逆变器SPWM控制电路与设计
PWM逆变器控制电路设计
![PWM逆变器控制电路设计](https://img.taocdn.com/s3/m/72c8bed8195f312b3169a5e7.png)
SPWM逆变器控制电路设计一、课程设计的目的通过电力电子计术的课程设计达到以下目的:一个单相50HZ/220V逆变电源,外部采用:交流到直流再到交流的逆变驱动格式。
在220V/50HZ外电源停电时,蓄电池就逆变供电。
在设计电路时,主要分为正负12V稳压电源到SPWM波发生器(其中载波频率5KHZ)至H逆变电路再到逆变升压变压器再由220V/50HZ输出.二、课程设计的要求1注意事项控制框图设计装置(或电路)的主要技术数据主要技术数据输入直流流电源:正负12V,f=50Hz交直变换采用二极管整流桥电容滤波电路,无源逆变桥采用桥式电压型逆变主电路,控制方法为SPWM控制原理输出交流:电流为正弦交流波形,输出频率可调,输出负载为三相异步电动机,P=5kW等效为星形RL电路,R=10Ω,L=15mH2.在整个设计中要注意培养灵活运用所学的电力电子技术知识和创造性的思维方式以及创造能力3.在整个设计中要注意培养独立分析和独立解决问题的能力4.课题设计的主要内容是主电路的确定,主电路的分析说明,主电路元器件的计算和选型,以及控制电路设计。
报告最后给出所设计的主电路和控制电路标准电路图。
5.课程设计用纸和格式统一三设计内容:整流电路的设计和参数选择滤波电容参数选择逆变主电路的设计和参数选择IGBT电流、电压额定的选择SPWM驱动电路的设计画出完整的主电路原理图和控制电路原理图根据要求,整流电路采用二极管整流桥电容滤波电路,其电路图如图2.1所示:SPWM逆变电路的工作原理PWM控制方式就是对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等而宽度不等的脉冲。
按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变逆变输出频率。
1.PWM控制的基本原理PWM控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)理论基础:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。
单极性倍频spwm原理_单极性倍频SPWM调制的逆变电源系统详解
![单极性倍频spwm原理_单极性倍频SPWM调制的逆变电源系统详解](https://img.taocdn.com/s3/m/85a95c26844769eae009eda0.png)
单极性倍频spwm原理_单极性倍频SPWM调制的逆变电源系统详解随着电力电子技术的发展,人们对逆变电源的要求也越来越高。
在大功率逆变电源场合,流过主电路上的器件电流非常大,作为开关管的IGBT 上流过的电流可达几百安,所以一般所选的开关管容量比较大,这就导致调制时的开关频率不能过高。
本文首先介绍了主电路与三环控制,其次介绍了单极性倍频SPWM调制,最后阐述了系统实验分析wNN,具体的跟随小编一起来了解一下。
一、主电路与三环控制逆变器主电路结构如图1所示,主电路采用全桥结构,输出端连接了LC 滤波器滤除高次谐波。
开关管的驱动信号由三角波和正弦波比较匹配得到。
三环控制结构图如图2所示,由内到外分别为瞬时值电容电流环、瞬时值电压环和电压有效值环。
其中:瞬时值电流环的主要作用是校正输出电压波形;瞬时值电压环主要作用是校正输出电压的相位,并提高系统的动态性能;电压有效值环的主要作用是使输出电压稳定在所需要的电压幅值。
电流瞬时值内环和电压瞬时值外环均采用P调节器,最外环电压有效值环采用PI 调节器。
图3和图4 分别为采用三环控制的逆变电源系统从满载到空载和空载到满载的波形仿真图,图3中Uo为输出电流。
由图3-4 可知,切载时电压幅值基本保持不变,说明系统具有较好的动态特性。
在常规SPMW波调制中,开关频率和输出脉冲频率是相等的,但是在大功率条件下,开关频率不能过高,原因主要:
①开关频率过高会导致开关损耗增大;
②会使开关管发热严重,长时间运行会损坏开关器件;
③开关频率过高,出现擎住效应的几率增大;
④大容量开关器件高速通断,会产生很高的电压尖峰,有可能造成开关管或其他元件被击。
SPWM逆变原理及控制方法
![SPWM逆变原理及控制方法](https://img.taocdn.com/s3/m/e0858b59be1e650e52ea99a4.png)
如何利用电力电子器件的开通和关断两 种状态实现 电能四大基本状态之间的转换 就是电力电子学所要研究的核心内容
3
2.1 SPWM基本原理
理想开关:
¾ ¾ ¾ ¾ ¾ ¾ 导通电阻为0,即:通态压降为0 关断电阻为∞ 不考虑开通和关断时间,即:瞬时开通和关断 导通电阻不为0,通态压降为2V左右 关断电阻也不为∞,有少量漏电流 需要一定时间才能完全开通和关断,一般在10us以下
实际电力电子器件(开关):
理论分析一般都采用理想开关。在涉及散热系 统设计、死区时间选取、器件串并联设计、器件保 护等方面时,将必须按实际电力电子器件考虑
4
2.1 SPWM基本原理
实现电能四种基本形态的转换就是利用PWM 调制 • PWM(Pulse Width Modulation)脉宽调制技 术:通过对一系列脉冲的宽度进行调制,来等 效的获得所需要的波形(形状和幅值) • SPWM(Sinusoidal Pulse Width Modulation) 正弦脉宽调制技术:通过对一系列宽窄不等的 脉冲进行调制,来等效正弦波形(幅值、相位 和频率)
V4
V1
TD
V1
V1* V4 V4*
21
2.2 SPWM逆变及其控制方法
• 特定谐波消去法(计算法)
Selected Harmonic Elimination PWM—SHEPWM 这是计算法中一种较有 代表性的方法 输出电压半周期内,器 件通、断各3次(不包括 0和π),共6个开关时 刻可控 为减少谐波并简化控 制,要尽量使波形对称
2.2 SPWM逆变及其控制方法
• 自然采样法
1
TC
为简单起见,在计算机内部一般进行标称化,假定三角波最大 值为1
倍频单极性SPWM调制法逆变器设计
![倍频单极性SPWM调制法逆变器设计](https://img.taocdn.com/s3/m/b93353e0b8f67c1cfad6b8e5.png)
目录1 设计要求 (1)2 逆变器控制方式选择 (1)3 方案设计 (2)3.1系统总体框图 (2)3.2主电路的设计 (3)3.3 DSP的选取 (4)3.4驱动电路的设计 (5)3.5采样电路 (6)3.6保护电路 (6)4 元件参数计算 (7)4.1输出滤波电感L f、滤波电容C f的选取 (7)4.2变压器的设计84.3功率开关的选择 (8)5 仿真结果 (9)5.1驱动波形 (9)5.2功率开关器件两端的电压波形 (10)5.3逆变器输出波形 (10)6 结论 (11)参考文献 (12)1 设计要求主要内容:利用倍频单极性SPWM 调制法究逆变器的调制方式,分析系统的稳定性和外特性,给出系统的硬件结构框图,设计系统各个部分的硬件电路,完成数字控制SPWM 逆变器的原理试验和仿真。
基本要求:输入电压:40~60VDC ;输出额定容量:1kVA ;输出电压:220V ±3%;输出电压频率:50Hz 载波频率:25kHz ;THD :≤3%。
2 逆变器控制方式选择传统逆变器的控制电路都是采用模拟电路和小规模数字集成电路实现的。
随着信息技术的发展,数字控制技术在逆变电源控制领域已得到越来越广泛的应用。
综合考虑系统性价比以及数字控制方式存在的问题,目前,部分数字化(CPU )产生基准正弦,宽频带的电压调节器仍由模拟电路实现)不失为中小功率逆变器控制电路的优选方案。
本文分别对两种模拟/数字混合控制方案进行了比较研究,分析了它们的设计与实现,给出了相关实验结果。
本章研究的混合控制方式,也是基于数字控制器的。
利用DSP 取代纯模拟控制中的一些实现环节,如基准正弦发生器、输出过载保护、输出过压/欠压保护等,对于减小控制电路复杂程度、提高系统控制特性是有好处的。
同时,混合控制方式也考虑了数字控制可能产生的一些问题,尽可能保留模拟控制的优点,仍采用模拟电路实现电压调节器,与全数字控制系统相比,提高了系统带宽频率和动态响应速度。
三相电压型SPWM逆变器设计
![三相电压型SPWM逆变器设计](https://img.taocdn.com/s3/m/7d2cc15715791711cc7931b765ce05087632752e.png)
三相电压型SPWM逆变器设计一、设计原理:三相电压型SPWM逆变器由一个直流输入端和一个交流输出端组成。
其主要原理是将直流电压转换为较高频率的脉冲宽度调制信号,然后通过逆变桥电路将直流电压转换为交流电压。
在逆变桥电路中,通过控制三相负载端的三个开关管的开关状态,可以实现对输出电压幅值、频率和相位的控制。
二、设计步骤:1.选择逆变桥电路拓扑:逆变桥电路有多种不同的拓扑结构,如全桥、半桥等,需要根据具体需求来选择合适的拓扑结构,一般来说,全桥结构应用较为广泛。
2.数据采样和计算:通过采样电路获取输入电流和输出电压的实时数据,并进行运算和控制。
一般需要采用高速的模数转换器(ADC)进行数据采集,并使用微控制器或数字信号处理器(DSP)进行计算和控制。
3.正弦脉宽调制(PWM):通过正弦脉宽调制技术,将直流电压转换为脉冲宽度调制信号。
正弦脉宽调制技术是一种通过比较三角波和参考正弦波来确定开关管的开关状态的方法,其核心思想是让输出电压的波形尽可能接近正弦波形。
4.控制逆变桥电路开关状态:通过控制逆变桥电路中的三个开关管的开关状态,可以实现对输出电压的控制。
一般来说,可以采用脉冲宽度调制技术控制开关管的开关时间,从而改变输出电压的幅值和频率。
5.输出滤波:由于逆变器输出为脉冲宽度调制信号,需要进行滤波处理,以减小输出电压的谐波含量,并使其接近纯正弦波形。
常用的滤波器包括LC滤波器和LCL滤波器。
6.过流、过压保护:为了保护逆变器和负载,需要设计过流和过压保护电路,并将其集成到逆变器中。
总结:通过以上的步骤,就可以设计出一款三相电压型SPWM逆变器。
设计时需要根据具体需求选择逆变桥电路拓扑、采集数据并进行计算,使用正弦脉宽调制技术控制开关管的开关状态,进行输出滤波,并设计过流、过压保护电路。
这些步骤需要结合电力电子、控制系统和信号处理等多个领域的知识和技术。
单极性全桥逆变SPWM控制方法以及解决过零点振荡的方案
![单极性全桥逆变SPWM控制方法以及解决过零点振荡的方案](https://img.taocdn.com/s3/m/c192c0dc7c1cfad6195fa7a0.png)
单极性全桥逆变SPWM控制方法以及解决过零点振荡的方案引言当前众多电源应用领域对交流电源的要求越来越高,传统的电网直接供电方式在很多场合已无法满足要求,因此,需要对电网或者其他能源处理后逆变输出。
高质量的逆变电源已经成为电源技术的重要研究对象。
全桥架构又是逆变器中非常重要的架构。
全桥逆变控制方式主要分为双极性控制方式和单极性控制方式。
双极性控制是对角的一对开关为同步开关,桥臂上下管之间除死区时间外为互补开关,控制相对简单,但是它的开关损耗高,存在很大的开关谐波,电磁干扰大,而单极性控制可以很好地解决这些问题。
全桥逆变器单极性控制仅用一对高频开关,相对于双极性控制具有损耗低、电磁干扰小、无开关频率级谐波等优点,正在取代双极性逆变控制方式。
但由于控制环路的延时作用,单极性控制方式的逆变器仍然受一个问题的困扰,即在过零点存在一个明显的振荡。
单极性控制方式又包括单边方式和双边方式,双边方式相对于单边方式在抑止过零点振荡方面有一定优势,但仍然无法做到过零点的平滑过渡。
为了提高逆变器的输出波形质量,本文分析了,单极性双边控制方式,分析了其振荡产生原因,并介绍一种解决过零点振荡的方案。
1 主电路拓扑单极性SPWM逆变器如图1所示,由2组桥臂构成,一组桥臂(S3,S4)以高频开关工作频率工作,称为高频臂;另一组桥臂(S1,S2)以输出的正弦波频率进行切换,称为低频臂。
2 单极性双边SPWM控制方式单极性逆变有两种产生SPWM的方法,分为单极性单边SPWM控制方式和单极性双边SPWM控制方式,文献l对此有比较详尽的介绍,这里只介绍过零点特性较好的双边控制方式,这种方式对于单边控制方式仍然有效。
在单极性双边SPSM控制方式中,给定的载波信号按正弦方式变化,三角调制波信号,当输出电压为正时三角波为正,输出电压为负时三角波为负,如图2所示。
高频臂上管S3的开关由载波与调制波相比较决定,载波幅值大于调制波则开通,载波幅值小于调制波则关断,除去死区时间,高频臂上管S3与高频臂下管S4的开关完全互补。
三相spwm逆变器的研究与设计
![三相spwm逆变器的研究与设计](https://img.taocdn.com/s3/m/d3238348f121dd36a32d82fb.png)
• 201•本文介绍了以STM32F407处理器为核心的三相SPWM 逆变器的系统总体设计方案,对系统主电路、驱动电路、控制电路、采样电路、通信电路和辅助电源电路等硬件系统进行设计,在硬件设计的基础上完成了系统软件设计,最后完成了实验样机的实物制作。
实验样机测试结果验证了系统设计的正确性。
逆变技术是一种与人们日常生活生产密切相关的实用技术。
随着电力电子技术和半导体制造技术以及计算机控制技术的飞速发展,各行各业中逆变器的应用日益广泛,且向大功率、高集成度、高频化、数字化的方向在发展。
本文的课题研究是要设计一套能够产生幅值相等、频率相等、相位相互之后120º的三相逆变器。
本文首先确定了三相逆变器的系统总体设计方案,然后对逆变主电路、驱动电路、反馈采样电路等硬件进行设计,最后完成系统硬软件的联合调试。
1 系统方案设计1.1 系统总体设计方案逆变系统的组主要包括以下几个模块:逆变主电路、启停电路、控制电路、驱动电路、采样电路、通信电路。
系统的总体设计方案如图1所示。
图1 系统总体方案设计1.2 模块功能介绍(1)主控制器:按照要求产生一系列控制脉冲作为隔离和驱动电路的输入,控制三相逆变电路开关器件的导通和关闭;(2)直流电源:作为DC/AC 变换的输入母线电压来源,来自整流器的输出,若电压纹波较大,需要并联大电容滤除纹波;(3)启动电路:控制直流母线的输入与否,可以与主控制器结合实现过压、过流、过热的保护;(4)驱动电路:用于驱动逆变器,由于逆变器电路的拓扑均为半桥组合的模式,而一般大功率电路都是使用N 沟道增强型的MOSFET ,故而上半桥的栅极电压需要自举悬浮驱动;(5)隔离电路:用于控制电路和功率变换电路的电气隔离,实现高压侧和低压侧互不干扰以及保护控制电路的作用;(6)电压检测电路:通过互感器从输出端采集输出电压,在经过线性的调理送入主控制器ADC 端口作为电压反馈值;(7)电流检测电路:通过互感器从输出端采集输出电流,在经过线性的调理送入主控制器ADC 端口作为电流反馈值;(8)频率检测电路:通过互感器从输出端采集输出电压,在经过线性的调理送入主控制器CAP 端口作为频率反馈值;(9)滤波电路:通过三相逆变桥的输出方波电压,经低通滤波电路滤波得到基波电压;(10)RS232电平转换电路:用于与其他上位机的串口通信,实现按键和显示等人为控制调节功能;(11)开关电路:用于控制系统的启停。
一种车载逆变器的SPWM电路设计
![一种车载逆变器的SPWM电路设计](https://img.taocdn.com/s3/m/53a1372a0722192e4536f6c1.png)
高电路的信号传输速度 ,又减小了产品的体积,使 得功率管的驱动电路更趋简单。I R 2 1 1 0可输出两路 P WM信号驱动桥式逆变电路高低压侧的功率管 , 其
但此类 电路 的 S P WM 信 号 的产 生 ,多采 用正 弦
波震 荡 电路 、三角 波发 生 电路 以及 比较器 电路等组 合而成 ,使得 电路 更趋复 杂 ,性 价 比低 。为 了进一
步使电路简单化 ,使性能更加优化 ,提高电路的自 我保护能力 ,本文提出了另外一种基于 S T C 单片 机产生 S P WM信号控制逆变器的 D C / A C变换 的电 路。该 电路简单可靠 , 抗干扰能力强 ,成本低 , 可
用 P WM 集成芯片如 S G 3 5 2 5 、U C 1 5 2 5 、T I M9 4等 进行控制 ,其最大的缺点是输 出谐波大 , 效率低 , 适用 的负载较窄 。随着 数字信号处理技术 的发 展 ,以 S P WM 控制方式设计的逆变电源便可以做 到以正弦波方式输 出,它可以降低谐波 , 提高效率
内部 为 自举 电路 设 计 了悬 浮 电源 ,确 保 可 以驱 动
块, 我们可j 亩 过控制和没置 P C A模块的相关寄存器,
编程产生两路互补的 S P WM 脉冲。 由于 S T C 1 2 C 5 6 2 0 A D单 片机引脚产 生的 S P WM 脉 冲为 T T L 电平 ,无法 直接 驱动 全桥逆 变 电路 , 常用 的解决方 式是采用 电磁 隔离 或者光 电隔离方式
( 1 .南亚 新 能源技 术 开发有 限公 司 ,广 东 汕 头 5 1 5 9 0 0 ; 2 . 汕 头职 业技 术 学院 机 电工程 系 ,广东 汕 头 5 1 5 0 7 8 )
单双极性SPWM单相桥电压型逆变电路课程设计单极性
![单双极性SPWM单相桥电压型逆变电路课程设计单极性](https://img.taocdn.com/s3/m/5d696c17a66e58fafab069dc5022aaea998f41ca.png)
单双极性SPWM单相桥电压型逆变电路课程设计单极性单极性PWM控制方式调制信号ur为正弦波,载波uc在ur的正半周为正极性的三角波,在ur的负半周为负极性的三角波。
在ur的正半周,V1保持通态,V2保持断态。
当ur>uc时使V4导通,V3关断,uo=Ud。
当ur<uc时使V4关断,V3导通,uo=0。
在ur的负半周,V1保持断态,V2保持通态。
当ur<uc时使V3导通,V4关断uo=-Ud。
当ur>uc时使V3关断,V4导通,uo=0。
主电路在每个开关周期内输出电压在正和零(或负和零)间跳变,正、负两种电平不会同时出现在一个开关周期内,故称为单极性SPWM。
七、单极性SPWM调制分析载波比和调制深度的定义与双极性SPWM相同。
它不适于半桥电路,而双极性SPWM在半桥、全桥电路中都可以使用。
与双极性SPWM相同,在m<=1和fc>>f的条件下,单极性SPWM逆变电路输出的基波电压u1的幅值U1m满足如下关系:U1m=mUd即输出电压的基波幅值随调制深度m线性变化,故其直流电压利用率与双极性时也相同。
就基波性能而言,单极性SPWM和双极性SPWM完全一致,但在线性调制情况下它的谐波性能优于双极性调制:开关次整数倍谐波消除,值得考虑的最低次谐波幅值较双极性调制时小得多,所需滤波器也较小。
八、建立单极性SPWM仿真模型单极性SPWM触发信号产生图:为[101]。
对脉冲电路进行封装:触发电路中三角载波(Triangle)参数设置:“TimeValue”为[01/fc/21/fc],“OutputValue”单极性SPWM主电路:触发电路参数设置:Ud=300v,R=1欧,L=2mH九、进行单极性SPWM仿真1、仿真时间设为0.06键入MATLAB语言命令:>>ubplot(4,1,1)>>ubplot(4,1,2)仿真结果如下:单极性SPWM单相逆变器m=0.8,N=15时的仿真波形图仿真结果分析:输出电压为单极性SPWM型电压,脉冲宽度符合正弦变化规律。
实验51-DC-AC SPWM单相全桥逆变电路设计及研究
![实验51-DC-AC SPWM单相全桥逆变电路设计及研究](https://img.taocdn.com/s3/m/9f823a13b7360b4c2e3f6481.png)
实验五十一DC/AC SPWM单相全桥逆变电路设计及研究(信号与系统—自动控制理论—检测技术-电力电子学综合实验)一、实验原理SPWM单相全桥逆变电路的主要工作原理是依靠四个开关管的通、断状态配合,利用冲量等效原理,采用正弦脉宽调制(SPWM)策略将输入的直流电压变换成正弦波电压输出。
SPWM的调制原理是通过对每个周期内输出的脉冲个数和每个脉冲宽度来调节逆变器输出电压的频率和幅值。
要使输出的电压波形接近标准的正弦波,就要尽量保证SPWM电压波在每一时间段都与该时段中正弦电压等效。
除要求每一时间段的面积相等外,每个时间段的电压脉冲宽度还必须很窄,这就需要在一个正弦波形内脉冲的数量很多。
脉波数量越多,不连续的按正弦规律改变宽度的多脉冲电压就越等效于正弦电压。
目前,在电力电子控制技术中,SPWM技术应用极为广泛,SPWM波形的形成一般有自然采样法、规则采样法等等。
前者主要用于模拟控制中,后者适用数字控制。
本实验采用的是DSP控制的单相全桥逆变电路,采用对称规则采样法。
对称规则采样的基本思想是使SPWM波的每个脉冲均以三角载波中心线为轴线对称,因此在每个载波周期内只需一个采样点就可确定两个开关切换点时刻。
具体算法是过三角波的对称轴与正弦波的交点,做平行于时间轴的平行线,该平行线与三角波的两个腰的交点作为SPWM波“开通”和“关断”的时刻。
由于在每个三角载波周期中只需要进行一次采样,因此使得计算公式得到简化,并且可以根据脉宽计算公式实时计算出SPWM波的脉宽时间,可以实现数字化控制。
图51-1 对称规则采样法生成SPWM波根据相似三角形定理,可以分析出图1对称规则采样法生成的SPWM波脉宽时间T n为:()21sin n n T T MN Nπ−= (51-1) 式中,M 为调制度,T 为正弦调制波周期,N 为载波比。
本实验中程序采用DSP 控制方式,载波频率固定为10KHZ ,调制波频率为50HZ 频率。
用于逆变器的SPWM电路设计
![用于逆变器的SPWM电路设计](https://img.taocdn.com/s3/m/89872cde3186bceb19e8bb4e.png)
湖北第二师范学 院学报
J un lo b iUnv ri fE u ain o ra fHu e iest o d c t y o
Fb 2 1 e . O1
V0 . No 2 128 .
第2 8卷第 2期
用 于 逆 变 器 的 S WM 电路 设 计 P
作者简介 : 胡应洪( 9 7一) 女 , 16 , 四川绵阳人 , 师, 究方向为 电工、 讲 研 电子技 术 , 电源技术 。
1 引言
随着 电力电子技术 的发展 , 各种逆变器在各行业 中应 用 十分广 泛 。而正 弦波 脉宽 调 制 (P S WM) 逆变 是 电路的核心技术 。S WM调制又可以分为单极性调制 P 和双极性调制两种。双极性调制方式应用于半桥功放 电路 , 单极性调制方式应用 于全桥功放 电路 。本文所 述 的逆变电路采用的是单极性调制方式。 产生 SWM信号有多种方法 , P 但这些方法要么存 在精度低、 稳定性差等问题 , 要么存在开发周期长 , 实
一
2 1 SWM调制信号 . P 在 中小型逆变电路 中, 常用正 弦波 调制法来实现 脉宽调制的目的, 它是利用比较器来完成这一功能的 , 如图 1 所示。若将三角波送到 比较器 的反相输入端 , 将正弦波送到比较器 的同相输入端 , 则在三角波 幅值 大于正弦波的幅值时 , 比较器将输 出一个 脉宽等于三 角波大于正弦波部分所对应 的时间间隔的负脉冲。而 在三角波幅值小于正弦波 的幅值 时 , 比较器将输 出一 个脉宽等于三角波小于正弦波部分所对应 的时间间隔 的正脉冲。从 图 1 可见 : 时在 电压 比较器 的输 出端 这 将得到一连串方波脉冲序列 , 这就是 S WM波信号 。 P 在这里厂 为三角波频率 , △ 即载波频率 ; 一 . 为正弦 厂
SPWM全桥逆变器主功率电路和控制电路设计
![SPWM全桥逆变器主功率电路和控制电路设计](https://img.taocdn.com/s3/m/b5ba9b03cc1755270722084e.png)
SPWM全桥逆变器主功率电路设计一、课程设计目的本课程是自动化专业的学生在掌握所学习的专业基础课和专业课的基础上一次较全面的实践训练,通过完成一个具有较完善功能的设计课程题,达到训练学生综合运用所学知识的能力。
通过本科电力电子技术学习,熟悉无源逆变的概念。
二、任务采用全桥拓扑并用全控器件MOSFET形成主电路拓扑,设计逆变器硬件电路,并能开环工作。
输入:48Vdc, 输出:40Vac/400Hz要求:1.掌握全桥逆变的概念,分析全桥逆变器中每个元件的作用:2分析正弦脉宽调制(SPWM)原理,及硬件电路实现形式;3.应用protel制作SPWM逆变器线路图;4.根据线路图制作硬件,并调试;三.原理图1设计框图逆变电路是指将低电压变为高电压,把直流电变为交流电的电路,它与整流电路相对应,是通用变频器的核心部件之一,有非常重要的作用.它的基本作用是在控制电路的控制下,将中间的直流电路输出的直流电源转换为频率和电压都任意可调的交流电源。
如图所示1 设计的主要原理是,通过逆变电路对输入的直流电源进行逆变,在控制电路的作用下,使之输出想要的正弦信号。
PWM控制就是对脉冲的宽度进行调制的技术。
即通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。
当采用正弦波作为调制信号来控制输出PWM脉冲的宽度,使其按照正弦波的规律变化,这种脉冲宽度调制控制策略就称为正弦脉冲宽度调制,产生SPWM脉冲,采用最多的载波是等腰三角波;因为等腰三角波上任一点的水平宽度和高度成线性关系且左右对称,当它与任何一个平缓变化的调制信号波相交时,如果在交点时刻对电路中开关器件的通断进行控制,就可以得到宽度正比于信号波幅值的脉冲。
在调制信号波为正弦波时,所得到的就是SPWM波形。
四主电路设计桥式逆变结构:基本的电压源桥式逆变结构,两组功率开关串联跨接于电源,成为一个桥臂,以其串联中点为输出点。
这样的结构不允许串联开关同时导通,按照不同开关的通断组合,桥臂可以将它所跨接的两个不同电位作为输出,合理安排这些不同的桥臂输出电位可能生成有正有负的输出电压,这是桥式逆变电路实现电源极性变换的基本原理。
单双极性SPWM单相逆变器
![单双极性SPWM单相逆变器](https://img.taocdn.com/s3/m/286e7313c281e53a5802ff4b.png)
O U d 图 6 5
t
在ur与uc的交点处控制IGBT的通断。在ur的正半周,V1保持通 态,V2保持断态,当ur>UC时,使V4导通,v3关断,u0=ud; 当ur<uc,V4关断,V3导通,u0=0;
双极性PWM控制方式
Ur的半个周期内,三角载波在正负极之间连续变化,所得PWM波 也是在正负之间变化,称为双极性PWM控制方式。
单极性PWM控制方式
Ur为正弦调制信号波,Uc为三角载波。Ur的半个周期内三角载波 只在正极性和负极性一种极性范围内变化,所得PWM波也只处于 一个极性的范围内,称为单极性PWM控制方式。
V 1 U d + V 2 u 信 号 波 r u c 载 波
V D 1 R V D 2 u o
V 3 L V 4
图 用PWM波代替正弦半波
PWM波形可分为等幅PWM波和不等幅PWM波两种, 由直流电源产生的PWM波通常是等幅PWM波。 输出波形作调制信号,接受调制的信号为载波进 行调制得到期望的PWM波; 载波比——载波信号频率fc与调制信号频率fr之比,P= fc / fr 调制信号——正弦调制信号与三角载波信号的幅值之比 ,m=ur/uc 当载波频率fc远高于输出电压u0基频f且调制深度m≤1 时,可知输出基波电压u0f 的幅值 u1m=mud
f (t) f (t) f (t) f (t)
(t)
形状不同而冲 量相同的各种 窄脉冲
t d )
O
a )
t O
b )
t O 图 6 1
c )
t O
PWM控制的基本原理
用PWM波代替正弦半波 将正弦半波看成是由N个彼此相连的脉冲宽 度为/N,但幅值顶部是曲线且大小按正弦规 律变化的脉冲序列组成的。 把上述脉冲序列利用相同数量的等幅而不 等宽的矩形脉冲代替,使矩形脉冲的中点和相 应正弦波部分的中点重合,且使矩形脉冲和相 应的正弦波部分面积(冲量)相等,这就是 PWM波形。 对于正弦波的负半周,也可以用同样的方 法得到PWM波形。 脉冲的宽度按正弦规律变化而和正弦波等 效的PWM波形,也称SPWM波形。
三相桥式PWM逆变电路解析
![三相桥式PWM逆变电路解析](https://img.taocdn.com/s3/m/d75db024ba1aa8114431d9b4.png)
湘潭大学课程设计报告书题目:三相桥式PWM逆变电路设计学院信息工程学院专业自动化学生同组成员指导教师课程编号课程学分起始日期目录一、课题背景 (1)二、三相桥式SPWM逆变器的设计内容及要求 (2)三、SPWM逆变器的工作原理 (3)1.工作原理 (4)2.控制方式 (5)3.正弦脉宽调制的算法 (8)四、MATLAB仿真分析 (17)五、电路设计 (11)1.主电路设计 (11)2.控制电路设计 (12)3.保护电路设计 (14)4.驱动电路设计 (15)六、实验总结 (21)附录 (22)参考文献 (23)三相桥式SPWM逆变电路设计一、课题背景随着电力电子技术的飞速发展,正弦波输出变压变频电源已被广泛应用在各个领域中,与此同时对变压变频电源的输出电压波形质量也提出了越来越高的要求。
对逆变器输出波形质量的要求主要包括两个方面:一是稳态精度高;二是动态性能好。
因此,研究开发既简单又具有优良动、静态性能的逆变器控制策略,已成为电力电子领域的研究热点之一。
在现有的正弦波输出变压变频电源产品中,为了得到SPWM波,一般都采用双极性调制技术。
该调制方法的最大缺点是它的6个功率管都工作在较高频率(载波频率),从而产生了较大的开关损耗,开关频率越高,损耗越大。
本实验针对正弦波输出变压变频电源SPWM 调制方式及数字化控制策略进行了研究,以SG3525为主控芯片,以期得到一种较理想的调制方法,实现逆变电源变压、变频输出。
正弦逆变电源作为一种可将直流电能有效地转换为交流电能的电能变换装置被广泛地应用于国民经济生产生活中 ,其中有:针对计算机等重要负载进行断电保护的交流不间断电源 UPS (Uninterruptle Power Supply) ;针对交流异步电动机变频调速控制的变频调速器;针对智能楼宇消防与安防的应急电源 EPS ( Emergence Power Supply) ;针对船舶工业用电的岸电电源 SPS(Shore Power Supply) ;还有针对风力发电、太阳能发电等而开发的特种逆变电源等等.随着控制理论的发展与电力电子器件的不断革新 ,特别是以绝缘栅极双极型晶体管 IGBT( Insulated Gate Bipolar Transistor)为代表的自关断可控型功率半导体器件出现 ,大大简化了正弦逆变电源的换相问题 ,为各种 PWM 型逆变控制技术的实现提供了新的实现方法 ,从而进一步简化了正弦逆变系统的结构与控制. 电力电子器件的发展经历了晶闸管(SCR)、可关断晶闸管(GTO)、晶体管(BJT)、绝缘栅晶体管(IGBT)等阶段。
SPWM全桥逆变器主功率电路和控制电路设计共10页
![SPWM全桥逆变器主功率电路和控制电路设计共10页](https://img.taocdn.com/s3/m/2937d3a5ad51f01dc281f1cb.png)
SPWM全桥逆变器主功率电路和控制电路设计一.设计目的通过电力电子技术的学习,熟悉无源逆变概念;采用全桥拓扑并用全控器件MOSFET形成主电路拓扑,设计逆变器硬件电路,并能开环工作。
熟悉全桥逆变器拓扑,掌握逆变原理,实现正弦波输出要素,设计SPWM逆变器控制信号发生电路。
输入:48VDC 输出:40VAC/400HZ二.设计任务(1) 掌握全桥逆变的概念,分析全桥逆变器中每个元件的作用;(2)分析正弦脉宽调制SPWM原理,及硬件电路实现形式;(3)应用Protel 制作SPWM 逆变器线路图;(4)根据线路图制作硬件,并调试;三.设计原理电路组成及工作原理分析:电路主要由正弦波和三角波发生电路,控制电路和逆变电路组成。
电路中所用到的元器件主要有ICL8038,运算放大器LF353,比较器LM311,IR2110,MOSFET,CD4069,电阻电容及齐纳二极管组成。
控制电路分析:当电路开始工作,首先由ICL8038产生的正弦波和三角波,正弦波和三角波的幅值由可调电阻来控制,得到的波可以通过LF353运算放大器构成的反相电路进行反向,得到方向相反的正弦波,正弦波与三角波信号通过LM311比较芯片产生SPWM脉冲。
主电路分析:本次设计我们采用倍频式SPWM技术,在开关频率不变的情况下,达到输出频率倍增的效果。
IR2110用于驱动全桥逆变器用以控制MOSFET的通断,在IR2110的外围电路使用二极管和齐纳二极管防止MOSFET的同时导通而击穿。
如下图所示,MOSFET采用2SK1825,4个2SK1825两两串联后并联成桥式逆变主电路,U输入为出入电压,VDC 输出电压,电容C1、C3为VCC的滤波电容,电容C2、C4为自举电容,二极管为自举二极管。
MOSFET的驱动采用芯片IR2110驱动,2个IR2110芯片分别驱动桥式逆变主电路的2个桥臂。
工作时,两个IR2110(1)和IR2110(2)的输入SPWM脉冲是相反的,两个IR2110分别驱动不同桥臂的MOSFET管,IR2110(1)的HO驱动Q1、IR2110(1)的LO驱动Q2,IR2110(2)的HO驱动Q3、IR2110(2)的LO 驱动Q4,由于输入的两个SPWM脉冲是相反的,2个桥臂上的MOSFET 管会交叉导通,即Q1、Q3同时导通或者Q2、Q4同时导通,两种情况依次循环导通,从而完成逆变。
正弦脉宽调制(SPWM)控制
![正弦脉宽调制(SPWM)控制](https://img.taocdn.com/s3/m/e4fe926802d276a201292eb3.png)
正弦脉宽调制(SPWM)控制2010-09-18 ylw527 + 关注献花(4)为了使变压变频器输出交流电压的波形近似为正弦波,使电动机的输出转矩平稳,从而获得优秀的工作性能,现代通用变压变频器中的逆变器都是由全控型电力电子开关器件构成,采取脉宽调制(pulse width modulation, 简称pwm ) 控制的,只有在全控器件尚未能及的特大容量时才采取晶闸管变频器。
应用最早而且作为pwm简称spwm)。
图3-1与正弦波等效的等宽不等幅矩形脉冲波序列3.1正弦脉宽调制原理一个连续函数是可以用无限多个离散函数迫近或替代的,因而可以设想用多个分歧幅值的矩形脉冲波来替代正弦波,如图3-1所示。
图中,在一个正弦半波上分割出多个等宽不等幅的波形(假设分出的波形数目n=12),如果每一个矩形波的面积都与相应时间段内正弦波的面积相等,则这一系列矩形波的合成面积就等于正弦波的面积,也即有等效的作用。
为了提高等效的精度,矩形波的个数越多越好,显然,矩形波的数目受到开关器件允许开关频率的限制。
在通用变频器采取的交-直-交变频装置中,前级整流器是不成控的,给逆变器供电的是直流电源,其幅值恒定。
从这点出发,设想把上述一系列等宽不等幅的矩形波用一系列等幅不等宽的矩形脉冲波来替代(见图3-2),只要每个脉冲波的面积都相等,也应该能实现与正弦波等效的功能,称作正弦脉宽调制(spwm)波形。
例如,把正弦半波分作n等分(在图3-2中,n=9),把每一等分的正弦曲线与横轴所包抄的面积都用一个与此面积相等的矩形脉冲来代替,矩形脉冲的幅值不变,各脉冲的中点与正弦波每一等分的中点相重合,这样就形成spwm波形。
同样,正弦波的负半周也可用相同的方法与一系列负脉冲波等效。
这种正弦波正、负半周分别用正、负脉冲等效的spwm波形称作单极式spwm。
图3-2spwm波形图3-3是spwm变压变频器主电路的原理图,图中vt1~vt6是逆变器的六个全控型功率开关器件,它们各有一个续流二极管(vd1~vd6)和它反并联接。
倍频单极性SPWM调制法逆变器设计
![倍频单极性SPWM调制法逆变器设计](https://img.taocdn.com/s3/m/bbf815fe76c66137ee0619f9.png)
1设计要求............................................................. .仁2逆变器控制方式选择................................................... 1.3 方案设计.............................................................. 2..3.1系统总体框图..................................................... 2.3.2主电路的设计 .................................................... 3.3.3 DSP 的选取......................................................4..3.4驱动电路的设计................................................... 5.3.5采样电路........................................................ .6..3.6保护电路......................................................... 6. 4元件参数计算.......................................................... Z.4.1输出滤波电感L f、滤波电容C f的选取 (7)4.2变压器的设计..................................................... 8.4.3功率开关的选择................................................... 8.5 仿真结果............................................................. 9..5.1驱动波形......................................................... 9.5.2功率开关器件两端的电压波形...................................... 1.05.3逆变器输出波形 (10)6 结论................................................................ .1.1参考文献. (12)1设计要求主要内容:利用倍频单极性SPWM调制法究逆变器的调制方式,分析系统的稳定性和外特性,给出系统的硬件结构框图,设计系统各个部分的硬件电路,完成数字控制SPWM逆变器的原理试验和仿真。
实验三SPWM逆变电路山东大学
![实验三SPWM逆变电路山东大学](https://img.taocdn.com/s3/m/860ee82e571252d380eb6294dd88d0d232d43c7a.png)
实验三单相正弦波脉宽调制SPWM逆变电路实验实验者:学号:系年级:同组者:一、实验目的1.掌握电压型单相全桥逆变电路的工作原理。
2.了解正弦脉宽调制SPWM调频、调压原理。
3.分析SPWM逆变电路在不同负载时的工作情况和波形,研究工作频率对电路工作波形的影响。
二、实验内容1.控制信号观测;2.观测逆变电路输出在不同负载下的波形及参数。
三、实验设备1.电源控制屏DZ01:包括三相电源输出、交直流电压表和电流表等单元。
2.单相调压与可调负载:包括整流与滤波、单相自耦调压器等单元。
3.单相交一直一交变频原理:包括由4个IGBT管和LC滤波电路组成的主电路、驱动电路、控制电路等。
4.示波器、万用表。
四、实验步骤(一)控制信号的观测主电路不连通电源,打开控制电源开关,将控制电路面板上的开关拨至“测试”或“运行”位置。
观察正弦波信号uc 的波形,测试其频率可调范围;观察三角载波ur的波形,测试其波形;并观察uc与ur的关系。
改变正弦调制波信号的频率,在测量三角载波的频率,判断是同步调制还是异步调制。
比较“PWM+”“PWM-”和“SPWM1”“SPWM2”的区别,观测同一相上下两管驱动信号之间的死区延迟时间。
(二)带电阻及阻感负载时观测负载电压和负载电流的波形及参数将控制电路面板上的钮子开关拨至“运行”位置,将正弦波调制信号的频率调到最小。
按照主电路接线,单相自耦变压器输入测接电源线电压,输出测接整流电路,调节自耦变压器使整流电路输出电压为200V,然后将其接到单相交直交变频原理挂件上的主电路输入端。
逆变电路分别接电阻负载(灯泡)和阻感负载(挂箱上的灯泡和电感串联组成),调节正弦调制波信号uc的频率值,记录逆变器输出电压有效值和频率。
U d =200VU c频率(Hz)304050U o频率(Hz)有效值(V)电阻负载29.17Hz 118.79V 41.29Hz 114V 51.14Hz 118.02V 阻感负载29.84Hz 120.21V40.12Hz 115.5V50.05Hz 119V五、思考题1、分析电阻负载和阻感负载的实验数据和波形图从数据来看,阻感负载时的输出电压频率和有效值均与电阻负载下的输出电压频率和有效值相差不大,波形近似一致。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信息技术 Information Technology3.3 空间信息更新方法3.3.1 利用GIS软件功能更新随着GIS软件的发展,当前流行的GIS软件平台提供了时态GIS部分空间信息更新要求。
如ArcGIS9.2针对时态GIS的数据组织需求以及功能需求,提供相应的解决方案,包括:时间数据的存储格式NetCDF、时空数据建模、历史数据归档功能、多维数据图表分析、时间动画、追踪分析功能、实时数据获取等功能。
3.3.2 利用数据库功能自动更新目前,大多数行业的G I S利用空间数据引擎(如:ArcSDE)将空间数据存储到关系型(如:SQL Server)或对象关系型(如:Oracle)数据库中。
这些数据库提供触发器功能,触发器是针对单一数据表所撰写的特殊存储过程,当数据表发生添加、删除、更新操作时,自动执行所编写的脚本。
如当空间信息表发生变化时,可使用数据库触发器功能将需要变化前的数据自动存储到历史信息表中。
如果经常要空间数据库定时自动执行一些脚本,如数据库备份、数据的提炼、数据库的性能优化、重建索引、自动重建历史、建立或更新多基态等工作。
可利用数据库提供的作业(Job)功能实现空间信息的更新处理。
3.3.3 编写空间信息更新模块不同的时态GIS对空间信息更新要求不同,利用GIS软件平台功能、数据库触发器和作业功能只能满足一定条件的更新,局限性较大。
针对不同行业的时态GIS应用,需利用GIS 平台提供的二次开发功能有针对性编写空间信息更新模块,实现时态GIS空间信息用户手工更新和自动更新功能。
4 结论时态GIS作为GIS研究和应用的一个新领域,受到普遍的关注。
本文分析了时态GIS空间信息的更新问题,为了提高时空数据库存储和管理效率,研究了将空间信息和属性信息分开存储的时空数据库,并设计了时态GIS空间信息更新流程,给出了时态GIS空间信息更新技术和方法。
参考文献:王贺封.时空数据模型及TGIS研究[J].测绘与空间地理信[1]息,2006.08.周晓光,陈军,朱建军等.基于事件的时空数据库增量更新[2][J].中国图像图形学报,2006,11(10):1431-1438.吴正升,胡艳,何志新.时空数据模型研究进展及其发展方[3]向[J].测绘与空间地理信息,2009.12.汪汇兵,唐新明,洪志刚.版本差量式时空数据模型研究[4][J].测绘科学,2006.09.李勇,陈少沛,谭建军.基于基态距优化的改进基态修正时[5]空数据模型研究[J].测绘科学,2007.01.逆变器SPWM控制电路的研究与设计李长华 刘平(郑州大学信息工程学院,河南 郑州 450001)摘 要:本文依据SPWM控制原理,以逆变器控制电路为研究对象,通过分立电路设计出SPWM电路,调制波为50Hz正弦波,载波为10KHz三角波,输出SPWM波频率为20KHz。
实验证明该电路稳定性好,有效克服了温飘,反馈迅速,且成本低,输出实现倍频效应,对逆变器控制的理解和学习有很好的指导作用,具有较高的实用价值。
关键词:逆变器;SPWM控制;分立电路;倍频中图分类号:TK-9 文献标识码:B文章编号:1671-8089(2012)02-0088-03A Design of SPWM Circuitof InverterLichanghua Liuping(The College of ZhengZhou University ZhengZhou450001 China)Abstract: The principle of the driver circuit of an inverteris introduced in this paper. A SPWM control circuit isdesigned with discrete components. The frequency oftriangular wave is 10KHz, the sine wave is 50Hz, and theSPWM is 20KHz. The experimental results show that thismethod can work well. Temperature drift is overcome.And the cost is low. The output frequency is doubled. Inaddition, this paper helps us understanding the SPWMcontrol circuit better. And the pragmatic value of this designis high.Key words: inerter; SPWM control; discrete circuit;frequency doubling0 引言逆变器是一种通过半导体功率开关管的开通与关断作用将直流电转化为交流电的电路变换装置[1]。
根据输出波形可分为方波逆变器和正弦波逆变器。
由于多数负载要求逆变器输出正弦波,所以正弦波逆变器具有更广泛的应用空间。
在高频化技术阶段,逆变器输出波形改善以PWM(Pulse Width[作者简介] 李长华,男,河南新乡人,郑州大学在读研究生,主要从事开关电源设计及逆变器研究。
– 88 – 2012年第11卷第2期2012年第11卷第2期 – 89 –Information Technology 信息技术Modulation)法为主,SPWM(Sinusoida PWM)是调制波为正弦波、载波为等腰三角波或者锯齿波的一种脉宽调制法,它可以通过硬件电路如分立电路、PWM芯片电路和软件电路如单片机、DSP(Digital Signal Processors)来实现,本文分析了电路设计的SPWM电路比PWM芯片实现的电路结构简单,不需要单片机和DSP的辅助电源,有效改善了放大电路温度漂移问题,降低了电路成本。
1 逆变主电路结构全桥式电压型SPWM逆变器主电路结构[2]如图1所示。
全桥结构对功率器件的耐压要求低,适合大功率输出电路,因而有广泛的应用。
该逆变电路包括逆变全桥和滤波电路,其中逆变全桥完成直流到交流的变换,滤波电路滤除谐波成分以获得所需频率的交流电,而SPWM控制电路完成逆变桥功率管的“开”与“关”,在ab两端输出脉宽按正弦规律变化的矩形波,经过滤波最终在负载RL上输出正弦波。
2 SPWM控制电路原理图2为SPWM的两种调制方式原理图。
图2a载波为半波三角波,调制波为半波正弦波,在正弦波大于三角波的部分输出高电平,小于部分输出低电平,该电路输出SPWM波频率等于载波频率。
图2b载波为全波三角波,调制波为两路反向的正弦波,通过桥臂参差得到SPWM波形,输出SPWM波频率为载波频率的2倍,因此称为倍频SPWM调制法,该调制法降低了对载波频率的要求,谐波幅值小,输出滤波电路也更容易设计[3]。
本文采用图2b所示调制法。
图2 SPWM原理图图1 全桥逆变器主电路利用图2b调制法需要两路同幅反向的正弦波与同一组三角波作比较,得出的两路SPWM波分别控制Q1和Q2,而Q3和Q4的控制波形分别与Q1和Q2反向。
3 电路设计3.1 系统框图根据SPWM原理设计的系统框图如图3。
图3 系统框图本设计通过四路比较器产生两组相位相反的SPWM波通过桥臂参差来输出SPWM波形[4]。
3.2 电路设计图4为电路设计图。
其中,三角波发生电路由NE555定时器和恒流源电路组成,通过NE555输出3脚控制恒流源对电容C8进行充放电,从而在C8上端得到高线性度的三角波。
如图4,当定时器的3脚输出高电平时D4、D6导通,D3、D5截止,由Q1、Q3和R10组成的恒流源对C8进行充电,当C8电压达到输入电压的2/3即8V时,定时器输出低电平,这时C8通过Q1、Q2和R11组成的恒流源放电,直到C8电压达到输入电压的1/3即4V,3脚输出高电平,然后进入新一轮的充放电。
这样在电容C8两端得到峰峰值为4V的三角波。
三角波的频率可如下计算:若所需SPWM波频率为20KHz,则三角波频率取10KHz即可。
50Hz调制正弦波采用桥式震荡电路[5]产生,该电路负反馈环节利用二极管作为非线性环节并采用负温度系数的热敏电阻,这样可以有效控制温飘,稳定电压增益。
震荡频率由R3、R4、C6、C7决定:当输入电压为12V时,U1A及其外围元件组成虚拟双电源电路,以6V为“虚地”,除了为运放供电之外,还将正弦波震荡电路电压波形抬高6V,以便与三角波做比较。
SPWM波死区时间的控制由U4完成,死区时间为电阻和电容的乘积,本文中SPWM电路死区时间约为:图4中包含的稳压反馈环节[6]是通过对输出正弦波整流后的直流采样电压控制场效应管Q5,通过Q5沟道电阻的变化来– 90 – 2012年第11卷第2期改变负反馈深度,进而调整调制波幅度,最终调节调制度以稳定输出电压。
Q6与Q5组成差分形式用来克服温飘和非线性失真。
输出驱动芯片IR2110采用自举供电方式驱动功率开关管。
4 实验结果对本文设计电路的实验所得输出波形如图5、图6所示。
图5 两路SPWM波形图6 输出正弦波波形图5所示该电路设计的输出SPWM驱动波形,另外两路波形分别与这两路波形反相。
用该设计制作的驱动电路制作的逆变器输出波形如图6,从图中输出波形可见该设计频率稳定,带载失真度低,幅值稳定,满足设计要求。
5 结语倍频SPWM具有更好的消除谐波的特点,因此输出滤波电路更容易设计。
本文依据SPWM波的产生方式及波形特点,设计出有倍频效应的SPWM电路,很好的解决了放大电路的温飘问题,电路结构简单清晰,成本低,具有较高的实用价值。
参考文献:Liu Fengjun,Modern inverter technology and[1] applications[M].Beijing,2006:1-8.A b r a h a m I.P r e s s m a n ,K e i t hB i l l i n g s ,T a y l o r[2] M o r e y ,S w i t c h i n g P o w e r S u p p l y D e s i g n [M ].Beijing,2010:68-71.Liu Fengjun,Sine Wave Inverter[M].Beijing,2002:122-[3] 135.Tong Shibai,Hua Chengying,Fundamentals of Analog[4] Electronic[M].Beijing,2001:387-395.孙继健,肖岚.基于单极性SPWM控制的并网逆变器的研究[J].[5] 南京航空航天大学,2011.张学军,曾云.结型场效应管压控增益放大器及其应用[J].湖[6] 南大学,2002.图4 电路设计图信息技术 Information Technology。