高考数学的解题技巧指导
高考数学大题小题答题套路
高考数学大题小题答题套路1500字高考数学大题小题答题套路:在高考数学考试中,大题小题占据了很大的比重。
为了在有限的时间内高效地完成这些题目,我们需要一些答题套路。
下面给出一些常用的答题套路,希望对你备考有所帮助。
一、解决问题的基本步骤无论是解决大题还是小题,解决问题的基本步骤是一样的:分析问题、解决问题。
1. 分析问题:仔细阅读题目,抓住关键信息,理清问题的逻辑关系,确定解题思路。
2. 解决问题:有了解题思路后,可以进行具体的计算或推理,得出结果并给出明确的解答。
二、选择题的解题技巧1. 理清题意:仔细阅读题目,理解题意是解题的第一步。
特别是一些复杂的题目,一定要抓住问题的关键信息。
2. 排除干扰项:在选择题中,往往有一些干扰项,可以通过排除法找到正确的答案。
把每个选项都带入题目中计算,排除那些肯定不符合条件的选项,就可以找到正确答案。
3. 注意选项的表达方式:有时候,选项可能用其他的方式来表达,需要注意一些等价变形或近义词的替代。
三、填空题的解题技巧1. 尝试不同的方法:填空题有时候可以用多种方法解答,尝试不同的方法可以提高解题的灵活性。
2. 合理估算:填空题往往要进行一些复杂的计算,合理估算可以减少计算量,提高解题速度。
可以先进行一些粗略的估算,然后再进行具体的计算。
3. 利用已知条件:在填空题中,利用已知条件进行推导是非常重要的。
根据已知条件和题目要求,进行推理和计算。
四、解答题的解题技巧1. 分析问题:仔细阅读题目,并理清题目的逻辑关系,确定解题思路和步骤。
2. 给出合理的假设:解答题有时候需要做一些合理的假设,可以简化问题,提高解题的效率。
3. 使用合适的公式或定理:解答题一般需要使用一些公式或定理,熟练掌握并合理运用可以快速解决问题。
4. 画图辅助解答:对于一些几何题,可以通过画图来辅助解答。
画出具体的图形,可以更直观地理解问题,找到解决方法。
总结:以上是解决高考数学大题小题的一些常用答题套路。
2025年高考数学应用题的解题技巧
2025年高考数学应用题的解题技巧高考数学中的应用题一直是许多考生感到头疼的部分。
随着时间的推移,到 2025 年,高考数学应用题的形式和内容可能会有所变化,但解题的核心技巧和思路仍然具有一定的规律性。
首先,我们要明确应用题的特点。
应用题通常是将数学知识与实际生活情境相结合,考查我们运用数学工具解决实际问题的能力。
这就要求我们不仅要熟练掌握数学知识,还要具备将实际问题转化为数学模型的能力。
一、仔细审题是关键拿到一道应用题,不要急于动手解题,而是要静下心来仔细阅读题目。
在审题过程中,要注意以下几点:1、理解题意:弄清楚题目所描述的实际情境,明确问题的背景和要求。
2、抓住关键信息:比如数字、单位、条件关系等,这些往往是解题的关键线索。
3、明确所求:确定题目最终要求我们求出的是什么,是某个具体的数值、变量之间的关系还是某种方案的最优解。
例如,有一道应用题是这样的:“某工厂要生产一批零件,原计划每天生产 100 个,由于技术改进,实际每天生产的零件数比原计划多20%,按照这样的生产效率,生产 5000 个零件需要多少天?”在这道题中,关键信息是原计划每天生产 100 个、实际每天生产的零件数比原计划多 20%以及要生产 5000 个零件,所求的是实际生产 5000 个零件所需的天数。
二、建立数学模型将实际问题转化为数学模型是解题的核心步骤。
这需要我们根据题目中的条件和关系,选择合适的数学知识和方法。
1、常见的数学模型包括方程(组)、不等式、函数等。
2、对于涉及到数量关系的问题,可以考虑建立方程或方程组。
比如,上面提到的生产零件的问题,我们可以设实际生产 5000 个零件需要 x 天,根据每天生产的零件数乘以生产天数等于总零件数,可列出方程:100×(1 + 20%)×x = 5000。
3、如果是涉及到最优解、最值问题,通常可以构建函数模型,通过求函数的最值来解决。
三、选择合适的解题方法在建立了数学模型之后,接下来要选择合适的解题方法。
数学考试答题技巧与方法
数学考试答题技巧与方法数学考试答题技巧与方法一、“六先六后”,因人因卷制宜。
考生可依自己的解题习惯和基本功,选择执行“六先六后”的战术原则。
1.先易后难。
2.先熟后生。
3.先同后异。
先做同科同类型的题目。
4.先小后大。
先做信息量少、运算量小的题目,为解决大题赢得时间。
5.先点后面。
高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,步步为营,由点到面。
6.先高后低。
即在考试的后半段时间,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”。
二、一慢一快,相得益彰,规范书写,确保准确,力争对全。
审题要慢,解答要快。
在以快为上的前提下,要稳扎稳打,步步准确。
假如速度与准确不可兼得的话,就只好舍快求对了。
三、面对难题,以退求进,立足特殊,发散一般,讲究策略,争取得分。
对于一个较一般的问题,若一时不能取得一般思路,可以采取化第1页共5页一般为特殊,化抽象为具体。
对不能全面完成的题目有两种常用方法: 1.缺步解答。
将疑难的问题划分为一个个子问题或一系列的步骤,每进行一步就可得到一步的分数。
2.跳步解答。
若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问。
四、执果索因,逆向思考,正难则反,回避结论的肯定与否定。
对一个问题正面思考受阻时,就逆推,直接证有困难就反证。
对探索性问题,不必追求结论的“是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。
数学考试答题技巧(总结)1.对于会做的题目,要解决会而不对,对而不全这个老大难问题.有的考生拿到题目,明明会做,但最终答案却是错的--会而不对.有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤--对而不全.因此,会做的题目要特别注意高考数学解答题答题技巧及题型特点,防止被分段扣点分.(经验)表明,对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以做不出来的题目得一二分易,做得出来的题目得满分难.2.对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分.我们说,有什么样的解题策略,就有什么样的得分策略.把你解题的真实过程原原本本写出来,就是分段得分的全部秘密。
高考数学解题训练方法与技巧汇集(共8篇)
高考数学解题训练方法与技巧聚集〔共8篇〕篇1:高考数学解题训练方法与技巧聚集数学解题训练方法与技巧第一,充分利用考前五分钟。
按照大型的考试的要求,考前五分钟是发卷时间,考生填写准考证。
这五分钟是不准做题的,但是这五分钟可以看题。
发现很多考生拿到试卷之后,就从第一个题开场看,给大家的建议是,拿过这套卷子来,这五分钟是用来制定整个战略的关键时刻。
之前没看到题目,你只是空想,当你看到题目以后,你得利用这五分钟迅速制定出整个考试的战略来。
学生拿着数学卷子,不要看选择,不要看填空,先看后边的六个大题。
这六个大题的难度分布一般是从易到难。
我们为了应付这样的一次考试,提早做了大量的习题,试卷上有些题目可能已经做过了,或者你一目了然,感觉很轻松,我建议先把这样的大题拿下来。
大题一般12分左右,这12分如囊中取物,你就有底气了,心情也好了。
特别是要看看最后那个大题,一看那个题目压根儿就不是自己力所能及的,就把它砍掉,只想着后边只有五个题,这样在做题的时候,就可以控制速度和质量。
假如倒数第二题也没有什么感觉,你就想,可能今年这个题出得比拟难,那么我如今的做法应该是把前边会做的题目踏踏实实做好,不要急于去做后边的题目,因为后边的题目不是正常人能做的题目。
第二,进入考试阶段先要审题。
审题一定要仔细,一定要慢。
数学题经常在一个字、一个数据里边暗藏着解题的关键,这个字、这个数据没读懂,要么找不着解题的关键,要么你误读了这个题目。
你在误读的根底上来做的话,你可能感觉做得很轻松,但这个题一分不得。
所以审题一定要仔细,你一旦把题意弄明白了,这个题目也就会做了。
会做的题目是不耽误时间的,真正耽误时间的是在审题的过程中,在找思路的过程中,只要找到思路了,单纯地写那些步骤并不占用多少时间。
第三,一定要培养自己一次就做对的习惯。
如今有些学生,好不容易遇到一个会做的题目,就快速地把会做的题目做错,争取时间去做不会做的题目。
殊不知,前面的选择题和后边的大题,难易差距是很大的,但是分值的含金量是一样的,有些学生以为前边题目的分数不值钱,后边大题的分数才值钱,不知道这是什么心理。
高考数学答题技巧与解题思路
高考数学答题技巧与解题思路在高考中,数学是许多学生普遍感到困扰的科目之一。
它需要灵活运用各种技巧和解题思路来处理各类题目。
本文将介绍一些高考数学答题技巧和解题思路,帮助学生更好地应对数学考试。
一、选择题解题思路选择题在高考数学试卷中占有重要的比重。
解答选择题需要注意以下几点:1. 首先,仔细阅读题目,理解题目所要求的内容。
阅读题干和选项时要注意细节,避免因为粗心而丢分。
2. 其次,列出已知条件,找到相关的数学概念和定理。
有时候,选择题通过对已知条件的解析可以得到答案。
3. 利用排除法。
根据选项中的信息,可以在几个选项中排除一些明显错误的答案,从而缩小答案的范围。
4. 适时使用近似计算法。
高考中有些选择题可以通过适当的近似计算法来估算答案,从而快速获得正确答案。
二、解答计算题技巧高考数学试卷中,计算题往往需要较长时间来解答,需要学生具备一定的计算技巧。
以下是一些解答计算题的技巧:1. 简化计算:在进行长算式计算时,可以通过化简或者简化计算过程,减少繁琐的步骤,以节省时间。
2. 小数计算:小数计算是高考数学试卷中常见的计算类型之一。
处理小数时,可以采用移位运算、精确估算等方法,提高计算的准确性和效率。
3. 分数计算:分数计算也是高考数学试卷中的重要考点。
在进行分数计算时,可以通过通分、约分、倒数等方法,简化计算过程。
4. 视觉化计算:有些计算题可以通过将计算过程转化为图形或者几何形状,从而提高计算速度和准确度。
例如,通过图形的面积计算来解决几何题。
三、解答证明题方法证明题在高考数学试卷中往往是分数较高的题目,需要学生具备一定的推理和证明能力。
以下是一些解答证明题的方法:1. 利用数学知识和定理:对于证明题,学生需要熟练掌握各类数学知识和定理,并能够将其运用到具体问题中。
在解答证明题时,可以先回顾所学知识和定理,找到相关理论支撑。
2. 逻辑推理法:证明题往往需要学生进行逻辑推理,通过推导和演绎的方式来得到结论。
50个高考数学解题技巧
50个高考数学解题技巧1 . 适用条件[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注:上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
2 . 函数的周期性问题(记忆三个)(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。
注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
3 . 关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4 . 函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5 . 数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q?mS(n)可以迅速求q6 . 数列的终极利器,特征根方程首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p?(n-1)+x,这是一阶特征根方程的运用。
高考的数学答题技巧(推荐8篇)
高考的数学答题技巧〔推荐8篇〕篇1:数学高考答题技巧另外,在高考时很多同学往往因为时间不够导致数学试卷不能写完,试卷得分不高,掌握解题思想可以帮助同学们快速找到解题思路,节约考虑时间。
以下总结高考数学五大解题思想,帮助同学们更好地提分。
1.函数与方程思想函数思想是指运用运动变化的观点,分析^p 和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析^p 问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。
同学们在解题时可利用转化思想进展函数与方程间的互相转化。
2.数形结合思想中学数学研究的对象可分为两大局部,一局部是数,一局部是形,但数与形是有联络的,这个联络称之为数形结合或形数结合。
它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
3.特殊与一般的思想用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。
不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。
4.极限思想解题步骤极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法那么得出结果或利用图形的极限位置直接计算结果。
5.分类讨论思想同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进展下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。
引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法那么、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。
高考数学答题技巧一览
高考数学答题技巧一览高考数学答题技巧一览数学是高考的一门必修科目,也是许多学生心中最头疼的一门科目。
数学的题目类型繁多,而且不同年份的高考试题难度也不尽相同,但是在高考数学答题中,有些技巧和方法是通用的,运用好这些技巧和方法可以在短时间内提升答题效率,达到更好的成绩。
本文将介绍一些常见的高考数学答题技巧,供读者参考。
一、抓住重点、短平快考试时间有限,抓住重点、短平快是解题的重要策略。
在考场上遇到一道数学题目,一定要仔细阅读题目要求,找出数学问题的重难点,确定所求解题目的关键信息,然后思考正确的解题方向和方法。
如果你对某些知识点掌握比较困难,不要一味地死磕,可以优先解决一些熟悉掌握的、能够快速解决的题目,顺便提高一下心理素质和答题速度,留下更多的时间去攻克难题。
二、题目分类,常识分析高考数学题目类型各不相同,但是归纳总结起来,主要包括以下几类:函数题、几何题、概率与统计题、数列与数学归纳法题、解方程题等等。
虽然每种题型又各自存在多种解题方法,但是在解题之前我们可以先对题目进行分类,因为各类题目都有对应的解题模式和方法,依此进行解题可以大大提高解题效率。
同时在解题过程中对一些常识的使用也很重要,比如数学符号的意义,正确的数学计算规则等等,这些很基础的知识点不但可以提高解题效率,还可以减少错误率。
三、化繁为简,化式方便高考数学中有很多与数学符号、公式、单位走向有关的题目,这些题目看上去相对比较复杂,但是只要我们懂得化繁为简、化式方便的方法,就能够迎刃而解。
在这种类型的题目中,我们可以先根据已知的数学关系式化简式子,或者进行通分、通约、抵消、转移项等步骤,有时候会得到更为简单的式子,这样我们就可以迅速找出解题思路、使用求解方法、求取答案。
当然在化繁为简的过程中,切勿草率从事,忽略一些非常重要的细节。
四、多利用图形,准确无误数学几何中,图形是解题离不开的工具。
所以,要善于利用图形,在解题的时候画出对应图形,并掌握好几何构造的基本原理,以便更准确无误地解题。
高考数学选择题、填空题的六大解题方法和技巧
高考数学选择题、填空题的六大解题方法和技巧方法一:直接法直接法就是直接从题设条件出发,利用已知条件、相关概念、性质、公式、公理、定理、法则等基础知识,通过严谨推理、准确运算、合理验证,得出正确结论,此法是解选择题和填空题最基本、最常用的方法.【典例1】(1)(2021·新高考Ⅱ卷)在复平面内,复数2-i 1-3i对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【解析】选A.因为2-i1-3i =(2-i )(1+3i )(1-3i )(1+3i ) =5+5i 10 =12 +12 i ,所以复数2-i 1-3i 对应的点位于第一象限.(2)(2021·烟台二模)已知双曲线C :x 2a 2 -y 2b 2 =1(a>0,b>0)的左、右焦点分别为F 1,F 2,点A 在C 的右支上,AF 1与C 交于点B ,若2F A ·2F B =0,且|2F A |=|2F B |,则C 的离心率为( ) A . 2 B . 3 C . 6 D .7【解析】选B.由F 2A·F 2B =0且|2F A |=|2F B |知:△ABF 2为等腰直角三角形且 ∠AF 2B =π2 、∠BAF 2=π4 ,即|AB|= 2 |2F A |= 2 |2F B |, 因为⎩⎪⎨⎪⎧|F 1A|-|F 2A|=2a ,|F 2B|-|F 1B|=2a ,|AB|=|F 1A|-|F 1B|,所以|AB|=4a ,故|F 2A|=|F 2B|=2 2 a ,则|F 1A|=2( 2 +1)a ,而在△AF 1F 2中,|F 1F 2|2=|F 2A|2+|F 1A|2-2|F 2A||F 1A|cos ∠BAF 2, 所以4c 2=8a 2+4(3+2 2 )a 2-8( 2 +1)a 2,则c 2=3a 2,故e =ca = 3 . 【变式训练】1.(2021·北京高考)在复平面内,复数z 满足(1-i)z =2,则z =( ) A .1 B .i C .1-i D .1+i【解析】选D.方法一:z =21-i =2(1+i )(1-i )(1+i )=1+i.方法二:设z =a +bi ,则(a +b)+(b -a)i =2,联立⎩⎪⎨⎪⎧a +b =2,b -a =0, 解得a =b =1,所以z =1+i.2.(2021·郑州二模)已知梯形ABCD 中,以AB 中点O 为坐标原点建立如图所示的平面直角坐标系.|AB|=2|CD|,点E 在线段AC 上,且AE→ =23 EC → ,若以A ,B 为焦点的双曲线过C ,D ,E 三点,则该双曲线的离心率为( )A .10B .7C . 6D . 2【解析】选B.设双曲线方程为x 2a 2 -y 2b 2 =1,由题中的条件可知|CD|=c , 且CD 所在直线平行于x 轴, 设C ⎝ ⎛⎭⎪⎫c 2,y 0 ,A(-c ,0),E(x ,y),所以AE → =(x +c ,y),EC →=⎝ ⎛⎭⎪⎫c 2-x ,y 0-y ,c 24a 2 -y 20 b 2 =1,由AE → =23 EC →,可得⎩⎪⎨⎪⎧x =-25c y =25y 0,所以E ⎝ ⎛⎭⎪⎫-25c ,25y 0 ,因为点E 的坐标满足双曲线方程,所以4c 225a 2 -4y 2025b 2 =1, 即4c 225a 2 -425 ⎝ ⎛⎭⎪⎫c 24a 2-1 =1,即3c 225a 2 =2125 ,解得e =7 .方法二:特例法从题干出发,通过选取特殊情况代入,将问题特殊化或构造满足题设条件的特殊函数或特殊图形或特殊位置,进行判断.特例法是“小题小做”的重要策略,要注意在怎样的情况下才可以使用,特殊情况可能是:特殊值、特殊点、特殊位置、特殊函数等.【典例2】(1)(2021·郑州三模)在矩形ABCD 中,其中AB =3,AD =1,AB 上的点E 满足AE +2BE =0,F 为AD 上任意一点,则EB ·BF =( ) A .1 B .3 C .-1 D .-3 【解析】选D.(直接法)如图,因为AE +2BE =0, 所以EB =13 AB , 设AF =λAD ,则BF =BA +λAD =-AB +λAD ,所以EB ·BF =13 AB ·(-AB +λAD )=-13 |AB |2+13 λAB ·AD =-3+0=-3.(特例法)该题中,“F为AD上任意一点”,且选项均为定值,不妨取点A为F. 因为AE+2BE=0,所以EB=13AB.故EB·BF=13AB·(-AB)=-132 AB=-13×32=-3.(2)(2021·成都三模)在△ABC中,内角A,B,C成等差数列,则sin2A+sin2C-sin A sin C=________.【解析】(方法一:直接法)由内角A,B,C成等差数列,知:2B=A+C,而A+B+C=π,所以B=π3,而由余弦定理知:b2=a2+c2-2ac cos B=a2+c2-ac,结合正弦定理得:sin2B=sin2A+sin2C-sin A sin C=3 4.(方法二:特例法)该题中只有“内角A,B,C成等差数列”的限制条件,故可取特殊的三角形——等边三角形代入求值.不妨取A=B=C=π3,则sin 2A+sin2C-sin A sin C=sin2π3+sin2π3-sinπ3sinπ3=34.(也可以取A=π6,B=π3,C=π2代入求值.)答案:34【变式训练】设四边形ABCD为平行四边形,|AB→|=6,|AD→|=4,若点M,N满足BM→=3MC→,DN→=2NC → ,则AM → ·NM → 等于( ) A .20 B .15 C .9 D .6【解析】选C.若四边形ABCD 为矩形,建系如图,由BM → =3MC → ,DN → =2NC→ ,知M(6,3),N(4,4),所以AM → =(6,3),NM → =(2,-1),所以AM → ·NM → =6×2+3×(-1)=9.方法三:数形结合法对于一些含有几何背景的问题,往往可以借助图形的直观性,迅速作出判断解决相应的问题.如Veen 图、三角函数线、函数图象以及方程的曲线等,都是常用的图形.【典例3】已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( )A .1B .2C . 2D .22【解析】选C.如图,设OA→ =a ,OB → =b ,则|OA → |=|OB → |=1,OA → ⊥OB → ,设OC → =c ,则a-c =CA → ,b -c =CB → ,(a -c )·(b -c )=0,即CA → ·CB → =0.所以CA → ⊥CB → .点C 在以AB 为直径的圆上,圆的直径长是|AB→ |= 2 ,|c |=|OC → |,|OC → |的最大值是圆的直径,长为 2 .【变式训练】1.设直线l :3x +2y -6=0,P(m ,n)为直线l 上动点,则(m -1)2+n 2的最小值为( ) A .913 B .313 C .31313 D .1313【解析】选A.(m -1)2+n 2表示点P(m ,n)到点A(1,0)距离的平方,该距离的最小值为点A(1,0)到直线l 的距离,即|3-6|13 =313,则(m -1)2+n 2的最小值为913 .2.(2021·河南联考)已知函数f(x)=⎩⎪⎨⎪⎧x ln x -2x (x>0),x 2+1(x≤0), 若f(x)的图象上有且仅有2个不同的点关于直线y =-32 的对称点在直线kx -y -3=0上,则实数k 的取值是________. 【解析】直线kx -y -3=0关于直线y =-32 对称的直线l 的方程为kx +y =0,对应的函数为y =-kx ,其图象与函数y =f(x)的图象有2个交点.对于一次函数y =-kx ,当x =0时,y =0,由f(x)≠0知不符合题意. 当x≠0时,令-kx =f(x),可得-k =f (x )x ,此时, 令g(x)=f (x )x =⎩⎨⎧ln x -2(x>0),x +1x (x<0).当x>0时,g(x)为增函数,g(x)∈R ,当x<0时,g(x)为先增再减函数,g(x)∈(-∞,-2]. 结合图象,直线y =-k 与函数y =g(x)有2个交点, 因此,实数-k =-2,即k =2. 答案:2方法四:排除法排除法也叫筛选法、淘汰法,它是充分利用单选题有且只有一个正确的选项这一特征,通过分析、推理、计算、判断,排除不符合要求的选项,从而确定正确选项.【典例4】(1)(2021·郑州二模)函数f(x)=sin x ln π-xπ+x在(-π,π)的图象大致为()【解析】选A.根据题意,函数f(x)=sin x ln π-xπ+x,x∈(-π,π),f(-x)=sin (-x)ln π+xπ-x=sin x lnπ-xπ+x=f(x),则f(x)在区间(-π,π)上为偶函数,所以排除B,C,又由f ⎝ ⎛⎭⎪⎫π2 =sin π2 ln π23π2=ln 13 <0,所以排除D.(2)(2021·太原二模)已知函数y =f(x)部分图象的大致形状如图所示,则y =f(x)的解析式最可能是( )A .f(x)=cos x e x -e -xB .f(x)=sin x e x -e -xC .f(x)=cos x e x +e -xD .f(x)=sin x e x +e -x 【解析】选A.由图象可知,f(2)<0,f(-1)<0, 对于B ,f(2)=sin 2e 2-e -2>0,故B 不正确;对于C ,f(-1)=cos (-1)e -1+e=cos 1e -1+e>0,故C 不正确; 对于D ,f(2)=sin 2e 2+e -2 >0,故D 不正确.【变式训练】1.(2021·嘉兴二模)函数f(x)=⎝⎛⎭⎪⎫1x -1+1x +1 cos x 的图象可能是()【解析】选C.由f(-x)=⎝⎛⎭⎪⎫1-x -1+1-x +1 cos (-x) =-⎝ ⎛⎭⎪⎫1x -1+1x +1 cos x =-f(x)知, 函数f(x)为奇函数,故排除B.又f(x)=⎝⎛⎭⎪⎫1x -1+1x +1 cos x =2x x 2-1 cos x , 当x ∈(0,1)时,2xx 2-1 <0,cos x>0⇒f(x)<0.故排除A ,D.2.(2021·石家庄一模)甲、乙、丙三人从红、黄、蓝三种颜色的帽子中各选一顶戴在头上,每人帽子的颜色互不相同,乙比戴蓝帽的人个头高,丙和戴红帽的人身高不同,戴红帽的人比甲个头小,则甲、乙、丙所戴帽子的颜色分别为( ) A .红、黄、蓝 B .黄、红、蓝 C .蓝、红、黄 D .蓝、黄、红【解析】选B.丙和戴红帽的人身高不同,戴红帽的人比甲个头小,故戴红帽的人为乙,即乙比甲的个头小;乙比戴蓝帽的人个头高,故戴蓝帽的人是丙. 综上,甲、乙、丙所戴帽子的颜色分别为黄、红、蓝.方法五:构造法构造法实质上是转化与化归思想在解题中的应用,需要根据已知条件和所要解决的问题确定构造的方向,通过构造新的函数、不等式或数列等模型转化为熟悉的问题求解.【典例5】(1)(2021·昆明三模)已知函数f(x)=e x -a -ln x x -1有两个不同的零点,则实数a 的取值范围是( )A .(e ,+∞)B .⎝ ⎛⎭⎪⎫e 2,+∞C .⎝ ⎛⎭⎪⎫12,+∞ D .(1,+∞)【解析】选D.方法一(切线构造):函数f(x)=e x -a -ln xx -1有两个不同的零点, 则e x -a -1=ln xx 有两个解, 令g(x)=e x -a -1,h(x)=ln xx (x>0),则g(x)与h(x)有2个交点,h′(x)=1-ln xx 2 (x>0), 当x>e 时h′(x)<0,h(x)单调递减, 当0<x<e 时h′(x)>0,h(x)单调递增, 由g′(x)=e x -a (x>0)得g(x)单调递增, 图象如下,当g(x)与h(x)相切时,设切点为⎝ ⎛⎭⎪⎫x 0,ln x 0x 0 , h′(x 0)=1-ln x 0x 2=g′(x 0)=0x ae -, 同时ln x 0x 0 =ex 0-a -1,得ln x 0x 0 +1=1-ln x 0x 2,即x0ln x0+x20=1-ln x0,(x0+1)ln x0=-(x0+1)(x0-1),又x0>0,ln x0=1-x0,所以x0=1,此时1=e1-a,所以a=1,当a>1时,可看作g(x)=e x-1-1的图象向右平移,此时g(x)与h(x)必有2个交点,当a<1时,图象向左平移二者必然无交点,综上a>1.方法二(分离参数):由题意,方程e x-a-ln xx-1=0有两个不同的解,即e-a=ln xx+1e x有两个不同的解,所以直线y=e-a与g(x)=ln xx+1e x的图象有两个交点.g′(x)=⎝⎛⎭⎪⎫ln xx+1′×e x-(e x)′×⎝⎛⎭⎪⎫ln xx+1(e x)2=-(x+1)(ln x+x-1)x2e x.记h(x)=ln x+x-1.显然该函数在(0,+∞)上单调递增,且h(1)=0,所以0<x<1时,h(x)<0,即g′(x)>0,函数单调递增;所以x>1时,h(x)>0,即g′(x)<0,函数单调递减.所以g(x)≤g(1)=ln 11+1e1=1e.又x→0时,g(x)→0;x→+∞时,g(x)→0.由直线y=e a与g(x)=ln xx+1e x的图象有两个交点,可得e -a <1e =e -1,即-a<-1,解得a>1.方法三:由题意,方程e x -a -ln x x -1=0有两个不同的解,即e x -a =ln x x +1,也就是1e a (xe x )=x +ln x =ln (xe x ).设t =xe x (x>0),则方程为1e a t =ln t ,所以1e a =ln t t .由题意,该方程有两个不同的解.设p(x)=xe x (x>0),则p′(x)=(x +1)e x (x>0),显然p′(x)>0,所以p(x)单调递增,所以t =p(x)>p(0)=0.记q(t)=ln t t (t>0),则q′(t)=1-ln t t 2 .当0<t<e 时,q′(t)>0,函数单调递增;当t>e 时,q′(t)<0,函数单调递减.所以q(t)≤q(e)=ln e e =1e .又t→0时,q(t)→0;t→+∞时,q(t)→0.由方程1e a =ln t t 有两个不同的解,可得0<1e a <1e ,解得a>1.(2)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P-ABC 为鳖臑,PA ⊥平面ABC ,PA =AB =2,AC =4,三棱锥P-ABC 的四个顶点都在球O 的球面上,则球O 的表面积为( )A .8πB .12πC .20πD .24π【解析】选C.将三棱锥P-ABC 放入长方体中,如图,三棱锥P-ABC 的外接球就是长方体的外接球.因为PA =AB =2,AC =4,△ABC 为直角三角形,所以BC =42-22 =2 3 .设外接球的半径为R ,依题意可得(2R)2=22+22+(2 3 )2=20,故R 2=5,则球O 的表面积为4πR 2=20π.【变式训练】1.已知2ln a =a ln 2,3ln b =b ln 3,5ln c =c ln 5,且a ,b ,c ∈(0,e),则( )A .a<b<cB .b<a<cC .c<b<aD .c<a<b【解析】选D.因为2ln a =a ln 2,3ln b =b ln 3,5ln c =c ln 5,且a ,b ,c ∈(0,e),化为:ln a a =ln 22 ,ln b b =ln 33 ,ln c c =ln 55 ,令f(x)=ln x x ,x ∈(0,e),f′(x)=1-ln x x 2 ,可得函数f(x)在(0,e)上单调递增,在(e ,+∞)上单调递减,f(c)-f(a)=ln 55 -ln 22 =2ln 5-5ln 210=ln 253210 <0,且a ,c ∈(0,e), 所以c<a ,同理可得a<b.所以c<a<b.2.(2021·汕头三模)已知定义在R 上的函数f(x)的导函数为f′(x),且满足f′(x)-f(x)>0,f(2 021)=e 2 021,则不等式f ⎝ ⎛⎭⎪⎫1e ln x <e x 的解集为( ) A .(e 2 021,+∞)B .(0,e 2 021)C .(e 2 021e ,+∞)D .(0,e 2 021e )【解析】选D.令t =1e ln x ,则x =e et ,所以不等式f ⎝ ⎛⎭⎪⎫1e ln x <e x 等价转化为不等式f(t)<e e et =e t ,即f (t )e t <1 构造函数g(t)=f (t )e t ,则g′(t)=f′(t )-f (t )e t, 由题意,g′(t)=f′(t )-f (t )e t>0, 所以g(t)为R 上的增函数,又f(2 021)=e 2 021,所以g(2 021)=f (2 021)e 2 021 =1,所以g(t)=f (t )e t <1=g(2 021),解得t<2 021,即1e ln x<2 021,所以0<x<e 2 021e .方法六:估算法估算法就是不需要计算出准确数值,可根据变量变化的趋势或极值的取值情况估算出大致取值范围,从而解决相应问题的方法.【典例6】(2019·全国Ⅰ卷)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-12 (5-12 ≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是5-12 .若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是( )A.165 cm B.175 cmC.185 cm D.190 cm【解析】选B.头顶至脖子下端的长度为26 cm,可得咽喉至肚脐的长度小于42 cm,肚脐至足底的长度小于110 cm,则该人的身高小于178 cm,又由肚脐至足底的长度大于105 cm,可得头顶至肚脐的长度大于65 cm,则该人的身高大于170 cm,所以该人的身高在170~178 cm之间.【变式训练】设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9 3 ,则三棱锥D-ABC体积的最大值为()A.12 3 B.18 3C.24 3 D.54 3【解析】选B.等边三角形ABC的面积为9 3 ,显然球心不是此三角形的中心,所以三棱锥的体积最大时,三棱锥的高h应满足h∈(4,8),所以13×9 3 ×4<V三棱锥D-ABC <13×9 3 ×8,即12 3 <V三棱锥D-ABC<24 3 .。
高中数学答题技巧100个绝招知识点大全
高中数学答题技巧100个绝招知识点大全高中数学答题技巧100个绝招知识点高考前注意事项高考复习方法高中数学答题技巧100个绝招知识点1.三个“基本”:基本的概念要清楚,基本的规律要熟悉,基本的方法要熟练。
2.做完题目后一定要认真总结,做到举一反三,这样,以后遇到同一类的问题是就不会花费太多的时间和精力了。
3.一定要全面了解数学概念,不能以偏概全。
4.学习概念的最终目的是能运用概念来解决具体问题,因此,要主动运用所学的数学概念来分析,解决有关的数学问题。
5.要掌握各种题型的解题方法,在练习中有意识的地去总结,慢慢地培养适合自己的分析习惯。
6.要主动提高综合分析问题的能力,借助文字阅读去分析理解。
7.在学习中,要有意识地注意知识的迁移,培养解决问题的能力。
8.要将所学知识贯穿在一起形成系统,我们可以运用类比联系法。
9.将各章节中的内容互相联系,不同章节之间互相类比,真正将前后知识融会贯通,连为一体,这样能帮助我们系统深刻地理解知识体系和内容。
10.在数学学习中可以利用口诀将相近的概念或规律进行比较,搞清楚它们的相同点,区别和联系,从而加深理解和记忆。
弄清数学知识间的相互联系,透彻理解概念,知道其推导过程,使知识条理化,系统化。
11.学习数学,不仅要关注题型,更要关注典型题型。
12.对于数学学科中的某些原理,定理,公式,不仅要记住它的结论,而且要了解这个结论是如何得出的。
13.学习数学,要熟记并正确地叙述概念和规律性内容。
14.在学习中要注意理解,开拓思路,变抽象为具体,逐渐培养自己学习数学的兴趣。
15.适当地对概念进行分类,可以使所学的内容化繁为简,重点突出,脉络分明,便于进行分析,比较,综合,概念。
16.数学学习最忌讳的就是对所学的知识模糊不清,各知识点混淆在一起,为了避免这一状况,同学们要学会写“知识结构小结”。
17.学会对题型题目的拆分和组合,学会从多角度,多方面来分析和解决典型题目,从中概括出基本题型和基本规律方法。
高考数学的解题思路技巧
高考数学的解题思路技巧高考数学的解题思路指导(一)选择题对选择题的审题,主要应清楚:是单选还是多选,是选择正确还是选择错误?答案写在什么地方,等等。
做选择题有四种基本方法:1 回忆法。
直接从记忆中取要选择的内容。
2 直接解答法。
多用在数理科的试题中,根据已知条件,通过计算、作图或代入选择依次进行验证等途径,得出正确答案。
3 淘汰法。
把选项中错误中答案排除,余下的便是正确答案。
4 猜测法。
(二) 应用性问题的审题和解题技巧解答应用性试题,要重视两个环节,一是阅读、理解问题中陈述的材料;二是通过抽象,转换成为数学问题,建立数学模型。
函数模型、数列模型、不等式模型、几何模型、计数模型是几种最常见的数学模型,要注意归纳整理,用好这几种数学模型。
(三) 最值和定值问题的审题和解题技巧最值和定值是变量在变化过程中的两个特定状态,最值着眼于变量的最大/小值以及取得最大/小值的条件;定值着眼于变量在变化过程中的某个不变量。
近几年的数学高考试题中,出现过各种各样的最值问题和定值问题,选用的知识载体多种多样,代数、三角、立体几何、解析几何都曾出现过有关最值或定值的试题,有些应用问题也常以最大/小值作为设问的方式。
分析和解决最值问题和定值问题的思路和方法也是多种多样的。
命制最值问题和定值问题能较好体现数学高考试题的命题原则。
应对最值问题和定值问题,最重要的是认真分析题目的情景,合理选用解题的方法。
(四) 计算证明题解答这种题目时,审题显得极其重要。
只有了解题目提供的条件和隐含的信息,确定具体解题步骤,问题才能解决。
在做这种题时,有一些共同问题需要注意:1 注意完成题目的全部要求,不要遗漏了应该解答的内容。
2 在平时练习中要养成规范答题的习惯。
3 不要忽略或遗漏重要的关键步骤和中间结果,因为这常常是题答案的采分点。
4 注意在试卷上清晰记录细小的步骤和有关的公式,即使没能获得最终结果,写出这些也有助于提高你的分数。
5 保证计算的准确性,注意物理单位的变换。
高考数学21种解题方法与技巧汇总
高考数学21种解题方法与技巧汇总今天,特地为大家整理了一份高中数学老师都推荐的数学解题方法,这里面的21种方法涵盖了高中数学的方方面面,可以说是高中数学解题方法大综合,各位同学一定要记得收藏哦!解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要根据有:换元法解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元→换元→解元→还元待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(-----)(----)=0 两种情况为或型②配成平方型:(----)2+(----)2=0 两种情况为且型数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组化简二次根式基本思路是:把√m化成完全平方式。
即:观察法代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
解含参方程方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。
专家指导:如何提升高考数学解题能力及十大解题法则
专家指导:如何提升高考数学解题能力及十大解题法则导读:教书育人楷模,更好地指导自己的学习,让自己不断成长。
让我们一起到店铺一起学习吧!下面店铺网的小编给你们带来了高三数学学习方法文章《专家指导:如何提升高考数学解题能力及十大解题法则》供考生们参考。
高考数学选择题十大解题法则1.特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
2.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。
极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
3.剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
4.数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。
数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
5.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
6.顺推解除法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
7.逆推验证法(代答案入题干验证法):将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。
8.正难则反法:从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
9.特征分析法:对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。
10.估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
高考数学高分技巧,不同题型的答题套路,轻松搞定数学8大学习法
高考数学高分技巧,不同题型的答题套路,轻松搞定数学 8 大学习法数学习题无非就是数学概念和数学思想的组合应用,弄清数学基本概念、基本定理、基本方法是判断题目类型、知识范围的前提,是正确把握解题方法的依据。
只有概念清楚,方法全面,遇到题目时,就能很快的得到解题方法,或者面对一个新的习题,就能联想到我们平时做过的习题的方法,达到迅速解答。
弄清基本定理是正确、快速解答习题的前提条件,特别是在立体几何等章节的复习中,对基本定理熟悉和灵活掌握能使习题解答条理清楚、逻辑推理严密。
反之,会使解题速度慢,逻辑混乱、叙述不清。
01、抓好基础那么如何抓基础呢?1、看课本;2、在做练习时遇到概念题是要对概念的内涵和外延再认识,注意从不同的侧面去认识、理解概念。
3、理解定理的条件对结论的约束作用,反问:如果没有该条件会使定理的结论发生什么变化?4、归纳全面的解题方法。
要积累一定的典型习题以保证解题方法的完整性。
5、认真做好我们网校同步课堂里面的每期的练习题,采用循环交替、螺旋式推进的方法,克服对基本知识基本方法的遗忘现象。
02、制定好计划和奋斗目标复习数学时,要制定好计划,不但要有本学期大的规划,还要有每月、每周、每天的小计划,计划要与老师的复习计划吻合,不能相互冲突,如按照老师的复习进度,今天复习到什么知识点,就应该在今天之内掌握该知识点,加深对该知识点的理解,研究该知识点考查的不同侧面、不同角度。
在每天的复习计划里,要留有一定的时间看课本,看笔记,回顾过去知识点,思考老师当天讲了什么知识,归纳当天所学的知识。
可以说,每天的习题可以少做,但这些归纳、反思、回顾是必不可少的。
望你在制定计划时注意。
03、克服盲目做题而不注重归纳的现象做习题是为了巩固知识、提高应变能力、思维能力、计算能力。
学数学要做一定量的习题,但学数学并不等于做题,在各种考试题中,有相当的习题是靠简单的知识点的堆积,利用公理化知识体系的演绎而就能解决的,这些习题是要通过做一定量的习题达到对解题方法的展移而实现的,但,随着高考的改革,高考已把考查的重点放在创造型、能力型的考查上。
关于高考数学答题技巧有哪些
关于高考数学答题技巧有哪些从这个意义上,数学属于形式科学,而不是自然科学。
不同的数学家和哲学家对数学的准确范围和定义有一系列的看法。
下面我为大家带来高考数学答题技巧有哪些,盼望大家喜爱!高考数学答题技巧专题一、三角变换与三角函数的性质问题1、解题路线图①不同角化同角②降幂扩角③化f(x)=Asin(ωx+φ)+h④结合性质求解。
2、构建答题模板①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sinx,y=cosx的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h 的性质,写出结果。
④(反思):反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
专题二、解三角形问题1、解题路线图(1)①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2)①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
2、构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即依据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应留意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
专题三、数列的通项、求和问题1、解题路线图①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
2、构建答题模板①找递推:依据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:依据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
③定(方法):依据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
④写步骤:规范写出求和步骤。
⑤再反思:反思回顾,查看关键点、易错点及解题规范。
专题四、利用空间向量求角问题1、解题路线图①建立坐标系,并用坐标来表示向量。
数学高考解题技巧如何迅速解决数列题中的递推关系问题
数学高考解题技巧如何迅速解决数列题中的递推关系问题数学高考中,数列题是考察学生对数列递推关系的掌握和运用能力的重要题型之一。
其中,解决数列题中的递推关系问题是考生们经常遇到的难点之一。
本文将介绍一些解决数列题中递推关系问题的技巧和方法,以帮助考生迅速应对这类题目。
一、观察找规律法1. 逐项尝试法对于给定的数列,可以逐项进行尝试,观察相邻项之间的关系。
通过观察,可以发现数列中的递推关系,从而准确地找出递推公式。
尝试的过程需要细心和耐心,相邻项之间的变化可能存在一定的规律。
2. 数学归纳法对于规律不明显的数列,可以考虑利用数学归纳法。
首先猜测递推关系的公式,然后利用归纳法证明该公式的正确性。
具体步骤为:先证明公式在某一项成立,然后再证明若前n项成立,则第n+1项也成立。
如果步骤中的条件都能满足,那么递推公式就是正确的。
3. 相邻项之差法对于等差数列,相邻项之间的差值是恒定的。
因此,可以通过计算相邻项之间的差值,找到递推公式。
同理,对于等比数列,相邻项之间的比值也是恒定的。
二、直接拆解法1. 和项拆解法对于给定的递推关系,可以通过拆解和项的方式得到递推公式。
例如,对于等差数列,可以将和项分解成前一项的和与当前项之间的差值。
2. 等式拆解法对于一些特殊的递推关系,可以通过等式拆解的方式解决。
例如,对于斐波那契数列,可以通过将递推关系等式两边同时乘以一个常数,然后再进行拆解得到递推公式。
三、辅助方法法1. 通项公式法对于常见的数列,存在通项公式,利用通项公式可以直接求解任意项的值。
因此,对于一些计算量较大的递推关系题目,可以考虑寻找数列的通项公式,从而迅速解决问题。
2. 制表法对于复杂的递推关系问题,可以通过制表的方式记录数列的项,进而分析数列的规律和递推关系。
通过制表,可以更好地观察和把握数列中的规律,从而解决问题。
通过以上的解题技巧和方法,相信考生们在解决数列题中的递推关系问题时会更加灵活和准确。
然而,使用这些方法并不一定适用于所有的数列题目,因此在解题过程中,考生还应灵活运用不同的方法,并在平时的练习中不断提高自己的解题能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学的解题技巧指导
1.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,
从而达到迅速解决问题的目的。
极端性多数应用在求极值、取值范围、解析几何上面,很
多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
2.剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范
围时,取特殊点代入验证即可排除。
3.数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。
数形结合的好处就是直观,甚至可以用量
角尺直接量出结果来。
1.熟悉基本的解题步骤和解题方法
解题的过程,是一个思维的过程。
对一些基本的、常见的问题,前人已经总结出了一
些基本的解题思路和常用的解题程序,我们一般只要顺着这些解题的思路,遵循这些解题
的步骤,往往很容易找到习题的答案。
2.审题要认真仔细
对于一道具体的习题,解题时最重要的环节是审题。
审题的第一步是读题,这是获取
信息量和思考的过程。
读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并
从中找出隐含条件。
有些学生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常
是漏掉了一些信息,花了很长时间解不出来,还找不到原因,想快却慢了。
所以,在实际
解题时,应特别注意,审题要认真、仔细。
3.认真做好归纳总结
在解过一定数量的习题之后,对所涉及到的知识、解题方法进行归纳总结,以便使解
题思路更为清晰,就能达到举一反三的效果,对于类似的习题一目了然,可以节约大量的
解题时间。
4.熟悉习题中所涉及的内容
解题、做练习只是学习过程中的一个环节,而不是学习的全部,你不能为解题而解题。
解题时,我们的概念越清晰,对公式、定理和规则越熟悉,解题速度就越快。
因此,我们在解题之前,应通过阅读教科书和做简单的练习,先熟悉、记忆和辨别这
些基本内容,正确理解其涵义的本质,接着马上就做后面所配的练习,一刻也不要停留。
5.学会画图
画图是一个翻译的过程,把解题时的抽象思维,变成了形象思维,从而降低了解题难度。
有些题目,只要分析图一画出来,其中的关系就变得一目了然。
尤其是对于几何题,
包括解析几何题,若不会画图,有时简直是无从下手。
1. 调整好状态,控制好自我
1保持清醒。
数学的考试时间在下午,建议同学们中午最好休息半个小时或1个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。
2按时到位。
但发卷时间应在开考前5-10分钟内,建议同学们提前15-20分钟到达考场。
2. 通览试卷,树立自信
刚拿到试卷,一般心情比较紧张,此时不易匆忙作答,应从头到尾、通览全卷,哪些
是一定会做的题要心中有数,先易后难,稳定情绪。
答题时,见到简单题,要细心,莫忘
乎所以。
面对偏难的题,要耐心,不能急。
3. 提高解选择题的速度、填空题的准确度
数学选择题要求知识灵活运用,解题要求是只要结果、不要过程。
因此,逆代法、估
算法、特例法、排除法、数形结合法……尽显威力。
12个选择题,若能把握得好,容易
的一分钟一题,难题也不超过五分钟。
由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。
填空题也是只要结果、不要过程,因此要力求“完整、严密”。
4. 审题要慢,做题要快,下手要准
题目本身就是破解这道题的信息源,所以审题一定要逐字逐句看清楚,只有细致地审
题才能从题目本身获得尽可能多的信息。
找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,牢记高考评分标准是按
步给分,关键步骤不能丢,但允许合理省略非关键步骤。
答题时,尽量使用数学语言、符号,这比文字叙述要节省而严谨。
4. 审题要慢,做题要快,下手要准
题目本身就是破解这道题的信息源,所以审题一定要逐字逐句看清楚,只有细致地审
题才能从题目本身获得尽可能多的信息。
找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,牢记高考评分标准是按
步给分,关键步骤不能丢,但允许合理省略非关键步骤。
答题时,尽量使用数学语言、符号,这比文字叙述要节省而严谨。
7. 遇到难题要学会
1缺步解答:聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,能解决多少就解决多少,能演算几步就写几步。
特别是那些解题层次明显的题目,或者是
已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分
数却已过半。
2 跳步答题:解题过程卡在某一过渡环节上是常见的。
这时,我们可以假定某些结论
是正确的往后推,看能否得到结论,或从结论出发,看使结论成立需要什么条件。
如果
方向正确,就回过头来,集中力量攻克这一“卡壳处”。
如果时间不允许,那么可以把前面的写下来,再写出“证实某步之后,继续有……”
一直做到底,这就是跳步解答。
也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面。
若题目有两问,第一问想不出来,可把第一问作“已知”,“先做第二问”,这也是跳步解答。
感谢您的阅读,祝您生活愉快。