2设计动态规划算法的主要步骤为
算法分析与设计教案
![算法分析与设计教案](https://img.taocdn.com/s3/m/0dfd7b39763231126edb1161.png)
算法分析与设计课程教案课程编号:50c24037-01总学时:51 周学时:4适用年级专业(学科类):2007级计科专业开课时间:2010-2011 学年第1 学期使用教材:王晓东编著计算机算法设计与分析第3版章节第1章1.1~ 1.2 第2 章2.1 课时 2教学目的理解程序与算法的概念、区别与联系;掌握算法在最坏情况、最好情况和平均情况下的计算复杂性概念;掌握算法复杂性的渐近性态的数学表述;理解递归的概念。
教学重点及突出方法重点:程序与算法的概念、算法的时间复杂性、算法复杂性的渐近性态的数学表述以及递归的概念。
通过讲解、举例方法。
教学难点及突破方法难点:算法复杂性与递归通过讲解、举例、提问与引导方法。
相关内容此部分内容基础知识可参考清华大学出版社出版严蔚敏编著的《数据结构》教学过程(教师授课思路、设问及讲解要点)回顾数据结构课程中的算法概念、排序算法等知识,从而引出本课程内容。
提问算法与程序的区别、联系以及算法具有的特性。
讲解算法的复杂性,主要包括时间复杂性与空间复杂性。
讲解最坏情况、最好情况与平均情况的时间复杂性。
讲解算法复杂性在渐近意义下的阶,主要包括O、Ω、θ与o,并通过具体例子说明。
通过具体例子说明递归技术。
主要包括阶乘函数、Fibonacci数列、Ackerman函数、排列问题、整数划分问题、Hanoi塔问题等。
第页章节第2 章2.2~2.5 课时 2 教学目的掌握设计有效算法的分治策略,并掌握范例的设计技巧,掌握计算算法复杂性方法。
教学重点及突出方法重点:分治法的基本思想及分治法的一般设计模式。
通过讲解、举例方法。
教学难点及突破方法难点:计算算法复杂性。
通过讲解、举例、提问与引导方法。
相关内容素材教(教师授课思路、设问及讲解要点)学过程通过生活中解决复杂问题的分解方法,引出分治方法。
讲解分治法的基本思想及其一般算法的设计模式,介绍分治法的计算效率。
通过具体例子采用分治思想来设计有效算法。
动态规划的空间复杂度
![动态规划的空间复杂度](https://img.taocdn.com/s3/m/1c3a40599a6648d7c1c708a1284ac850ac020476.png)
动态规划的空间复杂度动态规划(Dynamic Programming)是一种解决复杂问题的算法思想,它通过将问题分解为子问题,并保存子问题的解来解决整体问题。
其中,空间复杂度是评估算法在使用内存方面的效率。
本文将探讨动态规划算法中的空间复杂度,并分析如何在实际应用中优化空间利用。
一、动态规划算法概述动态规划算法通常用于解决具有重叠子问题和最优子结构性质的问题。
它的核心思想是将原问题分解为若干个子问题,并分别求解这些子问题的最优解,然后通过求解子问题的最优解,得到原问题的最优解。
二、动态规划算法的基本步骤动态规划算法通常包括以下几个基本步骤:1. 定义状态:将问题抽象为一个数学模型,并定义状态表示问题的一种描述方式。
2. 状态转移方程:为了求解原问题的最优解,需要找到子问题之间的关系,并建立状态转移方程,即将原问题的求解过程表示为子问题的求解过程。
3. 初始条件:确定问题的边界条件,即最简单的情况。
4. 计算顺序:按照一定的顺序计算各个子问题的最优解。
5. 填表求解:根据状态转移方程和初始条件,计算各个子问题的最优解,并填表保存。
6. 构造解:根据填表求解的结果,构造原问题的最优解。
三、动态规划算法的空间复杂度分析在动态规划算法中,空间复杂度是评估算法使用内存的量。
由于动态规划算法通常采用填表的方式记录子问题的解,因此在空间复杂度分析中,主要考虑所需的额外空间。
1. 状态表空间:动态规划算法通常使用一个二维数组或一维数组来保存子问题的解。
如果问题的规模为n,状态数为m,则状态表的大小为m*n。
因此,状态表空间复杂度为O(m*n)。
2. 状态变量空间:有些动态规划问题只需要保存前一状态的解,而不需要保存全部子问题的解。
此时,可以只使用一个变量来保存前一状态的解,从而减少空间复杂度。
3. 优化空间利用:有时候,可以通过观察问题的特点,找到一种更加紧凑的存储方式,从而节省空间。
例如,对于一些只与前一状态相关的问题,可以使用滚动数组技巧,只保存最近的几个状态,从而将空间复杂度降低至常数级。
动态规划的具体操作,分四步
![动态规划的具体操作,分四步](https://img.taocdn.com/s3/m/d734dd978662caaedd3383c4bb4cf7ec4afeb69f.png)
动态规划的具体操作,分四步动态规划是我学的最蛋疼的⼀个问题。
⼤家觉得呢•动态规划算法的⼀般步骤1.找出最优解的性质,并刻画其结构特征;2.递归地定义最优值;3.以⾃底向上的⽅式计算出最优值;根据计算最优值时得到的信息,构造最优解下⾯⽤⼀个例⼦来说明。
矩阵连乘问题(⾃⾏百度查⼀下是什么哈)•将矩阵连乘积AiAi+1…Aj记作A[i:j]–把问题转化成考察A[1:n]的最优计算次序问题–设计算次序在A[k]处将矩阵断开最优,则总计算量为: A[1:k] 的计算量加上A[k+1:n]的计算量,再加上A[1:k] 和A[k+1:n]相乘的计算量。
关键特征lA[1:n]的最优计算次序所包含的计算矩阵⼦链A[1:k]和A[k+1:n]的次序也是最优的。
(可⽤反证法证明)——问题的最优解包含了其⼦问题的最优解,这种性质称为最优⼦结构性质。
对矩阵:A1A2A3A4A5A6,可能的最优解A1(A2A3)|A4(A5A6)最优解:A[1:6]=A[1:3]+A[4:6]+A[1:3]*A[4:6]–A[1:3]与A[4:6]也必分别为最优解(计算总量最少),因为其⽆关;–若有A’[1:3]⼩于A[1:3],由后两项不改变,则A[1:6]不是最⼩,故与前提⽭盾;递归地定义最优值。
•设计算A[i:j],1≤i≤j ≤n,所需的最少数乘次数为m[i][j]——则原问题的最优解为m[1][n]–考察两种情况•i=j;•i<j;m[i][j] = 0+m[i+1][j]+ p[i-1]*p[i]*p[j];for (k = i+1; k < j; k++) {t = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];if (t < m[i][j]) m[i][j] = t;}void MatrixChain(int *p,int n,int **m,int **s) {for (j = 2; j <= n; j++)for (i = j-1; i >= 1; i--) {m[i][j] = m[i+1][j]+ p[i-1]*p[i]*p[j];s[i][j] = i;for (k = i+1; k < j; k++) {t = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];if (t < m[i][j]) { m[i][j] = t; s[i][j] = k; }}}} //算法的计算时间上界为O(n3)。
电大计算机本科_算法设计与分析(期末考试复习题含答案)
![电大计算机本科_算法设计与分析(期末考试复习题含答案)](https://img.taocdn.com/s3/m/a57a0cd9bcd126fff6050bf5.png)
1、二分搜索算法是利用( A )实现的算法。
A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是动态规划算法基本步骤的是( A )。
A、找出最优解的性质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是( A )的一搜索方式。
A、分支界限法B、动态规划法C、贪心法D、回溯法4、在下列算法中有时找不到问题解的是( B )。
A、蒙特卡罗算法B、拉斯维加斯算法C、舍伍德算法D、数值概率算法5. 回溯法解旅行售货员问题时的解空间树是( A ).A、子集树B、排列树C、深度优先生成树D、广度优先生成树6.下列算法中通常以自底向上的方式求解最优解的是( B )。
A、备忘录法B、动态规划法C、贪心法D、回溯法7、衡量一个算法好坏的标准是(C )。
A 运行速度快B 占用空间少C 时间复杂度低D 代码短8、以下不可以使用分治法求解的是(D )。
A 棋盘覆盖问题B 选择问题C 归并排序D 0/1背包问题9。
实现循环赛日程表利用的算法是( A ).A、分治策略B、动态规划法C、贪心法D、回溯法10、下列随机算法中运行时有时候成功有时候失败的是(C )A 数值概率算法B 舍伍德算法C 拉斯维加斯算法D 蒙特卡罗算法11.下面不是分支界限法搜索方式的是( D )。
A、广度优先B、最小耗费优先C、最大效益优先D、深度优先12.下列算法中通常以深度优先方式系统搜索问题解的是( D ).A、备忘录法B、动态规划法C、贪心法D、回溯法13.备忘录方法是那种算法的变形。
( B )A、分治法B、动态规划法C、贪心法D、回溯法14.哈弗曼编码的贪心算法所需的计算时间为( B )。
A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)15.分支限界法解最大团问题时,活结点表的组织形式是( B ).A、最小堆B、最大堆C、栈D、数组16.最长公共子序列算法利用的算法是( B )。
A、分支界限法B、动态规划法C、贪心法D、回溯法17.实现棋盘覆盖算法利用的算法是( A ).A、分治法B、动态规划法C、贪心法D、回溯法18.下面是贪心算法的基本要素的是( C )。
算法习题——精选推荐
![算法习题——精选推荐](https://img.taocdn.com/s3/m/e671fee9c9d376eeaeaad1f34693daef5ef71309.png)
算法习题算法设计与分析试卷⼀、填空题(20分,每空2分)1、算法的性质包括输⼊、输出、确定性、有限性。
2、动态规划算法的基本思想就将待求问题分解成若⼲个⼦问题、先求解⼦问题,然后从这些⼦问题的解得到原问题的解。
3、设计动态规划算法的4个步骤:(1)找出最优解的性质,并刻画其结构特征。
(2)递归地定义最优值。
(3)以⾃底向上的⽅式计算出最优值。
(4)根据计算最优值得到的信息,构造最优解。
4、流⽔作业调度问题的johnson算法:(1)令N1={i|ai=bj};(2)将N1中作业依ai的ai的⾮减序排序;将N2中作业依bi的⾮增序排序。
5、对于流⽔作业⾼度问题,必存在⼀个最优调度π,使得作业π(i)和π(i+1)满⾜Johnson不等式min{bπ(i),aπ(i+1)}≥min{bπ(i+1),aπ(i)}。
6、最优⼆叉搜索树即是最⼩平均查找长度的⼆叉搜索树。
⼆、综合题(50分)1、当(a1,a2,a3,a4,a5,a6)=(-2,11,-4,13,-5,-2)时,最⼤⼦段和为∑ak(2<=k<=4)=20(5分)2、由流⽔作业调度问题的最优⼦结构性质可知,T(N,0)=min{ai+T(N-{i},bi)}(1=3、最⼤⼦段和问题的简单算法(10分)int maxsum(int n,int *a,int & bestj){Int sum=0;for (int i=1;i<=n;i++)for (int j=i;j<=n;j++)int thissum=0;for(int k=i;k<=j;k++)this sum+=a[k];if(thissum>sum){sum=thissum;besti=i;bestj=j;}}return sum;}4、设计最优⼆叉搜索树问题的动态规划算法OptimalBinarysearchTree? (15分)Void OptimalBinarysearchTree(int a,int n,int * * m, int * * w){for(int i=0;i<=n;i++) {w[i+1][i]=a[i]; m[i+1][i]= 0;}for(int r=0;rfor(int i=1;i<=n-r;i++){int j=i+r;w[i][j]=w[i][j-1]+a[j]+b[j];m[i][j]= m[i+1][j];s[i][j]=i;for(int k=i+1;k<=j;k++){int t=m[i][k-1]+m[k+1][j];if(t}m[i][j]=t; s[i][j]=k;}}5、设n=4, (a1,a2,a3,a4)=(3,4,8,10), (b1,b2,b3,b4)=(6,2,9,15) ⽤两种⽅法求4个作业的最优调度⽅案并计算其最优值?(15分)法⼀:min(ai,bj)<=min(aj,bi)因为min(a1,b2)<=min(a2,b1)所以1→2 (先1后2)由min(a1,b3)<=min(a3,b1)得1→3 (先1后3)同理可得:最后为1→3→4→2法⼆:johnson算法思想N1={1,3,4} N2={2}N11={1,3,4} N12={2}所以N11→N12得:1→3→4→2三、简答题(30分)1、将所给定序列a[1:n]分为长度相等的两段a[1:n/2]和a[n/2+1:n],分别求出这两段的最⼤⼦段和,则a[1:n]的最⼤⼦段和有哪三种情形?(10分)答:(1)a[1:n]的最⼤⼦段和与a[1:n/2]的最⼤⼦段和相同。
练习——简答题
![练习——简答题](https://img.taocdn.com/s3/m/93ca490eb6360b4c2e3f5727a5e9856a56122600.png)
练习——简答题1.什么是算法?算法有哪些特征?答:算法是求解问题的⼀系列计算步骤。
算法具有有限性、确定性、可⾏性、输⼊性和输出性5个重要特征。
2.算法设计应满⾜的⼏个⽬标答:算法设计应满⾜正确性、可使⽤性、可读性、健壮性和⾼效率与低存储量需求。
3.算法设计的基本步骤答:算法设计的基本步骤是:(1)分析求解问题(2)选择数据结构和算法设计策略(3)描述算法(4)证明算法正确性(5)算法分析各步骤之间存在循环和反复过程。
4.什么是算法复杂性?它主要有哪两个⽅⾯构成?答:算法复杂性是算法运⾏时所需要的计算机资源的量,它包括两个⽅⾯:时间复杂性(需要时间资源的量)和空间复杂性(需要空间资源的量)。
5.分析算法复杂性的意义是什么?算法的复杂性是算法效率的度量,是评价算法优劣的重要依据。
⼀个算法的复杂性的⾼低体现在运⾏该算法所需要的计算机资源的多少上⾯,所需的资源越多,我们就说该算法的复杂性越⾼;反之,所需的资源越低,则该算法的复杂性越低。
6.f(n)=O(g(n))答:f(n)=O(g(n))当且仅当存在正常量c和n0,使当n≥n0时,f(n)≤cg(n),即g(n)为f(n)的上界。
7.f(n)=W(g(n))答:f(n)=W(g(n))当且仅当存在正常量c和n0,使当n≥n0时,f(n)≥cg(n),即g(n)为f(n)的下界。
8.f(n)=Q(g(n))答:f(n)=Q(g(n))当且仅当存在正常量c1、c2和n0,使当n≥n0时,有c1g(n)≤f(n)≤c2g(n),即g(n)与f(n)的同阶。
9.算法的平均情况、最好情况、最坏情况,哪种情况的可操作性最好,最具有实际价值?答:设⼀个算法的输⼊规模为n,Dn是所有输⼊的集合,任⼀输⼊I∈Dn,P(I)是I出现的概率,有 =1,T(I)是算法在输⼊I下所执⾏的基本语句次数,则该算法的平均执⾏时间为:A(n)=算法的最好情况为:G(n)= ,是指算法在所有输⼊I下所执⾏基本语句的最少次数。
算法设计与分析考试题及答案
![算法设计与分析考试题及答案](https://img.taocdn.com/s3/m/e3378fcfd5bbfd0a795673f8.png)
1.一个算法就是一个有穷规则的集合,其中之规则规定了解决某一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:_________,________,________,__________,__________。
2.算法的复杂性有_____________和___________之分,衡量一个算法好坏的标准是______________________。
3.某一问题可用动态规划算法求解的显著特征是____________________________________。
4.若序列X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列X 和Y的一个最长公共子序列_____________________________。
5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________。
6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解。
7.以深度优先方式系统搜索问题解的算法称为_____________。
8.0-1背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________。
9.动态规划算法的两个基本要素是___________和___________。
10.二分搜索算法是利用_______________实现的算法。
二、综合题(50分)1.写出设计动态规划算法的主要步骤。
2.流水作业调度问题的johnson算法的思想。
3.若n=4,在机器M1和M2上加工作业i所需的时间分别为a i和b i,且(a1,a2,a3,a4)=(4,5,12,10),(b1,b2,b3,b4)=(8,2,15,9)求4个作业的最优调度方案,并计算最优值。
4.使用回溯法解0/1背包问题:n=3,C=9,V={6,10,3},W={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间(从根出发,左1右0),并画出其解空间树,计算其最优值及最优解。
算法分析复习题目及答案16-12-10
![算法分析复习题目及答案16-12-10](https://img.taocdn.com/s3/m/1b855352b307e87101f696b9.png)
一。
选择题1、二分搜索算法是利用( A )实现的算法。
A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是动态规划算法基本步骤的是( D )。
A、找出最优解的性质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是( A )的一搜索方式。
A、分支界限法B、动态规划法C、贪心法D、回溯法5. 回溯法解旅行售货员问题时的解空间树是()。
A、子集树B、排列树C、深度优先生成树D、广度优先生成树6.下列算法中通常以自底向上的方式求解最优解的是( B )。
A、备忘录法B、动态规划法C、贪心法D、回溯法注意:动态规划采用的是自底向上的方式求解,而贪心算法采用的是自顶向下的方式来求解问题。
7、衡量一个算法好坏的标准是(C )。
A 运行速度快B 占用空间少C 时间复杂度低D 代码短8、以下不可以使用分治法求解的是(D )。
A 棋盘覆盖问题B 选择问题C 归并排序D 0/1背包问题9. 实现循环赛日程表利用的算法是( A )。
A、分治策略B、动态规划法C、贪心法D、回溯法11.下面不是分支界限法搜索方式的是( D )。
A、广度优先B、最小耗费优先C、最大效益优先D、深度优先12.下列算法中通常以深度优先方式系统搜索问题解的是( D )。
A、备忘录法B、动态规划法C、贪心法D、回溯法13.备忘录方法是那种算法的变形。
( B )A、分治法B、动态规划法C、贪心法D、回溯法注意:备忘录是动态规划方法的一个步骤。
14.哈弗曼编码的贪心算法所需的计算时间为( B )。
A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)15.分支限界法解最大团问题时,活结点表的组织形式是( B )。
A、最小堆B、最大堆C、栈D、数组16.最长公共子序列算法利用的算法是( B )。
A、分支界限法B、动态规划法C、贪心法D、回溯法17.实现棋盘覆盖算法利用的算法是( A )。
A、分治法B、动态规划法C、贪心法D、回溯法18.下面是贪心算法的基本要素的是( C )。
《算法设计与分析》期末必考复习及答案题整理
![《算法设计与分析》期末必考复习及答案题整理](https://img.taocdn.com/s3/m/86aa47c3b90d6c85ed3ac6a8.png)
《算法设计与分析》期末必考复习及答案题整理1、分治法的基本思想:是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题互相独立且与原问题相同。
递归地解这些子问题,然后将各子问题的解合并得到原问题的解。
2、贪心选择性质:指所求问题的整体最优解可以通过一系列局部最优的选择,3、 Prim算法:设G=(V,E)是连通带权图,V={1,2,…,n}。
构造G的最小生成树的Prim算法的基本思想是:首先置S={1},然后,只要S是V的真子集,就作如下的贪心选择:选取满足条件i?S,j?V-S,且c[j]最小的边,将顶点j添加到S 中。
这个过程一直进行到S=V时为止。
4、什么是剪枝函数:回溯法搜索解空间树时,通常采用两种策略避免无效搜索,提高回溯法的搜索效率。
其一是用约束函数在扩展结点处剪去不满足约束的子树;其二是用限界函数剪去得不到最优解的子树。
这两类函数统称为剪枝函数。
6、分支限界法的基本思想:(1)分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。
(2)在分支限界法中,每一个活结点只有一次机会成为扩展结点。
活结点一旦成为扩展结点,就一次性产生其所有儿子结点。
在这些儿子结点中,导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。
(3)此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程,这个过程一直持续到找到所需的解或活结点表这空时为止。
5、什么是算法的复杂性:是该算法所需要的计算机资源的多少,它包括时间和空间资源。
6、最优子结构性质:该问题的最优解包含着其子问题的最优解。
7、回溯法:是一个既带有系统性又带有跳跃性的搜索算法。
这在问题的解空间树中,按深度优先策略,从根结点出发搜索解空间树。
算法搜索至解空间树的任一结点时,先判断该结点是否包含问题的解。
如果肯定不包含,则跳过对以该结点为根的子树的搜索,逐层向其祖先结点回溯;否则,进入该子树,继续按深度优先策略搜索。
北语网院20春《算法与数据分析》作业_4答案
![北语网院20春《算法与数据分析》作业_4答案](https://img.taocdn.com/s3/m/1d560397e87101f69e3195a1.png)
(单选)1:使用分治法求解不需要满足的条件是
A:子问题必须是一样的
B:子问题不能够重复
C:子问题的解可以合并
D:原问题和子问题使用相同的方法解
正确答案:A
(单选)2:合并排序算法是利用
A:分治策略
B:动态规划法
C:贪心法
D:回溯法
正确答案:A
(单选)3:在下列算法中有时找不到问题解的是
A:蒙特卡罗算法
B:拉斯维加斯算法
C:舍伍德算法
D:数值概率算法
正确答案:B
(单选)4:在下列算法中得到的解未必正确的是
A:蒙特卡罗算法
B:拉斯维加斯算法
C:舍伍德算法
D:数值概率算法
正确答案:B
(单选)5:用分支限界法设计算法的第二步是
A:针对所给问题,定义问题的解空间(对解进行编码)
B:确定易于搜索的解空间结构(按树或图组织解)
C:以广度优先或以最小耗费(最大收益)优先的方式搜索解空间D:在搜索过程中用剪枝函数避免无效搜索
正确答案:B
(单选)6:0-1背包问题的回溯算法所需的计算时间为
A:O(n2n)
B:O(nlogn)
C:O(2n)
D:O(n)
正确答案:A
(单选)7:实现最大子段和利用的算法是
A:分治策略。
算法设计与分析考试题目及答案
![算法设计与分析考试题目及答案](https://img.taocdn.com/s3/m/bc05b210905f804d2b160b4e767f5acfa0c78351.png)
算法设计与分析考试题目及答案Revised at 16:25 am on June 10, 2021I hope tomorrow will definitely be better算法分析与设计期末复习题一、 选择题1.应用Johnson 法则的流水作业调度采用的算法是DA. 贪心算法B. 分支限界法C.分治法D. 动态规划算法塔问题如下图所示;现要求将塔座A 上的的所有圆盘移到塔座B 上,并仍按同样顺序叠置;移动圆盘时遵守Hanoi 塔问题的移动规则;由此设计出解Hanoi 塔问题的递归算法正确的为:B3. 动态规划算法的基本要素为C A. 最优子结构性质与贪心选择性质 B .重叠子问题性质与贪心选择性质 C .最优子结构性质与重叠子问题性质 D. 预排序与递归调用4. 算法分析中,记号O 表示B , 记号Ω表示A , 记号Θ表示D ; A.渐进下界 B.渐进上界 C.非紧上界 D.紧渐进界 E.非紧下界5. 以下关于渐进记号的性质是正确的有:A A.f (n)(g(n)),g(n)(h(n))f (n)(h(n))=Θ=Θ⇒=Θ B. f (n)O(g(n)),g(n)O(h(n))h(n)O(f (n))==⇒= C. Ofn+Ogn = Omin{fn,gn} D. f (n)O(g(n))g(n)O(f (n))=⇔=Hanoi 塔A. void hanoiint n, int A, int C, int B { if n > 0 {hanoin-1,A,C, B; moven,a,b;hanoin-1, C, B, A; } B. void hanoiint n, int A, int B, int C { if n > 0 {hanoin-1, A, C, B; moven,a,b; hanoin-1, C, B, A; }C. void hanoiint n, int C, int B, int A { if n > 0 { hanoin-1, A, C, B; moven,a,b; hanoin-1, C, B, A; }D. void hanoiint n, int C, int A, int B { if n > 0 {hanoin-1, A, C, B; moven,a,b;hanoin-1, C, B, A; }6.能采用贪心算法求最优解的问题,一般具有的重要性质为:AA. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用7. 回溯法在问题的解空间树中,按D策略,从根结点出发搜索解空间树;广度优先 B. 活结点优先 C.扩展结点优先 D. 深度优先8. 分支限界法在问题的解空间树中,按A策略,从根结点出发搜索解空间树;A.广度优先 B. 活结点优先 C.扩展结点优先 D. 深度优先9. 程序块A是回溯法中遍历排列树的算法框架程序;A.B.C.D.10.xk的个数;11. 常见的两种分支限界法为DA. 广度优先分支限界法与深度优先分支限界法;B. 队列式FIFO分支限界法与堆栈式分支限界法;C. 排列树法与子集树法;D. 队列式FIFO分支限界法与优先队列式分支限界法;12. k带图灵机的空间复杂性Sn是指BA.k带图灵机处理所有长度为n的输入时,在某条带上所使用过的最大方格数;B.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的方格数的总和;C.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的平均方格数;D.k带图灵机处理所有长度为n的输入时,在某条带上所使用过的最小方格数;13. N P类语言在图灵机下的定义为DA.NP={L|L是一个能在非多项式时间内被一台NDTM所接受的语言};B.NP={L|L是一个能在多项式时间内被一台NDTM所接受的语言};C.NP={L|L是一个能在多项式时间内被一台DTM所接受的语言};D.NP={L|L是一个能在多项式时间内被一台NDTM所接受的语言};14. 记号O的定义正确的是A;A.Ogn = { fn | 存在正常数c和n0使得对所有n≥n0有:0≤ fn ≤cgn };B.Ogn = { fn | 存在正常数c和n0使得对所有n≥n0有:0≤ cgn ≤fn };>0使得对所有n≥n0C.Ogn = { fn | 对于任何正常数c>0,存在正数和n有:0 ≤fn<cgn };>0使得对所有n≥n0D.Ogn = { fn | 对于任何正常数c>0,存在正数和n有:0 ≤cgn < fn };15. 记号Ω的定义正确的是B;A.Ogn = { fn | 存在正常数c和n0使得对所有n≥n0有:0≤ fn ≤cgn };B.Ogn = { fn | 存在正常数c和n0使得对所有n≥n0有:0≤ cgn ≤fn };>0使得对所有n≥n0有:C.gn = { fn | 对于任何正常数c>0,存在正数和n0 ≤fn<cgn };D.gn = { fn | 对于任何正常数c>0,存在正数和n0 >0使得对所有n≥n0有:0 ≤cgn < fn };二、 填空题1. 下面程序段的所需要的计算时间为 2O(n ) ;2.3.4. 5.6. 用回溯法解题的一个显着特征是在搜索过程中动态产生问题的解空间;在任何时刻,算法只保存从根结点到当前扩展结点的路径;如果解空间树 中从根结点到叶结点的最长路径的长度为hn,则回溯法所需的计算空间通常为Ohn ;7. 回溯法的算法框架按照问题的解空间一般分为子集树算法框架与排列树算法框架;8. 用回溯法解0/1背包问题时,该问题的解空间结构为子集树结构; 9.用回溯法解批处理作业调度问题时,该问题的解空间结构为排列树结构; 10.用回溯法解0/1背包问题时,计算结点的上界的函数如下所示,请在空格中填入合适的内容:11. n m12. 用回溯法解图的m着色问题时,使用下面的函数OK检查当前扩展结点的每一个儿子所相应的颜色的可用性,则需耗时渐进时间上限Omn;13.;设分分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用fn个单位时间;用Tn表示该分治法解规模为|P|=n的问题所需的计算时间,则有:(1)1 ()(/)()1O nT nkT n m f n n=⎧=⎨+>⎩通过迭代法求得Tn的显式表达式为:log1log()(/)nmk j jmjT n n k f n m-==+∑试证明Tn的显式表达式的正确性;2. 举反例证明0/1背包问题若使用的算法是按照p i/w i的非递减次序考虑选择的物品,即只要正在被考虑的物品装得进就装入背包,则此方法不一定能得到最优解此题说明0/1背包问题与背包问题的不同;证明:举例如:p={7,4,4},w={3,2,2},c=4时,由于7/3最大,若按题目要求的方法,只能取第一个,收益是7;而此实例的最大的收益应该是8,取第2,3 个;3. 求证:Ofn+Ogn = Omax{fn,gn} ;证明:对于任意f1n∈ Ofn ,存在正常数c1和自然数n1,使得对所有n≥n1,有f1n≤ c1fn ;类似地,对于任意g1n ∈ Ogn ,存在正常数c2和自然数n2,使得对所有n≥n2,有g1n ≤c2gn ;令c3=max{c1, c2}, n3 =max{n1, n2},hn= max{fn,gn} ;则对所有的 n ≥ n3,有f1n +g1n ≤ c1fn + c2gn≤c3fn + c3gn= c3fn + gn≤ c32 max{fn,gn} = 2c3hn = Omax{fn,gn} .4. 求证最优装载问题具有贪心选择性质;最优装载问题:有一批集装箱要装上一艘载重量为c 的轮船;其中集装箱i 的重量为Wi;最优装载问题要求确定在装载体积不受限制的情况下,将尽可能多的集装箱装上轮船; 设集装箱已依其重量从小到大排序,x 1,x 2,…,x n 是最优装载问题的一个最优解;又设1min{|1}i i nk i x ≤≤== ;如果给定的最优装载问题有解,则有1k n ≤≤;证明: 四、 解答题1. 机器调度问题;问题描述:现在有n 件任务和无限多台的机器,任务可以在机器上得到处理;每件任务的开始时间为s i ,完成时间为f i ,s i <f i ;s i ,f i 为处理任务i 的时间范围;两个任务i,j 重叠指两个任务的时间范围区间有重叠,而并非指i,j 的起点或终点重合;例如:区间1,4与区间2,4重叠,而与4,7不重叠;一个可行的任务分配是指在分配中没有两件重叠的任务分配给同一台机器;因此,在可行的分配中每台机器在任何时刻最多只处理一个任务;最优分配是指使用的机器最少的可行分配方案;问题实例:若任务占用的时间范围是{1,4,2,5,4,5,2,6,4,7},则按时完成所有任务最少需要几台机器提示:使用贪心算法画出工作在对应的机器上的分配情况;2. 已知非齐次递归方程:f (n)bf (n 1)g(n)f (0)c =-+⎧⎨=⎩ ,其中,b 、c 是常数,gn 是n 的某一个函数;则fn 的非递归表达式为:nnn i i 1f (n)cb b g(i)-==+∑;现有Hanoi 塔问题的递归方程为:h(n)2h(n 1)1h(1)1=-+⎧⎨=⎩ ,求hn 的非递归表达式;解:利用给出的关系式,此时有:b=2, c=1, gn=1, 从n 递推到1,有: 3. 单源最短路径的求解;问题的描述:给定带权有向图如下图所示G =V,E,其中每条边的权是非负实数;另外,还给定V 中的一个顶点,称为源;现在要计算从源到所有其它各顶点的最短路长度;这里路的长度是指路上各边权之和;这个问题通常称为单源最短路径问题;解法:现采用Dijkstra 算法计算从源顶点1到其它顶点间最短路径;请将此过程填入下表中;4. 请写出用回溯法解装载问题的函数; 装载问题:有一批共n 个集装箱要装上2艘载重量分别为c1和c2的轮船,其中集装箱i 的重量为wi,且121ni i w c c =≤+∑;装载问题要求确定是否有一个合理的装载方案可将这n 个集装箱装上这2艘轮船;如果有,找出一种装载方案;解:void backtrack int i{用分支限界法解装载问题时,对算法进行了一些改进,下面的程序段给出了改进部分;试说明斜线部分完成什么功能,以及这样做的原因,即采用这样的方式,算法在执行上有什么不同;初始时将;也就是说,重量仅在搜索进入左子树是增加,因此,可以在算法每一次进入左子树时更新bestw 的值;43 2 110030maxint10 - {1} 初始 dist5 dist4 dist3 dist2 u S 迭代7. 最长公共子序列问题:给定2个序列X={x 1,x2,…,xm }和Y={y 1,y2,…,yn },找出X 和Y 的最长公共子序列;由最长公共子序列问题的最优子结构性质建立子问题最优值的递归关系;用cij 记录序列Xi 和Yj 的最长公共子序列的长度;其中, Xi={x1,x2,…,xi};Y j={y1,y2,…,yj};当i=0或j=0时,空序列是Xi 和Yj 的最长公共子序列;故此时Cij=0;其它情况下,由最优子结构性质可建立递归关系如下:00,0[][][1][1]1,0;max{[][1],[1][]},0;i j i ji j c i j c i j i j x y c i j c i j i j x y ⎧==⎪=--+>=⎨⎪-->≠⎩在程序中,bij 记录Cij 的值是由哪一个子问题的解得到的;8.1.2.3.4.5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________;6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解;7.以深度优先方式系统搜索问题解的算法称为_____________;背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________;9.动态规划算法的两个基本要素是___________和___________;10.二分搜索算法是利用_______________实现的算法;二、综合题50分1.写出设计动态规划算法的主要步骤;2.流水作业调度问题的johnson算法的思想;3.若n=4,在机器M1和M2上加工作业i所需的时间分别为ai 和bi,且a 1,a2,a3,a4=4,5,12,10,b1,b2,b3,b4=8,2,15,9求4个作业的最优调度方案,并计算最优值;4.使用回溯法解0/1背包问题:n=3,C=9,V={6,10,3},W={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间从根出发,左1右0,并画出其解空间树,计算其最优值及最优解;5.设S={X1,X2,···,Xn}是严格递增的有序集,利用二叉树的结点来存储S中的元素,在表示S的二叉搜索树中搜索一个元素X,返回的结果有两种情形,1在二叉搜索树的内结点中找到X=Xi ,其概率为bi;2在二叉搜索树的叶结点中确定X∈Xi ,Xi+1,其概率为ai;在表示S的二叉搜索树T中,设存储元素Xi的结点深度为C i ;叶结点Xi,Xi+1的结点深度为di,则二叉搜索树T的平均路长p为多少假设二叉搜索树Tij={Xi ,Xi+1,···,Xj}最优值为mij,Wij= ai-1+bi+···+bj+aj,则mij1<=i<=j<=n递归关系表达式为什么6.描述0-1背包问题;三、简答题30分1.流水作业调度中,已知有n个作业,机器M1和M2上加工作业i所需的时间分别为ai 和bi,请写出流水作业调度问题的johnson法则中对ai和bi的排序算法;函数名可写为sorts,n2.最优二叉搜索树问题的动态规划算法设函数名binarysearchtree答案:一、填空1.确定性有穷性可行性 0个或多个输入一个或多个输出2.时间复杂性空间复杂性时间复杂度高低3. 该问题具有最优子结构性质4.{BABCD}或{CABCD}或{CADCD}5.一个最优解6.子问题子问题子问题7.回溯法8. on2n omin{nc,2n}9.最优子结构重叠子问题10.动态规划法二、综合题1.①问题具有最优子结构性质;②构造最优值的递归关系表达式;③最优值的算法描述;④构造最优解;2. ①令N1={i|ai<bi},N2={i|ai>=bi};②将N1中作业按ai的非减序排序得到N1’,将N2中作业按bi的非增序排序得到N2’;③N1’中作业接N2’中作业就构成了满足Johnson法则的最优调度;3.步骤为:N1={1,3},N2={2,4};N 1’={1,3}, N2’={4,2};最优值为:384.解空间为{0,0,0,0,1,0,0,0,1,1,0,0,0,1,1,1,0,1, 1,1,0,1,1,1}; 解空间树为:该问题的最优值为:16 最优解为:1,1,0 5.二叉树T 的平均路长P=∑=+ni 1Ci)(1*bi +∑=nj 0dj *aj{mij=0 i>j6.已知一个背包的容量为C,有n 件物品,物品i 的重量为W i ,价值为V i ,求应如何选择装入背包中的物品,使得装入背包中物品的总价值最大; 三、简答题 1.void sortflowjope s,int n {int i,k,j,l;fori=1;i<=n-1;i++ag=0 k++; ifk>n break;ag==0ifsk.a>sj.a k=j; swapsi.index,sk.index; swapsi.tag,sk.tag;} }l=i;<sj.b k=j;swapsi.index,sk.index; ag,sk.tag; }mij=Wij+min{mik+mk+1j} 1<=i<=j<=n,mii-1=0}2.void binarysearchtreeint a,int b,int n,int m,int s,int w{int i,j,k,t,l;fori=1;i<=n+1;i++{wii-1=ai-1;mii-1=0;}forl=0;l<=n-1;l++Init-single-sourceG,s2. S=Φ3. Q=VGQ<> Φdo u=minQS=S∪{u}for each vertex 3do 4四、算法理解题本题10分根据优先队列式分支限界法,求下图中从v1点到v9点的单源最短路径,请画出求得最优解的解空间树;要求中间被舍弃的结点用×标记,获得中间解的结点用单圆圈○框起,最优解用双圆圈◎框起;五、算法理解题本题5分设有n=2k个运动员要进行循环赛,现设计一个满足以下要求的比赛日程表:①每个选手必须与其他n-1名选手比赛各一次;②每个选手一天至多只能赛一次;③循环赛要在最短时间内完成;1如果n=2k,循环赛最少需要进行几天;2当n=23=8时,请画出循环赛日程表;六、算法设计题本题15分分别用贪心算法、动态规划法、回溯法设计0-1背包问题;要求:说明所使用的算法策略;写出算法实现的主要步骤;分析算法的时间;七、算法设计题本题10分通过键盘输入一个高精度的正整数nn的有效位数≤240,去掉其中任意s个数字后,剩下的数字按原左右次序将组成一个新的正整数;编程对给定的n 和s,寻找一种方案,使得剩下的数字组成的新数最小;样例输入178543S=4样例输出13一、填空题本题15分,每小题1分1.规则一系列运算2. 随机存取机RAMRandom Access Machine;随机存取存储程序机RASPRandom Access Stored Program Machine;图灵机Turing Machine3. 算法效率4. 时间、空间、时间复杂度、空间复杂度5.2n6.最好局部最优选择7. 贪心选择最优子结构二、简答题本题25分,每小题5分1、分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同;对这k个子问题分别求解;如果子问题的规模仍然不够小,则再划分为k个子问题,如此递归的进行下去,直到问题规模足够小,很容易求出其解为止;将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解;2、“最优化原理”用数学化的语言来描述:假设为了解决某一优化问题,需要依次作出n个决策D1,D2,…,Dn,如若这个决策序列是最优的,对于任何一个整数k,1 < k < n,不论前面k个决策是怎样的,以后的最优决策只取决于由前面决策所确定的当前状态,即以后的决策Dk+1,Dk+2,…,Dn也是最优的;3、某个问题的最优解包含着其子问题的最优解;这种性质称为最优子结构性质;4、回溯法的基本思想是在一棵含有问题全部可能解的状态空间树上进行深度优先搜索,解为叶子结点;搜索过程中,每到达一个结点时,则判断该结点为根的子树是否含有问题的解,如果可以确定该子树中不含有问题的解,则放弃对该子树的搜索,退回到上层父结点,继续下一步深度优先搜索过程;在回溯法中,并不是先构造出整棵状态空间树,再进行搜索,而是在搜索过程,逐步构造出状态空间树,即边搜索,边构造;5、PPolynomial问题:也即是多项式复杂程度的问题;NP就是Non-deterministicPolynomial的问题,也即是多项式复杂程度的非确定性问题;NPCNP Complete问题,这种问题只有把解域里面的所有可能都穷举了之后才能得出答案,这样的问题是NP里面最难的问题,这种问题就是NPC问题;三、算法填空本题20分,每小题5分1、n后问题回溯算法1 Mj&&Li+j&&Ri-j+N2 Mj=Li+j=Ri-j+N=1;3 tryi+1,M,L,R,A4 Aij=05 Mj=Li+j=Ri-j+N=0 2、数塔问题; 1c<=r2trc+=tr+1c 3trc+=tr+1c+1 3、Hanoi 算法 1movea,c2Hanoin-1, a, c , b 3Movea,c 4、1pv=NIL 2pv=u3 v ∈adju 4Relaxu,v,w四、算法理解题本题10分五、18天2分;2当n=23=8时,循环赛日程表3分;六、算法设计题本题15分 1贪心算法 Onlogn ➢ 首先计算每种物品单位重量的价值Vi/Wi,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包;若将这种物品全部装入背包后,背包内的物品总重量未超过C,则选择单位重量价值次高的物品并尽可能多地装入背包;依此策略一直地进行下去,直到背包装满为止; ➢ 具体算法可描述如下:void Knapsackint n,float M,float v,float w,float x {Sortn,v,w; int i;for i=1;i<=n;i++ xi=0; float c=M;for i=1;i<=n;i++ {if wi>c break; xi=1; c-=wi; }if i<=n xi=c/wi; }2动态规划法 Oncmi,j 是背包容量为j,可选择物品为i,i+1,…,n 时0-1背包问题的最优值;由0-1背包问题的最优子结构性质,可以建立计算mi,j 的递归式如下;void KnapSackint v,int w,int c,int n,int m11 {int jMax=minwn-1,c;for j=0;j<=jMax;j++ /mn,j=0 0=<j<wn/ mnj=0;1 2 3 4 5 6 7 82 1 43 6 5 8 73 4 1 2 7 8 5 64 3 2 1 8 7 6 55 6 7 8 1 2 3 4 6 5 8 7 2 1 4 37 8 5 6 3 4 1 28 7 6 5 4 3 2 1for j=wn;j<=c;j++ /mn,j=vn j>=wn/mnj=vn;for i=n-1;i>1;i--{ int jMax=minwi-1,c;for j=0;j<=jMax;j++ /mi,j=mi+1,j 0=<j<wi/mij=mi+1j;for j=wi;j<=c;j++/mn,j=vn j>=wn/mij=maxmi+1j,mi+1j-wi+vi;}m1c=m2c;ifc>=w1m1c=maxm1c,m2c-w1+v1;}3回溯法 O2ncw:当前重量 cp:当前价值 bestp:当前最优值voidbacktrack int i//回溯法 i初值1{ifi>n //到达叶结点{ bestp=cp; return; }ifcw+wi<=c //搜索左子树{cw+=wi;cp+=pi;backtracki+1;cw-=wi;cp-=pi;}ifBoundi+1>bestp//搜索右子树backtracki+1;}七、算法设计题本题10分为了尽可能地逼近目标,我们选取的贪心策略为:每一步总是选择一个使剩下的数最小的数字删去,即按高位到低位的顺序搜索,若各位数字递增,则删除最后一个数字,否则删除第一个递减区间的首字符;然后回到串首,按上述规则再删除下一个数字;重复以上过程s次,剩下的数字串便是问题的解了;具体算法如下:输入s, n;while s > 0{ i=1; //从串首开始找while i < lengthn && ni<ni+1{i++;}deleten,i,1; //删除字符串n的第i个字符s--;}while lengthn>1&& n1=‘0’deleten,1,1; //删去串首可能产生的无用零输出n;。
动态规划算法设计方法及案例解析
![动态规划算法设计方法及案例解析](https://img.taocdn.com/s3/m/b566a6d6988fcc22bcd126fff705cc1755275fd1.png)
动态规划算法设计方法及案例解析动态规划是一种解决多阶段决策问题的常用算法,通过将问题分解为多个子问题,并通过求解子问题的最优解来得到原问题的最优解。
本文将介绍动态规划算法的设计方法,并通过两个实例进行解析,以帮助读者更好地理解和应用该算法。
一、动态规划算法设计方法动态规划算法的设计一般遵循以下几个步骤:1. 确定问题的状态:将原问题划分为若干个子问题,并定义每个子问题的状态。
状态的定义应该包含子问题的变量和可以从子问题中获得的信息。
2. 定义状态转移方程:通过分析子问题之间的关系,确定状态之间的转移方式。
通常使用递推关系式来描述状态之间的转移,以表达每个子问题的最优解与其他子问题解之间的关系。
3. 确定初始状态和边界条件:确定问题的初始状态和边界条件,即最简单的子问题的解,作为求解其他子问题的基础。
4. 计算最优解:根据定义的状态转移方程,利用递推的方式从初始状态开始逐步计算每个子问题的最优解,直到得到原问题的最优解。
二、案例解析1:背包问题背包问题是动态规划算法中经典的案例之一,主要解决如何在限定容量的背包中选择一些物品,使得物品的总价值最大。
以下是一个简化的例子:假设有一个容量为C的背包,以及n个物品,每个物品有重量wi 和价值vi。
要求选择一些物品放入背包中,使得放入背包中物品的总价值最大。
根据动态规划算法的设计方法,我们可以定义子问题的状态为:背包容量为c,前a个物品的最优解用F(c,a)表示。
那么,状态转移方程可以定义为:F(c,a) = max{F(c,a-1), F(c-wa, a-1) + va}其中,F(c,a-1)表示不选择第a个物品时的最优解,F(c-wa, a-1) + va 表示选择第a个物品时的最优解。
初始状态为F(0,a) = F(c,0) = 0,边界条件为c < wa时,F(c,a) =F(c,a-1)。
根据以上定义,我们可以通过递推的方式计算F(c,n),从而得到背包问题的最优解。
《算法与数据分析》测试题
![《算法与数据分析》测试题](https://img.taocdn.com/s3/m/1e9cba931ed9ad51f11df2a5.png)
《算法与数据分析》测试题试卷总分:100 得分:100一、单选题(共10 道试题,共50 分)1.回溯法的效率不依赖于下列哪些因素A.满足显约束的值的个数B..计算约束函数的时间C..计算限界函数的时间D..确定解空间的时间正确答案:D2.下列算法中通常以深度优先方式系统搜索问题解的是A.备忘录法B.动态规划法C.贪心法D.回溯法正确答案:D3.分治法所能解决的问题一般具有的几个特征不包括A.该问题的规模缩小到一定的程度就可以容易地解决B.该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质C.利用该问题分解出的子问题的解不可以合并为该问题的解D.原问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题正确答案:C4.一个问题可用动态规划算法或贪心算法求解的关键特征是问题的A.重叠子问题B.最优子结构性质C.贪心选择性质D.定义最优解正确答案:B5.下列算法中通常以自底向上的方式求解最优解的是A.备忘录法B.动态规划法C.贪心法D.回溯法6.在下列算法中有时找不到问题解的是A.蒙特卡罗算法B.拉斯维加斯算法C.舍伍德算法D.数值概率算法7.矩阵连乘问题的算法可由什么设计实现A.分支界限算法B.动态规划算法C.贪心算法D.回溯算法8.贪心算法与动态规划算法的共同点是A.重叠子问题B.构造最优解C.贪心选择性质D.最优子结构性质9.下列是动态规划算法基本要素的是A.定义最优解B.构造最优解C.算出最优解D.子问题重叠性质10.下面哪种函数是回溯法中为避免无效搜索采取的策略A.递归函数B..剪枝函数C.。
随机数函数D..搜索函数二、判断题(共10 道试题,共50 分)1.贪心选择性质是贪心算法可行的第一个基本要素,但不是贪心算法与动态规划算法的主要区别A.错误B.正确2.优先队列式分支限界法是指按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点A.错误B.正确3.矩阵连乘问题的算法可由动态规划设计实现A.错误B.正确4.分治法与动态规划法的不同点是:适合于用动态规划法求解的问题,经分解得到的子问题往往不是互相独立的。
计算机基础知识了解计算机算法的动态规划和贪心算法
![计算机基础知识了解计算机算法的动态规划和贪心算法](https://img.taocdn.com/s3/m/c89bf868580102020740be1e650e52ea5518cef2.png)
计算机基础知识了解计算机算法的动态规划和贪心算法计算机基础知识:了解计算机算法的动态规划和贪心算法计算机算法是指在计算机科学中为解决问题而设计的一系列计算步骤。
它是实现特定功能的工具,在计算机科学和软件工程中扮演着重要的角色。
动态规划和贪心算法是计算机算法中常见的两种策略。
本文将详细介绍这两种算法的原理和应用。
一、动态规划算法动态规划算法(Dynamic Programming),又称动态优化算法,是一种将复杂问题分解为更简单子问题的方法,并使用子问题的解来构建原问题的解。
它通常适用于具有重叠子问题和最优子结构性质的问题。
动态规划算法的基本步骤如下:1. 定义问题的状态:将原问题划分为若干个子问题,找出子问题与原问题之间的关系;2. 构造状态转移方程:通过递推或迭代的方式,计算出子问题的解;3. 解决问题:根据状态转移方程,从子问题的解中推导出原问题的最优解;4. 构建解的过程:根据所得的最优解,记录下每一步的决策,以便后续的重建。
动态规划算法的经典应用之一是背包问题。
背包问题是在限定容量的背包中选择合适的物品,使得物品的总价值最大。
通过动态规划算法,我们可以通过计算子问题的解来得到背包问题的最优解。
二、贪心算法贪心算法(Greedy Algorithm)是一种基于贪心策略的算法。
它通过每一步的局部最优选择来达到整体最优解。
贪心算法在每一步的选择中都做出当前最好的选择,而不考虑对后续步骤的影响。
贪心算法的基本思想是:1. 定义问题的解空间和评价标准:确定问题的解空间以及如何评价每个解的好坏;2. 构建解的过程:逐步构建解,每一步都选择当前最优的子解,直到得到最终的解;3. 检查解的有效性:验证得到的解是否符合问题的要求。
贪心算法的经典应用之一是最小生成树问题。
最小生成树问题是在一张无向连通图中选择一棵权值最小的生成树。
贪心算法可以通过每次选择权值最小的边来构建最小生成树。
三、动态规划与贪心算法的比较动态规划算法和贪心算法有相似之处,但也存在一些明显的差异。
北语18秋《算法与数据分析》作业1234满分答案
![北语18秋《算法与数据分析》作业1234满分答案](https://img.taocdn.com/s3/m/84fb0c0c2af90242a995e512.png)
18秋《算法与数据分析》作业1回溯法的效率不依赖于下列哪些因素A.满足显约束的值的个数B..计算约束函数的时间C..计算限界函数的时间D..确定解空间的时间正确答案:D下列算法中通常以深度优先方式系统搜索问题解的是A.备忘录法B.动态规划法C.贪心法D.回溯法正确答案:D分治法所能解决的问题一般具有的几个特征不包括A.该问题的规模缩小到一定的程度就可以容易地解决B.该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质C.利用该问题分解出的子问题的解不可以合并为该问题的解D.原问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题正确答案:C一个问题可用动态规划算法或贪心算法求解的关键特征是问题的A.重叠子问题B.最优子结构性质C.贪心选择性质D.定义最优解正确答案:B下列算法中通常以自底向上的方式求解最优解的是A.备忘录法B.动态规划法C.贪心法D.回溯法正确答案:B在下列算法中有时找不到问题解的是A.蒙特卡罗算法B.拉斯维加斯算法C.舍伍德算法D.数值概率算法正确答案:B矩阵连乘问题的算法可由什么设计实现A.分支界限算法B.动态规划算法C.贪心算法D.回溯算法正确答案:B贪心算法与动态规划算法的共同点是A.重叠子问题B.构造最优解C.贪心选择性质D.最优子结构性质正确答案:D下列是动态规划算法基本要素的是A.定义最优解B.构造最优解C.算出最优解D.子问题重叠性质正确答案:D下面哪种函数是回溯法中为避免无效搜索采取的策略A.递归函数B..剪枝函数C.。
随机数函数D..搜索函数正确答案:B贪心选择性质是贪心算法可行的第一个基本要素,但不是贪心算法与动态规划算法的主要区别A.错误B.正确正确答案:A优先队列式分支限界法是指按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点A.错误B.正确正确答案:B矩阵连乘问题的算法可由动态规划设计实现A.错误B.正确正确答案:B分治法与动态规划法的不同点是:适合于用动态规划法求解的问题,经分解得到的子问题往往不是互相独立的。
算法分析复习
![算法分析复习](https://img.taocdn.com/s3/m/5a67538e680203d8ce2f2482.png)
找出最优解优值。
3.以自底向上的方式计算出最优值。
4.划一样,备忘录方法用表格保存已解决的子问题的答案,在下次需要解此问题时,只要简单地查看该子问题的解答,而不必重新计算。
不同的是备忘录的递归方式是自顶向下,而动态…。
因此,它们的控制结构相同,区别在于备忘录方法为每个解过的子问题建立了备忘录以备需要时查看,避免了相同子问题的重复求通过一系列局部最优的选择,即贪心选择来达到。
这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。
动态规划算法通常以自底向上的方式解各子问题,而贪心算法则通常以自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小针对所的解空间结构;3.以深度优先方式搜索解空间, 于求解目标不同,导致对解空间的搜索方式也不同,回溯法以深度优先的方式搜索解空间,而分枝限界法以广度优先或以最小耗费优先的机化算法求解两次可能得到完全不同的效果。
数值随机化算法、蒙特卡罗算法、拉斯维加斯算法、舍伍德算法。
算法是由若干条指令组成的有序序列,并且具 要空间资源的量称为空间复杂性。
几个定义。
O 、o ,复杂渐进性设某算法在输入规模为n 时的计算时间为T(n)=10*2n。
若在甲台计算机上实现并完成该算法的时间为t 秒,现有一台运行速度是甲的64倍的另一台计算机乙,问在乙计算机用同一算法在t 秒内能解决问题的规模是多大? 设新机器用同一算法在t 秒内能解输入规模为n1的问题。
则有t=10*2n =10*2n1/64,可得n1=n+6设某算法在输入规模为n 时的计算时间为T(n)=n 2。
若在甲台计算机上实现并完成该算法的时间为t 秒,现有一台运行速度是甲的64倍的另一台计算机乙,问乙计算机上用同一算法在t 秒内能解决的问题的规模是多大? 设新机器用同一算法在t 秒内能解输入规模为n1的问题。
则有t=n 2 = n12/64,可得n1=8n 快速排序算法最好、最坏情况下的复杂度为多少?如何修改快速排序算法,使它在最坏情况下的计算时间为O(nlogn)。
算法练习题-分章节-带答案
![算法练习题-分章节-带答案](https://img.taocdn.com/s3/m/67e88a683186bceb19e8bbee.png)
)算法练习题-分章节-带答案算法练习题---算法概述一、选择题1、下面关于算法的描述,正确的是()A、一个算法只能有一个输入B、算法只能用框图来表示C、一个算法的执行步骤可以是无限的D、一个完整的算法,不管用什么方法来表示,都至少有一个输出结果2、一位爱好程序设计的同学,想通过程序设计解决“韩信点兵”的问题,他制定的如下工作过程中,更恰当的是()A、设计算法,编写程序,提出问题,运行程序,得到答案B、分析问题,编写程序,设计算法,运行程序,得到答案C、分析问题,设计算法,编写程序,运行程序,得到答案D、设计算法,提出问题,编写程序,运行程序,得到答案3、下面说法正确的是()A、算法+数据结构=程序B、算法就是程序C、数据结构就是程序D、算法包括数据结构4、衡量一个算法好坏的标准是()。
A、运行速度快B、占用空间少C、时间复杂度低D、代码短5、解决一个问题通常有多种方法。
若说一个算法“有效”是指( )。
A、这个算法能在一定的时间和空间资源限制内将问题解决B、这个算法能在人的反应时间内将问题解决C、这个算法比其他已知算法都更快地将问题解决D、A和C6、算法分析中,记号O表示(),记号Ω表示()。
A.渐进下界B.渐进上界C.非紧上界D.非紧下界7、以下关于渐进记号的性质是正确的有:()A.f(n)(g(n)),g(n)(h(n))f(n)(h(n))=Θ=Θ⇒=ΘB.f(n)O(g(n)),g(n)O(h(n))h(n)O(f(n))==⇒=C. O(f(n))+O(g(n)) = O(min{f(n),g(n)})D.f(n)O(g(n))g(n)O(f(n))=⇔=8、记号O的定义正确的是()。
A. O(g(n)) = { f(n) | 存在正常数c和n0使得对所有n≥n0有:0≤ f(n) ≤ cg(n) };B. O(g(n)) = { f(n) | 存在正常数c和n0使得对所有n≥n0有:0≤ cg(n) ≤ f(n) };C. O(g(n)) = { f(n) | 对于任何正常数c>0,存在正数和n0 >0使得对所有n≥n0有0 ≤f(n)<cg(n) };D. O(g(n)) = { f(n) | 对于任何正常数c>0,存在正数和n0 >0使得对所有n≥n0有:0 ≤cg(n) < f(n) };9、记号Ω的定义正确的是()。
动态规划法
![动态规划法](https://img.taocdn.com/s3/m/fde0fefdc8d376eeaeaa31d0.png)
动态规划法[dynamic programming method (DP)]是系统分析中一种常用的方法。
在水资源规划中,往往涉及到地表水库调度、水资源量的合理分配、优化调度等问题,而这些问题又可概化为多阶段决策过程问题。
动态规划法是解决此类问题的有效方法。
动态规划法是20世纪50年代由贝尔曼(R. Bellman)等人提出,用来解决多阶段决策过程问题的一种最优化方法。
所谓多阶段决策过程,就是把研究问题分成若干个相互联系的阶段,由每个阶段都作出决策,从而使整个过程达到最优化。
许多实际问题利用动态规划法处理,常比线性规划法更为有效,特别是对于那些离散型问题。
实际上,动态规划法就是分多阶段进行决策,其基本思路是:按时空特点将复杂问题划分为相互联系的若干个阶段,在选定系统行进方向之后,逆着这个行进方向,从终点向始点计算,逐次对每个阶段寻找某种决策,使整个过程达到最优,故又称为逆序决策过程。
[1]动态规划的基本思想前文主要介绍了动态规划的一些理论依据,我们将前文所说的具有明显的阶段划分和状态转移方程的动态规划称为标准动态规划,这种标准动态规划是在研究多阶段决策问题时推导出来的,适合用于理论上的分析。
在实际应用中,许多问题的阶段划分并不明显,这时如果刻意地划分阶段法反而麻烦。
一般来说,只要该问题可以划分成规模更小的子问题,并且原问题的最优解中包含了子问题的最优解(即满足最优子化原理),则可以考虑用动态规划解决。
动态规划的实质是分治思想和解决冗余,因此,动态规划是一种将问题实例分解为更小的、相似的子问题,并存储子问题的解而避免计算重复的子问题,以解决最优化问题的算法策略。
由此可知,动态规划法与分治法和贪心法类似,它们都是将问题实例归纳为更小的、相似的子问题,并通过求解子问题产生一个全局最优解。
其中贪心法的当前选择可能要依赖已经作出的所有选择,但不依赖于有待于做出的选择和子问题。
因此贪心法自顶向下,一步一步地作出贪心选择;而分治法中的各个子问题是独立的(即不包含公共的子子问题),因此一旦递归地求出各子问题的解后,便可自下而上地将子问题的解合并成问题的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2设计动态规划算法的主要步骤为:
(1)找出最优解的性质,并刻划其结构特征。
(2)递归地定义最优值。
(3)以自底向上的方式计算出最优值。
(4)根据计算最优值时得到的信息,构造最优解。
3. 分治法与动态规划法的相同点是:将待求解的问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
两者的不同点是:适合于用动态规划法求解的问题,经分解得到的子问题往往不是互相独立的。
而用分治法求解的问题,经分解得到的子问题往往是互相独立的。
贪心选择算法与动态规划算法的异同点:同:都要求问题具有最优子结构性质;异:动态规划算法为自底向上的方式解各子问题,贪心算法为自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每做一次贪心选择问题就转换为规模更小的字问题。
6. 分治法所能解决的问题一般具有的几个特征是:(1)该问题的规模缩小到一定的程度就可以容易地解决;
(2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;
(3)利用该问题分解出的子问题的解可以合并为该问题的解;
(4)原问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。
P:也即是多项式复杂程度的问题。
NP就是多项式复杂程度的非确定性问题。
NPC(NP Complete)问题
ADT 抽象数据类型
分析问题→设计算法→编写程序→上机运行和测试
算法特性1. 确定性、可实现性、输入、输出、有穷性
算法分析目的2. 分析算法占用计算机资源的
情况,对算法做出比较和评价,设计出额更好
的算法。
3. 算法的时间复杂性与问题的规模相关,是
问题大小n的函数。
算法的渐进时间复杂性的含义:当问题的规模
n趋向无穷大时,影响算法效率的重要因素是
T(n)的数量级,而其他因素仅是使时间复杂度
相差常数倍,因此可以用T(n)的数量级(阶)
评价算法。
时间复杂度T(n)的数量级(阶)称为
渐进时间复杂性。
最坏情况下的时间复杂性和平均时间复杂性有什么不同?
最坏情况下的时间复杂性和平均时间复杂性
考察的是n固定时,不同输入实例下的算法所
耗时间。
最坏情况下的时间复杂性取的输入实
例中最大的时间复杂度:
W(n) = max{ T(n,I) } , I∈Dn
平均时间复杂性是所有输入实例的处理时间
与各自概率的乘积和:
A(n) =∑P(I)T(n,I) I∈Dn
为什么要分析最坏情况下的算法时间复杂
性?最坏情况下的时间复杂性决定算法的优
劣,并且最坏情况下的时间复杂性较平均时间
复杂性游可操作性。
1.贪心算法的基本思想?
是一种依据最优化量度依次选择输入的分级处理方法。
基本思路是:首先根据题意,选取一种量度标准;然后按这种量度标准对这n个输入排序,依次选择输入量加入部分解中。
如果当前这个输入量的加入,不满足约束条件,则不把此输入加到这部分解中。
贪心选择算法与动态规划算法的异同点:同:都要求问题具有最优子结构性质;异:动态规划算法为自底向上的方式解各子问题,贪心算法为自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每做一次贪心选择问题就转换为规模更小的字问题。