an)- 等比数列通项公式:an = a1 × r^(n - 1)- 等比数列求和公式(当|r| < 1):Sn = a1 / (1 - r)这些公式和定理是小学数学学习中常见的公式,帮助学生计算和解决问题。
整理版小学三年级上下册数学公式(全)
小学三年级上数学公式、定理大全一、丈量1.长度单位有毫米、厘米、分米、米、千米(公里)。
1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1米=10分米=100厘米=1000毫米2.重量单位有:克、千克、吨。
1吨=1000千克1千克= 1000克3、面积单位:1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米4、时间单位:年、月、日时、分、秒1年=4季1年=12个月1季度=3个月二月(平年二月28天闰年二月29天)3.周长:封闭图形一周的长度,叫做周长。
长方形的周长=(长+宽)×2 长方形的面积= 长×宽正方形的周长= 边长×4 正方形的面积=边长×边长第四单元有余数除法1、被除数÷除数=商……除数2、被除数=商×除数+余数3、余数一定要比除数小。
第五单元时、分、秒1、时间单位有:时、分、秒1时=60分1分=60秒2、1天=24小时(也就是说时针一天要走2圈。
)1年=12月第七单元分数的初步认识1.分数:把一个物体平均分成几分,每份就暗示它的几分之一,这样的数叫做分数。
2.比较分数的大小:分母相同,分子大的那个分数就大。
分子相同,分母小的那个分数反而大。
3.同分母分数相加减的运算规则:分母不变,把分子相加减。
三年级下数学复习提纲一单元位置与方向1.东与西相对,南与北相对。
东→南→西→北,按顺时针方向转。
2.地图通常是按上北下南,左西右东绘制的。
3.二单元除数是一位数的除法1.笔算除法顺序:确定商的位数,试商,检查,验算。
2.被除数÷除数=商被除数÷除数=商……余数商×除数=被除数商×除数+余数=被除数被除数÷商=除数(被除数—余数)÷商=除数3.0除以任何数(0除外)都等于0,0乘以任何数都得0,0加任何数都得任何数自己,任何数减0都得任何数自己。
三年级下册数学公式定理定义大全
三年级下册数学公式定理定义⼤全必背定义、定理公式三⾓形的⾯积=底×⾼÷2。
公式S= a×h÷2正⽅形的⾯积=边长×边长公式S= a×a长⽅形的⾯积=长×宽公式S= a×b平⾏四边形的⾯积=底×⾼公式S= a×h梯形的⾯积=(上底+下底)×⾼÷2 公式S=(a+b)h÷2内⾓和:三⾓形的内⾓和=180度。
长⽅体的体积=长×宽×⾼公式:V=abh长⽅体(或正⽅体)的体积=底⾯积×⾼公式:V=abh正⽅体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π公式:L=πd=2πr圆的⾯积=半径×半径×π公式:S=πr2圆柱的表(侧)⾯积:圆柱的表(侧)⾯积等于底⾯的周长乘⾼。
公式:S=ch=πdh=2πrh圆柱的表⾯积:圆柱的表⾯积等于底⾯的周长乘⾼再加上两头的圆的⾯积。
公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底⾯积乘⾼。
公式:V=Sh圆锥的体积=1/3底⾯×积⾼。
公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分⼦相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数的乘法则:⽤分⼦的积做分⼦,⽤分母的积做分母。
分数的除法则:除以⼀个数等于乘以这个数的倒数。
算术⽅⾯1.加法交换律:两数相加交换加数的位置,和不变。
2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3.乘法交换律:两数相乘,交换因数的位置,积不变。
4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5.乘法分配律:两个数的和同⼀个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
小学三年级数学常用公式
一、四则运算
1.加法公式:a+b=b+a=a+b
2.减法公式:a-b=a-(-b)=-b-(-a)
3.乘法公式:aχb=bχa
4.除法公式:a÷b=a÷(-b)=-a÷(-b)
二、平行四边形
1.平行四边形定理:两条平行边的对应边相等,两条非平行边的正关联的对角线等于相交的两边之和。
2.平行四边形面积公式:S=ab/2
三、三角形
1.三角形定理:两条边的和大于第三边,两角之和为180度。
2.三角形面积公式:S=aχb/2
3.勾股定理:任意两边的平方和等于第三边的平方,即a^2+b^2=c^
四、梯形
1.梯形定理:四边形任意两条相交的对角线相等,两条非对角的边之和等于另外两边之和。
2.梯形面积公式:S=(a+b)χh/2
五、圆形
1.圆形定理:有一定半径的圆内,任意一点和圆心的距离一定。
2.圆形面积公式:S=πr^2
六、正方形
1.正方形定理:四条边相等,四角相等。
2.正方形面积公式:S=a^2
七、三角洲
1.三角洲定理:任意两边的和大于第三边,任意两角的和小于180度。
2.三角洲面积公式:S=aχb/2
八、矩形
1.矩形定理:四边形任意两条相交的对角线相等,任意两边相等。
2.矩形面积公式:S=ab。
小学数学定义定理公式大全
小学数学定义定理公式大全三角形的面积=底×高÷2。
公式S= a×h÷2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2公式S=(a+b)h÷2角和:三角形的角和=180度。
长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π公式:L=πd=2πr圆的面积=半径×半径×π公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面×积高。
公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
读懂理解会应用以下定义定理性质公式一、算术方面1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
小学数学公式定理定义大全
小学数学公式定理定义大全1.数与数的运算:定义:数是用来计数、比较大小和进行运算的抽象概念。
数的种类包括自然数、整数、分数、小数等。
定理1:加法交换律:a+b=b+a定理2:加法结合律:(a+b)+c=a+(b+c)定理3:乘法交换律:a×b=b×a定理4:乘法结合律:(a×b)×c=a×(b×c)定理5:乘法分配律:a×(b+c)=(a×b)+(a×c)2.数的整除与倍数:定义:如果一个数b除以另一个数a可以整除,即没有余数,那么a就称为b的约数,b称为a的倍数。
定理6:若a能整除b,b能整除c,则a能整除c。
定理7:任何一个数a都能整除它本身。
3.算式的计算规则:定义:算式是由数字、符号和运算符号组成的表达式,用来表示数与数之间的关系。
定理8:在一个算式中,先进行乘除运算,再进行加减运算。
定理9:在一个算式中,先进行括号内的运算,再进行括号外的运算。
4.分数与小数:定义:分数是表示部分数量的数,小数是表示除法运算结果的数。
定理10:分数可以化简为最简形式,即分子与分母没有公因数。
定理11:小数可以化为分数,分子是小数点后的数字,分母是1后面跟着相应数量的0。
定理12:分数和小数可以相互转换,如1/2和0.5表示同一个数。
5.图形的性质:定义:图形是由点、线、面组成的平面图形。
定理13:平行线在同一平面上,它们不会相交。
定理14:垂直线之间的夹角是90度。
6.长方形和正方形:定义:长方形是一个长和宽不同的四边形,正方形是一个边长相等的长方形。
定理15:长方形的面积等于长乘以宽,即A=l×w。
定理16:正方形的面积等于边长的平方,即A=s^27.三角形的性质:定义:三角形是由三条边和三个内角组成的多边形。
定理17:直角三角形的两条直角边的平方和等于斜边的平方,即a^2+b^2=c^2(勾股定理)。
小学数学公式定理大全
小学数学公式定理大全加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a±b)×c=a×c±b×c除法的性质:a÷b÷c=a÷(b×c)(b≠0,c≠0)商不变规律:a÷b=(a×c)÷(b×c)(b≠0,c≠0)a÷b=(a÷c)÷(b÷c)(b≠0,c≠0)等式的性质:如果a=b那么a±c=b±ca×c=b×ca÷c=b÷c(c≠0)分数的基本性质:a b =a×c b×c (b ≠0,c ≠0) a b =a÷c b÷c(b ≠0,c ≠0)比的意义:a : b =c (b ≠0)前项 比号 后项 比值比的基本性质:a:b=(a ×c):(b ×c )(b ≠0,c ≠0) a:b=(a ÷c):(b ÷c )(b ≠0,c ≠0) 比、除法、分数的关系:a:b=a ÷b=ab (b ≠0,c ≠0) 比例的意义:a :b=c :d (b ≠0,d ≠0)比例的性质:a :b=c :d →ad=bc (b ≠0,d ≠0) a b =cd →ad=bc (b ≠0,d ≠0)正方形的周长=边长×4C=4a正方形的面积=边长×边长S =a2长方形的周长=(长+宽)×2C=2(a+b)长方形的面积=长×宽S= ab 平行四边形的面积=底×高S=ah 三角形的面积=底×高÷2S=ah ÷2梯形的面积=(上底+下底)×高÷2S=(a+b)h÷2正方体的表面积=棱长×棱长×6S= 6a2长方体的表面积=(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)正方体的体积=棱长×棱长×棱长V=a3长方体的体积=长×宽×高=底面积×高V=abh =Sh圆的周长=直径×圆周率=半径×2×圆周率C=πd=2πr圆的面积=圆周率×半径2S = πr2圆环的面积=大圆面积 - 小圆面积S =πR2- πr2=π(R²-r2)圆柱的表面积=侧面积 +2×底面积S表=S侧+2×S底=Ch+2πr2=2πrh+2πr2圆柱的体积=底面积×高V=Sh=πr2h圆锥的体积= ⅓底面积×高V=⅓sh= ⅓πr2h最大的一位数是9最小的两位数是10最大的两位数是99最小的三位数是100最大的三位数是999最小的自然数是0最小的质数是2最小的合数是41 既不是质数也不是合数所有质数中,只有2是偶数2和任意奇数都互质1的倒数是它本身平方等于它本身的数是0和1求总数:部分数 + 另一部分数 = 总数求剩余数:总数 - 部分数 = 另一部分数求两数的差:较大数 - 较小数 = 相差数求比一个数少几的数: 较大数 - 相差数 = 较小数求比一个数多几的数: 较小数 + 相差数 = 较大数求几个相同加数的和:相同加数×个数 = 和把一个数平均分成几份,求每份是多少:总数÷份数 = 每份数求一个数是另一个数的几倍:几倍数÷1倍数 = 倍数求1倍数:几倍数÷倍数 = 1倍数和差问题:较大数=(和+差)÷2或较大数=和-较小数较小数 =(和-差)÷2或较小数=和-较大数和倍问题:1倍数 = 和÷(倍数 +1)几倍数 = 和 - 1倍数差倍问题:1倍数=差÷(倍数 -1)几倍数 = 1倍数 +差平均数问题:平均数 = 总数量÷总份数归一与归总问题:总量÷数量 = 单一量总量÷单一量 = 数量单一量×数量 = 总量植树问题:不封闭的植树问题:一端植树:棵数 = 间隔数 = 全长÷株距全长 = 株距×棵数株距 = 全长÷棵数两端都植树:棵数 = 间隔数 +1= 全长÷株距 +1全长 = 株距×(棵数 -1)株距 = 全长÷(棵数 - 1)两端都不植树:棵数 = 间隔数 - 1= 全长÷株距 - 1全长=株距×(棵数 +1)株距 = 全长÷(棵数 + 1)封闭的植树问题:棵数 = 间隔数 = 全长÷株距全长 = 株距×棵数株距 = 全长÷棵数等差数列:和 =(首项 + 末项)×项数÷ 2S n=(a1+a n)×n÷2项数 =(末项 - 首项)÷公差+1n=(a n-a1)÷d+1末项 = 首项 +(项数 - 1)×公差a n=a1+(n-1)×d公差 =(末项-首项)÷(项数-1)d =(a n-a1)÷(n-1)鸡兔同笼问题:兔数 =(实际脚数-2×鸡兔总数)÷(4-2)盈亏问题:“两盈”:分配对象总数 =(大盈-小盈)÷两次分配之差“两亏”:分配对象总数 =(大亏-小亏)÷两次分配之差“一盈一亏”:分配对象总数=(盈+亏)÷两次分配之差行程问题:路程 = 速度×时间速度 = 路程÷时间时间 = 路程÷速度相遇问题:路程和 = 速度和×相遇时间相遇时间 = 路程和÷速度和速度和 = 路程和÷相遇时间追及问题:路程差 = 速度差×追及时间追及时间 = 路程差÷速度差速度差 = 路程差÷追及时间流水行船问题:顺水速度 = 船速 + 水速逆水速度 = 船速 - 水速船速 =(顺水速度 + 逆水速度)÷2水速 =(顺水速度 - 逆水速度)÷ 2 浓度问题:浓度=溶质质量/ 溶液质量 x100%工程问题:工作效率×工作时间 = 工作总量工作总量÷工作效率 = 工作时间工作总量÷工作时间 = 工作效率储蓄问题与利润问题:利息=本金×利率×存期利润 = 售价 - 成本利润率=利润/成本×100%“几折”表示十分之几,百分之几十比例尺图上距离:实际距离 = 比例尺100以内平方表。
【免费】小学三年级数学“公式定理定义”大全
小学三年级数学“公式定理定义”大全第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
0除以任何不是0的数都得0。
简便乘法:被乘数、乘数末尾有0的乘法,可以先把0前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
小学阶段数学公式总结:定义定理数学公式
小学阶段数学公式总结:定义定理数学公式小学阶段数学公式总结:定义定理数学公式定义定理数学公式1.加法交换律:两数相加交换加数的位置,和不变。
2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3.乘法交换律:两数相乘,交换因数的位置,积不变。
4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×5。
6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
0除以任何不是0的数都得0。
7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8.方程式:含有未知数的等式叫方程式。
9.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15.分数除以整数(0除外),等于分数乘以这个整数的倒数。
16.真分数:分子比分母小的分数叫做真分数。
17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
假分数大于或等于1。
18.带分数:把假分数写成整数和真分数的形式,叫做带分数。
数学必背定义定理公式
数学必背定义定理公式体积和表面积三角形的面积=底×高÷2。
公式S= a×h÷2正方形的面积=边长×边长公式S= a2长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的表面积=(长×宽+长×高+宽×高)×2 公式:S=(a×b+a×c+b×c)×2正方体的表面积=棱长×棱长×6 公式:S=6a2长方体的体积=长×宽×高公式:V = abh长方体(或正方体)的体积=底面积×高公式:V = abh正方体的体积=棱长×棱长×棱长公式:V = a3圆的周长=直径×π 公式:L=πd=2πr圆的面积=半径×半径×π 公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面×积高。
公式:V=1/3Sh算术运算1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:a + b = b + a3、乘法交换律:a × b = b × a4、乘法结合律:a × b × c = a ×(b × c)5、乘法分配律:a × b + a × c = a ×(b + c)6、除法的性质:a ÷ b ÷ c = a ÷(b × c)7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
精编小学三年级数学公式定义大全
精编小学三年级数学公式定义大全第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
举例:12+16=16+12=28。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
举例:(10+15)+30=10+(15+30)=55。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
举例:2×9=9×2=18。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
举例:(3×5)×10=3×(5×10)=150。
5、乘法分配律:两个数的和与同一个数相乘,可以把两个加数分别与这个数相乘,再把两个积相加,结果不变。
如:(2+3)×5=2×5+3×5 =25。
6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
0除以任何不是0的数都得0。
举例:(1)6686202338320⨯⨯===⨯⨯; (2) 007=。
简便乘法:被乘数、乘数末尾有0的乘法,可以先把0前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
举例:3×20=60;50×4=200。
7、什么叫等式?答:等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
举例:(1)6×3=18,那么:6×3×25=18×25;(2)5×9=45,那么:593453⨯÷=÷。
8、什么叫方程式?答:含有未知数的等式叫方程式。
举例: x+3=17。
9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有x 的算式并计算。
【知识学习】小学阶段数学公式总结:定义定理数学公式
小学阶段数学公式总结:定义定理数学公式定义定理数学公式1.加法交换律:两数相加交换加数的位置,和不变。
2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3.乘法交换律:两数相乘,交换因数的位置,积不变。
4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:×5=2×5+4×5。
6.除法的性质:在除法里,被除数和除数同时扩大相同的倍数,商不变。
0除以任何不是0的数都得0。
7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以一个相同的数,等式仍然成立。
8.方程式:含有未知数的等式叫方程式。
9.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15.分数除以整数,等于分数乘以这个整数的倒数。
16.真分数:分子比分母小的分数叫做真分数。
17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
假分数大于或等于1。
18.带分数:把假分数写成整数和真分数的形式,叫做带分数。
19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数,分数的大小不变。
小学三年级上下册数学公式(全)
小学三年级上数学公式、定理大全一、测量1.长度单位有毫米、厘米、分米、米、千米(公里)。
1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1米=10分米=100厘米=1000毫米2.重量单位有:克、千克、吨。
1吨=1000千克1千克= 1000克3、面积单位:1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米4、时间单位:年、月、日时、分、秒1年=4季1年=12个月1季度=3个月二月(平年二月28天闰年二月29天)3.周长:封闭图形一周的长度,叫做周长。
长方形的周长=(长+宽)×2 长方形的面积= 长×宽正方形的周长= 边长×4 正方形的面积=边长×边长第四单元有余数除法1、被除数÷除数=商……除数2、被除数=商×除数+余数3、余数一定要比除数小。
第五单元时、分、秒1、时间单位有:时、分、秒1时=60分1分=60秒2、1天=24小时(也就是说时针一天要走2圈。
)1年=12月第七单元分数的初步认识1.分数:把一个物体平均分成几分,每份就表示它的几分之一,这样的数叫做分数。
2.比较分数的大小:分母相同,分子大的那个分数就大。
分子相同,分母小的那个分数反而大。
3.同分母分数相加减的运算规则:分母不变,把分子相加减。
三年级下数学复习提纲一单元位置与方向1.东与西相对,南与北相对。
东→南→西→北,按顺时针方向转。
2.地图通常是按上北下南,左西右东绘制的。
3.二单元除数是一位数的除法1.笔算除法顺序:确定商的位数,试商,检查,验算。
2.被除数÷除数=商被除数÷除数=商……余数商×除数=被除数商×除数+余数=被除数被除数÷商=除数(被除数—余数)÷商=除数3.0除以任何数(0除外)都等于0,0乘以任何数都得0,0加任何数都得任何数本身,任何数减0都得任何数本身。
三年级下册数学概念及公式
1.加法概念:。
加法的定义:将两个或更多的数合在一起,得到一个总数。
加法公式:a+b=c其中,a、b是加数,c是和。
2.减法概念:。
减法的定义:减去一个数,得到剩下的数。
减法公式:a-b=c其中,a是被减数,b是减数,c是差。
3.乘法概念:。
乘法的定义:将两个或更多的数相乘,得到一个总数。
乘法公式:a×b=c其中,a、b是因数,c是积。
4.除法概念:。
除法的定义:将一个数分成若干块相等的部分。
除法公式:a÷b=c其中,a是被除数,b是除数,c是商。
5.分数概念:。
分数的定义:分数表示被分成若干等份后的一份。
分数的表示:分子/分母。
6.小数概念:。
小数的定义:小数表示一个数的部分。
小数的表示:整数部分.小数部分。
7.常用单位:。
时间单位:秒、分钟、小时、天、周、月、年。
长度单位:米、厘米、毫米、千米。
重量单位:克、千克。
8.图形概念:。
平面图形:点、线段、直线、射线、角、多边形、正方形、长方形、三角形、圆形。
立体图形:正方体、长方体、三棱柱、四棱柱、圆柱、圆锥、球体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必背定义、定理公式
三角形的面积=底×高÷2。
公式S= a×h÷2
正方形的面积=边长×边长公式S= a×a
长方形的面积=长×宽公式S= a×b
平行四边形的面积=底×高公式S= a×h
梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh
长方体(或正方体)的体积=底面积×高公式:V=abh
正方体的体积=棱长×棱长×棱长公式:V=aaa
圆的周长=直径×π公式:L=πd=2πr
圆的面积=半径×半径×π公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh
圆锥的体积=1/3底面×积高。
公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
算术方面
1.加法交换律:两数相加交换加数的位置,和不变。
2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3.乘法交换律:两数相乘,交换因数的位置,积不变。
4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×5
6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7.什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8.什么叫方程式?答:含有未知数的等式叫方程式。
9.什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
10.分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。
11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15.分数除以整数(0除外),等于分数乘以这个整数的倒数。
16.真分数:分子比分母小的分数叫做真分数。
17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
假分数大于或等于1。
18.带分数:把假分数写成整数和真分数的形式,叫做带分数。
19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20.一个数除以分数,等于这个数乘以分数的倒数。
21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
几何公式
●长方形的周长=(长+宽)×2
C=(a+b)×2
●长方形的面积=长×宽
S=ab
●正方形的周长=边长×4
C=4a
●正方形的面积=边长×边长
S=a×a
●三角形的面积=底×高÷2
S=ah÷2
●三角形的内角和=180度
●平行四边形的面积=底×高
S=ah
●梯形的面积=(上底+下底)×高÷2
S=(a+b)h÷2
●圆的直径=半径×2(d=2r)
●圆的半径=直径÷2(r=d÷2)
●圆的周长=圆周率×直径=圆周率×半径×2 C=π×d =2πr
●圆的面积=圆周率×半径×半径
S=π×r×r
●长方体的体积=长×宽×高
V=abh
●正方体的体积=棱长×棱长×棱长
V=aaa
●圆柱的侧面积:圆柱的侧面积等于底面的周长乘高
S=ch=πdh=2πrh
●圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积S=ch+2s=ch+2πr×r
●圆柱的体积:圆柱的体积等于底面积乘高
V=Sh
●圆锥的体积=1/3底面×积高
V=1/3Sh
单位换算
1公里=1千米=1000米
1米=10分米
1分米=10厘米
1厘米=10毫米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1吨=1000千克
1千克=1000克=1公斤=2市斤
1公顷=10000平方米
1亩=666.666平方米
1升=1立方分米=1000毫升
1毫升=1立方厘米
1元=10角
1角=10分
1元=100分
1世纪=100年
1年=12月
大月(31天)有:135781012月
小月(30天)的有:46911月
平年2月28天,闰年2月29天
平年全年365天,闰年全年366天
1日=24小时
1时=60分=3600秒
1分=60秒
数量关系
每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
速度×时间=路程
路程÷速度=时间
路程÷时间=速度
单价×数量=总价
总价÷单价=数量
总价÷数量=单价
工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
加数+加数=和
和-一个加数=另一个加数
被减数-减数=差
被减数-差=减数
差+减数=被减数
因数×因数=积
积÷一个因数=另一个因数
被除数÷除数=商
被除数÷商=除数
商×除数=被除数
特殊问题✎相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
✎追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
✎流水问题
(1)一般公式:
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
(2)两船相向航行的公式:
甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度
(3)两船同向航行的公式:
后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度✎浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
✎利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-5%)
✎工程问题
工作效率×工作时间=工作总量
工作总量÷工作时间=工作效率
工作总量÷工作效率=工作时间
1÷工作时间=单位时间内完成工作总量的几分之几
1÷单位时间能完成的几分之几=工作时间。