1多普勒天气雷达原理与应用
多普勒天气雷达原理与业务应用测验1(答案)剖析
多普勒天气雷达原理与业务应用测验一(一至四章)一、填空题1、天气雷达是探测降水系统的主要手段,是对强对流天气(冰雹、大风、龙卷和暴洪)进行监测和预警的主要工具之一。
2、RDA由四个部分构成:发射机、天线、接收机和信号处理器。
3、PUP可以通过以下三种方式获取产品:(1)常规产品列表;(2)一次性请求;(3)产品-预警配对。
4、S波段和C波段的雷达波在传播过程中主要受到降水的衰减,衰减是由降水离子对于雷达雷达波的散射和吸收造成的。
5、.新一代多普勒雷达估测累计降水分布时,雷达采样时间间隔一般不应超过10分钟,除受本身精度限制外,还受降水类型(Z-R关系)、雷达探测高度、地面降水差异和风等多种因素影响。
6、多普勒雷达能测量的一个脉冲到下一个脉冲的最大相移上限是180度,其对应的径向速度值称为最大不模糊速度。
7、径向速度图中,零等速线呈“S”型表示,实际风随高度顺时针旋转,由RDA处得南风转为现实区边缘对应的西风。
反之,零等速线呈反“S”型表示,实际风随高度。
逆时针旋转,由RDA处得南风转为现实区边缘对应的东风。
8、WSR-88D和我国新一代天气雷达的脉冲重复频率在300-1300范围内。
9、多普勒天气雷达的最大不模糊距离与雷达的脉冲重复频率成反比,相应的最大不模糊速度与脉冲重复频率成正比。
10、对于SA和SB型雷达,基数据中反射率因子的分辨率为1K M×1°,而径向速度和谱宽的分辨率为0.25K M×1°。
11、积状云降水一般有比较密实的结构,反射率因子空间梯度较大,其强度中心的反射率因子通常在35dbz以上,而层状云降水回波比较均匀,反射率因子空间梯度较小,反射率因子一般大于15dbz而小于30dbz。
12、雷达波束和实际风向的夹角越大,则径向速度值越小;实际风速越小,径向速度也越小。
13、如果一个模糊的径向速度值是 45 节,它的邻近值是-55 节,最大不模糊径向速度是 60节,那么这个径向速度的最可能值是节(-75)14、我国的新一代天气雷达主要采用(VCP11、VCP21、VCP31)三种体扫模式。
多普勒天气雷达原理与业务应用思考题
1 多普勒天气雷达主要由几个部分构成?每个部分的主要功能是什么?答:主要由雷达数据采集子系统(RDA ),雷达产品生成子系统(RPG ),主用户终端子系统(PUP )三部分构成。
RDA 的主要功能是:产生和发射射频脉冲,接收目标物对这些脉冲的散射能量,并通过数字化形成基本数据。
RPG 的主要功能是:由宽带通讯线路从RDA 接收数字化的基本数据,对其进行处理和生成各种产品,并将产品通过窄带通讯线路传给用户,是控制整个雷达系统的指令中心。
PUP 的主要功能是:获取、存储和显示产品,预报员主要通过这一界面获取所需要的雷达产品,并将它们以适当的形式显示在监视器上。
2 多普勒天气雷达的应用领域主要有哪些?答:一、对龙卷、冰雹、雷雨大风、暴洪等多种强对流天气进行监测和预警;二、利用单部或多部雷达实现对某个区域或者全国的降水监测;三、进行较大范围的降水定量估测;四、获取降水和降水云体的风场信息,得到垂直风廓线;五、改善高分辨率数值预报模式的初值场。
3 我国新一代天气雷达主要采用的体扫模式有哪些?答:主要有以下三个体扫模式:VCP11——规定5分钟内对14个具体仰角的扫描,主要对强对流天气进行监测;VCP21——规定6分钟内对9个具体仰角的扫描,主要对降水天气进行监测;VCP31——规定10分钟内对5个具体仰角的扫描(使用长脉冲),主要对无降水的天气进行监测。
4 天气雷达有哪些固有的局限性?答:一、波束中心的高度随距离的增加而增加;二、波束宽度随距离的增加而展宽;三、静锥区的存在。
5 给出雷达气象方程的表达式,并解释其中各项的意义。
答:P t 为雷达发射功率(峰值功率);G 为天线增益;h 为脉冲长度;、 :天线在水平方向和垂直方向的波束宽度;r 为降水目标到雷达的距离;:波长; m :复折射指数;Z 雷达反射率因子。
6 给出反射率因子在瑞利散射条件下的理论表达式,并说明其意义。
答:∑=单位体积6i D z ,反射率因子指在单位体积内所有粒子的直径的六次方的总和,与波长无关。
多普勒雷达原理
多普勒雷达原理多普勒雷达是一种利用多普勒效应进行目标探测与测速的雷达系统。
它基于多普勒效应的原理,通过测量目标相对于雷达的速度变化,实现对目标的探测和跟踪。
本文将介绍多普勒雷达的原理以及其在实际应用中的作用。
一、多普勒效应的基本原理多普勒效应是由奥地利物理学家克里斯托夫·多普勒于1842年发现的。
它描述的是当发射器和接收器相对于运动的目标靠近或远离时,频率会发生变化的现象。
在雷达系统中,这种频率变化可以用来确定目标运动的速度。
当雷达向目标发送电磁波时,如果目标与雷达靠近,接收器收到的回波会发生频率上升的变化。
反之,如果目标与雷达远离,则回波的频率会下降。
这种频率变化被称为多普勒频移,它与目标的速度成正比。
二、多普勒雷达的工作原理多普勒雷达的基本工作原理是利用多普勒效应测量目标的速度。
它通过发射器发送高频的电磁波,并接收目标回波的信号。
接收到的信号经过信号处理后,可以得到目标相对于雷达的速度信息。
具体而言,多普勒雷达系统包括一个发射器和一个接收器。
发射器发射高频的连续波或脉冲波,这些波在空间中以一定的速度传播。
当波与运动的目标相遇时,发生回波。
接收器接收到回波信号后,通过频率分析等方法,提取出其中的多普勒频移。
多普勒频移的大小与目标相对于雷达的速度成正比。
根据多普勒频移的大小可以确定目标的运动状态,包括向雷达靠近或远离以及速度大小等信息。
这些信息对于目标的跟踪、识别和定位非常重要。
三、多普勒雷达在实际应用中的作用多普勒雷达在许多领域都有着广泛的应用。
以下是一些常见的应用场景:1. 气象雷达:多普勒雷达被广泛用于天气预报中的降水预测和风暴跟踪。
通过测量降水物体的速度和方向,可以预测降水的类型和强度,并及时发出预警,保护人们的生命和财产安全。
2. 空中交通管制:多普勒雷达可以用于监测飞机的速度、航向和高度,为航空机构提供实时的飞行信息。
这些信息对于空中交通管制的安全和效率非常重要。
3. 汽车雷达:多普勒雷达广泛应用于汽车领域的自动驾驶和智能安全系统中。
多普勒天气雷达:原理、应用与收获总结
多普勒天气雷达:原理、应用与收获总结以下是多普勒天气雷达原理与应用课程的总结:1.雷达基本原理与组成雷达是一种利用无线电波探测目标的电子设备。
它通过发射电磁波,并接收目标反射回来的电磁波,根据反射回来的电磁波的特性,推断出目标的位置、速度、形状等信息。
雷达主要由发射机、接收机、天线和显示器等组成。
发射机产生高频电磁波,并通过天线向空间发射。
当电磁波遇到目标时,它会被反射回来并被天线接收。
接收机接收到反射回来的电磁波后,对其进行处理和分析,以推断出目标的位置、速度、形状等信息。
2.多普勒天气雷达原理多普勒天气雷达是一种专门用于探测天气目标的雷达。
它利用多普勒效应原理,测量目标的速度和方向。
当雷达发射的电磁波遇到运动目标时,反射回来的电磁波的频率会发生变化。
多普勒天气雷达通过测量这种频率变化,可以推断出目标的速度和方向。
同时,根据反射回来的电磁波的振幅和相位等信息,还可以推断出目标的形状和大小。
3.多普勒天气雷达的应用多普勒天气雷达在气象领域有着广泛的应用。
它主要用于探测台风、暴雨、冰雹等恶劣天气,为气象预报和灾害预警提供重要依据。
此外,多普勒天气雷达还可以用于空气质量监测、气候变化研究、航空航天等领域。
4.课程收获与总结通过学习多普勒天气雷达原理与应用课程,我们了解了雷达的基本原理和组成,以及多普勒天气雷达的工作原理和应用。
我们学会了如何利用雷达数据分析和推断天气信息,并掌握了雷达在气象领域中的应用方法和技巧。
在本课程中,我们学习了很多有用的知识和技能,包括:雷达方程和散射截面、电磁波的传播特性、多普勒频移和速度估计、气象目标的识别和处理等。
这些知识和技能不仅可以帮助我们更好地理解雷达的工作原理和应用,还可以为我们的后续学习和工作打下坚实的基础。
总之,学习多普勒天气雷达原理与应用课程,不仅让我们深入了解了雷达的工作原理和应用,还提高了我们的数据处理和分析能力,为我们的后续学习和工作打下了坚实的基础。
多普勒天气雷达应用研究
多普勒天气雷达应用研究【摘要】本文简要介绍了多普勒天气雷达的相关原理,并结合典型个例,应用多普勒天气雷达回波资料及常规天气资料,阐述了多普勒图像在气象保障中的应用,简要论述复杂海岸地形产生的气流在对流降水过程中的影响。
【关键词】多普勒天气雷达;闪电强度;地形1 多普勒天气雷达的相关原理1.1 PPI显示方式雷达图像的PPI显示,是指雷达天线在一系列固定仰角上扫描360。
进行取样,并经过对目标物的数据进行分析、处理而得出的结果。
在每个仰角上,沿雷达波束向外径向距离增加,离地高度也增加。
因此,当环境风场只随高度变化时,雷达扫描一周便能揭示出从地面到雷达显示范围边缘高度上所有风的信息。
1.2 零值线的意义在分析多普勒图像时.关键是要寻找到零值线,然后围绕零线进行大气流场的分析。
零值线一种情况表明此处的风向与雷达探测的径向是垂直的;另一种情况是该处真实风速为零(也可能是速度极小或处于静止状态)。
当所有高度上的风速都一样,风向从地面上(雷达站)的南风均匀地改变到显示边缘高度上的正南风。
环境风场平面图:风速固定,在地面为南风(图像中心),均匀地经西南风变为图像边缘处的西风。
在显示区的外缘,当雷达指向正北和正南时,多普勒速度值为零,这意味着在相应高度不是正西风就是正东风。
由于在显示区的西部边缘多普勒速度值是正的(朝向雷达的分量),东部边缘的多普勒速度值是负的(离开雷达的分量),那么很明显.在雷达图像显示区边缘高度上风向是由西向东的。
1.3 典型流场的多普勒模式掌握典型流场的多普勒模式,对于分析复杂天气系统的流场结构有着重要的意义,下面主要介绍基本气流模式、暖切变流场模式和冷锋(冷切变)流场模式。
1.3.1 基本气流模式基本气流(水平面上风向风速一致、风速随高度先增加后减小的西南气流)的方向是从趋近(正值)中心吹向远离(负值)中心,并和零值线所在的向径方向垂直,这就是基本气流径向速度分布模式。
其它方向的基本气流的趋近区、远离区和零值线也随之而变,但图形一样。
雷达气象学之第三章(多普勒天气雷达探测原理和方法)
2、脉冲对处理法(PPP)
在一定假设条件下对每一个距离库内的连 续两个取样值作成对处理.从而获得平均 多普勒频率和频谱宽度。此法优点在于能 实时处理.并且有一定精度,但它不能得 到频率谱。
3、相干记忆滤波器(CMF)处理法
此法只需要一个线路,在不设置距离库的 情况下同时对雷达探测范围内各个距离上 作粗略的谱分析,并能用如PSI(平面切变 线是其)等直接显示出来。但它精度不高;
垂 直 风 廓 线
补充风符号
1.风向杆 表示风的 来向。 2.风羽每 条代表风 速4米/秒, 半条代表2 米/秒,三 角旗代表 20米/秒。
谱 宽
反 射 率
三、影响速度谱宽的气象因子
• 多普勒速度谱宽表征着有效照射体内不同 大小的多普勒速度偏离其平均值的程度, 实际上它是由散射粒子具有不同的径向速 度所引起的。对气象目标物而言,影响速 度谱宽的主要因子有四个:
• 显然,雷达有效照射体中粒子直径的差别 越大,由此造成的多普勒速度谱越宽。
• 因此速度的谱宽实际上也取决于降水粒子 的谱分布。
• 当雷达水平探测时,粒子的下落末速度在 雷达波轴上的径向分量为零,所以它对多 普勒速度谱宽没有任何影响。
• 而当雷达垂直指向探测时,粒子下落末速 度即为径向速度,故由此造成的谱曾宽作 用最大。
• 在实际工作中需要了解的是有效照射体内
平均的多普勒速度和速度谱宽度,根据以
上关系式,并注意到 f 2v 关系式,则平均
多普勒速度
v
,和速度谱方差
2 v
分别为:
v 1 v v dv
Pr
2 v
1 Pr
vv
2
v dv
径向速度谱密度、平均径向速度、径向速度 谱宽三者的关系示意图
多普勒天气雷达原理与应用
第六部份 多普勒天气雷达原理与应用(周长青)我国新一代天气雷达原理;天气雷达图像识别;对流风暴的雷达回波特点;新一代天气雷达产品第一章 我国新一代天气雷达原理一、了解新一代天气雷达的三个组成部份和功能新一代天气雷达系统由三个要紧部份组成:雷达数据搜集子系统(RDA )、雷达产品生成子系统(RPG )、主用户处置器(PUP )。
二、了解电磁波的散射、衰减、折射散射:当电磁波束在大气中传播,碰到空气分子、大气气溶胶、云滴和雨滴等悬浮粒子时,入射电磁波会从这些粒子上向四面八方传播开来,这种现象称为散射。
衰减:电磁波能量沿传播途径减弱的现象称为衰减,造成衰减的物理缘故是当电磁波投射到气体分子或云雨粒子时,一部份能量被散射,另一部份能量被吸收而转变成热能或其他形式的能量。
折射:电磁波在真空中是沿直线传播的,而在大气中由于折射率散布的不均匀性(密度不同、介质不同),使电磁波传播途径发生弯曲的现象,称为折射。
2/3730/776.0T e T P N +=波束直线传播波束向上弯曲波束向下弯曲000=><dz dN dzdN dzdN三、了解雷达气象方程其中Pr 表示雷达接收功率,Z 为雷达反射率,r 为目标物距雷达的距离。
Pt 表示雷达发射功率,h 为雷达照射深度,G 为天线增益,θ、φ表示水平和垂直波宽,λ表示雷达波长,K 表示与复折射指数有关的系数,C 为常数,之决定于雷达参数和降水相态。
四、了解距离折叠最大不模糊距离:最大不模糊距离是指一个发射脉冲在下一个发射脉冲发出前能向前走并返回雷达的最长距离,Rmax=PRF, c 为光速,PRF 为脉冲重复频率。
距离折叠是指雷达对雷达回波位置的一种识别错误。
当距离折叠发生时,雷达所显示的回波位置的方位角是正确的,但距离是错误的(可是可估量它的正确位置)。
当目标位于最大不模糊距离(Rmax )之外时,会发生距离折叠。
换句话说,当目标物位于Rmax 之外时,雷达却把目标物显示在Rmax 之内的某个位置,咱们称之为‘距离折叠’。
多普勒天气雷达原理与业务应用
多普勒天气雷达原理与业务应用Doppler weather radar is based on the principle of Doppler effect, which is the change in frequency or wavelength of a wave in relation to an observer who is moving relative to the wave source. 多普勒天气雷达基于多普勒效应的原理,这是与观察者相对运动的波的频率或波长的变化。
In the case of weather radars, this effect is used to detect motion and precipitation particles in the atmosphere. 在天气雷达的情况下,这种效应被用来探测大气中的运动和降水颗粒。
The radar emits pulses of radio waves, which interact with any particles in the atmosphere, such as raindrops, snowflakes, or even insects. 雷达发射无线电波脉冲,这些波与大气中的任何颗粒如雨滴、雪花甚至昆虫发生相互作用。
When these particles are in motion, they cause a change in the frequency of the returning radar pulses, and this change is interpreted as the motion of the particles and can be used to determine the intensity and direction of precipitation. 当这些颗粒在运动时,它们会导致返回雷达脉冲的频率变化,这种变化被解释为颗粒的运动,并且可以用来确定降水的强度和方向。
多普勒雷达测量运动物体的速度和距离
多普勒雷达测量运动物体的速度和距离多普勒雷达(Doppler Radar)是一种广泛应用于气象、交通和军事等领域的测量工具,它能够准确地测量运动物体的速度和距离。
多普勒雷达是基于多普勒效应原理工作的,通过分析接收到的雷达信号的频率变化,可以推断出运动物体的速度和距离信息。
下面将详细介绍多普勒雷达的工作原理和应用。
一、多普勒效应原理多普勒效应是物理学中一个重要的知识点,它描述了当波源和观察者相对运动时,波的频率会发生变化。
在多普勒雷达中,信号源是发射出的电磁波,而运动物体则充当了观察者的角色。
当运动物体靠近或远离雷达设备时,接收到的信号的频率会发生变化。
如果物体靠近,接收到的频率将会比原始频率高;而如果物体远离,接收到的频率将低于原始频率。
利用这一原理,我们可以通过分析信号频率的变化来计算物体的速度和距离。
二、多普勒雷达的工作原理多普勒雷达的工作原理可以分为发射和接收两个过程。
首先,雷达设备会发射一束电磁波束,这个波束会经过天线发射出去。
当波束遇到物体时,部分电磁波会被物体吸收、散射或反射。
这些散射回来的电磁波会再次经过雷达天线接收。
接收到的信号被送入雷达系统进行分析。
在分析过程中,系统会比较接收到的信号的频率和发射信号的频率之间的差异。
如果接收到的信号的频率比发射信号的频率高,那么说明物体正在向雷达设备靠近;反之,如果接收到的频率低于原始频率,说明物体正在远离。
通过计算频率差异和已知的发射频率,我们可以得到物体的速度信息。
此外,多普勒雷达还可以根据信号的往返时间来计算物体与雷达设备的距离。
通过测量信号发射和接收之间的时间间隔,并结合电磁波在空气中的传播速度,可以得到运动物体的距离。
三、多普勒雷达的应用多普勒雷达在不同领域有着广泛的应用。
以下是几个主要的应用领域:1. 气象雷达:气象部门使用多普勒雷达来观测和预测天气状况,如降水、风暴和雷暴等。
通过测量降雨颗粒的运动速度和方向,可以对降雨区域进行精确的监测和预警。
多普勒天气雷达资料分析与应用
引言
• RADAR
• RAdio Detecting And Ranging
• WSR-88D
• Weather Surveillance Radar 88 Doppler
• CINRDA/SA,SB,SC;
• S:10cm,A敏视达,B14所,C成都七八四厂
• CINRDA/CD,成都七八四厂生产 CINRDA/ CC,CCJ 安徽四创生产
0
5 4
m2 1 2 m2 2 Z
大粒子散射
对于不满足瑞利散射条件的降水粒子,根据雷达气象 方程求得的 Z 值就不能代表降水的实际谱分布情况, 只能是等效的 Z 值,记为 Ze ,称为等效雷达反射率 因子。
等效反射率因子Ze:
• 用瑞利散射公式计算大粒子的反射率因子
• 能够产生同样回波功iN1率PrM,i 与小球45粒mm子的22 反 射12 率2 Z因e子等效的Z值。
天气雷达的基本工作原理
• 天气雷达间歇性地向空中发射脉冲式的电磁波,电 磁波在大气中以接近光波的速度、近似于直线的路 径传播,如果在传播路径上遇到了气象目标物,脉 冲电磁波会被气象目标物向四面八方散射,其中一 部分电磁波能被散射回雷达天线(称为后向散射), 在雷达显示器上显示出气象目标物的空间位置分布 和强度等特征。
• C:5cm
Weather Radar in China
• 中国气象雷达的概况 • 711型测雨雷达 - X • 713型测雨雷达 - C • 714型测雨雷达 - S • 多普勒雷达(714-CD, 3830,敏视达雷
达)
多普勒天气雷达的组成和探测原理
•一、多普勒天气雷达的工作原理 •二、雷达的 PPI 扫描方式 •三、雷达的三部分 •四、多普勒天气雷达的产品介绍 •五、短时预报常用的雷达产品
多普勒效应及应用解析
多普勒效应及应用解析多普勒效应是物理学中的一种现象,它描述了当波源和接收者相对移动时,由于观察者所处的相对速度不同,引起的波长或频率的变化。
多普勒效应具有广泛的应用,涉及许多领域,如天文学、医学、气象学和交通工程等。
本文将对多普勒效应的原理及其在不同领域的应用进行解析。
一、多普勒效应原理多普勒效应的原理可以通过将波分解成震荡源的相对运动和观察者的相对运动来解释。
当波源和观察者相向而行时,波源发出的波峰就会紧密地靠在一起,被观察者接收到的频率就比波源本身的频率更高,这被称为正多普勒效应。
相反,当波源和观察者远离彼此时,波峰之间的距离增加,接收到的频率就比波源本身的频率更低,这被称为负多普勒效应。
二、天文学中的应用多普勒效应在天文学中起着至关重要的作用,它可以帮助天文学家确定星体的运动速度、距离和组成成分。
通过观察星体的光谱线的频率变化,可以判断星体是远离地球还是靠近地球,从而推断其运动轨迹。
利用多普勒效应,科学家可以研究星系的运动状态,探索宇宙的演化历程。
三、医学中的应用在医学领域,多普勒效应被广泛应用于超声诊断技术中。
通过测量血液流动产生的声波的频率变化,医生可以判断血流速度、血管狭窄程度、心脏瓣膜的功能等。
多普勒超声技术在心脏病学、血管学和妇科学等领域有着重要的临床应用,为医生提供了无创、准确的诊断手段。
四、气象学中的应用气象学中的雷达多普勒效应被广泛应用于气象预测和风暴监测中。
通过测量气象物理过程中的反射或散射的电磁波的频率变化,气象学家可以准确地确定气象系统的运动速度和风向。
雷达多普勒技术使气象预报能够更精确地预测降水、气旋和龙卷风等极端天气事件,提高了人们对天气变化的预警和预防能力。
五、交通工程中的应用多普勒效应在交通工程中也有着广泛的应用。
例如,在交通领域中使用的测速仪器利用多普勒效应来测量车辆的速度。
当测速仪发射出的电磁波与车辆反射回来的波峰之间的频率差异即可计算出车辆的速度。
此外,多普勒雷达系统也用于交通流量监测、道路安全和交通事故预防等方面。
6多普勒天气雷达原理与应用
6多普勒天气雷达原理与应用多普勒天气雷达是一种利用多普勒效应来探测降水、风速和风向等气象参数的雷达,广泛应用于气象预报、水资源管理、防灾减灾等领域。
下面将从多普勒天气雷达的原理和应用两个方面进行详细介绍。
一、多普勒天气雷达原理:多普勒天气雷达利用物体回波的多普勒频移来测量物体的运动状态。
其原理可以通过以下几个步骤来理解:1.信号发射与接收:雷达通过天线向大气中发射脉冲信号。
脉冲信号是一种特殊的波形,其特征是能够精确测量反射信号的时延。
雷达波束探测的范围称为体积样积分区(VCP)。
2.对流层的多次散射:当雷达脉冲信号遇到大气中的物质(如雨滴、冰晶等)时,部分能量会被这些物质散射反射回来,形成回波。
3.多普勒频移的测量:回波信号中包含了大气物质运动的信息。
相对于静止的物体而言,当物体以一定速度向雷达或远离雷达运动时,回波信号的频率会发生变化,这就是多普勒频移效应。
4.频谱分析与信号处理:雷达对回波信号进行频谱分析,可以得到回波信号频率的分布情况。
通过计算信号的频移量,可以得到大气物体沿径向的速度和方向。
二、多普勒天气雷达的应用:多普勒天气雷达主要应用于气象预测、水资源管理和防灾减灾等领域,具有以下几个方面的应用:1.气象预报:多普勒天气雷达可以精确测量降水的强度、区域分布和降雨类型(如雨、雪、冰雹等),有助于提高天气预报的准确性。
通过观测和分析雷达回波,可以及时预警并预测强降水、洪水、暴风雨等极端天气事件,为防范和减轻灾害提供重要数据支持。
2.水资源管理:多普勒天气雷达能够实时监测和测量降水的强度和分布,在水资源管理中起到重要作用。
通过对降水数据的分析,可以为城市供水、水库调度、灌溉农业等方面的决策提供准确的水资源量和雨量预测信息。
3.风速与风向测量:多普勒天气雷达还可以测量大气中的风速和风向。
利用雷达的多普勒频移原理,可以从回波中获取风场流场的信息,包括垂直风速的分布、风向的变化等,为气象、航空、海洋等领域提供有关风的数据。
多普勒气象雷达工作原理
多普勒气象雷达工作原理小伙伴们!今天咱们来唠唠超级厉害的多普勒气象雷达。
你可别小看这个雷达哦,它就像气象界的超级侦探,能发现好多关于天气的小秘密呢。
你知道吗?多普勒气象雷达主要是靠发射和接收电磁波来工作的。
就好像是雷达在对着天空大喊一声:“天气情况咋样呀?”然后等着天空回应它。
这个雷达会发射出一种特定频率的电磁波,这种电磁波就像一个个小小的信使,朝着天空中的云啊、雨滴啊之类的东西飞奔而去。
当这些电磁波碰到云里的小水滴或者雨滴的时候,有趣的事情就发生啦。
这些小水滴和雨滴就像调皮的小孩子,它们会把电磁波给反射回来。
就好像是它们接到了雷达的问候,然后赶紧回答:“我们在这儿呢!”雷达就会收到这些反射回来的电磁波。
那多普勒气象雷达的独特之处在哪呢?这就和多普勒效应有关啦。
想象一下,你站在路边,一辆汽车鸣着喇叭呼啸而过。
当汽车朝着你开过来的时候,你听到的喇叭声音是比较高的音调,等汽车开过去远离你的时候,你听到的喇叭声音音调就变低了。
这就是多普勒效应在生活中的体现。
在气象雷达里呢,当雨滴朝着雷达运动的时候,反射回来的电磁波的频率就会变高;要是雨滴是远离雷达运动的呢,反射回来的电磁波频率就会变低。
雷达就可以根据这个频率的变化,算出雨滴是朝着哪个方向运动的,运动的速度有多快。
这就好比雷达能知道那些雨滴是着急地朝着某个地方赶去,还是慢悠悠地在天空溜达呢。
而且呀,通过分析反射回来的电磁波的强度,雷达还能知道云里有多少小水滴或者雨滴呢。
如果反射回来的电磁波很强,那就说明云里的小水滴或者雨滴比较多,可能是那种厚厚的云层,说不定还会带来一场大雨呢。
要是反射回来的电磁波比较弱,那可能就是比较稀薄的云,也许就只是飘过几片小云彩,不会有啥大动静。
多普勒气象雷达还能对不同高度的天气情况进行探测。
它就像一个有着好多层的大蛋糕,每一层都能仔细地查看。
这样就能知道在低空是不是有大雾要形成啦,在高空是不是有强对流天气在酝酿呢。
这个雷达就像是气象工作者的得力小助手。
多普勒雷达通过频率变化探测物体运动
多普勒雷达通过频率变化探测物体运动多普勒雷达是一种用于探测物体运动的先进技术。
它利用了多普勒效应,通过观察物体反射回来的电磁波频率的变化,可以准确地测量物体的速度和方向。
在本文中,我们将探讨多普勒雷达的工作原理、应用领域以及它在现代科技中的重要性。
一、多普勒雷达的工作原理多普勒雷达利用多普勒效应来测量物体的速度。
当物体朝向雷达靠近或远离雷达远离时,它们对反射的电磁波产生频率的变化。
这个频率变化被称为多普勒频移,它与物体的速度成正比。
多普勒雷达包括一个发射器和一个接收器。
发射器发射高频电磁波,经过反射后被接收器接收到。
接收器接收到的信号会被与发射器发出的信号进行比较,从而得到频率的变化。
根据多普勒频移的大小,我们可以计算出物体的速度和方向。
二、多普勒雷达的应用领域多普勒雷达在许多领域发挥着重要的作用。
以下是其中一些应用领域的简要介绍:1. 海洋和大气观测:多普勒雷达常用于海洋和大气观测中,用于测量风速、浪高以及降水等参数。
通过监测这些参数的变化,我们可以预测天气状况,并采取适当的措施应对自然灾害。
2. 交通管理:多普勒雷达在交通管理中的应用非常广泛。
例如,它可以被用于测速仪器中,帮助监控道路上的车辆速度。
此外,多普勒雷达还可以用于交通流量监测和交通管制系统。
3. 医学影像学:多普勒雷达技术在医学影像学中也有重要应用。
它可以用于检测血液流动速度和方向,从而帮助医生诊断血管疾病和心脏问题。
同时,它还可用于胎儿监测,帮助评估胎儿的健康状况。
4. 军事应用:多普勒雷达在军事领域中起到了关键作用。
它可以被用于侦测敌方舰船、飞机等目标的速度和方向,从而支持战术决策和防御措施的制定。
此外,它还可以用于导弹制导系统中,确保导弹能够准确地击中目标。
三、多普勒雷达在现代科技中的重要性多普勒雷达在现代科技中发挥着不可替代的作用。
它的应用涵盖了各个领域,从海洋观测到医学诊断,从交通管理到军事防御。
多普勒雷达准确、快速地测量物体的速度和方向,为我们提供了宝贵的数据和信息。
多普勒激光雷达与大气探测
多普勒激光雷达与大气探测多普勒激光雷达(Doppler lidar)是一种利用激光光束探测物体运动状态的仪器。
它的应用范围很广,包括气象、环境、动力学等领域。
其中,在大气探测中,多普勒激光雷达具有非常重要的作用。
本文将详细介绍多普勒激光雷达在大气探测中的原理、应用及未来发展方向。
一、多普勒激光雷达原理多普勒激光雷达的原理是利用激光束发射出去,并经由被探测物体反射回来的光信号,通过测量反射回来的信号的频率偏移来确定物体运动速度。
当被探测物体向多普勒激光雷达发射器运动时,反射回来的光波的频率增加;当被探测物体与多普勒激光雷达发射器远离时,反射回来的光波的频率减少。
通过测量这种频率偏移,可以确定物体运动状态。
二、多普勒激光雷达在大气探测中的应用在大气探测中,多普勒激光雷达主要用于探测空中气体的运动状态。
根据多普勒效应原理,当激光束与空气分子相互作用时,会发生反射和散射。
通过探测反射和散射光波的频率偏移,可以确定空气分子的运动状态,包括速度、方向和时间等信息。
多普勒激光雷达在大气探测中的应用包括下列几个方面:1.气象学在气象学中,多普勒激光雷达被用于探测天空中的水滴、冰晶、降雪以及风向、风速等信息。
通过探测气体运动状态的变化,可以实现温度、湿度、气压等气象因素的实时测量。
多普勒激光雷达还可用于雷暴监测,通过探测云中闪电发生的时间和地点,可以及时预警雷电等灾害性天气。
2.卫星遥感多普勒激光雷达也可用于卫星遥感,通过对大气运动状态的探测,可以获取大气折射率数据,进而提取出高程、材质如何和建筑等信息。
3.环境监测多普勒激光雷达还可用于环境监测,比如监测空气中的颗粒物、沙尘和烟雾等。
通过多普勒激光雷达探测到的反射光信号,可以确定颗粒物的速度和分布,从而实现大气污染和气溶胶浓度等数据的实时监测。
三、未来多普勒激光雷达的发展方向随着科技的发展,多普勒激光雷达也在不断地加强技术创新,未来的发展方向主要有以下几个:1.提高探测精度当前多普勒激光雷达的精度还有一定的提升空间。
多普勒天气雷达原理与应用-雷达探测算法
雷暴特征分析
反射率因子权重 质心(雷暴中心) 体积 雷暴投影到水平 面上的面积大小和形 状(最佳适应形状是 多边形和椭圆)
雷暴追踪
假设T1和T2是相邻的两个雷达体扫资料时间
追踪思路: 1. 宁短不长(考虑
到体扫间隔为56分钟) 2. 特征相似(尺寸 和形状等) 3. 设置雷暴移动速 度上限
“区域”尺寸的选择不宜太大也不宜太小,太大会导致回 波移动向量的分辨率太粗,“区域”太小则包含的数据点 太少,不足以产生稳定的相关系数。发现对于1km ×1km 的分辨率,m取值在3-7之间比较合适。
将平面直角 坐标内的二 维坐标排列 成一维,然 后计算相关 系数:
R [(
k
Z1 (k )
Z2
(k)
1 N
Z1 2 (k) N Z1 2 ) (
Z1(k) Z2 (k)
k
k
Z2 2 (k) N Z2 2 )]
k
k
其中Z1和Z2是分别是相继两个体扫t1和t2时刻的反射率因子, N是一个“区域”内数据点的数量(N=m2)。
14Байду номын сангаас雷暴和降水的临近预报系统
• TITAN • TREC • Auto-Nowcaster
跟踪和外推算法
雷暴或降水的临近预报系统的基础是跟踪和外 推。主要分为两种类型:
• 单体质心跟踪和外推: 将雷暴或降水单元视为三维 单体加以识别、跟踪和外推。典型的例子有WSR-88D 和WDSS中的风暴单体识别与跟踪、以及TITAN等, 下面我们会对TITAN重点进行介绍;
• 区域跟踪和外推:对反射率因子超过某一阈值的二 维区域进行跟踪和外推。典型的例子有TREC等,我 们下面给以重点介绍。
多普勒天气雷达的特点及在短临天气中的应用
多普勒天气雷达的特点及在短临天气中的应用摘要:相比于常规气象雷达,多普勒天气雷达可以探测到8-12 km之间的对流云的生成和改变,从而可以准确的预测出云的运动速率,从而降低预测的精度。
因此,多普勒天气雷达的工作机理及其适用领域都有较大的发展空间。
关键词:多普勒天气雷达;特点;应用引言与短期预报相比,其预报时效更短,主要集中在0小时到12小时,重头戏在于对中小尺度天气系统,尤其是强对流天气系统的预报。
相对于大尺度天气系统,强对流天气系统具有生命史短、突发性强等特点。
其生命周期短的只有几分钟到几十分钟,最长不过十几个小时。
由于生消速度快,因而难以把握。
短期预报(预报时效为1天到3天)只能预报强对流天气出现的可能性,却无法预报其所带来的降雨具体落区。
但提前1小时到2小时的短临预报,却可以清楚捕捉到系统所在位置,从而能够预报出降雨的落区。
于是,人们就把目光转向了多普勒天气雷达,其除具备常规天气雷达的全部功能外,还能同时提供大气风场的信号。
通过对气象回波进行多普勒速度分辨,可获得不同高度大气层中各种空气湍流运动的分布情况。
多普勒作用在二十世纪70年代在军火控制、气象监测等领域得到了应用。
多普勒天气雷达所发出的脉冲的长度要小于常规气象雷达,它可以根据降雨的位置和强度来进行气象特征和对流等方面的研究。
1多普勒天气雷达相关概述、特点及应用随着科学技术的发展,多普勒雷达技术也在飞速发展,多普勒雷达技术也在逐步完善,比如多波长雷达、多极化雷达等。
我们国家正在努力建设自己的完整的、能够对天气进行有效监控的雷达网络。
多普勒天气雷达在空间和时间上都有着较高的解析度,可实现降雨强度和目标移动速率的实时监测。
可对气象系统的发生、发展和演变进行预测;可通过实时监测天气系统运动方向,判断云体位置,配合地面人工影响天气作业,确定最佳作业时间、地点,增强人工影响天气作业效率;同时,可对降水进行定量分析与预报。
由于多普勒天气雷达在气象领域的出色表现,一些国家对雷达站进行了布设,比如美国在上个世纪后期就已经开始大规模地制造多普勒天气雷达,并且形成了雷达网络。
多普勒雷达
多普勒雷达多普勒雷达是一种利用多普勒效应来检测目标的速度和方向的无线电探测设备。
多普勒雷达广泛应用于军事、民用航空、气象预报、海洋观测等领域,具有重要的实用价值。
原理多普勒雷达的工作原理基于多普勒效应,当发射的电磁波与目标发生相对运动时,频率会因目标的运动而产生改变。
通过测量这种频率变化,多普勒雷达可以推断目标相对于雷达的速度和方向。
应用军事领域在军事领域,多普勒雷达被广泛用于目标追踪、导弹制导、防空警戒等任务。
多普勒雷达可以更精确地确定目标的速度和方向,有助于提高战斗系统的作战效率。
民用航空在民用航空领域,多普勒雷达被用于飞机的大气层大规模流量监控、飞机起降的高精度跟踪、天气气流和降水监测等方面。
多普勒雷达可以为飞行员提供准确的空中交通管制信息,提升空中航行的安全性。
气象预报多普勒雷达在气象预报领域的应用也十分重要。
通过多普勒雷达可以实时监测大气中的降水、风暴等天气现象,帮助气象学家更准确地预测天气变化,及时发布预警信息,为社会公众提供有效的气象服务。
海洋观测此外,多普勒雷达在海洋观测方面也扮演着重要角色。
通过多普勒雷达可以监测海洋表面的海浪、潮汐、洋流等情况,帮助海洋科学家更好地了解海洋环境,开展海洋资源勘探、海洋灾害监测等工作。
发展趋势随着科学技术的不断发展,多普勒雷达正在不断完善和应用于更多领域。
未来,随着雷达技术的进一步提升,多普勒雷达将更加精准、高效地服务于人类的各个领域,为社会发展做出更大的贡献。
结语总的来说,多普勒雷达是一种极具实用性、广泛应用的技术手段,通过测量目标的速度和方向,帮助人们更好地了解目标的运动状态,为各个领域提供宝贵的数据支持。
我们期待多普勒雷达在未来的发展中能够不断创新,为人类社会的进步做出更大的贡献。
多普勒天气雷达原理与业务应用--汇总
Pr .54
P P P P
r1 r2 r3 r4
4
3 根据雷达气象方程
2 P rr Z c
求出反射率因子 Z
4 用 dBZ=10lgZ 把 Z 转换成 dBZ 2.5.5.3 平均径向速度数据获取步骤 ①为了使对每个 0.13 海里的距离库的速度估计误差不大于 2 节(1 米/秒) , 需要 40-50 个脉冲对。 ②求脉冲对位相矢和: 这一步使用位相矢来代表脉冲对。
多普勒天气雷达原理与业务应用
第一章 引论
1. 在我国东部和中部地区,装备先进的新一代 S 波段(10cm)和 C 波段(5cm) 多普勒天气雷达系统。沿海地区设(S 波段)雷达,内陆地区设(C 波段)雷达。 2. 计划在全国共布置(158)部新一代天气雷达。到 2005 年 5 月份为止,已布 设 80 余部新一代天气雷达。 3.新一代天气雷达系统的应用主要在于对灾害性天气,特别是与风害和冰雹相 伴的灾害性天气的监测和预警。 它还可以进行较大范围降水的定量估测,获取降 水和降水云体的风场结构。 4.新一代天气雷达的应用领域有哪些? (1) 对灾害性天气的监测和预警。 (2) 定量估测大范围降水。 (3) 风场信息。 (4) 改善高分辨率数值天气预报模式的初值场 5.辐合(辐散)在径向风场图像中表现为一个最大和最小的径向速度对,两个 极值中心的连线和雷达的射线(相一致) 。气流中的小尺度气旋(或反气旋)在 径向风场图像中也表现为一个最大和最小的径向速度对, 但中心连线走向则与雷 达射线(相垂直) 。 6.新一代天气雷达采用(全相干)体制,共有(7)种型号,其中 S 波段有(3) 种型号,称为(SA、SB、SC) ,C 波段有(4)种型号,分别为(CINRAD-CB、CC、 CCJ、CD) 。 7.新一代天气雷达的三个主要部分: (雷达数据采集子系统(RDA) 、雷达产品 生成子系统(RPG)和主用户终端子系统(PUP) )以及连接它们的通信线路。 RDA 和 RPG 由一条(宽带)通讯线路连接,RPG 和 PUP 由一条(窄带)通讯 线路连接。由 RDA 的数字化基本数据经过(RPG)中的各种算法生成一系列的产
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六部分 多普勒天气雷达原理与应用(周长青)我国新一代天气雷达原理;天气雷达图像识别;对流风暴的雷达回波特征;新一代天气雷达产品第一章 我国新一代天气雷达原理一、了解新一代天气雷达的三个组成部分和功能新一代天气雷达系统由三个主要部分构成:雷达数据采集子系统(RDA )、雷达产品生成子系统(RPG )、主用户处理器(PUP )。
二、了解电磁波的散射、衰减、折射散射:当电磁波束在大气中传播,遇到空气分子、大气气溶胶、云滴和雨滴等悬浮粒子时,入射电磁波会从这些粒子上向四面八方传播开来,这种现象称为散射。
衰减:电磁波能量沿传播路径减弱的现象称为衰减,造成衰减的物理原因是当电磁波投射到气体分子或云雨粒子时,一部分能量被散射,另一部分能量被吸收而转变为热能或其他形式的能量。
折射:电磁波在真空中是沿直线传播的,而在大气中由于折射率分布的不均匀性(密度不同、介质不同),使电磁波传播路径发生弯曲的现象,称为折射。
2/3730/776.0T e T P N +=波束直线传播波束向上弯曲波束向下弯曲000=><dz dN dzdN dzdN三、了解雷达气象方程其中Pr 表示雷达接收功率,Z 为雷达反射率,r 为目标物距雷达的距离。
Pt 表示雷达发射功率,h 为雷达照射深度,G 为天线增益,θ、φ表示水平和垂直波宽,λ表示雷达波长,K 表示与复折射指数有关的系数,C 为常数,之决定于雷达参数和降水相态。
四、了解距离折叠最大不模糊距离:最大不模糊距离是指一个发射脉冲在下一个发射脉冲发出前能向前走并返回雷达的最长距离,Rmax=0.5c/PRF, c 为光速,PRF 为脉冲重复频率。
距离折叠是指雷达对雷达回波位置的一种辨认错误。
当距离折叠发生时,雷达所显示的回波位置的方位角是正确的,但距离是错误的(但是可预计它的正确位置)。
当目标位于最大不模糊距离(Rmax )以外时,会发生距离折叠。
换句话说,当目标物位于Rmax 之外时,雷达却把目标物显示在Rmax 以内的某个位置,我们称之为‘距离折叠’。
五、理解雷达探测原理。
反射率因子Z 值的大小,反映了气象目标内部降水粒子的尺度和数密度,反射率越大,说明单位体积中,降水粒子的尺度大或数量多,亦即反映了气象目标强度大。
反射率因子(回波强度):⎰=dDD D N Z 6)(360/1mmm Z =即反射率因子为单位体积内中降水粒子直径6次方的总和。
意义:一般Z 值与雨强I 有以下关系:层状云降水 Z=200I1.6地形雨 Z=31I1.71雷阵雨 Z=486I1.37新一代天气雷达取值 Z=300I1.4六、了解雷达资料准确的局限性、资料误差和资料的代表性由于雷达在探测降水粒子时,以大气符合标准大气情况为假定,与实际大气存在一定的差别,使雷达资料的准确度具有一定的局限性,且由于雷达本身性能差异及探测方法的固有局限,对探测目标存在距离折叠及速度模糊现象,对距离模糊和速度模糊的处理等,均增大了雷达资料的误差。
虽然如此,由于径向速度是从多个脉冲对得到的径向速度的平均值,为平均径向速度,雷达反射率因子通过对沿径向上的四个取样体积平均得到的,其径向分辨率相当于四个取样体积的长度,这也使雷达探测的资料具有一定的代表性。
第二章 天气雷达图像识别一、掌握多普勒效应多普勒效应为,当接收者或接受器与能量源处于相对运动状态时,能量到达接受者或接收器时频率的变化。
多普勒频率,是由于降水粒子等目标的径向运动引起的雷达回波信号的频率变化,也称为多普勒频移,其与目标的径向运动速度成正比,与多普勒天气雷达波长成反比。
二、了解多普勒天气雷达测量反射率因子、平均径向速度和速度谱宽的主要技术方法多普勒雷达利用降水粒子的后向散射与多普勒效应来达到对其探测的目的。
通过发射信号与接收信号的延迟来测量距离,通过降水粒子的多普勒频移来测量其速度。
反射率因子:雷达的反射率因子是降水粒子后向散射被雷达天线接收到的回波,为单位体积内中降水粒子直径6次方的总和,反射率因子Z 值的大小,反映了气象目标内部降水粒子的尺度和数密度,反射率越大,说明单位体积中,降水粒子的尺度大或数量多。
平均径向速度:由于降水粒子等目标的径向运动引起的雷达回波信号的频率变化,也称为多普勒频移,其与目标的径向运动速度成正比,与多普勒天气雷达波长成反比。
径向速度则是从多个脉冲对得到的径向速度的平均值,为平均径向速度,而相应的标准差即为谱宽。
速度谱宽:径向速度则是从多个脉冲对得到的径向速度的平均值,为平均径向速度,而相应的标准差即为谱宽。
三、理解距离折叠和速度模糊的概念最大不模糊距离:最大不模糊距离是指一个发射脉冲在下一个发射脉冲发出前能向前走并返回雷达的最长距离,Rmax=0.5c/PRF, c为光速,PRF为脉冲重复频率。
距离折叠:距离折叠是指雷达对雷达回波位置的一种辨认错误。
当距离折叠发生时,雷达所显示的回波位置的方位角是正确的,但距离是错误的(但是可预计它的正确位置)。
当目标位于最大不模糊距离(Rmax)以外时,会发生距离折叠。
即当目标物位于Rmax之外时,雷达却把目标物显示在Rmax以内的某个位置,我们称之为‘距离折叠’。
如果一个散射区在Rmax之外,那么回波只有在下一个脉冲发射之后才能收到,因为实际的来回距离在Rmax和Rmax之间,因此这种回波被称为第二区回波。
最大不模糊速度 Vmax:最大不模糊速度是雷达能够不模糊地测量的最大平均径向速度,其对应的相移是180度。
按照Nyquist采样定理可知,雷达能够准确测量多普勒频率是PRF/2,即fDmax=PRF/2。
考虑到多普勒频率实际上是频率漂移,可正可负,故fDmax=±PRF/2, 把关系式fD=2V/λ代入,并把fDmax和Vrmax相对应,可得:Vmax=±λ*PRF/4对实际使用的雷达来说,波长是固定的,当选定了Rmax(或脉冲重复频率)后,就会存在一个Vmax。
即,当目标的径向速度大于最大不模糊速度时,就会产生混淆。
由雷达测得的径向速度将相差两倍最大不模糊速度(称Nyquist间隔或速度折叠)。
当最大不模糊速度较小时,会产生多次速度折叠,此时:真实速度的可能值 v-2nVmax或v+2nVmax n为1,2,3,···为Nyquist数或速度折叠次数。
四、了解新一代天气雷达工作方式扫描方式告诉雷达在一次体积扫描中使用多少仰角和时间。
WSR-88D 和 CINRAD WSR-98D 使用三种扫描方式:5分钟完成14个不同仰角上的扫描(14/5)6分钟完成9个不同仰角上的扫描(9/6)10分钟完成5个不同仰角上的扫描(5/10)体扫模式 (VCP:Volume Cover Pattern):扫描方式确定一次体积扫中使用多少个仰角,而具体是哪些仰角则由体扫模式来规定。
目前只定义了其中的4个:VCP11:规定5分钟内对14个具体仰角的扫描方式。
VCP21:规定6分钟内对9个具体仰角的扫描方式。
VCP31:规定10分钟内对5个具体仰角的扫描方式。
VCP32:确定的10分钟完成的5个具体仰角与VCP31相同。
不同之处:VCP31使用长雷达脉冲 VCP32使用短脉冲。
WSR-98D未定义VCP32。
工作模式(Operational Mode):WSR-88D使用两种工作模式,即降水模式和晴空模式。
雷达的工作模式决定了使用哪种VCP。
工作模式A:降水模式使用VCP11或VCP21,相应的扫描方式分别为14/5 和9/6。
工作模式B:晴空模式使用VCP31或VCP32,两者都使用扫描方式5/10。
五、了解数据的质量控制原理和方法去除距离折叠的方法:①用随机相位编码技术消除距离折叠。
②调节脉冲重复频率(PRF),这样便可以改变Rmax,并可能在所关心的区域将距离折叠退掉。
③选择一个较高的仰角扫描能克服距离折叠问题。
④采取变换探测地点的方式可以观察到同一个风暴的不同侧面。
去除速度模糊的方法:目前最常见的客观速度退模糊的技术方法有下面几种:①主观识别和消除速度模糊影响,在使用速度回波的PPI 或RHI 等图像以前,应首先分析是否存在速度模糊现象,如存在,则在使用时排除其影响。
②改变脉冲重频或交替使用双重频。
六、理解什么是多普勒两难 8max max C R V λ±= 根据得知,对每个特定雷达而言,在确定的频率下,探测的最大距离和最大速度不能同时兼顾。
第三章 对流风暴的雷达回波特征一、了解层状云降水、积云降水和积云层状云混合降水的反射率因子图像主要特征在常规雷达上,积状云降水回波被描述为具有密实的结构,而层状云降水回波具有均匀的纹理和结构,积状和层状混合降水回波具有絮状结构。
积状云降水,反射率因子空间梯度较大,其强度中心的反射率因子通常在35dBZ 以上,而层状云降水反射率因子空间梯度小,反射率因子一般大于15dBZ ,小于35dBZ 。
层状云降水或层状-积云混合降水反射率因子回波的另一个特征是所谓的“零度层亮带”的存在。
二、理解边界层辐合线的识别边界层辐合线:边界层辐合线在新一代天气雷达反射率因子图上呈现为窄带回波,强度从几个dBZ 到十几个dBZ 。
三、理解风随高度变化的径向速度图主要特征①等径向速度线为直线:零等速线呈直线,各高度层上的风为均匀风场。
如果实际风速在某高度层上出现最大值,则在径向速度图上表现为被闭合等速区所包围的最大径向速度区。
②S 型和反S 型径向速度图像:零等速线呈S 型,表示实际风向随高度顺时针旋转,在雷达有效探测范围内有暖平流;同样,零等速线呈反S 型,表示实际风向随高度逆时针旋转,在雷达有效探测范围内有冷平流。
③汇合和发散流场的速度图像:如果实际风向在各高度层上为汇合或发散,则在速度图上零等速线呈弓形。
四、了解锋面的径向速度图像特征锋面从西北方向移向RDA,冷风逼近时,零等速区(线)有两个(条),一个通过RDA呈S 型结构,另一个未通过RDA 呈反S型结构。
锋区位于东北-西南向零等速线,如下图。
当冷锋位于RDA时,有三条零等速区(线),有一条零等速线通过RDA中心,为锋区所在位置,如下图。
当冷锋通过RDA后,有三条零等速区(线),在RDA东南方呈西南-东北向的零等速线即为锋区,如下图。
五、理解γ中尺度系统的径向速度特征①γ中尺度气旋/反气旋流场:在小区域内,当一对最大入流/出流速度中心距雷达是等距离时,表示在该区域内有中γ尺度旋转存在,沿雷达径向方向,若最大入流速度中心位于左侧,表示为气旋性旋转,若最大入流速度中心位于右侧,则为反气旋性旋转。
②γ中尺度辐合/辐散流场:由于γ中尺度辐合/辐散流场得尺度较小,其源点或汇点和整个流场均在雷达的有效探测范围内,在包含γ中尺度辐合/辐散流场的小区域内,沿同一雷达径向方向有两个最大径向速度中心,若最大入流中心位于靠近雷达一侧,则该区域为径向辐散区,相反则为径向辐合区。