专题14 运用函数的图像研零点问题(解析版)
专题14 一次函数的实际应用(知识点大串讲)-解析版
专题14 一次函数的实际应用【知识点-思维导图】©知识点一:分配方案问题例1.(2021·山东济宁市兖州区教学研究室九年级一模)如图是甲、乙两家商店销售同一种产品的销售价y(元)关于销售量x(件)的函数图象.给出下列说法,其中说法不正确的是().A.售2件时,甲、乙两家的售价相同B.买1件时,买乙家的合算C.买3件时,买甲家的合算D.乙家的1件售价约为3元【答案】D【分析】根据一次函数图象中的数据逐一分析解题.【详解】解:A.甲、乙两个一次函数的图象交于点(2,4),即售2件时,甲、乙两家的售价相同,正确,给A不符合题意;B.当买1件时,乙的图象在甲图象的下方,即此时乙家的售价较少,买乙家的合算,正确,故B不符合题意;C. 当买3件时,乙的图象在甲图象的上方,即此时乙家的售价较大,买甲家的合算,正确,故C不符合题意;D.由图象可知,乙家的1件售价在3元以下,故D错误,符合题意,故选:D.【点睛】本题考查一次函数的应用,是重要考点,难度较易,掌握相关知识是解题关键.练习1.(2020·湖北黄冈市·八年级期末)某公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.当月通话时间为()时,A,B两种套餐收费一样.A.100分钟B.200分钟C.300分钟D.400分钟【答案】C【分析】根据A套餐的收费为月租加上话费,B套餐的收费为话费列式,再根据两种收费相同列出方程,求解即可.【详解】A套餐的收费方式:y1=0.1x+15;B套餐的收费方式:y2=0.15x;由0.1x+15=0.15x,得到x=300,故选C.【点睛】本题考查了一次函数的应用,是典型的电话收费问题,求出两种收费相同的时间是确定选择不同的缴费方式的关键.练习2.(2021·江苏盐城市·九年级一模)某校为改善教师的办公环境,计划购进A,B两种办公椅共100把.经市场调查:购买A种办公椅2把,B种办公椅5把,共需600元;购买A种办公椅3把,B种办公椅1把,共需380元.(1)求A种,B种办公椅每把各多少元?(2)因实际需要,购买A种办公椅的数量不少于B种办公椅数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其它因素),实际付款总金额按市场价九折优惠.请设计一种购买办公椅的方案,使实际所花费用最省,并求出最省的费用.【答案】(1)A种办公椅每把100元,B种办公椅每把80元;(2)当B种办公椅为25把,则A种办公椅为75把时,所需费用最省,最省费用为8550元.【分析】(1)设A种办公椅每把x元,B种办公椅每把y元,由题意可得256003380x yx y+=⎧⎨+=⎩,进而求解即可;(2)设B种办公椅为a把,则A种办公椅为(100-a)把,实际付款为w元,由题意得1003a a -≥,则有25a ≤,进而可得()0.910010080189000w a a a =-+=-+⎡⎤⎣⎦,然后根据一次函数的性质可求解. 【详解】解:(1)设A 种办公椅每把x 元,B 种办公椅每把y 元,由题意可得:256003380x y x y +=⎧⎨+=⎩, 解得:10080x y =⎧⎨=⎩,答:A 种办公椅每把100元,B 种办公椅每把80元.(2)设B 种办公椅为a 把,则A 种办公椅为(100-a )把,实际付款为w 元,由题意得:1003a a -≥,解得25a ≤,∴()0.910010080189000w a a a =-+=-+⎡⎤⎣⎦, ∴-18<0,∴w 随a 的增大而减小,∴当a =25时,w 为最小,即182590008550w =-⨯+=;答:当B 种办公椅为25把,则A 种办公椅为75把时,所需费用最省,最省费用为8550元. 【点睛】本题主要考查一次函数的应用、一元一次不等式的应用及二元一次方程组的应用,熟练掌握一次函数的应用、一元一次不等式的应用及二元一次方程组的应用是解题的关键. 练习3.(2021·云南曲靖市·九年级一模)为了巩固拓展脱贫攻坚成果,开启乡村振兴发展之门,某村合作社组织20辆汽车装运A 、B 两种土特产到外地销售,规定每辆汽车只能装运一种特产,且必须装满;装运每种特产的汽车不少于4辆.设用x 辆汽车装运A 特产,此次外销获得的利润为y ,根据下表提供的信息,解答下列问题:(1)求y 与x 之间的函数关系式,并写出自变量的取值范围;(2)由于市场需要,将A 特产每吨售价提高00.02m m <≤()万元,求该合作社应该怎样装运销售这批土特产,可获得最大利润,最大利润是多少?【答案】(1)0.264y x =-+(416)x ≤≤;(2)获得最大利润的方案:4辆汽车装运A 特产,16辆汽车装运B 特产,将A 特产每吨提高0.02万元,可获得最大利润63.9万元 【分析】(1)用x 辆汽车装运A 特产,则(20-x )辆汽车运送B 特产,根据利润y 等于运送两种特产的利润之和,可列出y 与x 之间的函数关系式;根据装运每种特产的汽车不少于4辆及汽车总数为20辆,可写出自变量的取值范围;(2)根据题意写出y 关于x 的函数关系式,根据一次函数的性质可得答案. 【详解】(1)由题意可得:50.64(20)0.80.264y x x x =⨯+-⨯=-+, 自变量x 的取值范围是:416x ≤≤;(2)由条件可得:5(0.6)4(20)0.8(50.2)64y x m x m x =++-⨯=-+, ∴00.02m <≤,∴50.20m -<, ∴y 随x 的增大而减小,当40.02x m ==,时,0.16463.9y =-+=最大,答;获得最大利润的方案:4辆汽车装运A 特产,16辆汽车装运B 特产,将A 特产每吨提高0.02万元,可获得最大利润63.9万元. 【点睛】本题考查了一次函数在实际问题中的应用,理清题中的数量关系、熟练掌握一次函数的性质是解题的关键.©知识点二:最大利润问题例1.(2020·四川达州育才外国语学校七年级期末)元旦期间,某商场搞优惠促销活动,其活动内容是:“凡在本商场一次性购物超过100元者,超过100元的部分按9折优惠”.在此活动中,李明到该商场为单位一次性购买单价为60元的办公用品x(x >2)件,则应付款y(元)与商品件数x(件)之间的关系式是( ) A .y =54xB .y =54x +10C .y =54x -90D .y =54x +45【答案】B 【分析】根据已知表示出买x 件办公用品的总钱数以及优惠后价格,进而得出等式即可; 【详解】∴凡在该商店一次性购物超过100元者,超过100元的部分按九折优惠, ∴李明到该商场为单位一次性买单价为60元的办公用品,x (x >2)件, 则李明应付贷款y (元)与办公用品件数x (件)的函数关系式是:()()601000.91005410>2y x x x =-⨯+=+.故答案选B . 【点睛】本题主要考查了根据实际问题列一次函数关系式,准确找到等量关系是解题的关键. 练习1.(2019·福建福州市·八年级期中)商场销售甲种服装每件的利润为40元,乙种服装每件的利润为30元.计划购进这两种服装共100件,其中甲种服装不少于65件,不超过75件.在5月1日当天对甲种服装以每件优惠1(0)0a a <<元的价格进行优惠促销活动,乙种服装价格不变,则商场进货( )件甲种服装能获得最大利润. A .65 B .70C .75D .100【答案】C 【分析】利用总利润=销售甲种服装的利润+销售乙种服装的利润,建立函数关系式,利用一次函数的性质求利润的最大值即可. 【详解】解:设甲种服装购进x 件,总利润为w 元,根据题意得 6575x ≤≤,()()()4030100103000w a x x a x =-+-=-+,010a <<,∴100a ->,w 随x 的增大而增大,∴当75x =时,w 有最大值,则购进甲种服装75件,乙种服装25件. 故选:C .【点睛】本题考查一次函数的实际应用,掌握列一次函数关系式与利用一次函数的性质求最大值是解题关键.练习2.(2021·山东济南市·九年级二模)某校组织“大手拉小手,义卖献爱心”活动,购买了黑白两种颜色的文化衫共140件,进行手绘设计后出售,所获利润全部捐给山区困难孩子.每件文化衫的批发价和零售价如表:(1)若学校恰好用完预计进货款1240元,则应购进黑白两种文化衫各多少件?(2)若学校规定黑色文化衫的进货量不超过白色文化衫进货量的3倍,应怎样进货才能使学校在销售完这两种文化衫时获得的利润最多?利润最多为多少元?【答案】(1)黑色文化衫60件,白色文化衫80件;(2)购进黑色文化衫105件,白色文化衫35件时获得利润最大,最大利润为1995元. 【分析】(1)根据表格中提供的信息及等量关系列二元一次方程组即可求解;(2)设获得的利润为W 元,购买黑色文化衫x 件,可得到W 关于x 的函数关系式,从而求出W 的最大值. 【详解】解:(1)设购买黑色文化衫x 件,白色文化衫y 件. 根据题意,得,1401081240x y x y +=⎧⎨+=⎩, 解得,6080x y =⎧⎨=⎩.答:应购进黑色文化衫60件,白色文化衫80件.(2)设获得利润W 元,购买黑色文化衫x 件,则购买白色文化衫(140-x )件. ∴W =(25−10)x +(20−8)(140−x )=3x +1680.∴W 是关于x 的一次函数,且W 随x 的增大而增大.∴黑色文化衫的进货量不超过白色文化衫进货量的3倍, ∴x ≤3(140−x ). 解得x ≤105.∴当x =105时,W 取得最大值.此时,W =31051680⨯+=1995,140−x =35.答:当购进黑色文化衫105件,白色文化衫35件时获得利润最大,最大利润为1995元. 【点睛】本题考察了列二元一次方程组解应用题和利用一次函数求最值等知识点.列方程组解应用题的关键是从题目的叙述中找到关于已知量和未知量之间的等量关系;利用函数求最值的关键是判断函数在某个区间上的增减性.练习3.(2021·全国八年级期末)某水果店每天都会进一些草莓销售.在一周销售过程中他发现每天的销售量y (单位:千克)会随售价x (单位:元/千克)的变化而变化,部分数据记录如表:如果已知草莓每天销量y 与售价x (14<x <30.625)满足一次函数关系. (1)请根据表格中数据求出这个一次函数关系式;(2)如果进价为14元/千克,请判断售价分别定为20元/千克和25元/千克时,哪个的销售利润更高?【答案】(1)y =﹣8x +245;(2)当售价为20元/千克时的销售利润更高 【分析】(1)根据题意和表格中的数据可以求得这个一次函数的解析式;(2)根据题意和(1)中的函数解析式可以求得相应的利润,然后比较大小即可解答本题. 【详解】解:(1)设这个一次函数的解析式为y =kx +b ,则3052545k b k b +=⎧⎨+=⎩,得8245k b =-⎧⎨=⎩, 即这个一次函数的解析式为y =﹣8x +245;(2)当进价为14元/千克,售价为20元/千克时,利润为:(20﹣14)×(﹣8×20+245)=510(元),当进价为14元/千克,售价为25元/千克时,利润为:(25﹣14)×(﹣8×25+245)=495(元),∴510>495,∴当售价为20元/千克时的销售利润更高.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.©知识点三:行程问题例1.(2021·全国九年级专题练习)一天,明明和强强相约到距他们村庄560米的博物馆游玩,他们同时从村庄出发去博物馆,明明到博物馆后因家中有事立即返回.如图是他们离村庄的距离y(米)与步行时间x(分钟)之间的函数图象,若他们出发后6分钟相遇,则相遇时强强的速度是()米/分钟A.80B.90C.100D.不能确定【答案】A【分析】根据图象找出点A、B的坐标利用待定系数法求出线段AB的函数解析式,代入x=6求出点F的坐标,由此即可得出答案.【详解】解:观察图象可得出:点A的坐标为(5,560),点B的坐标为(12,0),设线段AB的解析式为y=kx+b(k≠0),∴5560 120k bk b+=⎧⎨+=⎩,解得:80960kb=-⎧⎨=⎩,∴线段AB的解析式为y=﹣80x+960(5≤x≤12).当x=6时,y=480,∴点F的坐标为(6,480),∴所以相遇时强强的速度是480÷6=80(米/分钟).故选:A.【点睛】本题考查了一次函数的应用及待定系数法求函数解析式.观察图象找出点的坐标再利用待定系数法求出函数解析式是解题的关键.练习1.(2021·湖北武汉市·九年级一模)小明步行从家出发去学校,步行了5分钟时,发现作业忘在家,马上以同样的速度回家取作业,然后骑共享单车赶往学校,小明离家距离S (米)与时间t(分钟)之间的函数图象如图,则小明骑车比步行的速度每分钟快()A.200B.80C.140D.120【答案】D【分析】根据小明步行了5分钟,走了400米,求得小明步行的速度,由小明以同样的速度回家取作业,可得小明回家花的时间,由此得出小明骑车花的时间,用骑车的路程÷时间求得小明骑车的速度,即可得出结论.【详解】解:由图像知:步行了5分钟,走了400米,∴小明步行的速度为:400÷5=80米/分钟,∴又以同样的速度回家取作业,∴又花了5分钟,后面骑车用的时间为:16-5-5=6分钟,∴小明骑车的速度为:1200÷6=200米/分钟,∴小明骑车比步行的速度每分钟快200-80=120米/分钟,故选:D【点睛】本题是一次函数的综合题,也考查了行程问题:路程=速度×时间的运用,解题时理解函数图像是关键.练习2.(2021·天津九年级一模)下面图象所反映的过程是:张强家、早餐店、体育场依次在同一条直线上.张强从家出发匀速跑步去体育场,在那里锻炼了一段时间后,又匀速步行去早餐店吃早餐,然后匀速散步回到家,其中x表示张强离开家的时间,y表示张强离家的距离.请根据相关信息,解答下列问题:(1)填表:(2)填空:①张强从家出发到体育场的速度为________km/min;②张强在体育场运动的时间为_______min;③张强从体育场到早餐店的速度为_______km/min ;④当张强离家的距离为0.6千米时,他离开家的时间为________min .(3)当0x 30时,请直接写出y 关于x 的函数解析式,【答案】(1)1.6,2,1.2;(2)①0.2;②10;③0.08;④3或55;(3)当010x 时,0.2y x =;当1020x <时,2y =;当2030x <时,0.08 3.6y x =-+.【分析】(1)由函数图象中的数据进行计算,即可求解;(2)由函数图象中的数据及图中体现的数量关系,进行分析计算即可求解;(3)根据题意及待定系数法即可求解.【详解】(1)由函数图象得:当0≤x ≤10时,设y =ax ,把(10,2)代入得2=a ×10,解得a =0.2,∴当0≤x ≤10时,0.2y x =,∴当x =5时,y =1;当x =8时,y =1.6;当x =20时,y =2;当x =40时,y =1.2; 故答案为:1.6,2,1.2;(2)由函数图象结合题意得:①张强从家出发到体育场的速度为210=0.2km/min ; ②张强在体育场运动的时间为20-10=10min ;③张强从体育场到早餐店的速度为2 1.20.083020-=-km/min ; ④当40<x ≤70时,设y =mx +n ,将(40,1.2)、(70,0)代入得 1.240070m n m n =+⎧⎨=+⎩解得0.042.8m n =-⎧⎨=⎩, ∴当20<x ≤30时,0.04 2.8y x =-+,当y =0.6时,0.60.04 2.8x =-+,解得x =550.2y x ==0.6,解得x =3∴当张强离家的距离为0.6千米时,他离开家的时间为3或55min .故答案为:①0.2;②10;③0.08;④3或55;(3)由(1)得当010x 时,0.2y x =;当1020x <时,2y =;当20<x ≤30时,设y =kx +b ,将(20,2)、(30,1.2)代入得2201.230k b k b=+⎧⎨=+⎩ 解得0.083.6k b =-⎧⎨=⎩, ∴当20<x ≤30时,0.08 3.6y x =-+,综上,当010x 时,0.2y x =;当1020x <时,2y =;当2030x <时,0.08 3.6y x =-+. 【点睛】本题考查了函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.练习3.(2021·山东济南市·八年级期末)甲、乙两车同时从A 地出发,沿同一路线赶往距离A 地800km 的B 地,在行驶过程中乙车速度始终保持80km/h ,甲车先以一定速度行驶了500km ,用时5h ,然后再以乙车的速度行驶,直至到B 地(加油、休息时间忽略不计).甲、乙两车离A 地的路程y (km )与所用时间x (h )的关系如图所示,请结合图象解答下列问题:(1)甲车改变速度前的速度是 km/h ,甲车行驶 h 到达B 地,乙车行驶 h 到达B 地;(2)求甲车改变速度后离A 地的路程y (km )与所用时间x (h )之间的函数解析式(不用写出自变量x 的取值范围);(3)出发 h 时,甲、乙两车相距40km .【答案】(1)100;354;10;(2)y =80x +100;(3)2或9.5 【分析】 (1)由点()5,500, 可得甲车的速度为:500=100/,5km h 再利用甲车改变速度后行驶了300,km 从而可得甲车的总的行驶时间,由路程为800,km 行驶速度为80/,km h 可得乙车的总的行驶时间,从而可得答案;(2)设甲车改变速度后所求函数解析式为:()0y kx b k =+≠,再将(5,500)和35,8004⎛⎫⎪⎝⎭代入函数解析式,利用待定系数法列方程组,解方程组可得答案;(3)分两种情况讨论:设改变速度以前mh 时两车相距40,km 可得1008040,m m -= 当甲车到达A 地后,设nh 两车相距40,km 可得80760,n = 解方程后可得答案.【详解】 解:(1)由点()5,500, 可得甲车的速度为:500=100/,5km h 甲车到B 地的行驶时间为:800500153555,8044h -+=+= 甲车到B 地的行驶时间为:800=10,80h 故答案为:35100,,10.4 (2)设甲车改变速度后所求函数解析式为:()0y kx b k =+≠,将(5,500)和35,8004⎛⎫ ⎪⎝⎭代入得:5500358004k b k b +=⎧⎪⎨+=⎪⎩①②, ②-①得:15300,4k = 80,k ∴=把80k =代入①得:100,b =80100k b =⎧∴⎨=⎩, ∴甲车改变速度后离A 地的路程()y km 与所用时间()x h 之间的函数解析式:80100y x =+(3)设改变速度以前mh 时两车相距40,km1008040,m m ∴-=2,m ∴=当甲车到达A 地后,设nh 两车相距40,km80760,n ∴=9.5.n ∴=出发2h 或9.5h 时,甲、乙两车相距40km .故答案为:2或9.5.【点睛】本题考查的是一次函数的应用,从函数图像中获取信息,一元一次方程的应用,二元一次方程组的解法,掌握函数图像上点的横纵坐标的含义是解题的关键.©知识点四:几何问题例1.(2021·内蒙古包头市·九年级一模)如图,在平面直角坐标系中,直线1l :152y x =-+与x 轴、y 轴分别交于点A 和点B ,直线2l 经过坐标原点,且21l l ⊥,垂足为C ,则点C 到y 轴的距离为( )A .1B .2C .3D .4【答案】B【分析】 先分别求得A ,B 两点坐标,然后利用勾股定理求得AB 的长,结合三角形面积求得OC 的长,再利用勾股定理求得BC ,最后再利用三角形面积求解【详解】 解:在152y x =-+中,当x =0时,y =5 当y =0时,15=02x -+,解得:x =10 ∴OA =10;OB =5∴在Rt ∴AOB 中,AB ==∴21l l ⊥∴1122AB OC OA OB ⋅=⋅,1151022⨯=⨯⨯,解得:OC =∴在Rt ∴BOC 中,BC =过点C 作CD ∴y 轴∴1122OB CD OC BC ⋅=⋅,11522CD ⨯=⨯2CD = 故选:B【点睛】本题考查一次函数的几何应用及勾股定理解直角三角形,二次根式的乘除运算,利用数形结合思想解题是关键.练习1.(2021·深圳市高级中学八年级期末)如图,在平面直角坐标系中,已知一次函数y =﹣x+5分别交y轴、x轴于点A、B,若点C是坐标轴上的点,且△ABC为等腰三角形,则满足条件的点C有()A.9个B.8个C.7个D.4个【答案】C【分析】分为AB=AC、BC=BA,CB=CA三种情况画图判断即可.【详解】解:∴一次函数y=﹣x+5分别交y轴、x轴于点A、B,∴A(0,5),B(5,0),∴OA=OB=5,根据勾股定理=,如图,当AB=AC时,以A点为圆心,AB为半径画圆,与坐标轴交点中符合条件的点有(0,5+、(﹣5,0)、(0,﹣)共3个;当BA=BC时,以A点为圆心,AB为半径画圆,与坐标轴交点中符合条件的点有(5+)、(0,-5)、(﹣,0)共3个;当点C在AB的垂直平分线上时,符合条件的点有原点一个;故符合条件的点C共有7个.故选:C.【点睛】本题考查一次函数的性质,等腰三角形性质,线段垂直平分线,掌握一次函数的性质,等腰三角形性质,线段垂直平分线,分类考虑以AB 为底和腰的等腰三角形是解题关键. 练习2.(2021·全国八年级课时练习)如图一次函数y kx b =+的图象经过点(1,5)A -,与x 轴交于点B ,与正比例函数3y x =的图象交于点C ,点C 的横坐标为1.(1)求AB 的函数表达式.(2)若点D 在y 轴负半轴,且满足13COD BOC S S =△△,求点D 的坐标. (3)若3kx b x +<,请直接写出x 的取值范围.【答案】(1)4y x =-+;(2)()0,4D -;(3)1x >【分析】(1)由题意可先求出点C 的坐标,然后再把点A 与点C 的坐标代入一次函数解析式进行求解即可;(2)可先求出∴BOC 的面积,然后可得∴COD 的面积,进而根据面积计算公式可进行求解; (3)直接根据图象可进行求解.【详解】解:(1)∴一次函数y kx b =+与正比例函数3y x =的图象交于点C ,点C 的横坐标为1, ∴把x =1代入正比例函数得:3y =,∴点()1,3C ,∴把点()1,5A -、()1,3C代入一次函数得: 53k b k b -+=⎧⎨+=⎩,解得:14k b =-⎧⎨=⎩, ∴AB 的函数解析式为4y x =-+;(2)由(1)得:()1,3C ,AB 的函数解析式为4y x =-+,∴令y =0时,则有4x =,∴点()4,0B ,∴OB =4,令C x 表示点C 的横坐标,C y 表示点C 的纵坐标,则由图象可得:1143622BOC C S OB y =⋅=⨯⨯=, ∴13COD BOC S S =△△, ∴2COD S =, ∴122COD C S OD x =⋅=△, ∴4OD =,∴点D 在y 轴负半轴,∴()0,4D -;(3)由图象可得:当3kx b x +<时,则x 的取值范围为1x >.【点睛】本题主要考查一次函数与几何的综合,熟练掌握一次函数的性质是解题的关键.练习3.(2021·广东梅州市·八年级期末)如图,在平面直角坐标系中,过点()0,6C 的直线AC 与直线OA 相交于点()4,2A ,动点M 在线段OA 和射线AC 上运动,试解决下列问题:(1)求直线AC 的表达式;(2)求OAC 的面积;(3)是否存在点M ,使OMC 的面积是OAC 的面积的14?若存在,求出此时点M 的坐标;若不存在,请说明理由.【答案】(1)6AC y x =-+;(2)12;(3)1(1,)2或(1,5)或(1,7)-.【分析】(1)利用待定系数法解题即可;(2)利用三角形面积公式解题(3)OMC 的面积是OAC 的面积的14时,分两种情况讨论:当M 的横坐标为1时,或当M 的横坐标为1-时,根据面积公式可解得点M 的横坐标,再代入一次函数解析式即可解题.【详解】解:(1)设直线AC 的表达式y (0)kx b k =+≠,代入点()0,6C ,点()4,2A得点642b k b =⎧⎨+=⎩ 16k b =-⎧∴⎨=⎩6AC y x ∴=-+;(2)11641222AOC A S OC x =⋅=⨯⨯= 12AOC S ∴=;(3)设直线OA 的解析式为y mx =,则42m =,解得12m =, 即直线OA 的解析式为12y x =, 当OMC 的面积是OAC 的面积的14时, 即当M 的横坐标为1414⨯=时, 在12y x =中,当1x =时,12y =,1(1,)2M ∴ 在6y x =-+中,当1x =时,5y =,则(1,5)M当M 的横坐标为1-时,在6y x =-+中,1x =-时,7y =,(1,7)M ∴-,综上所述,OMC 的面积是OAC 的面积的14时,M 的坐标是1(1,)2或(1,5)或(1,7)-. 【点睛】本题考查一次函数的综合题,是重要考点,难度较易,掌握相关知识是解题关键.©知识点五:其它问题例1.(2021·江苏九年级专题练习)如图,等边三角形ABC 中,AB =4,有一动点P 从点A 出发,以每秒一个单位长度的速度沿着折线A ﹣B ﹣C 运动至点C ,若点P 的运动时间记作t 秒,△APC 的面积记作S ,则S 与t 的函数关系应满足如下图象中的( )A .B .C .D .【答案】A【分析】当点P 在AB 上运动时,S =12AP h =12×x ,图象为一次函数,x =4时,S当点P 在BC 上运动时,同理可得:S=1(8)2x ⨯-⨯,同样为一次函数,即可求解. 【详解】解:等边三角形ABC 中,AB =4,则∴ABC 的高h当点P 在AB 上运动时,S =12AP h =12×x ,图象为一次函数,x =4时,S当点P 在BC 上运动时,同理可得:S=1(8)2x ⨯-⨯,同样为一次函数. 故选:A .【点睛】 本题考查的是动点图象问题,涉及到二次函数、一次函数、解直角三角形等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.练习1.(2021·云南红河哈尼族彝族自治州·八年级期末)某弹簧的长度y 与所挂物体的质量x (kg )之间的关系为一次函数,其函数图象如图所示,则不挂物体时弹簧的长度为( )A .8cmB .9cmC .10cmD .11cm【答案】C【分析】 直接利用待定系数法求出一次函数解析式,进而得出x=0时,y 的值.【详解】解:设y与x的关系式为y=kx+b,∴图象经过(5,12.5)(20,20),∴12.552020k bk b=+⎧⎨=+⎩,解得:1210 kb⎧=⎪⎨⎪=⎩,∴1102y x=+,当x=0时,y=10,即弹簧不挂物体时的长度是10cm.故选:C.【点睛】本题主要考查了一次函数的应用,正确求出函数关系式是解题关键.练习2.(2021·西安市铁一中学九年级其他模拟)儿童用药的药量常常按照他们的体重来计算.已知某种药品,体重10kg的儿童,每次正常服用量为120mg,体重15kg的儿童每次正常服用量为170mg.设儿童体重为x(kg).每次正常服用量为y(mg).当0≤x≤50时,y 是x的一次函数.现实中,该药品每次实际服用量可以比每次正常服用量略高一些,但不能超过正常服用量的1.2倍,否则会对儿童的身体造成较大损害.(1)求y与x之间的函数关系式;(2)若该药品的一种包装规格为300mg/袋,求体重在什么范围的儿童生病时可以一次服下一袋药?【答案】(1)y与x之间的函数关系式是y=10x+20(5≤x≤50);(2)体重在23≤x≤28范围的儿童生病时可以一次服下一袋药.【分析】(1)体重10kg的儿童,每次正常服用量为120mg,体重15kg的儿童每次正常服用量为170mg.设儿童体重为x(kg).每次正常服用量为y(mg),根据当0≤x≤50时,y是x的一次函数,利用待定系数法即可求解;(2)根据题意和(1)中的函数关系式,可以求得儿童的最大和最小体重,从而可以得到体重在什么范围的儿童生病时可以一次服下一袋药.【详解】(1)设y与x之间的函数关系式为y=kx+b(k≠0),∴体重10kg的儿童,每次正常服用量为120mg,体重15kg的儿童每次正常服用量为170mg.∴10120 15170k bk b+=⎧⎨+=⎩,解得1020 kb=⎧⎨=⎩,即y与x之间的函数关系式是y=10x+20(5≤x≤50);(2)当y=300时,300=10x+20,得x=28,当y=3001.2=250时,250=10x+20,得x=23,故23≤x≤28,即体重在23≤x≤28范围的儿童生病时可以一次服下一袋药.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.练习3.(2020·河南平顶山市·)国庆期间某一位公司老板准备和员工去上海旅游,甲旅行社承诺:“老板一人免费,员工可享受八折优惠”;乙旅行社承诺:“包括老板在内所有人按全票的七五折优惠”,若全票价为2000元.(1)设参加旅游的员工人数为x,甲、乙旅行社收费分别为y甲(元)和y乙(元),分别写出两个旅行社收费的表达式;(2)当员工有10人时,哪家旅行社更优惠?(3)员工人数为多少时,两家旅行社花费一样?据此,请根据旅游员工人数的多少,为公司老板选择哪家旅行社提出合理化建议(只说出结果).【答案】(1)y甲=1600x,y乙=1500x+1500;(2)当员工有10人时,甲家旅行社更优惠;(3)员工人数为15人时,两家旅行社花费一样,当员工人数多于15人时,选择乙旅行社,当员工人数少于15人时,选择甲旅行社,当员工人数为15人时,两家旅行社一样.【分析】(1)根据甲旅行社的收费标准,可得甲的函数解析式;根据乙的收费标准,可得乙的函数解析式;(2)根据自变量的值,可得相应的函数值,根据有理数的大小比较,可得答案;(3)根据收费相同,可得方程,根据解方程,可得答案.【详解】解:(1)由题意可得,y甲=2000x×0.8=1600x,y乙=2000(x+1)×0.75=1500x+1500,即y甲=1600x,y乙=1500x+1500;(2)当x=10时,y甲=1600×10=16000,y乙=1500×10+1500=16500,∴16000<16500,∴当员工有10人时,甲家旅行社更优惠;(3)由题意可得,1600x=1500x+1500,解得x=15,即员工人数为15人时,两家旅行社花费一样,当员工人数多于15人时,选择乙旅行社,当员工人数少于15人时,选择甲旅行社,当员工人数为15人时,两家旅行社一样.【点睛】此题主要考查一次函数的应用,正确理解函数的自变量与因变量之间的关系是解题关键.。
专题14 运用函数的图像研零点问题(解析版)
专题14 运用函数的图像研零点问题一、题型选讲题型一: 运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。
作图与根分布综合的题目,其中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要注意渐近线的细节,从而保证图像的准确。
例1、(2019苏州三市、苏北四市二调)定义在R 上的奇函数f (x )满足f (x +4)=f (x ),且在区间[2,4)上⎩⎨⎧<≤-<≤-=43,432,2)(x x x x x f 则函数x x f y log 5)(-=的零点的个数为 【答案】 5【解析】因为f(x +4)=f(x),可得f(x)是周期为4的奇函数,先画出函数f(x)在区间[2,4)上的图像,根据奇函数和周期为4,可以画出f(x)在R 上的图像,由y =f (x )-log 5| x |=0,得f (x )=log 5| x |,分别画出y =f (x )和y =log 5|x |的图像,如下图,由f (5)=f (1)=1,而log 55=1,f (-3)=f (1)=1,log 5|-3|<1,而f (-7)=f (1)=1,而log 5|-7|=log 57>1,可以得到两个图像有5个交点,所以零点的个数为5.解后反思 本题考查了函数的零点问题,以及函数的奇偶性和周期性,考查了转化与化归、数形结合的思想,函数的零数问题,常转化为函数的图像的交点个数来处理,其中能根据函数的性质作出函数的图像并能灵活地运用图像,找到临界点是解题的关键也是难点.例2、(2017苏锡常镇调研)若函数f (x )=⎩⎪⎨⎪⎧12x-1,x <1,ln xx 2,x ≥1,)则函数y =|f (x )|-18的零点个数为________.【答案】 4【解析】设g (x )=ln xx 2,则由g ′(x )=x -ln x ·2x x 4=1-2ln x x 3=0,可得x =e ,所以g (x )在(1,e)上单调递增,在(e ,+∞)上单调递减,当x →+∞时,g (x )→0,故g (x )在(1,+∞)上的最大值为g (e)=12e >18.在同一平面直角坐标系中画出y =|f (x )|与y =18的图像可得,交点有4个,即原函数零点有4个.易错警示 答案中出现了3和5这两种错误结果,3的主要原因是弄错了(1,+∞)上的单调性或者忘了处理绝对值,5的主要原因是没有发现图像趋近于x 轴.题型二 运用函数图像研究复合函数零点个数复合函数零点问题的特点:考虑关于x 的方程()0g f x =⎡⎤⎣⎦根的个数,在解此类问题时,要分为两层来分析,第一层是解关于()f x 的方程,观察有几个()f x 的值使得等式成立;第二层是结合着第一层()f x 的值求出每一个()f x 被几个x 对应,将x 的个数汇总后即为()0g f x =⎡⎤⎣⎦的根的个数例3、(2017南通期末) 已知函数f (x )是定义在[1,+∞)上的函数,且f (x )=⎩⎨⎧1-|2x -3|,1≤x <2,12f ⎝ ⎛⎭⎪⎫12x , x ≥2,则函数y =2xf (x )-3在区间(1,2 015)上的零点个数为________.【答案】11 【解析】解法1 由题意得当1≤x <2时,f (x )=⎩⎪⎨⎪⎧2x -2,1≤x ≤32,4-2x , 32<x <2. 设x ∈[2n -1,2n)(n ∈N *),则x2n -1∈[1,2),又f (x )=12n -1f ⎝ ⎛⎭⎪⎫12n -1x ,①当x 2n -1∈⎣⎢⎡⎦⎥⎤1,32时,则x ∈[2n -1,3·2n -2],所以f (x )=12n -1f ⎝ ⎛⎭⎪⎫12n -1x =12n -1⎝ ⎛⎭⎪⎫2·12n -1x -2,所以2xf (x )-3=2x ·12n -1⎝ ⎛⎭⎪⎫2·12n -1x -2-3=0,整理得x 2-2·2n -2x -3·22n -4=0.解得x =3·2n -2或x =-2n -2.由于x∈[2n -1,3·2n -2],所以x =3·2n -2;②当x 2n -1∈⎝ ⎛⎭⎪⎫32,2时,则x ∈(3·2n -2,2n),所以f (x )=12n -1f ⎝ ⎛⎭⎪⎫12n -1x =12n -1⎝ ⎛⎭⎪⎫4-2·12n -1x ,所以2xf (x )-3=2x ·12n -1⎝ ⎛⎭⎪⎫4-2x 2n -1-3=0,整理得x 2-4·2n -2x +3·22n -4=0.解得x =3·2n -2或x =2n -2.由于x ∈(3·2n -2,2n),所以无解.综上所述,x =3·2n -2.由x =3·2n -2∈(1,2 015),得n ≤11,所以函数y =2xf (x )-3在区间(1,2 015)上零点的个数是11.解法2 由题意得当x ∈[2n -1,2n)时,因为f (x )=12n -1·f ⎝ ⎛⎭⎪⎫12n -1x ,所以f (x )max =f ⎝ ⎛⎭⎪⎫32·2n -1=12n -1.令g (x )=32x .当x =32·2n -1时,g (x )=g ⎝ ⎛⎭⎪⎫32·2n -1=12n -1,所以当x ∈[2n -1,2n)时,x =32·2n -1为y =2xf (x )-3的一个零点.下面证明:当x ∈[2n -1,2n)时,y =2xf (x )-3只有一个零点.当x ∈[2n -1,3·2n -2]时,y =f (x )单调递增,y =g (x )单调递减,f (3·2n -2)=g (3·2n -2),所以x ∈[2n -1,3·2n -2]时,有一零点x =3·2n -2;当x ∈(3·2n -2,2n)时,y =f (x )=12n -1-12n -1⎝ ⎛⎭⎪⎫x 2n -2-3,k 1=f ′(x )=-122n -3,g (x )=32x ,k 2=g ′(x )=-32x 2∈⎝ ⎛⎭⎪⎫-13·22n -3,-322n +1,所以k 1<k 2.又因为f (3·2n -2)=g (3·2n -2),所以当x ∈[2n -1,2n)时,y =2xf (x )-3只有一个零点.由x =3·2n -2∈(1,2 015),得n ≤11,所以函数y =2xf (x )-3在区间(1,2 015)上零点的个数是11.解法3 分别作出函数y =f (x )与y =32x 的图像,如图,交点在x 1=32,x 2=3,x 3=6,…,x n =3·2n -2处取得.由x =3·2n -2∈(1,2 015),得n ≤11,所以函数y =2xf (x )-3在区间(1,2 015)上零点的个数是11.题型三 运用函数图像研究与零点有关的参数问题三类问题之间的联系:即函数的零点⇔方程的根⇔函数图象的交点,运用方程可进行等式的变形进而构造函数进行数形结合,解决这类问题要选择合适的函数,以便于作图,便于求出参数的取值范围为原则。
高考理科数学总复习专题14 利用函数图像研究方程根的个数
的实根,则实数 k 的取值范围是
.
【答案】 ( 1 ,1) 2
[来源:][来源:学+科+网]
3.【2014 天津高考理第 14 题】已知函数 f (x)= x2 + 3x , x Î R .若方程 f (x)- a x - 1 = 0 恰有 4 个
互异的实数根,则实数 a 的取 值范围为__________.
【答案】 (0,1) (9, +∞) .
【解析】
4.【2014 高考湖北卷理第 10 题改编】已知函数 f (x) 是定义在 R 上的奇函数,当 x ≥ 0 时, f (x) = 1 (| x − a2 | + | x − 2a2 | −3a2 ) ,若 ∀x ∈ R , f (x −1) ≤ f (x) ,则实数 a 的取值范 围为__________.
高考理科数学总复习专题 14 利用函数图像研究方程根的个数
0,0 < x ≤ 1
【原题】已知函数
f
(x)
=| ln
x |,
g(x)
=
|
x2
− 4 | −2, x
,则方程 | >1
f
(x) +
g(x) |= 1 实根的个数为
【答案】4
【考点定位】函数与方程
【命题意图】本题考查函数与方程、函数图像变换等基础知识,考查数形结合思想以及考生运算求解能力. 【方法、技巧、规律】一些对数型方程不能直接求出其零点,常通过平移、对称变换转化为相应的函数图 像问题,利用数形结合法将方程根的个数转化为对应函数零点个数,而函数 零点个数的判断通常转化为两 函数图像交点的个数.这时函数图像是解题关键,不仅要研究其走势(单调性,极值点、渐近线等),而且 要明确其变化速度快慢. 【探源、变式、扩展】若函数图像可由某个基本函数的图像经过平移、翻折、对称得到,可利用图像变换 作出,但要注意变换顺序.对不能直接找到熟悉的基本函数的要先变形,并应注意平移变换与伸缩变换的 顺序对变换单位及解析式的影响.
利用导数研究函数的零点讲义 解析版
利用导数研究函数的零点题型一 数形结合法研究函数零点1.(2024·南昌模拟节选)已知函数f (x )=(x -a )2+be x (a ,b ∈R ),若a =0时,函数y =f (x )有3个零点,求b 的取值范围.解:函数y =f (x )有3个零点,即关于x 的方程f (x )=0有3个根,也即关于x 的方程b =-x 2ex 有3个根.令g (x )=-x 2e x ,则直线y =b 与g (x )=-x 2ex 的图象有3个交点.g ′(x )=x (x -2)e x,由g ′(x )<0解得0<x <2;由g ′(x )>0解得x <0或x >2,所以g (x )在(-∞,0)上单调递增,在(0,2)上单调递减,在(2,+∞)上单调递增.g (0)=0,g (2)=-4e2,当x >0时,g (x )<0;当x →+∞时,g (x )→0;当x →-∞时,g (x )→-∞,作出g (x )的大致图象如图所示,作出直线y =b .由图可知,若直线y =b 与g (x )的图象有3个交点,则-4e 2<b <0,即b 的取值范围为-4e 2,0 .感悟提升 含参数的函数零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,用x 表示参数的函数,作出该函数的图象,根据图象特征求参数的范围.2.设函数f (x )=ln x +m x ,m ∈R ,讨论函数g (x )=f ′(x )-x 3零点的个数.解:由题意知g (x )=f ′(x )-x 3=1x -m x 2-x 3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1).当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,∴x =1也是φ(x )的最大值点,∴φ(x )的最大值为φ(1)=23.结合y =φ(x )的图象(如图)可知,①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点.综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.题型二 利用函数性质研究函数零点3.已知函数f (x )=(2a +1)x 2-2x 2ln x -4,e 是自然对数的底数,∀x >0,e x >x +1.(1)求f (x )的单调区间;(2)记p :f (x )有两个零点;q :a >ln 2.求证:p 是q 的充要条件.要求:先证充分性,再证必要性.(1)解:∵f (x )=(2a +1)x 2-2x 2ln x -4,∴f (x )的定义域为(0,+∞),f ′(x )=4x (a -ln x ).∵当0<x <e a 时,f ′(x )>0,∴f (x )在(0,e a )上单调递增;∵当x >e a 时,f ′(x )<0,∴f (x )在(e a ,+∞)上单调递减.∴f (x )的单调递增区间为(0,e a ),单调递减区间为(e a ,+∞).(2)证明 先证充分性.由(1)知,当x =e a 时,f (x )取得最大值,即f (x )的最大值为f (e a )=e 2a -4.由f (x )有两个零点,得e 2a -4>0,解得a >ln 2.∴a >ln 2.再证必要性.∵a >ln 2,∴e 2a >4.∴f (e a )=e 2a -4>0.∵a>ln2>0,∀x>0,e x>x+1,∴e2a>2a+1>2a.∴f(e-a)=e-2a(4a+1)-4=4a+1e2a -4<4a+12a-4=12a-2<12ln2-2=1ln4-2<0.∴∃x1∈(e-a,e a),使f(x1)=0;∵f(e a+1)=-e2a+2-4<0,∴∃x2∈(e a,e a+1),f(x2)=0.∵f(x)在(0,e a)上单调递增,在(e a,+∞)上单调递减,∴∀x∈(0,+∞),x≠x1且x≠x2,易得f(x)≠0.∴当a>ln2时,f(x)有两个零点.感悟提升 利用函数性质研究函数的零点,主要是根据函数单调性、奇偶性、最值或极值的符号确定函数零点的个数,此类问题在求解过程中可以通过数形结合的方法确定函数存在零点的条件.4.(2022·全国乙卷节选)已知函数f(x)=ax-1x-(a+1)ln x,若f(x)恰有一个零点,求a的取值范围.解:由f(x)=ax-1x-(a+1)ln x(x>0),得f′(x)=a+1x2-a+1x=(ax-1)(x-1)x2(x>0).①当a=0时,f(x)=-1x-ln x,f′(x)=1-xx2,当x∈(0,1)时,f′(x)>0;当x∈(1,+∞)时,f′(x)<0,所以f(x)≤f(1)=-1<0,所以f(x)不存在零点;②当a<0时,f′(x)=a x-1a(x-1)x2,当x∈(0,1)时,f′(x)>0,f(x)单调递增;当x∈(1,+∞)时,f′(x)<0,f(x)单调递减,所以f(x)max=f(1)=a-1<0,所以f(x)不存在零点;③当a>0时,f′(x)=a x-1a(x-1)x2,(ⅰ)当a=1时,f′(x)≥0,f(x)在(0,+∞)上单调递增,因为f(1)=a-1=0,所以函数f(x)恰有一个零点;(ⅱ)当a>1时,0<1a <1,故f(x)在0,1a,(1,+∞)上单调递增,在1a,1上单调递减.因为f(1)=a-1>0,所以f1a>f(1)>0,当x→0+时,f(x)→-∞,由零点存在定理可知f(x)在0,1a上必有一个零点,所以a>1满足条件;(ⅲ)当0<a<1时,1a >1,故f(x)在(0,1),1a,+∞上单调递增,在1,1a上单调递减.因为f(1)=a-1<0,所以f1a<f(1)<0,当x→+∞时,f(x)→+∞,由零点存在定理可知f(x)在1a,+∞上必有一个零点,即0<a<1满足条件.综上,若f(x)恰有一个零点,则a的取值范围为(0,+∞).题型三 构造函数法研究函数零点5.已知函数f(x)=e x-1+ax(a∈R).(1)当x≥0时,f(x)≥0,求a的取值范围;(2)若关于x的方程f(x)-ax+1e a=ln x+a有两个不同的实数解,求a的取值范围.解:(1)由题意,得f′(x)=e x+a.若a≥-1,则当x∈[0,+∞)时,f′(x)≥0恒成立,∴f(x)在[0,+∞)上单调递增,∴当x∈[0,+∞)时,f(x)≥f(0)=0,符合题意;若a<-1,令f′(x)<0,得x<ln(-a),∴f(x)在(0,ln(-a))上单调递减,∴当x∈(0,ln(-a))时,f(x)<f(0)=0,不符合题意.综上,a的取值范围为[-1,+∞).(2)法一 由f(x)-ax+1e a=ln x+a,得e x-a=ln x+a.令e x-a=t,则x-a=ln t,ln x+a=t,∴x+ln x=t+ln t.易知y=x+ln x在(0,+∞)上单调递增,∴t=x,得a=x-ln x.则原问题可转化为方程a=x-ln x有两个不同的实数解.令φ(x)=x-ln x(x>0),则φ′(x)=x-1 x,令φ′(x)<0,得0<x<1;令φ′(x)>0,得x>1,∴φ(x)在(0,1)上单调递减,在(1,+∞)上单调递增,∴φ(x)min=φ(1)=1,∴a≥1.当a=1时,易知方程1=x-ln x只有一个实数解x=1,不符合题意.下证当a>1时,a=x-ln x有两个不同的实数解.令g(x)=x-ln x-a(a>1),则g(x)=φ(x)-a,易知g(x)在(0,1)上单调递减,在(1,+∞)上单调递增.∵g(e-a)=e-a>0,g(1)=1-a<0,∴g(x)在(e-a,1)上有一个零点.易知g(e a)=e a-2a,令h(a)=e a-2a,则当a>1时,h′(a)=e a-2>0,∴h(a)在(1,+∞)上单调递增,∴当a >1时,h (a )>h (1)=e -2>0,即g (e a )=e a -2a >0,∴g (x )在(1,e a )上有一个零点.∴当a >1时,a =x -ln x 有两个不同的实数解.综上,a 的取值范围为(1,+∞).法二 由f (x )-ax +1e a=ln x +a ,得e x =e a (ln x +a ),∴xe x =xe a (ln x +a ),即xe x =e a +ln x (ln x +a ).令u (x )=xe x ,则有u (x )=u (a +ln x ).当x >0时,u ′(x )=(x +1)e x >0,∴u (x )=xe x 在(0,+∞)上单调递增,∴x =a +ln x ,即a =x -ln x .下同法一.感悟提升 涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围.6.(2021·全国甲卷节选)已知a >0且a ≠1,函数f (x )=x a ax (x >0).若曲线y =f (x )与直线y =1有且仅有两个交点,求a 的取值范围.解:曲线y =f (x )与直线y =1有且仅有两个交点,可转化为方程x a a x =1(x >0)有两个不同的解,即方程ln x x =ln a a 有两个不同的解.设g (x )=ln x x (x >0),则g ′(x )=1-ln x x 2(x >0),令g ′(x )=1-ln x x 2=0,得x =e ,当0<x <e 时,g ′(x )>0,函数g (x )单调递增;当x >e 时,g ′(x )<0,函数g (x )单调递减,故g (x )max =g (e )=1e ,且当x >e 时,g (x )∈0,1e ,又g (1)=0,所以0<ln a a <1e,所以a >1且a ≠e ,故a 的取值范围为(1,e )∪(e ,+∞).【A 级 基础巩固】7.已知函数f (x )=x -ae x ,a ∈R ,讨论函数f (x )的零点个数.解:f (x )=0等价于x -ae x =0,即x ex =a .设h (x )=x e x ,则h ′(x )=1-x ex ,当x <1时,h ′(x )>0,h (x )单调递增;当x >1时,h ′(x )<0,h (x )单调递减,∴h (x )max =h (1)=1e.又当x <0时,h (x )<0;当x >0时,h (x )>0,且x →+∞时,h (x )→0,∴可画出h (x )大致图象,如图所示.∴当a ≤0或a =1e时,f (x )在R 上有唯一零点;当a >1e 时,f (x )在R 上无零点;当0<a <1e 时,f (x )在R 上有两个零点.8.(2024·青岛调研)已知函数f (x )=ln x +ax x,a ∈R .(1)若a =0,求f (x )的最大值;(2)若0<a <1,求证:f (x )有且只有一个零点.(1)解:若a =0,则f (x )=ln x x ,其定义域为(0,+∞),∴f ′(x )=1-ln x x 2,由f ′(x )=0,得x =e ,∴当0<x <e 时,f ′(x )>0;当x >e 时,f ′(x )<0,∴f (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,∴f (x )max =f (e )=1e.(2)证明 f ′(x )=1x +a x -ln x -ax x 2=1-ln x x 2,由(1)知,f (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,∵0<a <1,∴当x >e 时,f (x )=ln x +ax x =a +ln x x>0,故f (x )在(e ,+∞)上无零点;当0<x <e 时,f (x )=ln x +ax x ,∵f 1e =a -e <0,f (e )=a +1e>0,且f (x )在(0,e )上单调递增,∴f (x )在(0,e )上有且只有一个零点,综上,当0<a <1时,f (x )有且只有一个零点.9.(2024·太原模拟节选)已知函数f (x )=xe x -x -1,讨论方程f (x )=ln x +m -2的实根个数.解;由f (x )=ln x +m -2,得xe x -x -ln x +1=m ,x >0,令h (x )=xe x -x -ln x +1,则h ′(x )=e x +xe x-1-1x =(x +1)(xe x -1)x(x >0),令m (x )=xe x -1(x >0),则m ′(x )=(x +1)·e x >0,∴m (x )在(0,+∞)上单调递增,又m 12 =e 2-1<0,m (1)=e -1>0,∴存在x 0∈12,1,使得m (x 0)=0,即e x 0=1x 0,从而ln x 0=-x 0.当x ∈(0,x 0)时,m (x )<0,h ′(x )<0,则h (x )单调递减;当x ∈(x 0,+∞)时,m (x )>0,h ′(x )>0,则h (x )单调递增;∴h (x )min =h (x 0)=x 0e x 0-x 0-ln x 0+1=x 0·1x 0-x 0+x 0+1=2,又易知,当x →0+时,h (x )→+∞;当x →+∞时,h (x )→+∞.∴当m <2时,方程f (x )=ln x +m -2没有实根;当m =2时,方程f (x )=ln x +m -2有1个实根;当m >2时,方程f (x )=ln x +m -2有2个实根.【B 级 能力提升】10.(2024·郑州模拟节选)已知函数f (x )=ln (x +1)-x +1,g (x )=ae x -x +ln a ,若函数F (x )=f (x )-g (x )有两个零点,求实数a 的取值范围.解:函数F (x )=f (x )-g (x )有两个零点,即f (x )=g (x )有两个实根,即ln (x +1)-x +1=ae x -x +ln a 有两个实根,即e x +ln a +x +ln a =ln (x +1)+x +1有两个实根,即e x +ln a +x +ln a =e ln (x +1)+ln (x +1)有两个实根.设函数h (x )=e x +x ,则e x +ln a +x +ln a =e ln (x +1)+ln (x +1)⇔h (x +ln a )=h (ln (x +1)).因为h ′(x )=e x +1>0恒成立,所以h (x )=e x +x 在R 上单调递增,所以x +ln a =ln (x +1),x >-1,所以要使F (x )有两个零点,只需ln a =ln (x +1)-x 有两个实根.设M (x )=ln (x +1)-x ,则M ′(x )=-x x +1.由M ′(x )=-x x +1>0,得-1<x <0;由M ′(x )=-x x +1<0,得x >0,故函数M(x)的单调递增区间为(-1,0),单调递减区间为(0,+∞).故函数M(x)在x=0处取得极大值,也是最大值,且M(x)max=M(0)=0.易知当x→-1时,M(x)→-∞;当x→+∞时,M(x)→-∞.故要使ln a=ln(x+1)-x有两个实根,只需ln a<M(x)max=0,解得0<a<1.所以实数a的取值范围是(0,1).。
【精编】专题14分段函数的零点问题高考数学母题题源系列(天津专版)
母题十四 分段函数的零点问题【母题原题1】【2018天津,理14】已知0a >,函数222,0,()22,0.x ax a x f x x ax a x ⎧++≤=⎨-+->⎩若关于x 的方程()f x ax =恰有2个互异的实数解,则a 的取值范围是 . 【答案】()48,【解析】试题分析:由题意分类讨论和两种情况,然后绘制函数图像,数形结合即可求得最终结果.试题解析:分类讨论:当0x ≤时,方程()f x ax =即22x ax a ax ++=,整理可得:()21x a x =-+,题等价于函数()g x 与函数y a =有两个不同的交点,求a 的取值范围.结合对勾函数和函数图象平移的规律绘制函数()g x 的图象,同时绘制函数y a =的图象如图所示,考查临界条件,结合0a >观察可得,实数a 的取值范围是()48,.【名师点睛】本题的核心在考查函数的零点问题,函数零点的求解与判断方法包括: (1)直接求零点:令()0f x =,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[],a b 上是连续不断的曲线,且()()0f a f b ⋅<,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点. 【母题原题2】【2017天津,理8】已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a ∈R ,若关于x 的不等式()||2xf x a ≥+在R 上恒成立,则a 的取值范围是 (A )47[,2]16-(B )4739[,]1616-(C)[- (D)39[]16- 【答案】A【考点】不等式、恒成立问题、二次函数、基本不等式 【名师点睛】首先将()||2xf x a ≥+转化为()()22x x f x a f x --≤≤-,涉及分段函数问题要遵循分段处理的原则,分别对x 的两种不同情况进行讨论,针对每种情况根据x 的范围,利用极端原理,求出对应的a 的取值范围. 【母题原题3】【2016天津,理8】已知函数f (x )=2(4,0,log (1)13,03)a x a x a x x x ⎧+<⎨++≥-+⎩(a >0,且a ≠1)在R 上单调递减,且关于x 的方程()2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( ) (A )(0,23] (B )[23,34] (C )[13,23]{34}(D )[13,23){34}【答案】C考点:函数性质综合应用【名师点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 【母题原题4】【2015天津,理8】已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是( ) (A )7,4⎛⎫+∞⎪⎝⎭ (B )7,4⎛⎫-∞ ⎪⎝⎭ (C )70,4⎛⎫ ⎪⎝⎭ (D )7,24⎛⎫⎪⎝⎭【答案】D()()()(2)y f x g x f x f x b =-=+--,所以()()y f x g x =-恰有4个零点等价于方程()(2)0f x f x b +--=有4个不同的解,即函数y b =与函数()(2)y f x f x =+-的图象的4个公共点,由图象可知72b <<. 【考点定位】求函数解析、函数与方程思、数形结合.【名师点睛】本题主要考查求函数解析、函数与方程思、数形结合思想以及学生的作图能力.将求函数解析式、函数零点、方程的解等知识结合在一起,利用等价转换、数形结合思想等方法,体现数学思想与方法,考查学生的运算能力、动手作图能力以及观察能力.是提高题. 【母题原题5】【2014天津,理14】已知函数()23f x x x =+,x R Î.若方程()10f x a x --=恰有4个互异的实数根,则实数a 的取值范围为__________. 【答案】()()0,19,+∞.【解析】试题分析:(方法一)在同一坐标系中画()23f x x x =+和()1g x a x =-的图象(如图),问题转化为()f x 与()g x 图象恰有四个交点.当()1y a x =-与23y x x =+(或()1y a x =--与23y x x =--)相切时,()f x 与()g x 图象恰有三个交点.把()1y a x =-代入23y xx =+,得()231x x a x +=-,即()230x a x a +-+=,由0D =,得()2340a a --=,解得1a =或9a =.又当0a =时,()f x 与()g x 仅两个交点,01a ∴<<或9a >.考点:方程的根与函数的零点.【名师点睛】本题考查函数图象与函数零点的有关知识,本题属于中等题,第一步正确画出图象,第二步涉计参数问题,针对参数进行分类讨论,按照题目所给条件要求,两函数图象有四个交点,找出符合零点要求的参数a ,讨论要全面,注意数形结合.【命题意图】 高考对本部分内容的考查以能力为主,重点考查函数的零点、方程的根和两函数图象交点之间的等价转化思想和数形结合思想.【命题规律】 高考试题对该部分内容考查的主要角度有两种:一种是找函数零点个数;一种是判断零点的范围.重点对该部分内容的考查仍将以能力考查为主,运用导数来研究函数零点,这是备考中应该注意的方面.【答题模板】解答本类题目,以2017年试题为例,一般考虑如下三步:第一步:利用赋值法,明确函数性质 有效化简f (x +2)=f (x )-f (1),须从求解f (1)入手,故采用赋值法令x =-1,进而明确函数使周期为2的周期函数,再利用函数为偶函数,得到其图象关于直线x =1对称;第二步:借助函数性质,确定函数解析式 借助函数的周期性和对称性得到函数f (x )在[0,1]上的解析式,在根据已知,明确函数在一个周期之内[0,2]的函数解析式;第三步:数形结合架起桥梁,求解范围 通过 y =f (x )-log a (x +1)转化为f (x )=log a (x +1),问题转化为两个函数y =f (x )与y =log a (x +1)的图象交点问题,画出并分析两个函数图象的位置关系,保证至少三个交点得到不等关系,进而求解参数范围.【方法总结】1.判断函数零点个数的常见方法(1)直接法:解方程f(x)=0,方程有几个解,函数f(x)就有几个零点;(2)图象法:画出函数f(x)的图象,函数f(x )的图象与x 轴的交点个数即为函数f(x)的零点个数;(3)将函数f(x)拆成两个常见函数h(x)和g(x)的差,从而f(x)=0⇔h(x)-g(x)=0⇔h(x)=g(x),则函数f(x)的零点个数即为函数y=h(x)与函数y=g(x)的图象的交点个数;(4)二次函数的零点问题,通过相应的二次方程的判别式Δ来判断.2.判断函数在某个区间上是否存在零点的方法(1)解方程,当对应方程易解时,可通过解方程,看方程是否有根落在给定区间上.(2)利用零点存在性定理进行判断;(3)画出函数图象,通过观察图象与x轴在给定区间上是否有交点来判断.3.已知函数有零点(方程有根)求参数值(取值范围)常用的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.4.函数的零点,方程的根,两函数的交点在零点问题中的作用(1)函数的零点:工具:零点存在性定理作用:通过代入特殊值精确计算,将零点圈定在一个较小的范围内.缺点:方法单一,只能判定零点存在而无法判断个数,且能否得到结论与代入的特殊值有关(2)方程的根:工具:方程的等价变形作用:当所给函数不易于分析性质和图像时,可将函数转化为方程,从而利用等式的性质可对方程进行变形,构造出便于分析的函数缺点:能够直接求解的方程种类较少,很多转化后的方程无法用传统方法求出根,也无法判断根的个数(3)两函数的交点:工具:数形结合作用:前两个主要是代数运算与变形,而将方程转化为函数交点,是将抽象的代数运算转变为图形特征,是数形结合的体现.通过图像可清楚的数出交点的个数(即零点,根的个数)或者确定参数的取值范围.缺点:数形结合能否解题,一方面受制于利用方程所构造的函数(故当方程含参时,通常进行参变分离,其目的在于若含x的函数可作出图像,那么因为另外一个只含参数的图像为直线,所以便于观察),另一方面取决于作图的精确度,所以会涉及到一个构造函数的技巧,以及作图时速度与精度的平衡.在高中阶段主要考察三个方面:(1)零点所在区间——零点存在性定理,(2)二次方程根分布问题,(3)数形结合解决根的个数问题或求参数的值.其中第(3)个类型常要用到函数零点,方程,与图像交点的转化,请通过例题体会如何利用方程构造出函数,进而通过图像解决问题的.5.双变量函数方程的赋值方法:(1)对,x y均赋特殊值,以得到某些点的函数值,其中有些函数值会对性质的推导起到关键作用,比如()()()0,1,1f f f -,在赋特殊值的过程中要注意所赋的值要符合函数定义域;(2)其中某一个变量不变,另一个赋特殊值,可得到单变量的恒等式,通常用于推断函数的性质. 6.常见函数所符合的函数方程:在填空选择题时可作为特殊的例子辅助处理,但是在解答题中不能用这些特殊的函数代表函数方程[](1)()()()f x y f x f y +=+:()f x kx = (2)()()()f x y f x f y +=⋅:()()0,1xf x aa a =>≠(3)①当()0,x ∈+∞时,()()()f x y f x f y ⋅=+:()log a f x x = ②当{}|0x x x ∈≠时,()()()f x y f x f y ⋅=+:()log a f x x =1.【2018天津河东区二模】已知函数满足,当时,,若在区间上方程有两个不同的实根,则实数的取值范围是( )A .B .C .D .【答案】D【解析】分析:首先根据题意,求得函数在相应的区间上的解析式,之后在同一个坐标系内画出函数的图像,之后将函数的零点问题转化为对应曲线交点的个数问题,结合图形,得到结果.详解:当时,,,在同一坐标系内画出的图像,【名师点睛】该题考查的是有关函数零点个数的问题,在解题的过程中,需要先确定函数的解析式,之后在同一个坐标系内画出相应的曲线,将函数的零点个数转化为曲线的交点个数来解决,非常直观,在做题的时候,需要把握动直线中的定因素.2.【2018天津市十二校二模】已知定义在上的函数则下列说法中正确的个数有()①关于的方程有个不同的零点;②对于实数,不等式恒成立;③在上,方程有个零点;④当时,函数的图象与轴围成的面积为.A.B.C.D.【答案】B②由不等式等价为,在恒成立,作出函数图象如图,由图可知函数图象总在的图象上方,所以不等式恒成立,故②正确;③由,得,设,则在上,方程有四个零点,故③错误;④令得,,当时,函数的图象与轴围成的图形是一个三角形,其面积为,故④错误,故选B .【名师点睛】本题主要通过对多个命题真假的判断,主要综合考查函数的、函数的图象与性质,以及函数的零点与不等式恒成立问题,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.3.【2018天津9校联考】定义在R 上的奇函数()f x ,当0x ≥时, ()()[)[)2log 1,0,1{31,1,x x f x x x +∈=--∈+∞,则函数()()F x f x a =-(10a -<<)的所有零点之和为( )A .12a -B .21a -C .12a --D .21a -- 【答案】C【解析】∵函数f (x )是定义在R 上的奇函数, 当x ≥0时,f (x )=()[)[)2101{311log x x x x +∈--∈+∞,,,,,故函数f (x )的图象如下图所示:【名师点睛】函数零点的求解与判断(1)直接求零点:令()0f x =,如果能求出解,则有几个解就有几个零点;(2)零点存在性定理:利用定理不仅要函数在区间[],a b 上是连续不断的曲线,且()()0f a f b ⋅<,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点;(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点,充分利用图象的对称性处理问题.4.【2018天津滨海新区七校模拟】已知函数()2f x x x a x =-+,若存在(]23a ∈,,使得关于x 的函数()()y f x tf a =-有三个不同的零点,则实数t 的取值范围是( )A .9584⎛⎫⎪⎝⎭, B .25124⎛⎫ ⎪⎝⎭, C .918⎛⎫ ⎪⎝⎭, D .514⎛⎫ ⎪⎝⎭, 【答案】B11822a a ++ 251,24⎛⎤∈ ⎥⎝⎦,所以t ∈ 25124⎛⎫ ⎪⎝⎭,,填25124⎛⎫⎪⎝⎭,. 【点睛】绝对值函数常用的两种方法,一是分段讨论写成分段函数,二是数形结合,本题由于参数有范围,所以函数图像确定,由图像可得函数零点问题.5.【2018天津十二联考一】已知函数()()2,43f x x a a g x x x =--+=-+,若方程()()f x g x =恰有2个不同的实数根,则实数a 的取值范围是( )A .1313,(,+228⎛⎫⋃∞ ⎪⎝⎭)B .1135,+282⎛⎫+⎛⎫⋃∞ ⎪ ⎪ ⎪⎝⎭⎝⎭C .[1313,228⎛⎤⋃⎥ ⎝⎦ D .[1313,228⎛⎫⋃ ⎪ ⎪⎝⎭ 【答案】A【解析】依题意画出()g x 的图象如图所示:∵函数()f x x a a =--+,∴(),{2,x x af x x a x a<=-+≥.当直线2y x a =-+与[]()2431,3y x x x =-+-∈相切时,即联立22{43y x a y x x =-+=-+-,得138a =.③当138a =时,函数()f x 的图象与()g x 的图象有3个交点,不满足题意; ④当138a >时,函数()f x 的图象与()g x 的图象有2个交点,满足题意.综上, 1322a <<或138a >.故选A .【名师点睛】已知函数有零点 (方程有根) 求参数取值范围的三种常用的方法:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.6.【2018天津新四区期末联考】己知函数()()12log 1,1{31,1x x f x x x-<=-≥,若方程()0f x a -=有三个不同的实数根,则实数a 的取值范围是( )A .()01,B .()02,C .(]0,2 D .()0+∞, 【答案】A【解析】由()0f x a -=得()a f x =.画出函数()y f x =的图象如图所示,且当3x ≥时,函数()y f x =的图象以y 1=为渐近线.结合图象可得当()01y a f x <<=时,函数的图象与直线y a =有三个不同的交点,故若方程()0f x a -=有三个不同的实数根,实数a 的取值范围是()0,1.选A . 【名师点睛】已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法 (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决,如在本题中,方程()0f x a -=根的个数,即为直线y a =与()y f x =函数图象的公共点的个数;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解. 7.【2018天津滨海新区模拟】设函数 则函数的零点个数为()A .1个B .2个C .3个D .4个 【答案】C 【解析】作函数图像,由图像得交点个数为3个,选C .【名师点睛】对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.8.【2018天津耀华中学模拟】已知函数()1,0,{,0x x f x lgx x +<=>, ()2414g x x x λ=-++,若关于x 的方程()f g x λ⎡⎤=⎣⎦有6个不相等的实数解,则实数λ的取值范围是( )A .20,5⎛⎫ ⎪⎝⎭ B .20,3⎛⎫ ⎪⎝⎭ C .21,52⎛⎫ ⎪⎝⎭ D .12,23⎛⎫ ⎪⎝⎭【答案】A【解析】当0<λ<25时,△3=16−4(1+4λ−10λ)>0即3−4λ+10λ>0恒成立,故λ的取值范围为(0, 25).故选D . 【名师点睛】已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法 (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.本题中在结合函数图象分析得基础上还用到了方程根的分布的有关知识.9.【2018天津一中月考二】已知函数()()12,1{1log ,13xa a x f x x x -≤=+>当12x x ≠时,()()12120f x f x x x -<-,则a 的取值范围是( )A .10,3⎛⎤ ⎥⎝⎦ B .11,32⎡⎤⎢⎥⎣⎦C .102(,)D .11,43⎡⎤⎢⎥⎣⎦【答案】A10.【2018河南巩义模拟】已知,若恰有两个根,,则的取值范围是( )A .B .C .D .【答案】C【解析】试题分析:根据f (x )的图象判断a 的范围,用a 表示出x 1,x 2,得出x 1+x 2关于a 的函数,从而可得出x 1+x 2的取值范围.详解:作出f (x )的函数图象如图所示:【名师点睛】函数的零点或方程的根的问题,一般以含参数的三次式、分式、以e为底的指数式或对数式及三角函数式结构的函数零点或方程根的形式出现,一般有下列两种考查形式:(1)确定函数零点、图象交点及方程根的个数问题;(2)应用函数零点、图象交点及方程解的存在情况,求参数的值或取值范围问题;研究方程根的情况,可以通过导数研究函数的单调性、最值、函数的变化趋势等,根据题目要求,通过数形结合的思想去分析问题,可以使得问题的求解有一个清晰、直观的整体展现.同时在解题过程中要注意转化与化归、函数与方程、分类讨论思想的应用.11.【2018天津部分区二模】已知函数,若函数在区间内有3个零点,则实数的取值范围是_______.【答案】【解析】分析:作出函数y=f(x)和y=x+b的图象.利用两个图象的交点个数问题确定b的取值范围.详解:若0≤x≤2,则﹣2≤x﹣2≤0,∴f(x)=f(x﹣2)=1﹣|x﹣2+1|=1﹣|x﹣1|,0≤x≤2.若2≤x≤4,则0≤x﹣2≤2,∴f(x)=f(x﹣2)=1﹣|x﹣2﹣1|=1﹣|x﹣3|,2≤x≤4.若4≤x≤6,则2≤x﹣2≤4,∴f(x)=f(x﹣2)=1﹣|x﹣2﹣3|=1﹣|x﹣5|,4≤x≤6.∴f(1)=1,f(2)=0,f(3)=1,f(5)=1,设y=f(x)和y=x+b,则方程f(x)=x+b在区间[﹣2,6]内有3个不等实根,等价为函数y=f(x)和y=x+b在区间[﹣2,6]内有3个不同的零点.作出函数f(x)和y=x+b的图象,如图:∴要使方程f (x )=x+b ,两个图象有3个交点,在区间[﹣2,6]内有3个不等实根, 则b ∈(],故答案为:(].【名师点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.12.【2018天津部分区上学期期末考】已知函数()11,0{ 3,0x x f x lnx x +≤=>,若函数()0f x ax -=恰有3个零点,则实数a 的取值范围为________. 【答案】11,3e ⎡⎫⎪⎢⎣⎭【解析】画出函数f (x )的图象,如图所示:【名师点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 13.【2018天津河西上期中】已知函数()3 log ,x a f x x x a≤≤=>,其中0a >,若函数()2y f x =-有两个零点,则a 的取值范围是__________. 【答案】[)4,9【解析】若函数()2y f x =-有两个零点,即()3 log ,x a f x x x a≤≤=>与2y =交于两点,因为y =与3log y x =在定义域内均为单调递增函数,当2=时4x =,当3log 2x =时9x =,所以49a ≤<,则a 的取值范围是[)4,9.14.【2018天津一中月考五】定义在上的函数满足,.若关于的方程有个不同实根,则正实数的取值范围是__________.【答案】在同一坐标系内画出函数与函数的图象.当时,,故.由题意及图象可得方程,即在(3,5)上有2个实数根,∴,解得.又由图象及题意可得方程在(5,6)内无解,∴,解得.综上可得.∴正实数的取值范围是.【名师点睛】已知函数零点的个数(方程根的个数或两函数图象公共点个数)求参数的取值范围时,常用的方法是将所给问题转化为两函数图象公共点个数的问题.在同一坐标系内画出两函数的图象,通过观察函数图象的位置关系,并结合特殊点处的函数值的大小得到关于参数的不等式(组),解不等式(组)可得所求的范围.15.【2018天津一中月考三】定义一种运算,{,a a ba bb a b<⊗=>,若()2243xf x x x=⊗-+,当()()g x f x m=-有5个不同的零点时,则实数m的取值范围是__________.【答案】()0,1精心整理 提升自我21 【解析】根据题意, ()2243x f x x x =⊗-+ ,画出其图象如图所示:结合图象可以知道, ()()g x f x m =-有5个零点时,实数m 的取值范围是()0,1,故答案为()0,1【名师点睛】已知函数零点(方程根)的个数,求参数取值范围的三种常用的方法:(1)直接法,直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的范围;(2)分离参数法,先将参数分离,转化为求函数值域问题加以解决;(3)数形结合法,先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.。
专题十四 函数的零点问题(1)(解析版)
专题十四函数的零点问题(1)1.函数零点的定义一般地,对于函数y=f(x)(x∈D),我们把方程f(x)=0的实数根x称为函数y=f(x)(x∈D)的零点.注:函数的零点不是一个“点”,而是方程f(x)=0的实根.2.函数零点存在性定理设函数f(x)在闭区间[a,b]上连续,且f(a) f(b)<0,那么在开区间(a,b)内至少有函数f(x)的一个零点,即至少有一点x0∈(a,b),使得f(x0)=0.注:(1)f(x)在[a,b]上连续是使用零点存在性定理判定零点的前提.(2)零点存在性定理中的几个“不一定”与“一定”(假设f(x)连续).①若f(a) f(b)<0,则f(x)“一定”存在零点,但“不一定”只有一个零点,可以有多个.要分析f(x)的性质与图象,如果f(x)单调,则“一定”只有一个零点.因此分析一个函数零点的个数前,可尝试判断函数是否单调.②若f(a) f(b)>0,则f(x)在[a,b]“不一定”存在零点,也“不一定”没有零点.如果f(x)单调,那么“一定”没有零点.③若f(x)在(a,b)有零点,则f(a) f(b)的符号是不确定的,“不一定”必须异号.受函数性质与图象影响.如果f(x)单调,则f(a) f(b)一定小于0.3.函数的零点,方程的根,两图象交点之间的联系设函数为y=f(x),则f(x)的零点即为满足方程f(x)=0的根,若f(x)=g(x)-h(x),则方程可转变为g(x)=h(x),即方程的根在坐标系中为g(x),h(x)交点的横坐标,其范围和个数可从图象中得到.由此看来,函数的零点,方程的根,两图象的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围这些问题时要用到这三者的灵活转化.注:函数零点,方程的根,两图象交点的相互转化:有关零点个数及性质的问题会用到这三者的转化,且这三者各具特点:(1)函数的零点:有“零点存在性定理”作为理论基础,可通过区间端点值的符号和函数的单调性确定是否存在零点.(2)方程的根:当所给函数不易于分析性质和图象时,可将函数转化为方程,方程的特点在于能够进行灵活的变形,从而可将等号两边的表达式分别构造为两个可分析的函数,为作图做好铺垫.(3)两图象的交点:前两个主要是代数运算与变形,而将方程转化为函数交点,是将抽象的代数运算转变为图形特征,是数形结合的体现.通过图象可清楚的数出交点的个数(即零点,根的个数)或者确定参数的取值范围.数形结合能否解题,一方面受制于利用方程所构造的函数(故当方程含参时,通常进行参变分离,其目的在于若含x的函数可作出图象,那么因为另外一个只含参数的图象为直线,所以便于观察),另一方面取决于作图的精确度,所以会涉及到一个构造函数的技巧,以及作图时速度与精度的平衡.4.常用结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.考点一 函数零点所在区间的判定问题 【方法总结】判断函数零点(方程的根)所在区间的方法(1)解方程法:当函数对应方程易解时,可通过解方程判断方程是否有根落在给定区间上.(2)定理法:利用零点存在性定理进行判断.若一个方程有解但无法直接求出时,可考虑将方程一边构造为一个函数,从而利用零点存在性定理将零点确定在一个较小的范围内.例如:对于方程ln x +x =0,无法直接求出根,构造函数f (x )=ln x +x ,由f (1)>0,1()2f <0即可判定其零点必在(12,1)中.(3)数形结合法:画出相应的函数图象,通过观察图象与x 轴在给定区间上是否有交点来判断,或者转化为两个函数图象在给定区间上是否有交点来判断.【例题选讲】[例1] (1)已知函数f (x )的图象是连续不断的,且有如下对应值表:在下列区间中,函数f (x )必有零点的区间为( )A .(1,2)B .(2,3)C .(3,4)D .(4,5)答案 B 解析 由所给的函数值的表格可以看出,x =2与x =3这两个数字对应的函数值的符号不同,即f (2)·f (3)<0,所以函数在(2,3)内有零点.(2)若函数f (x )唯一的零点同时在区间(0,16),(0,8),(0,4),(0,2)内,那么下列命题正确的是( ) A .函数f (x )在区间(0,1)内有零点 B .函数f (x )在区间(0,1)或(1,2)内有零点 C .函数f (x )在区间[2,16)上无零点 D .函数f (x )在区间(1,16)内无零点 答案 C 解析 由题意可确定f (x )唯一的零点在区间(0,2)内,故在区间[2,16)内无零点. (3)函数f (x )=e x +2x -3的零点所在的一个区间为( )A .(-1,0)B .(0,12)C .(12,1)D .(1,32)答案 C 解析 ∵1()2f =12e -2<0,f (1)=e -1>0,∴零点在(12,1)上,故选C .(4)已知实数a ,b 满足2a =3,3b =2,则函数f (x )=a x +x -b 的零点所在的区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)答案 B 解析 ∵实数a ,b 满足2a =3,3b =2,∴a =log 23>1,0<b =log 32<1,∵函数f (x )=a x +x -b ,∴f (x )=(log 23)x +x -log 32单调递增,∵f (0)=1-log 32>0,f (-1)=log 32-1-log 32=-1<0,∴根据函数的零点判定定理得出函数f (x )=a x +x -b 的零点所在的区间为(-1,0).故选B .(5)函数f (x )=2x +ln 1x -1的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(3,4)D .(1,2)与(2,3)答案 B 解析 f (x )=2x +ln 1x -1=2x -ln(x -1),当1<x <2时,ln(x -1)<0,2x >0,所以f (x )>0,故函数f (x )在(1,2)上没有零点.f (2)=1-ln1=1,f (3)=23-ln2=2-3ln23=2-ln83.因为8=22≈2.828>e ,所以8>e 2,即ln8>2,即f (3)<0.又f (4)=12-ln3<0,所以f (x )在(2,3)内存在一个零点.(6)设函数f (x )=13x -ln x (x >0),则y =f (x )( )A .在区间⎝⎛⎭⎫1e ,1,(1,e)内均有零点 B .在区间⎝⎛⎭⎫1e ,1,(1,e)内均无零点C .在区间⎝⎛⎭⎫1e ,1内有零点,在区间(1,e)内无零点D .在区间⎝⎛⎭⎫1e ,1内无零点,在区间(1,e)内有零点答案 D 解析 由f (x )=13x -ln x (x >0)得f ′(x )=x -33x ,令f ′(x )>0得x >3,令f ′(x )<0得0<x <3,令f ′(x )=0得x =3,所以函数f (x )在区间(0,3)上为减函数,在区间(3,+∞)上为增函数,在点x =3处有极小值1-ln 3<0,又f (1)=13>0,f (e)=e 3-1<0,1()f e =13e +1>0,所以f (x )在区间⎝⎛⎭⎫1e ,1内无零点,在区间(1,e)内有零点.故选D .【对点训练】1.根据表格中的数据,可以判定方程e x -x -2=0的一个根所在的区间为________.1.答案 (1,2) 解析 据题意令f (x )=e x -x -2,由于f (1)=e 1-1-2=2.72-3<0,f (2)=e 2-4=7.39- 4>0,故函数在区间(1,2)内存在零点,即方程在相应区间内有根. 2.已知自变量和函数值的对应值如下表:则方程2x =x 2的一个根位于区间( )A .(0.6,1.0)B .(1.4,1.8)C .(1.8,2.2)D .(2.6,3.0)2.答案 C 解析 令f (x )=2x ,g (x )=x 2,因为f (1.8)=3.482,g (1.8)=3.24,f (2.2)=4.595,g (2.2)=4.84.令 h (x )=2x -x 2,则h (1.8)>0,h (2.2)<0.故选C .3.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( ) A .(a ,b )和(b ,c )内 B .(-∞,a )和(a ,b )内 C .(b ,c )和(c ,+∞)内 D .(-∞,a )和(c ,+∞)3.答案 A 解析 ∵a <b <c ,∴f (a )=(a -b )(a -c )>0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0,由函 数零点存在性定理可知:在区间(a ,b ),(b ,c )内分别存在零点,又函数f (x )是二次函数,最多有两个零点;因此函数f (x )的两个零点分别位于区间(a ,b ),(b ,c )内. 4.函数f (x )=e x +x -2的零点所在的一个区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)4.答案 C 解析 方法一 ∵f (0)=e 0+0-2=-1<0,f (1)=e 1+1-2=e -1>0,∴f (0)f (1)<0,故函 数f (x )=e x +x -2的零点所在的一个区间是(0,1),选C .方法二 函数f (x )=e x +x -2的零点,即函数y =e x 的图象与y =-x +2的图象的交点的横坐标,作出函数y =e x 与直线y =-x +2的图象如图所示,由图可知选C . 5.在下列区间中,函数f (x )=e -x +4x -3的零点所在的区间可能为( )A .⎝⎛⎭⎫-14,0B .⎝⎛⎭⎫0,14C .⎝⎛⎭⎫14,12D .⎝⎛⎭⎫12,34 5.答案 D 解析 函数f (x )=e -x +4x -3是连续函数,又因为1()2f =1e -1<0,3()4f =14e 3+3-3>0,所以1()2f 3()4f ⋅<0,故选D .6.若x 0是方程131()2x x =的解,则x 0属于区间( )A .⎝⎛⎭⎫23,1B .⎝⎛⎭⎫12,23C .⎝⎛⎭⎫13,12D .⎝⎛⎭⎫0,13 6.答案 C 解析 令g (x )=1()2x ,f (x )=13x ,则g (0)=1>f (0)=0,11321111()()()()2222g f =<=,1311()()32g =1311()()33f >=,所以由图象关系可得13<x 0<12.7.已知实数a >1,0<b <1,则函数f (x )=a x +x -b 的零点所在的区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)7.答案 B 解析 因为a >1,0<b <1,f (x )=a x +x -b ,所以f (-1)=1a -1-b <0,f (0)=1-b >0,所以f (-1)·f (0)<0,则由零点存在性定理可知f (x )在区间(-1,0)上存在零点.8.若函数y =f (x )(x ∈R )是奇函数,其零点分别为x 1,x 2,…,x 2 017,且x 1+x 2+…+x 2 017=m ,则关于x 的方程2x +x -2=m 的根所在区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)8.答案 A 解析 因为函数y =f (x )(x ∈R )是奇函数,故其零点x 1,x 2,…,x 2 017关于原点对称,且其中 一个为0,所以x 1+x 2+…+x 2 017=m =0.则关于x 的方程为2x +x -2=0,令h (x )=2x +x -2,则h (x )为(-∞,+∞)上的增函数.因为h (0)=20+0-2=-1<0,h (1)=21+1-2=1>0,所以关于x 的方程2x+x -2=m 的根所在区间是(0,1).9.已知函数f (x )=6x-log 2x ,在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)9.答案 C 解析 因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4).10.函数f (x )=ln x -2x2的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)10.答案 B 解析 易知f (x )=ln x -2x 2在定义域(0,+∞)上是增函数,又f (1)=-2<0,f (2)=ln 2-12>0.根据零点存在性定理,可知函数f (x )=ln x -2x 2有唯一零点,且在区间(1,2)内.11.函数f (x )=12ln x +x -1x-2的零点所在的区间是( )A .⎝⎛⎭⎫1e ,1 B .(1,2) C .(2,e) D .(e ,3)11.答案 C 解析 易知f (x )在(0,+∞)上单调递增,且f (2)=12ln 2-12<0,f (e)=12+e -1e -2>0.∴f (2)f (e)<0,故f (x )的零点在区间(2,e)内.12.已知函数f (x )=log a x +x -b (a >0且a ≠1).当2<a <3<b <4时,函数f (x )的零点x 0∈(n ,n +1),n ∈N *,则n =________.12.答案 2 解析 对于函数y =log a x ,当x =2时,可得y <1,当x =3时,可得y >1,在同一坐标系中画出函数y =log a x ,y =-x +b 的图象,判断两个函数图象的交点的横坐标在(2,3)内,∴函数f (x )的零点x 0∈(n ,n +1)时,n =2.考点二 简单函数(方程)零点(解)的个数判断 【方法总结】函数零点个数的判断方法(1)解方程法:令f (x )=0,如果能求出解,则方程解的个数即为函数零点的个数.(2)零点存在性定理法:利用定理不仅要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点或零点所具有的性质.(3)数形结合法:对于给定的函数不能直接求解或画出图象的,常分解转化为两个能画出图象的函数的交点问题.即将函数y =f (x )-g (x )的零点个数转化为函数y =f (x )与y =g (x )图象公共点的个数来判断.【例题选讲】[例2] (1)(2018·全国Ⅲ)函数f (x )=cos ⎝⎛⎭⎫3x +π6在[0,π]的零点个数是________. 答案 3 解析 由题意知,cos ⎝⎛⎭⎫3x +π6=0,所以3x +π6=π2+k π,k ∈Z ,所以x =π9+k π3,k ∈Z ,当k =0时,x =π9;当k =1时,x =4π9;当k =2时,x =7π9,均满足题意,所以函数f (x )在[0,π]的零点个数为3.(2)函数f (x )=⎩⎪⎨⎪⎧x 2+x -2,x ≤0,-1+ln x ,x >0的零点个数为( )A .3B .2C .1D .0答案 B 解析 法一 由f (x )=0得⎩⎪⎨⎪⎧x ≤0,x 2+x -2=0或⎩⎪⎨⎪⎧x >0,-1+ln x =0,解得x =-2或x =e .因此函数f (x )共有2个零点.法二 函数f (x )的图象如图所示,由图象知函数f (x )共有2个零点.(3)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≤0,|lg x |,x >0,则函数g (x )=f (1-x )-1的零点个数为( )A .1B .2C .3D .4答案 C 解析 g (x )=f (1-x )-1=⎩⎪⎨⎪⎧ (1-x )2+2(1-x )-1,1-x ≤0,|lg(1-x )|-1,1-x >0=⎩⎪⎨⎪⎧x 2-4x +2,x ≥1,|lg(1-x )|-1,x <1,易知当x ≥1时,函数g (x )有1个零点;当x <1时,函数g (x )有2个零点,所以函数g (x )的零点共有3个,故选C .(4)函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是 .答案 2 解析 当x ≤0时,令x 2-2=0,解得x =-2(正根舍去),所以在(-∞,0]上,f (x )有一个零点;当x >0时,f ′(x )=2+1x >0恒成立,所以f (x )在(0,+∞)上是增函数.又因为f (2)=-2+ln 2<0,f (3)=ln 3>0,所以f (x )在(0,+∞)上有一个零点,综上,函数f (x )的零点个数为2.(5)函数f (x )=12x -1()2x的零点个数为( )A .0B .1C .2D .3答案 B 解析 函数f (x )=12x -1()2x 的零点个数是方程12x -1()2x =0的解的个数,即方程12x =1()2x的解的个数,也就是函数y =12x 与y =1()2x 的图象的交点个数,在同一坐标系中作出两个函数的图象如图所示,可得交点个数为1.(6)函数f (x )=3x |ln x |-1的零点个数为( )A .1B .2C .3D .4答案 B 解析 函数f (x )=3x |ln x |-1的零点数的个数即函数g (x )=|ln x |与函数h (x )=1()3x 图象的交点个数.作出函数g (x )=|ln x |和函数h (x )=1()3x 的图象,由图象可知,两函数图象有两个交点,故函数f (x )=3x |ln x |-1有2个零点.(7)已知函数f (x )=1()2x -cos x ,则f (x )在[0,2π]上的零点个数为________.答案 3 解析 如图,作出g (x )=1()2x 与h (x )=cos x 的图象,可知其在[0,2π]上的交点个数为3,所以函数f (x )在[0,2π]上的零点个数为3.(8)(2015湖北)函数f (x )=2sin x sin ⎝⎛⎭⎫x +π2-x 2的零点个数为__________. 答案 2 解析 函数f (x )=2sin x sin ⎝⎛⎭⎫x +π2-x 2的零点个数等价于方程2sin x sin ⎝⎛⎭⎫x +π2-x 2=0的根的个数,即函数g (x )=2sin x sin ⎝⎛⎭⎫x +π2=2sin x cos x =sin 2x 与h (x )=x 2的图象交点个数.分别画出两函数图象,如图,由图可知,函数g (x )与h (x )的图象有2个交点.故零点个数为2.【对点训练】13.已知函数f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≤0,1+1x,x >0,则函数y =f (x )+3x 的零点个数是( )A .0B .1C .2D .313.答案 C 解析 解法1 令f (x )+3x =0,则⎩⎪⎨⎪⎧x ≤0,x 2-2x +3x =0或⎩⎪⎨⎪⎧x >0,1+1x+3x =0,解得x =0或x =-1,所以函数y =f (x )+3x 的零点个数是2.故选C .解法2 函数y =f (x )+3x 的零点个数就是y =f (x )与y =-3x 两个函数图象的交点个数,如图所示,由函数的图象可知,零点个数为2.14.已知函数f (x )=⎩⎪⎨⎪⎧2x -1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为( )A .12,0B .-2,0C .12D .014.答案 D 解析 当x ≤1时,令f (x )=2x -1=0,解得x =0;当x >1时,令f (x )=1+log 2x =0,解得x=12,又因为x >1,所以此时方程无解.综上函数f (x )的零点只有0. 15.已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2,(x -2)2,x >2,函数g (x )=3-f (2-x ),则函数y =f (x )-g (x )的零点的个数为( )A .2B .3C .4D .515.答案 A 解析 当x <0时,f (2-x )=x 2,此时函数f (x )-g (x )=-1-|x |+x 2的小于零的零点为x =-1+52;当0≤x ≤2时,f (2-x )=2-|2-x |=x ,函数f (x )-g (x )=2-|x |+x -3=-1无零点;当x >2时,f (2-x )=2-|2-x |=4-x ,函数f (x )-g (x )=(x -2)2+4-x -3=x 2-5x +5大于2的零点有一个.因此函数y =f (x )-g (x )共有零点2个.16.设函数f (x )=2|x |+x 2-3,则函数y =f (x )的零点个数是( )A .4B .3C .2D .116.答案 C 解析 易知f (x )是偶函数,当x ≥0时,f (x )=2x +x 2-3,∴x ≥0时,f (x )在(0,+∞)上是增函数,且f (1)=0,∴x =1是函数y =f (x )在(0,+∞)上唯一零点.从而x =-1是y =f (x )在(-∞,0)内的零点.故y =f (x )有两个零点.17.函数f (x )=|x -2|-ln x 在定义域内的零点的个数为( )A .0B .1C .2D .317.答案 C 解析 由题意可知f (x )的定义域为(0,+∞),在同一直角坐标系中画出函数y =|x -2|(x >0),y =ln x (x >0)的图象,如图所示.由图可知函数f (x )在定义域内的零点个数为2.18.函数f (x )=|log 2x |+x -2的零点个数为( )A .1B .2C .3D .418.答案 B 解析 函数f (x )=|log 2x |+x -2的零点个数,就是方程|log 2x |+x -2=0的根的个数.令h (x )=|log 2x |,g (x )=2-x ,在同一坐标平面上画出两函数的图象,如图所示.由图象得h (x )与g (x )有2个交点,∴方程|log 2x |+x -2=0的根的个数为2.19.函数f (x )=x -cos x 在[0,+∞)内( )A .没有零点B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点19.答案 B 解析 当x ∈(]0,1时,因为f ′(x )=12x+sin x ,x >0,sin x >0,所以f ′(x )>0,故f (x )在[0,1]上单调递增,且f (0)=-1<0,f (1)=1-cos 1>0,所以f (x )在[0,1]内有唯一零点.当x >1时,f (x )=x -cos x >0,故函数f (x )在[0,+∞)上有且仅有一个零点,故选B . 20.函数f (x )=4cos 2x2·cos ⎝⎛⎭⎫π2-x -2sin x -|ln(x +1)|的零点个数为__________. 20.答案 2 解析 f (x )=2(1+cos x )sin x -2sin x -|ln(x +1)|=sin 2x -|ln(x +1)|,x >-1,函数f (x )的零点个数即为函数y 1=sin 2x (x >-1)与y 2=|ln(x +1)|(x >-1)的图象的交点个数.分别作出两个函数的图象,如图,可知有两个交点,则f (x )有两个零点.21.函数f (x )=⎩⎪⎨⎪⎧ln x -x 2+2x ,x >0x 2-2,x ≤0的零点个数是________.21.答案 3 解析 当x >0时,作函数y =ln x 和y =x 2-2x 的图象,由图知,当x >0时,f (x )有2个零 点;当x ≤0时,令x 2-2=0,解得x =-2(正根舍去),所以在(-∞,0]上有一个零点,综上知f (x )有3个零点.22.已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≤1,log 13x ,x >1,则函数y =f (x )+x -4的零点个数为( )A .1B .2C .3D .422.答案 B 解析 函数y =f (x )+x -4的零点个数,即函数y =-x +4与y =f (x )的图象的交点的个数.如 图所示,函数y =-x +4与y =f (x )的图象有两个交点,故函数y =f (x )+x -4的零点有2个.故选B .23.已知f (x )=⎩⎪⎨⎪⎧x +3,x ≤1,-x 2+2x +3,x >1,则函数g (x )=f (x )-e x 的零点个数为________.23.答案 2 解析 函数g (x )=f (x )-e x 的零点个数即为函数y =f (x )与y =e x 的图象的交点个数.作出函数图象可知有2个交点,即函数g (x )=f (x )-e x 有2个零点.24.已知函数f (x )=⎩⎪⎨⎪⎧1-|x +1|,x <1,x 2-4x +2,x ≥1,则函数g (x )=2|x |f (x )-2的零点个数为( )A .1个B .2个C .3个D .4个24.答案 B 解析 画出函数f (x )=⎩⎪⎨⎪⎧1-|x +1|,x <1,x 2-4x +2,x ≥1,的图象如图,由g (x )=2|x |f (x )-2=0可得第11页f (x )=22|x |,则问题化为函数f (x )=⎩⎪⎨⎪⎧1-|x +1|,x <1,x 2-4x +2,x ≥1,与函数y =22|x |=21-|x |的图象的交点的个数问题.结合图象可以看出两函数图象的交点只有两个,应选答案B .。
第14讲 函数的零点、隐零点、极值点偏移问题(学生版) 备战2025年高考数学一轮复习(天津专用)
第14讲函数的零点、隐零点、极值点偏移问题(6类核心考点精讲精练)1.5年真题考点分布【命题规律】本节内容是天津高考卷的必考内容,设题稳定,难度较低,分值为16分【备考策略】1.理解、掌握函数零点与方程的关系2.能掌握函数零点的求解方法3.具备数形结合的思想意识,会借助函数图像的交点解决函数的零点问题4.会解隐零点与极值点偏移问题【命题预测】本节内容是天津高考卷的必考内容,一般给出函数的解析式解决函数的零点相关问题。
知识讲解知识点一.函数零点个数问题用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决,对于函数零点个数问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围,从图象的最高点、最低点、分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等。
但需注意探求与论证之间区别,论证是充要关系,要充分利用零点存在定理及函数单调性严格说明函数零点个数.知识点二.零点存在性赋值理论1.确定零点是否存在或函数有几个零点,作为客观题常转化为图象交点问题,作为解答题一般不提倡利用图象求解,而是利用函数单调性及零点赋值理论.函数赋值是近年高考的一个热点,赋值之所以“热”,是因为它涉及到函数领域的方方面面:讨论函数零点的个数(包括零点的存在性,唯一性);求含参函数的极值或最值;证明一类超越不等式;求解某些特殊的超越方程或超越不等式以及各种题型中的参数取值范围等,零点赋值基本模式是已知f(a)的符号,探求赋值点m(假定m<a)使得f(m)与f(a)异号,则在(m,a)上存在零点2.赋值点遴选要领:讲选赋值点须做到三个确保:确保参数能取到它的一切值;确保赋值点x0落在规定区间内;确保运算可行三个优先:(1)优先常数赋值点;(2)优先借助已有极值求赋值点;(3)优先简单运算.知识点三.隐零点问题1.函数零点按是否可求精确解可以分为两类:一类是数值上能精确求解的,称之为“显零点”;另一类是能够判断其存在但无法直接表示的,称之为“隐零点”2.利用导数求函数的最值或单调区间,常常会把品值问题转化为求导函数的零点问题、若导数零点存在,但无法求出,我们可以设其为0,再利用导函数单调性确定0所在区间,最后根据f’(0)=0,研究f(0),我们把这类问题称为隐零点问题.注意若f(x)中含有参数a,关系式f(0)=0是关于0,a的关系式,确定0的合适范围,往往和a的范围有关.考点一、函数零点个数问题1.(2024·四川凉山·二模)若=Lin+cos−1,∈−π2,π,则函数的零点个数为()A.0B.1C.2D.32.(2024高三·全国·专题练习)函数f(x)=x-sin x的零点个数为.1.(2024高三·全国·专题练习)已知函数f(x)=x3-x-1.(1)求证:函数f(x)在区间(1,2)内恰有一个零点;(2)将(1)中的零点记为a,且a4r14n的值.2.(2024·山西晋中·模拟预测)已知函数=ln+sin+sinπ10.(1)求函数在区间1,e上的最小值;(2)判断函数的零点个数,并证明.考点二、数形结合法研究零点问题1.(2023·四川甘孜·一模)设定义在上的函数是偶函数,且+π=−π,'是的导函数,当∈0,π时,0<<1;当∈0,π且≠π2时,π2'>0,则函数=−sin在−2π,2π上的零点个数为()A.2B.4C.5D.82.(2024高三下·全国·专题练习)已知是定义在R上的奇函数,当>0时,=e3−3ln,则函数的零点个数为()A.2B.3C.4D.51.(24-25高三上·广东·开学考试)若函数op=sin−cos+B+1(>0),∈[0,2π]的图象与直线=0,=π,=0所围成的封闭图形的面积为12π2+π+2.(1)求的值;(2)求函数op单调区间及最值;(3)求函数op=op−在区间∈[0,2π]上的零点个数.2.(2024·浙江·模拟预测)已知函数=e+sin−−1.(1)当=12时,求的单调区间;(2)当=1时,判断的零点个数.3.(22-23高三上·全国·阶段练习)已知函数op=133−2B2+2,其中≥0.(1)若的极小值为−286,求单调增区间;(2)讨论的零点个数.1.(2024·山东聊城·一模)已知函数=e−1,=ln−B,=e−ln−1.(1)求的单调递增区间;(2)求的最小值;(3)设ℎ=−,讨论函数ℎ的零点个数.2.(2024·湖南·二模)已函数op=3+B2+B+os s∈p,其图象的对称中心为(1,−2).(1)求−−的值;(2)判断函数的零点个数.1.(2024·河南郑州·三模)已知函数=e B−.(1)若=2,求在1,1处的切线方程;(2)讨论的零点个数.2.(2024·湖北·模拟预测)函数op=x−−1(∈p.(1)当=1时,证明:op≥0;(2)讨论函数op的零点个数.3.(23-24高三上·河北邢台·阶段练习)已知函数=23−32−12+5.(1)求的极值;(2)讨论函数=−的零点个数.4.(23-24高三上·陕西·阶段练习)已知函数=3ln+122−4+1.(1)求的图象在=2处的切线方程;(2)讨论函数=−的零点个数.1.(2024·山西·三模)已知函数op=2+1,>0e,≤0,若函数op=op−+o∈p恰有一个零点,则的取值范围是.2.(2018·全国·高考真题)已知函数=-B2.(1)若=1,证明:当≥0时,≥1;(2)若在(0,+∞)只有一个零点,求的值.1.(2017·全国·高考真题)已知函数=e2+−2e−(1)讨论的单调性;(2)若有两个零点,求的取值范围.2.(2024·内蒙古包头·三模)设函数=ln+−.(1)当=1时,求的最小值;(2)若恰有两个零点,求a的取值范围.考点五、隐零点问题1.22-23高三上·河南洛阳·开学考试)(1)证明不等式:e K2>ln(第一问必须用隐零点解决,否则不给分);(2)已知函数op=(−2)e+o−1)2有两个零点.求a的取值范围.(第二问必须用分段讨论解决,否则不给分)2.(23-24高三上·海南省直辖县级单位·阶段练习)已知函数=2−En∈R.(1)判断函数的单调性;(2)设=2−−2ln,证明:当=2时,函数有三个零点.1.(22-23高三上·河北·期中)已知函数=2e+o2−lnp+.(1)若=−2e−1,求的单调区间;(2)记函数=−2−En+1++4,若+1≥恒成立,试求实数的取值范围.2.(23-24高三下·广东广州·阶段练习)已知函数=e−2.(1)求函数的极值;(2)讨论函数=−sin在R上的零点个数.(参考数据:sin1≈0.84,cos1≈0.54)3.(2024·山东·模拟预测)已知函数=14e−.(1)求曲线=在点1,1处的切线在轴上的截距;(2)探究的零点个数.4.(23-24高三上·福建莆田·阶段练习)已知函数=e−sin.(1)求在0,0处的切线方程;(2)求证:当∈−π,+∞时,函数有且仅有2个零点.1.(2024高三·全国·专题练习)设函数op=e−12e2−13(−1)3+5e2,∈[0,+∞).(1)判断函数op的单调性;(2)若1≠2,且1+2=6e,求证:1+2<2.2.(22-23高三上·黑龙江哈尔滨·期末)已知函数=B2,=1−ln.(1)若对于任意∈0,+∞,都有<,求实数的取值范围;(2)若函数=−有两个零点1,2,求证:11+12>2.1.(23-24高三上·江苏连云港·阶段练习)已知函数=ln+12B2−+1∈.(1)当=1时,求函数=的零点个数.(2)若关于的方程=12B2有两个不同实根1,2,求实数的取值范围并证明1⋅2>2.2.(22-23高三上·河北唐山·阶段练习)已知函数=−1ln−2+B∈.(1)若函数='有两个零点,求的取值范围;(2)设1,2是函数的两个极值点,证明:1+2>2.3.(21-22高三上·广东清远·期末)已知函数op=K1−o−1).(1)讨论op的零点个数.(2)若op有两个不同的零点1,2,证明:1+2>4.4.(21-22高三上·北京昌平·期末)已知函数op=163−2B+8ln.(1)若函数op在定义域内单调递增,求实数的取值范围;(2)若函数op存在两个极值点1,2,求证:1+2>4.1.(22-23高三上·天津和平·期末)设函数op=e−e−,≥0−2−2−4,<0,若函数=−B恰有两个零点,则实数的取值范围为()A.0,2B.0,2C.2,+∞D.2 2.(2020·重庆·一模)已知为R上的可导函数,当≠0时,'+>0,若=+1,则函数的零点个数为()A.0B.1C.2D.0或23.(21-22高三上·天津河北·期中)已知函数=En−1,则的零点所在的区间是()A.0,1B.1,2C.2,3D.3,44.(2024高三·全国·专题练习)函数f(x)=2x+x-2的零点个数是()A.0B.1C.2D.36.(23-24高三下·重庆·阶段练习)已知函数=2+B+e,若函数有两个不同零点,则极值点的个数为.7.(23-24高三上·天津滨海新·阶段练习)已知函数=133−2+1.(1)求曲线=在点1,1处的切线方程;(2)求函数在−2,2上的单调区间、最值.(3)设=−在−2,2上有两个零点,求的范围.1.(23-24高三上·天津南开·阶段练习)若函数=+2−En−−2,(>0且≠1)有两个零点,则m的取值范围()A.−1,3B.−3,1C.3,+∞D.−∞,−12.(20-21高三上·天津南开·阶段练习)设函数f(x)=ln, >0,e(+1),≤0,若函数g(x)=f(x)–b有两个零点,则实数b的取值范围是()A.(–12,0)B.(–12,0]C.(–12,0]∪(1,+∞)D.(–12,1) 3.(2023·吉林·一模)已知函数=eK1,>0且≠1,−−,<0且≠−1,若函数op=2(p−B(p−e4有4个零点.则实数的取值范围是.4.(2023·天津河北·一模)设∈,函数=B2−+1,<0e−B,≥0,若恰有两个零点,则的取值范围是.5.(23-24高三上·天津河北·期中)已知函数=23−22+1.(1)求曲线=在点1,1处的切线方程;(2)求函数=的单调区间和极值;(3)若函数=−在区间−1,1上有一个零点,求实数的取值范围.6.(22-23高三上·天津·期中)已知函数=3+B2+B+在点1,2处的切线斜率为4,且在=−1处取得极值.(1)求函数的单调区间;(2)若函数=+−1恰有两个零点,求实数m的取值范围.7.(21-22高三上·天津东丽·阶段练习)已知函数op=B3−62+1,∈.(1)若=2,求函数op的单调区间;(2)若=−4,求函数在区间[−2,3]的最值;(3)若op恰有三个零点,求a的取值范围.1.(2023·全国·高考真题)函数=3+B+2存在3个零点,则的取值范围是()A.−∞,−2B.−∞,−3C.−4,−1D.−3,02.(2022·全国·高考真题)已知函数op=B−1−(+1)ln.(1)当=0时,求op的最大值;(2)若op恰有一个零点,求a的取值范围.3.(2020·全国·高考真题)已知函数op=3−B+2.(1)讨论op的单调性;(2)若op有三个零点,求的取值范围.4.(2020·全国·高考真题)已知函数op=−o+2).(1)当=1时,讨论op的单调性;(2)若op有两个零点,求的取值范围.。
专题14二次函数的图象与性质(讲练)-2023年中考一轮复习(原卷版)
2023年中考数学总复习一轮讲练测()专题14二次函数的图象与性质(讲练)1.理解二次函数的意义,掌握二次函数的表达式,熟练应用待定系数法求二次函数的表达式;2.会画二次函数的图象,掌握二次函数的性质1.二次函数的定义:一般地,形如(其中a,b,c是常数,a≠0)的函数叫做二次函数.2.二次函数的三种表达式:(1)一般式:(a,b,c是常数,a≠0).(2)顶点式:(a,h,k是常数,a≠0),顶点坐标是.(3)交点式:(a,x1,x2是常数,a≠0),其中x1,x2是二次函数与x轴的交点的横坐标,图象的对称轴为直线.3.二次函数的图象与性质:二次函数y=ax2+bx+c(a≠0)的图象是一条抛物线,当a>0时,抛物线的开口,这时当x≤-b2a时,y随x的增大而;当x≥-b2a时,y随x的增大而;当x=-b2a时,y有最值.当a<0时,抛物线开口,这时当x≤-b2a时,y随x的增大而;当x≥-b2a时,y随x的增大而;当x=-b2a时,y有最值.该抛物线的对称轴是直线,顶点坐标是4.二次函数的图象的平移:平移规律:左右平移由h值决定:左加右减;上下平移由k值决定:上加下减.二次函数与x轴交点情况5.对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0)△=b2﹣4ac决定抛物线与x轴的交点个数:①△=b2﹣4ac>0时,抛物线与x轴有2个交点;②△=b2﹣4ac=0时,抛物线与x轴有1个交点;③△=b2﹣4ac<0时,抛物线与x轴没有交点.考点一、二次函数的定义例1(2022秋•义乌市月考)若函数y=是二次函数,即m的值是()A.﹣1B.﹣1或3C.2D.3【变式训练】1.(2022•苏州模拟)下列各式中,y是关于x的二次函数的是()A.y=4x+2B.y=ax2+1C.y=3x2+5﹣4x D.y=2.(2021秋•林口县期末)是二次函数,则m的值是()A.m≠0B.m=±1C.m=1D.m=﹣13.(2022秋•禹州市期中)若函数y=(m﹣3)x|m|﹣1+5是关于x的二次函数,则m=()A.﹣3B.3C.3或﹣3D.2考点二、二次函数的图象例2(2022秋•舟山月考)在同一直角坐标系中,函数y=ax+a和函数y=ax2+x+2(a是常数,且a≠0)的图象可能是()A.B.C.D.【变式训练】1.(2022秋•巧家县期中)直线y=ax+b与抛物线y=ax2+bx+2在同一平面直角坐标系中的图象可能是()A.B.C.D.2.(2022秋•洪山区校级月考)在同一坐标系中,二次函数y=ax2+bx+c(b>0)与一次函数y=ax+c的大致图象可能是()A.B.C.D.3.(2022秋•凉州区校级月考)二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象为()A.B.C.D.考点三、二次函数的性质例3(2022秋•淳安县期中)已知二次函数y=ax2+bx+c(a,b,c为常数,a>0)的图象经过点(﹣2,0)和(2,3),该函数图象的对称轴为直线x=m,则下列说法正确的是()A.0<m≤2B.m<0C.m>0D.﹣2≤m<0【变式训练】1.(2021秋•新会区期末)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表.下列结论错误的是()x…﹣10123…y…03430…A.函数图象开口向下B.当x=1时,y取最大值4C.对称轴是直线x=1D.当x>1时,y的值随x的增大而增大2.(2021秋•孝义市期末)对于二次函数y=﹣x2﹣2x+m(m为常数),当y随x的增大而减小时,x的取值范围是()A.x>﹣1B.x>﹣2C.x>1D.x>03.(2021秋•榆阳区期末)如表中所列的x,y的5对值是二次函数y=ax2+bx+c的图象上的点所对应的坐标:x…﹣2﹣1034…y…1163611…若(x1,y1),(x2,y2)是该函数图象上的两点,根据表中信息,以下说法正确的是()A.该函数的最小值为3B.这个函数图象的开口向上C.当x1<x2时,y1<y2D.当y1>y2时,x1<x24.(2022春•沙坪坝区校级月考)一列自然数0,1,2,3,⋯,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是()①当原数取50时,原数与对应新数的差最大②原数与对应新数的差不可能等于零③原数与对应新数的差,随着原数的增大而增大④当原数与对应新数的差等于21时,原数等于30和70A.①②B.①③C.①④D.②③考点四、二次函数的图象与系数关系例4(2022•金华模拟)已知二次函数y=ax2+bx+c的图象如图所示,与x轴有个交点(﹣1,0),有以下结论:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(其中m≠1).其中所有正确结论的个数是()A.3个B.2个C.1个D.0个【变式训练】1.(2021秋•昌吉市校级期末)已知抛物线y=ax2+bx+c(a=0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是()A.a>0B.b<0C.c<0D.a+b+c>02.(2022春•成都月考)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是直线x=﹣1,且过点(﹣3,0),下列说法不正确的是()A.abc<0B.2a﹣b=0C.3a+c=0D.若(﹣5,y1),(3,y2)是抛物线上两点,y1>y23.(2022•东港区校级二模)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣1,则下列结论:①abc>0,②a+b<﹣c,③4a﹣2b+c>0,④3b+2c<0,⑤a﹣b>m(am+b)(其中m为任意实数).中正确的个数是()A.2个B.3个C.4个D.5个考点五、二次函数的点的坐标特征例5(2022秋•宁波月考)已知点(﹣1,y1),(﹣2,y2),(﹣4,y3)在二次函数y=﹣2x2﹣8x+c的图象上,则y1,y2,y3的大小关系是()A.y1<y3<y2B.y3<y2<y1C.y3<y1<y2D.y2<y3<y1【变式训练】1.(2022春•九龙坡区校级月考)已知A(﹣,y1),B(,y2),C(﹣,y3)是二次函数y=﹣x2+4x ﹣k的图象上的三点,则y1,y2,y3的大小关系是()A.y1=y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y22.(2022秋•范县期中)设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=a(x+1)2+k(a>0)上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y23.(2022秋•林州市校级月考)在函数y=x2﹣2x+a(a为常数)的图象上有三个点(﹣1,y1),(﹣2,y2),(1,y3),则函数值y1,y2,y3的大小关系为()A.y3<y1<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y34.(2022秋•闽清县校级月考)已知抛物线y=x2﹣1与y轴交于点A,与直线y=kx(k为任意实数)相交于B,C两点,则下列结论中,不正确的是()A.存在实数k,使得△ABC为等腰三角形B.存在实数k,使得△ABC的内角中有两个角为45°C.存在实数k,使得△ABC为直角三角形D.存在实数k,使得△ABC为等边三角形考点六、二次函数与几何变换例6(2022秋•拱墅区校级期中)抛物线y=x2﹣4x+3可以由抛物线y=x2平移得到,则下列平移方法正确的是()A.先向左平移2个单位,再向上平移7个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移2个单位,再向上平移7个单位D.先向右平移2个单位,再向下平移1个单位【变式训练】1.(2022•珙县模拟)抛物线y=x2+4x﹣1的顶点坐标向上平移一个单位后,再向右平移一个单位后的坐标为()A.(4,﹣1)B.(2,﹣1)C.(﹣1,﹣4)D.(1,﹣4)2.(2022秋•庐阳区校级期中)将抛物线y=x2先向右平移4个单位,再向下平移3个单位,所得抛物线表达式为()A.y=(x﹣4)2﹣3B.y=(x﹣4)2+3C.y=(x+4)2+3D.y=(x+4)2﹣33.(2022秋•林州市月考)在平面直角坐标系中,抛物线y=(x+5)(x﹣3)经过变换后得到抛物线y=(x+3)(x﹣5),则这个变换可以是()A.向左平移2个单位长度B.向右平移2个单位长度C.向左平移8个单位长度D.向右平移8个单位长度4.(2022秋•林州市校级月考)将抛物线y=(x+1)2的图象位于直线y=4以上的部分向下翻折,得到如图图象,若直线y=x+m与此图象只有四个交点,则m的取值范围是()A.B.C.D.考点七、二次函数的最值例7(2022秋•萧山区月考)已知非负数a,b,c,满足a﹣b=2且c+3a=9,设y=a2+b+c的最大值为m,最小值为n,则m﹣n的值是()A.1B.2C.3D.4【变式训练】1.(2022秋•宁明县月考)二次函数y=﹣(x+2)2﹣5的最大值是()A.5B.﹣5C.2D.﹣22.(2022秋•思明区校级期中)已知二次函数的图象(0≤x≤3)如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是()A.函数有最小值1,有最大值3B.函数有最小值﹣1,有最大值0C.函数有最小值﹣1,有最大值3D.函数有最小值﹣1,无最大值3.(2022秋•番禺区校级期中)二次函数y=﹣x2﹣2x+c2﹣2c在﹣3≤x≤2的范围内有最小值为﹣5,则c的值()A.3或﹣1B.﹣1C.﹣3或1D.3考点八、二次函数与坐标轴交点例8(2022秋•舟山期中)在研究函数图象的性质时,若将自变量x变为|x|,则函数图象变化为:保留y轴右侧的图象,y轴左侧的图象变为右侧图象关于y轴的对称图形.已知抛物线y=﹣x2+2x+3的图象,则对于y=﹣x2+2|x|+3,当y>0时,x的取值范围是()A.﹣1<x<3B.﹣1<x<1C.﹣3<x<3D.x<﹣1或x>3【变式训练】1.(2022秋•庐阳区校级期中)抛物线y=x2+x+c与x轴只有一个公共点,则c的值为()A.﹣B.﹣4C.D.42.(2022•海陵区校级三模)如图,已知二次函数y=ax2+bx+c的图象与x轴交于(﹣3,0),顶点是(﹣1,m),则以下结论:①若y≥c,则x≤﹣2或x≥0;②b+c=m.其中正确的是()A.①B.②C.都对D.都不对3.(2022秋•庐阳区校级期中)已知二次函数y=﹣x2+bx+c的图像与x轴的两个交点分别是(﹣n,0)和(n+2,0),且抛物线还经过点(2,y1)和(﹣2,y2),则下列关于y1,y2的大小关系判断正确的是()A.y1=y2B.y1>y2C.y1<y2D.y1与y2的大小无法比较考点九、二次函数与方程不等式例9(2022秋•桐庐县期中)若二次函数y=ax2+bx+c的图象如图所示,则不等式a(x﹣2)2+b(x﹣2)+c <0的解集为()A.x<1或x>3B.x>3C.x<﹣1D.x<3或x>5【变式训练】1.(2022秋•朝阳区校级期中)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,有下列4个结论:①abc>0;②b2﹣4ac>0;③关于x的方程ax2+bx+c=0的两个根是x1=﹣2,x2=3;④关于x的不等式ax2+bx+c>0的解集是x>﹣2.其中正确的结论有()个.A.1B.2C.3D.42.(2022•罗庄区二模)如图,已知抛物线y=x2+bx+c与直线y=x交于(1,1)和(3,3)两点,有以下结论:①b2﹣4c>0;②3b+c+6=0;③当1<x<3时,x2+(b﹣1)x+c<0;④当x>2时,x2+bx+c>.其中正确的个数是()A.1B.2C.3D.43.(2021秋•微山县期末)如图,二次函数y=x2﹣2x﹣3的图象与一次函数y=x+b的图象相交于点A,B.若点A的坐标是.那么不等式x2﹣2x﹣3<x+b的解集是()A.B.或C.﹣1<x<3D.x<﹣1或x>34.(2021秋•梁山县期末)如图是抛物线图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1;其中正确的是()A.①②③B.①③④C.②④⑤D.①③⑤考点十、待定系数法求二次函数解析式例10(2022秋•温州校级月考)如图,抛物线的顶点坐标为(1,﹣4),且图象经过点(3,0).(1)求抛物线的表达式;(2)若在y轴正半轴上取一点P(0,m),过点P作x轴的平行线,分别交抛物线于A,B两点(A在B 点左侧),若P A:PB=1:2,求m的值.【变式训练】1.(2022秋•林州市月考)如图,已知直线y=﹣2x+m与抛物线相交于A,B两点,且点A(1,4)为抛物线的顶点,点B在x轴上.(1)求m的值;(2)求抛物线的解析式.2.(2022秋•朝阳区校级月考)已知抛物线y=x2+bx+c经过A(﹣1,0)、B(6,0)两点.(1)请求出抛物线的解析式;(2)当0<x<4时,请直接写出y的取值范围.3.(2022秋•宁明县月考)已知抛物线经过点(3,﹣1),顶点坐标为(2,﹣2).(1)求抛物线对应的函数表达式;(2)若点P(t,y1),(t+3,y2)都在抛物线上,且y1=y2,求P,Q两点的坐标.4.(2022秋•西城区校级月考)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…﹣101 2.53…y=ax2+bx+c…m1﹣2n﹣2…根据以上列表,回答下列问题:(1)直接写出c的值和该二次函数图象的对称轴;(2)求此二次函数的解析式;(3)在(2)条件下,求当﹣1≤x≤3.8时,函数值y的取值范围.考点十一、二次函数的推理计算与证明例11(2022秋•西湖区月考)设二次函数y=(x+1)(ax+2a+2)(a是常数,a≠0).(1)若a=1,求该函数图象的顶点坐标.(2)若该二次函数图象经过(﹣1,1),(﹣2,3),(0,﹣2)三个点中的一个点,求该二次函数的表达式.(3)若二次函数图象经过(x1,y1),(x2,y2)两点,当x1+x2=2,x1<x2时,y1>y2,求证:a<﹣.【变式训练】1.(2022•永嘉县模拟)已知二次函数y=2x2﹣bx+c的图象经过A(1,n),B(3,n).(1)用含n的代数式表示c.(2)若二次函数y=2x2﹣bx+c的最小值为,求n的值.2.(2022•绍兴)已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.3.(2021•河西区一模)已知函数y=x2+bx+c(b,c为常数)的图象经过点(﹣2,4).(Ⅰ)当b=2时,求抛物线的顶点坐标;(Ⅱ)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式;(Ⅲ)若该函数的图象不经过第三象限,当﹣3≤x≤4时,函数的最大值与最小值之差为40,求b的值.。
2020届新高考数学二轮微专题突破专题14 运用函数的图像研零点问题(原卷版)
专题14 运用函数的图像研零点问题一、题型选讲题型一: 运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。
作图与根分布综合的题目,其中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要注意渐近线的细节,从而保证图像的准确。
例1、(2019苏州三市、苏北四市二调)定义在R 上的奇函数f (x )满足f (x +4)=f (x ),且在区间[2,4)上题型二: 运用函数图像研究复合函数零点个数复合函数零点问题的特点:考虑关于x 的方程()0g f x =⎡⎤⎣⎦根的个数,在解此类问题时,要分为两层来分析,第一层是解关于()f x 的方程,观察有几个()f x 的值使得等式成立;第二层是结合着第一层()f x 的值求出每一个()f x 被几个x 对应,将x 的个数汇总后即为()0g f x =⎡⎤⎣⎦的根的个数题型三 运用函数图像研究与零点有关的参数问题三类问题之间的联系:即函数的零点⇔方程的根⇔函数图象的交点,运用方程可进行等式的变形进而构造函数进行数形结合,解决这类问题要选择合适的函数,以便于作图,便于求出参数的取值范围为原题型四、运用函数图像研究与零点有关的复合函数的参数问题求解复合函数()y g f x =⎡⎤⎣⎦零点问题的技巧:(1)此类问题与函数图象结合较为紧密,在处理问题的开始要作出()(),f x g x 的图像(2)若已知零点个数求参数的范围,则先估计关于()f x 的方程()0g f x =⎡⎤⎣⎦中()f x 解的个数,再根据个数与()f x 的图像特点,分配每个函数值()i f x 被几个x 所对应,从而确定()i f x 的取值范围,进而决定参数的范围例6、(2018南京、盐城、连云港二模)已知函数f(x)=⎩⎪⎨⎪⎧-x 3+3x 2+t ,x <0,x ,x ≥0,t ∈R .若函数g (x )=f (f (x )-1)恰有4个不同的零点,则t 的取值范围为________.2、(2017南京、盐城二模)若函数f (x )=x 2-m cos x +m 2+3m -8有唯一零点,则满足条件的实数m 组成的集合为________.3、(2017南通、扬州、泰州、淮安三调)已知函数3()3 .x x a f x x x x a ⎧=⎨-<⎩≥,,,若函数()2()g x f x ax =-恰有2个不同的零点,则实数a 的取值范围是 .4、(2017苏北四市期末)已知函数f (x )=⎩⎪⎨⎪⎧sin x ,x <1,x 3-9x 2+25x +a ,x ≥1,)若函数f (x )的图像与直线y =x 有三个不同的公共点,则实数a 的取值集合为________..。
高中数学函数的零点与图像的关系分析与讲解
高中数学函数的零点与图像的关系分析与讲解数学函数是高中数学中的重要概念,它在解决实际问题和理论推导中起着关键作用。
而函数的零点与图像的关系更是数学学习中的重要内容之一。
本文将通过具体的题目举例,分析函数的零点与图像的关系,帮助高中学生更好地理解和掌握这一知识点。
一、函数的零点是什么?函数的零点,又称为方程的根或解,是使函数取值为零的自变量的值。
对于一元函数f(x),如果存在一个实数a,使得f(a)=0,那么a就是函数f(x)的零点。
我们可以通过求解方程f(x)=0来确定函数的零点。
例如,考虑函数f(x)=x^2-4x+3,我们可以将其转化为方程x^2-4x+3=0。
通过因式分解或配方法,我们可以得到方程的解x=1和x=3。
因此,函数f(x)的零点是x=1和x=3。
二、函数的零点与图像的关系函数的零点与图像的关系密切相关,通过分析函数的零点,我们可以得到函数图像的一些特征。
1. 零点与函数图像的交点函数的零点是使函数取值为零的自变量的值,也就是函数图像与x轴的交点。
对于上述函数f(x)=x^2-4x+3,我们可以通过绘制函数图像来观察零点与图像的关系。
通过绘制函数图像,我们可以发现函数f(x)的图像与x轴交于点(1,0)和(3,0),即函数的零点x=1和x=3与图像的交点重合。
这说明函数的零点就是函数图像与x轴的交点。
2. 零点与函数图像的对称性函数的零点与函数图像还存在着一种对称性关系。
对于任意函数f(x),如果x=a是函数的零点,那么x=a关于y轴对称的点(-a,0)也是函数的零点。
例如,考虑函数f(x)=x^3-8x,我们可以通过解方程f(x)=0来确定函数的零点。
解方程x^3-8x=0后,我们可以得到x=0和x=-2的解。
通过绘制函数图像,我们可以发现函数的零点x=0和x=-2关于y轴对称,即函数图像关于y轴对称。
三、函数零点的应用举例函数的零点在实际问题中有着广泛的应用,下面通过具体的例题来说明函数零点的应用。
高考数学-函数零点问题及例题解析
1函数零点问题及例题解析一、函数与方程基本知识点1、函数零点:(变号零点与不变号零点)(1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。
(2)方程0)(=x f 有实根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点。
若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(<b f a f 是()f x 在区间(),a b 内有零点的充分不必要条件。
2、二分法:二分法:对于在区间对于在区间[,]a b 上连续不断且()()0f a f b ⋅<的函数()y f x =,通过不断地把函数()y f x =的零点所在的区间一分为二的零点所在的区间一分为二,,使区间的两个端点逐步逼近零点使区间的两个端点逐步逼近零点,,进而得到零点的近似值的方法叫做二分法值的方法叫做二分法; ;二、函数与方程解题技巧零点是经常考察的重点,对此部分的做题方法总结如下:零点是经常考察的重点,对此部分的做题方法总结如下:(一)函数零点的存在性定理指出:“如果函数)(x f y =在区间在区间[a,b][a,b][a,b]上的图象是连续不断的一上的图象是连续不断的一条曲线,并且0)()(<b f a f ,那么,函数)(x f y =在区间(在区间(a,b a,b a,b)内有零点,即存在)内有零点,即存在),(b a c ∈,使得0)(=c f ,这个c 也是方程0)(=x f 的根”。
根据函数零点的存在性定理判断函数在某个区间上是否有零点间上是否有零点(或方程在某个区间上是否有根)(或方程在某个区间上是否有根)(或方程在某个区间上是否有根)时,时,一定要注意该定理是函数存在零点的充分不必要条件:如分不必要条件:如例、函数x x x f 2)1ln()(-+=的零点所在的大致区间是(的零点所在的大致区间是() (A )(0,1); (B )(1,2); (C ) (2,e ); (D )(3,4)。
专题14 分类讨论证明或求函数的单调区间(含参)(解析版)
专题14 分类讨论证明或求函数的单调区间(含参)1.设函数21()sin cos 2f x x x x ax =+-. (1)当12a =时,讨论()f x 在(,)ππ-内的单调性; (2)当13a >时,证明:()f x 有且仅有两个零点.【答案】(1)在,03π⎛-⎫ ⎪⎝⎭或,3ππ⎛⎫ ⎪⎝⎭上单调递减,在,3ππ⎛⎫-- ⎪⎝⎭或0,3π⎛⎫ ⎪⎝⎭上单调递增;(2)证明见解析.【分析】(1)先求导,根据导数和函数的单调性,结合三角函数的性质即可求出单调区间;(2)先判断出函数为偶函数,则问题转化为()f x 在(0,)+∞有且只有一个零点,再利用导数和函数单调性的关系,以及函数零点存在定理即可求出. 【详解】 (1)当12a =时,21()sin cos 4f x x x x x =+-, 11()sin cos sin (cos )22f x x x x x x x x ∴'=+--=-,令()0f x '=,解得0x =或3x π=,3x π=-,当()0f x '<时,解得03x π-<<或3x ππ<<,当()0f x '>时,解得3x ππ-<<-或03x π<<,()f x ∴在(3π-,0)或(3π,)π上单调递减,在(,)3ππ--或(0,)3π上单调递增;(2)()f x 的定义域为(,)-∞+∞,2211()()sin()cos()()sin cos ()22f x x x x a x x x x ax f x -=--+-+-=+-=,()f x ∴为偶函数,(0)10f =>,()f x ∴有且仅有两个零点等价于()f x 在(0,)+∞有且只有一个零点,()(cos )f x x x a '=-,当1a 时,cos 0x a -,()0f x '恒成立,()f x ∴在(0,)+∞上单调递减,2211()sin cos 1022f a a ππππππ=+-=--<,(0)?()0f f π∴<,()f x ∴在(0,)+∞上有且只有一个零点,当113a <<时,令()(cos )0f x x x a '=-=,即cos x a =, 可知存在唯一(0,)2πθ∈,使得cos a θ=,当(0,)x θ∈或(22,22)x k k ππθππθ∈+-++时,k ∈N ,()0f x '>,函数()f x 单调递增, 当(2,22)x k k πθππθ∈++-时,k ∈N ,()0f x '<,函数()f x 单调递减,由tan θ=113a <<,可得0tan θ<<当k ∈N ,22tan 2(k ππθθπ++->-,2221113(22tan )10(22)[(22tan )1][(22tan )1]022626k f k a k k a ππθθππθππθθππθθ++--∴++=-++--+<-++--+=-<,()f x ∴在(0,)+∞上有且只有一个零点,综上所述,当13a >时,()f x 有且仅有两个零点. 【点睛】方法点睛:1、利用导数研究函数的单调性的关键在于准确判定导数的符号,当f (x )含参数时,需依据参数取值对不等式解集的影响进行分类讨论;若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.2、用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决. 2.已知函数2()2ln 2(1)f x mx x m x =-+-. (1)讨论函数()f x 的单调区间;(2)当1x ≠时,求证:2286ln 3521x x x x x x---<-. 【答案】(1)答案见解析;(2)证明见解析. 【分析】(1)先求导,分为0m ≥,1m =-,1m <-和10m -<<四种情形进行分类讨论,根据导数和函数单调性的关系即可求出;(2)等价于3226(1ln )23501x x x x x -+--<-,令()()3261ln 235h x x x x x =-+--,利用当2m =时的结论,根据导数判断()h x 与0的关系,即可证明. 【详解】解:()f x 的定义域为(0,)+∞,则22(1)1(1)(1)()22(1)22mx m x mx x f x mx m x x x+--+-'=-+-=⋅=⋅, 当0m 时,10mx +>,当(0,1)x ∈时,()0f x '<,当(1,)x ∈+∞时,()0f x '>,∴函数()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞,当0m <时,令()0f x '=,解得1x =或1x m=-, 当1m =-时,2(1)()2?0x f x x-'=-恒成立,∴函数()f x 的单调递减区间为(0,)+∞,无单调递增区间,当1m <-时,101m<-<, 当1(0,)x m ∈-或(1,)+∞时,()0f x '<,当1(x m∈-,1)时,()0f x '>, ∴函数()f x 的单调递减区间为1(0,)m -或(1,)+∞,单调递增区间为1(m-,1),当10m -<<,11m ->,当(0,1)x ∈或1(m -,)+∞时,()0f x '<,当1(1,)x m∈-时,()0f x '>,∴函数()f x 的单调递减区间为(0,1)或1(m -,)+∞,单调递增区间为1(1,)m.综上所述:当0m 时,函数()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞,当1m =-时,函数()f x 的单调递减区间为(0,)+∞,无单调递增区间,当1m <-时,函数()f x 的单调递减区间为1(0,)m -,(1,)+∞,单调递增区间为1(m-,1), 当10m -<<时,函数()f x 的单调递减区间为(0,1)或1(m -,)+∞,单调递增区间为1(1,)m.(2) 证明:要证2286ln 3521x x x x x x---<-,即证3226(1ln )23501x x x x x -+--<-, 令32()6(1ln )235h x x x x x =-+--,则22()66ln 6663(22ln 2)h x x x x x x x '=--+-=--, 由(1),当2m =时,2()22ln 2f x x x x =--,可得()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞, 即()h x '的单调递减区间为(0,1),单调递增区间为(1,)+∞,()h x h ∴''(1)0=, ()h x ∴在(0,)+∞上单调递增,h (1)6(1ln1)2350=-+--=,∴当01x <<时,()0h x <,210x ->,当1x >时,()0h x >,210x -<,∴3226(1)23501x lnx x x x-+--<-, 即22863521x xlnx x x x ---<-.【点睛】含有参数的函数单调性讨论常见的形式: (1)对二次项系数的符号进行讨论; (2)导函数是否有零点进行讨论; (3)导函数中零点的大小进行讨论;(4)导函数的零点与定义域端点值的关系进行讨论等. 3.已知函数()()1ln f x ax x a R =--∈. (1)若1a =,求()f x 在区间1,e e ⎡⎤⎢⎥⎣⎦上的极值;(2)讨论函数()f x 的单调性.【答案】(1)极小值为0,无极大值;(2)答案见解析. 【分析】(1)当1a =时,求得()1x f x x-=,利用导数分析函数()f x 的单调性,由此可求得函数()f x 在区间1,e e ⎡⎤⎢⎥⎣⎦上的极值; (2)求得()()10ax f x x x-'=>,分0a ≤和0a >两种情况讨论,分析导数的符号变化,由此可得出函数()f x 的单调递增区间和递减区间.【详解】(1)当1a =时,()1ln f x x x =--,所以,1110x fx x x x,列表; 所以,()f x 在区间1,e e ⎡⎤⎢⎥⎣⎦上的有极小值()10f =,无极大值; (2)函数()f x 的定义域为()0,∞+,()11ax f x a x x-'=-=. 当0a ≤时,10ax ,从而()0f x '<,故函数()f x 在()0,∞+上单调递减;当0a >时,若10x a<<,则10ax ,从而()0f x '<; 若1x a>,则10ax ->,从而()0f x '>. 故函数()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.综上所述,当0a ≤时,函数()f x 的单调递减区间为()0,∞+,无单调递增区间; 当0a >时,函数()f x 的单调递减区间为10,a ⎛⎫ ⎪⎝⎭,单调递增区间为1,a ⎛⎫+∞ ⎪⎝⎭.【点睛】方法点睛:讨论含参数函数的单调性,通常以下几个方面:(1)求导后看函数的最高次项系数是否为0,需分类讨论;(2)若最高次项系数不为0,且最高次项为一次,一般为一次函数,求出导数方程的根; (3)对导数方程的根是否在定义域内进行分类讨论,结合导数的符号变化可得出函数的单调性. 4.已知函数()21()xm x xf x e++=.(1)试讨论()f x 的单调性;(2)若0m ≤,证明:()ln ef x x x +≤. 【答案】(1)答案不唯一见解析;(2)证明见解析. 【分析】(1)对函数进行求导得(1)(1)()xx mx m f x e--'+=-,再对m 分三种情况讨论,即0m =,0m >,0m <三种情况;(2)要证明()ln ef x x x +≤,只需证明 ()ln ef x x x ≤-,而ln 1x x -≥,因此只需证明1()f x e≤,再利用函数的单调性,即可得证; 【详解】解析:(1)因为(1)(1)()xx mx m f x e--'+=-, ①当0m =时,1()x x f x e-=-',当1x >时,()0f x '<,当1x <时,()0f x '>,所以()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减;①当0m >时,1(1)11(),11x m x x m f x e m'⎛⎫--+ ⎪⎝⎭=--<, 当11,1x m ⎛⎫∈-⎪⎝⎭时,()0f x '>,当1,1(1,)x m ⎛⎫∈-∞-⋃+∞ ⎪⎝⎭时,()0f x '<,所以()f x 在11,1m ⎛⎫- ⎪⎝⎭单调递增,在1,1,(1,)m ⎛⎫-∞-+∞ ⎪⎝⎭单调递减;①当0m <时,111m ->,当11,1x m ⎛⎫∈- ⎪⎝⎭时,()0f x '<,当1(,1)1,x m ⎛⎫∈-∞⋃-+∞ ⎪⎝⎭时,()0f x '>,所以()f x 在11,1m ⎛⎫-⎪⎝⎭单调递减,在1(,1),1,m ⎛⎫-∞-+∞ ⎪⎝⎭单调递增. (2)要证明()ln ef x x x +≤,只需证明 ()ln ef x x x ≤-, 而ln 1x x -≥,因此只需证明1()f x e≤,当0m =时,()x xf x e =,由(1)知()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减,所以max1()(1)f x f e==; 当0m <时,()211()xx m x xx f x e e e++=<≤,故()ln ef x x x +≤. 【点睛】利用导数研究含参函数的单调区间,要注意先求导后,再解导数不等式. 5.已知函数()e x f x ax =,a 为非零常数. (1)求()f x 单调递减区间;(2)讨论方程()()21f x x =+的根的个数.【答案】(1)当0a >时,()f x 的单调递减区间为(,1)-∞-,当0a <时,()f x 的单调递减区间为(1,)-+∞;(2)当0a >时,原方程有且仅有一个解;当0a <时,原方程有两个解. 【分析】(1)求导,对a 分类讨论,利用()0f x '<可解得结果;(2)转化为函数2(1)()exx g x x +=与y a =的图象的交点的个数,利用导数可求得结果. 【详解】(1)()(1)e x x xf x ae axe a x '=+=+,由()0f x '=得1x =-,①若0a >时,由()0f x '<得1x <-,所以()f x 的单调递减区间为(,1)-∞-;①若0a <时,由()0f x '<得1x >-,所以()f x 的单调递减区间为(1,)-+∞.综上所述,当0a >时,()f x 的单调递减区间为(,1)-∞-;当0a <时,()f x 的单调递减区间为(1,)-+∞.(2)因为方程2()(1)f x x =+等价于2(1)e x x a x +=,令2(1)()exx g x x +=, 所以方程()()21f x x =+的根的个数等于函数2(1)()exx g x x +=与y a=的图象的交点的个数, 因为()2222(1)12(1)(1)()()()ex x x x x x x x xe x e xe g x xe x +++-++=-'=, 由()0g x '=,得1x =-,当(,1)x ∈-∞-,时,()0g x '>,()g x 在(,1)-∞-上单调递增; 当()()1,00,x ∈-+∞时,()0g x '<,所以()g x 在()1,0-,()0,∞+上单调递减,又()10g -=,所以当(,1)x ∈-∞-时,()(),0g x ∈-∞; 当()1,0x ∈-时,()(),0g x ∈-∞; 当()0,x ∈+∞时,()()0,g x ∈+∞.所以,当0a >时,原方程有且仅有一个解; 当0a <时,原方程有两个解. 【点睛】方法点睛:讨论函数零点(或方程根)的个数的常用的方法:(1)直接法:直接求解方程得到方程的根,可得方程根的个数;(2)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解 6.已知函数()21ln 2f x ax x x b =-⋅+,()()g x f x '=. (1)判断函数()y g x =的单调性;(3)证明:1233ln 2341n n n ⎛⎫++++>-⎪+⎝⎭【答案】(1)答案见解析;(2)存在,2a e =;(3)证明见解析. 【分析】(1)先求()()g x f x '=,再对()y g x =求导,对参数a 进行讨论确定导数的正负,即得函数单调性; (2)对参数a 进行讨论确定()y g x =导数的正负,即得函数()y g x =单调性,再根据单调性确定最值等于2,解得符合条件的参数值即得结果;(3)先构造函数11()ln 31,,132h x x x x ⎡⎫=-+∈⎪⎢⎣⎭,证明其小于零,即得1,12x ⎡⎫∈⎪⎢⎣⎭时13ln 13x x >+,再将1nx n =+代入求和即证结论. 【详解】 解:(1)由()21ln 2f x ax x x b =-⋅+,知()()ln 1g x f x ax x '==--,0x >,故()11ax g x a x x-'=-=,0x >.当0a ≤时,()0g x '<,即()g x 在()0,∞+为减函数, 当0a >时,在10,a ⎛⎫ ⎪⎝⎭上()0g x '<,所以()g x 在10,a ⎛⎫⎪⎝⎭为减函数,在1,a ⎛⎫+∞⎪⎝⎭上()0g x '>,所以()g x 在1,a ⎛⎫+∞ ⎪⎝⎭增函数. (2)当0a ≤时,()g x 在(]0,e 为减函数,所以()()min 11g x g e ea ==-≤-.故不存在最小值3. 当10a e <≤时,1e a≥,()g x 在(]0,e 为减函数,所以()()min 1ln 2g x g e ea e ==--=,所以4a e=,不合题意,舍去 当1a e >时10e a <<,在10,a ⎛⎫ ⎪⎝⎭上()0g x '<,函数()g x 单调递减;在1,e a ⎡⎤⎢⎥⎣⎦上()0g x '>,函数()g x 单调递增,由此()min 1111ln 2g x g a a ⎛⎫==--=⎪⎝⎭,所以ln 2a =.解得2a e = 故2a e =时,使函数()g x 的最小值为2. (3)构造函数11()ln 31,,132h x x x x ⎡⎫=-+∈⎪⎢⎣⎭,则119()3033x h x x x -'=-=>, 故1()ln 313h x x x =-+在1,12x ⎡⎫∈⎪⎢⎣⎭上递减,111111()ln 31ln 20232232h x h ⎛⎫≤=-⨯+=--< ⎪⎝⎭,故1ln 3103x x -+<, 即1,12x ⎡⎫∈⎪⎢⎣⎭时13ln 13x x >+,而11,1,1112n n N x n n *⎡⎫∈==-∈⎪⎢++⎣⎭,故13ln 1311n n n n >++⋅+,即[]ln(13ln 131)1n n n n ->++⋅+,将n *∈N 依次代入并相加得 []()1ln1ln 12313ln 2ln 3...ln(1)ln 1231ln 4323n n n n n n n ⎛⎫++++>-+-++-+-+ ⎭+⎪+⎝=,即12332341n n n ⎛⎫++++>- ⎪+⎝⎭【点睛】本题解题关键在于观察证明式12332341n n n ⎛⎫++++>-⎪+⎝⎭11()ln 31,,132h x x x x ⎡⎫=-+∈⎪⎢⎣⎭,以证明13ln 13x x >+,将1n x n =+代入求和即突破难点.用导数解决与正整数n 有关的不等式证明问题,属于难点,突破点就在于观察构造合适的函数,通过导数证明不等式,再将关于n 的式子代入即可. 7.已知函数()()21ln ,2f x ax x x b a b R =-⋅+∈,()()g x f x '=. (1)判断函数()y g x =的单调性;【答案】(1)答案见解析;(2)存在,2a e =. 【分析】(1)先求()()g x f x '=,再对()y g x =求导,对参数a 进行讨论确定导数的正负,即得函数单调性; (2)对参数a 进行讨论确定()y g x =导数的正负,即得函数()y g x =单调性,再根据单调性确定最值等于2,解得符合条件的参数值即得结果; 【详解】 (1)由()21ln 2f x ax x x b =-⋅+,知()()ln 1g x f x ax x '==--,0x >,故 ()11ax g x a x x-'=-=. 当0a ≤时,()0g x '<,即()g x 在()0,∞+为减函数, 当0a >时,在10,a ⎛⎫ ⎪⎝⎭上()0g x '<,所以()g x 在10,a ⎛⎫⎪⎝⎭为减函数,在1,a ⎛⎫+∞⎪⎝⎭上()0g x '>,所以()g x 在1,a ⎛⎫+∞ ⎪⎝⎭增函数. (2)当0a ≤时,()g x 在(]0,e 为减函数,所以()()min 11g x g e ea ==-≤-.故不存在最小值3. 当10a e <≤时,1e a≥,()g x 在(]0,e 为减函数,所以 ()()min1ln 2g x g e ea e ==--=,所以4a e=,不合题意,舍去.当1a e >时,10e a <<,在10,a ⎛⎫ ⎪⎝⎭上()0g x '<,函数()g x 单调递减;在1,e a ⎡⎤⎢⎥⎣⎦上()0g x '>,函数()g x 单调递增,由此()min 1111ln 2g x g a a ⎛⎫==--= ⎪⎝⎭, 所以ln 2a =.解得2a e =,故2a e =时,使函数()g x 的最小值为2. 【点睛】利用导数研究函数()f x 的单调性和最值的步骤:①写定义域,对函数()f x 求导()'f x ;①在定义域内,讨论不等式何时()0f x '>和()0f x '<①对应得到增区间和减区间及极值点,进而比较端点和极值点的值确定指定区间的最值即可.8.已知函数()()()ln 1f x x ax a =+-∈R . (1)讨论函数()f x 的单调性.(2)若()()2112g x x x a f x =--+-,设()1212,x x x x <是函数()g x 的两个极值点,若32a ≥,求证:()()12152ln 28x g x g -≥-. 【答案】(1)答案见解析;(2)证明见解析. 【分析】(1)先求得()f x 的定义域和导函数()'fx ,对a 分成0a ≤和0a >两种情况进行分类讨论,由此求得()f x 的单调区间.(2)求得()g x 的表达式,求得()'g x ,利用根与系数关系得到12,x x 的关系式以及1x 的取值范围,将()()12g x g x -表示为只含1x 的形式,利用构造函数法求得()()12g x g x -的最小值,从而证得不等式成立. 【详解】(1)由题意得,函数()f x 的定义域为(1,)-+∞,()11f x a x '=-+. 当0a ≤时,()101f x a x '=->+, ∴函数()f x 在(1,)-+∞上单调递增.当0a >时,令()0f x '=,得11x a=-+.若11,1x a ⎛⎫∈--+ ⎪⎝⎭,则()0f x '>,此时函数()f x 单调递增;若11,x a ⎛⎫∈-++∞ ⎪⎝⎭,则()0f x '<,此时函数()f x 单调递减.综上,当0a ≤时,函数()f x 在(1,)-+∞上单调递增;当0a >时,函数()f x 在11,1a ⎛⎫--+ ⎪⎝⎭上单调递增,在11,a ⎛⎫-++∞ ⎪⎝⎭上单调递减.(2)()()21ln 12g x x x a x =+-+,0x >,()()11g x x a x '∴=+-+()211x a x x-++=.由()0g x '=得()2110x a x -++=,()240321a a ∆=+⇒-≥>121x x a ∴+=+,121=x x ,211x x ∴=. 32a ≥,512a +≥,12x x < 111115210x x x x ⎧+≥⎪⎪∴⎨⎪<<⎪⎩,解得1102x <≤.()()12x g x g ∴-()()()221121221ln12x x x a x x x =+--+-21121112ln 2x x x ⎛⎫=-- ⎪⎝⎭. 设()221112ln 022x h x x x x ⎛⎫⎛⎫=--<≤ ⎪⎪⎝⎭⎝⎭, 则()()22331210x h x x x x x-'=--=-<, ∴函数()h x 在10,2⎛⎤⎥⎝⎦上单调递减.∴当112x =时,()min 1152ln 228h x h ⎛⎫==- ⎪⎝⎭.32a ∴≥时,()()12152ln 28x g x g -≥-成立.【点睛】求解含有参数的函数的单调性题,求导后要根据导函数的形式进行分类讨论. 9.已知函数()2xf x e ae x =-.(1)讨论()f x 的单调区间;(2)当0a <时,证明:()2ln f x e x >.【答案】(1)当0a ≤时,()f x 的增区间为(),-∞+∞,无减区间;当0a >时,()f x 的减区间为(),2ln a -∞+,增区间()2ln ,a ++∞,(2)证明见解析 【分析】(1)先求出函数的定义域,再求导数,分0a ≤和0a >,分别由导数大于零和小于零,可求得函数的单调区间;(2)要证明22ln x ae x e x e ->,只要证2ln 0x e e x ->,构造函数()2ln xg x e e x =-,然后利用导数求出此函数的最小值即可,或要证明22ln xae x e x e ->,只要证22ln x e x xe x ae ->,构造函数()()20x g x ae x x e =->,然后用导数求其最小值,构造函数()()2ln 0x h x e x x=>,然后利用导数求其最大值,或要证明22ln x ae x e x e ->.由于当0a <时,20ae x <,只要证2ln 0x e e x ->,构造函数()()()222222ln ln x x g x e e x e x e x e e e e x =-=-++--,令()()220x h x e e x e x =-+>,()222ln m x e x e e x =--,再利用导数求其最小值即可【详解】(1)解:()f x 的定义域为(),-∞+∞,()2x f x e ae '=-.当0a ≤时,0f x ,则()f x 的增区间为(),-∞+∞,无减区间. 当0a >时,由0fx,得2ln x a =+.当(),2ln x a ∈-∞+时,0fx;当()2ln ,x a ∈++∞时,0fx,所以()f x 的减区间为(),2ln a -∞+,增区间()2ln ,a ++∞. (2)证明:法一:要证明22ln x ae x e x e ->. 由于当0a <时,20ae x <,只要证2ln 0x e e x ->.设()2ln xg x e e x =-,则()2xg x e e x '=-,()220xg x e xe ''=+>,所以()g x '在0,上是增函数.又()210g e e '=-<,()2222022e g ee '=-=>,所以存在()01,2x ∈,使得()02000x g e x e x '=-=,即020x e e x =,00ln 2x x =-. 所以当()00,x x ∈时,0g x;当()0,x x ∈+∞时,0g x,因此()g x 在()00,x 上是减函数,在()0,x +∞上是增函数, 所以()g x 有极小值,且极小值为()()022222222000000ln 22220x g x e e x e x e x e e e x e x e =-=--=+->-=. 因此()0gx >,即2ln 0x e x -->.综上,当0a <时,()2ln f x e x >.法二:要证明22ln xae x e x e ->,只要证22ln x e x xe x ae ->. 设()()20x g x ae x x e =->,则()()21x x e g x x-'=. 当01x <<时,0g x;当1x >时,0g x ,所以()g x 在0,1上是减函数,在1,上是增函数,所以1x =是()g x 的极小值点,也是最小值点,且()()2min 1g x g e ae ==-.令()()2ln 0xh x e x x =>,则()()221ln x h x xe -'=. 当0x e <<时,()0h x '>;当e x >时,()0h x '<, 所以()h x 在()0,e 上是增函数,在(),e +∞上是减函数,所以x e =是()h x 的极大值点,也是最大值点,且()()max h x h e e ==,所以当0a <时,()()2g x e ae e h x ≥->≥,即22ln x e x xe x ae ->. 综上,当0a <时,()2ln f x e x >.法三:要证明22ln x ae x e x e ->.由于当0a <时,20ae x <,只要证2ln 0x e e x ->. 设()()()222222ln ln xxg x e e x e x ex ee e e x =-=-++--,令()()220xh x e e x ex =-+>,则()2x h x e e '=-,当02x <<时,()0h x '<;当2x >时,()0h x '>, 所以()h x 在()0,2上是减函数,在2,上是增函数,所以2x =是()h x 的极小值点,也是()h x 的最小值点,即()()min 20h x h ==.设()222ln m x e x e e x =--,则()()2221x e m x e x xe -'=-=. 当01x <<时,()0m x '<;当2x >时,()0m x '>, 所以()m x 在0,1上是减函数,在1,上是增函数,所以1x =是()m x 的极小值点,也是()m x 的最小值点,即()()min 10m x m ==. 综上,()0h x ≥(当且仅当2x =时取等号),()0m x ≥(当且仅当1x =时取等号), 所以()()()0g x h x m x =+>,故当0a <时,()2ln f x e x >.【点睛】关键点点睛:此题考查导数的应用,考查利用导数证明不等式,解题的关键是将不等式等价转化,然后构造函数,利用导数求函数的最值,考查数学转化思想,属于较难题 10.已知函数2()ln f x x ax x =-+. (1)试讨论函数()f x 的单调性;(2)对任意0a <,满足2()ln f x x ax x =-+的图象与直线y kx =恒有且仅有一个公共点,求k 的取值范围.【答案】(1)当0a ≤时,在(0,)+∞单调递增;当0a >时,在⎛ ⎝⎭单调递增,在⎫+∞⎪⎪⎝⎭单调递减;(2)1k ≤或3221k e -+≥. 【分析】(1)首先求函数的导数2121'()21(0)ax x f x ax x x x-++=-+=>,分0a ≤和0a >两千情况讨论导数的正负,确定函数的单调性;(2)由方程()f x kx =,转化为2ln x ax xk x -+=,构造函数()2ln x ax x h x x-+=,利用二阶导数判断函数的单调性,并分情况讨论()h x '最小值的正负,并结合零点存在性定理,确定函数的性质,根据2ln x ax xk x-+=有唯一解,确定k 的取值范围.【详解】(1)2121'()21(0)ax x f x ax x x x-++=-+=>当0a ≤时,恒有'()0f x >,所以()f x 在(0,)+∞单调递增; 当0a >时,令2210ax x -++=,则180a ∆=+>,则10x => ,20x =<(舍去),当x ∈时,'()0f x >,()f x在单调递增;当)x ∈+∞时,'()0f x <,()f x在)+∞单调递减.综上所述,当0a ≤时,()f x 在(0,)+∞单调递增;当0a >时,()f x在单调递增,()f x在)+∞单调递减.(2)原命题等价于对任意0a <,2ln x ax x kx -+= 有且仅有一解, 即2ln x ax xk x-+=;令ln ()1x h x ax x=-+ 则21ln '()x h x a x -=-,332(ln )2''()x h x x -=,令''()0h x =得32x e = 所以)'(h x 在32(0,)e 上递减,在32(,)e +∞上递增,3232min331ln 1'()'()2e h x h e a a e e-==-=-- 当312a e ≤-时,'()0h x ≥,所以()h x 在R 上单调递增, 又当0x →时,ln ,0xax x→-∞-→,所以()h x →-∞; 当x →+∞时,ln ,xax x→+∞-→+∞,所以()h x →+∞. 所以()h x 在R 上必存在唯一零点,此时k ∈R ; 当3102a e -<<时,32min'()'()0h x h e =<,同时又当0x →时,21ln ,x a x -→+∞-→+∞, 所以'()h x →+∞;当x →+∞时,21ln 0,xa x-→-→+∞,所以'()h x →+∞.所以方程'()0h x =存在两根12,x x ,即2211221ln 1ln 0x ax x ax --=--= 且332212(0,),(,)x e x e ∈∈+∞,所以()h x 在1(0,)x 上单调递增,12(,)x x 上单调递减,在2(,)x +∞上单调递增, 所以()h x 的极大值为1()h x ,极小值为2()h x要使有方程2ln x ax xk x-+=唯一解,必有1()k h x >或2()k h x <,又2222222222ln ln 1ln 2ln 1()111x x x x h x ax x x x x --=-+=-+=+, 又322(,)x e ∈+∞ ,则2ln 1()1x x xϕ-=+,232ln '()0x x x ϕ-=<,所以()ϕx 在32(,)e +∞递减, 且x →+∞时,2ln 1()11x x xϕ-=+→,所以1k ≤; 同理1112ln 1()1x h x x -=+,321(0,)x e ∈,2ln 1()1x x x ϕ-=+在32(0,)e 递增, 3322322()()121x e eeϕϕ-<=+=+,所以3221k e -+≥.综上可得,1k ≤或3221k e -+≥. 【点睛】思路点睛:本题是一道利用导数研究函数性质,零点的综合应用题型,属于难题,一般利用导数研究函数零点或方程的实数根时,需根据题意构造函数()f x ,利用导数研究函数在该区间上的单调性,极值,端点值等性质,以及零点存在性定理等研究函数的零点.11.设函数223223()3,()33,22a a f x x x ax g x ax x a ⎛⎫=-+=-++-∈ ⎪⎝⎭R . (1)求函数()f x 的单调区间; (2)若函数[]()23()()()0,222a x f x g x x x ϕ=--∈在0x =处取得最大值,求a 的取值范围. 【答案】(1)当3a ≥时,()f x 的单调递增区间为(,)-∞+∞,无单调递减区间;当3a <时,()f x的单调递增区间为,1⎛-∞ ⎝⎭和1⎛⎫+∞ ⎪ ⎪⎝⎭,单调递减区间为1⎛-+ ⎝⎭;(2)6,5⎛⎤-∞ ⎥⎝⎦.【分析】(1)先对()f x 求导,对导函数分3a ≥和3a <两种情况讨论即可.(2)因为函数()x ϕ在0x =处取得最大值,所以[]23223133(0)()(1)3,0,22222a x ax a x x a x ϕϕ==+--+∈,利用分离参数法转化为不等式恒成立问题,求函数的最值即可. 【详解】解:(1)()22()36313f x x x a x a '=-+=-+-, 当3a ≥时,()0f x '≥,所以()f x 的单调递增区间为(,)-∞+∞,无单调递减区间;当3a <时,令()0f x '>,得1x <-或1x >+所以()f x 的单调递增区间为,1⎛-∞ ⎝⎭和1⎛⎫++∞ ⎪ ⎪⎝⎭令()0f x '<,得11x <<,所以()f x 的单调递减区间为1⎛+ ⎝⎭. 综上,当3a ≥时,()f x 的单调递增区间为(,)-∞+∞,无单调递减区间;当3a <时,()f x 的单调递增区间为,1⎛-∞ ⎝⎭和1⎛⎫+∞ ⎪ ⎪⎝⎭,单调递减区间为1⎛-+ ⎝⎭. (2)由题意得[]322133()(1)3,0,2222x ax a x x a x ϕ=+--+∈.因为函数()x ϕ在0x =处取得最大值,所以[]23223133(0)()(1)3,0,22222a x ax a x x a x ϕϕ==+--+∈,即[]3213(1)30,0,222ax a x x x +--∈, 当0x =时,显然成立. 当(]0,2x ∈时,得()21313022ax a x +--≤,即()()()()()22323232322221+2x x ax xx x x x ++==++-+-+--. 令(]22,4t x =+∈,则2()1,(2,4]th t t t =--∈, ()2210h t t '=+>恒成立,所以 2()1,(2,4]t h t t t =--∈是增函数,5()0,2h t ⎛⎤∈ ⎥⎝⎦,所以3625(2)12x x +--+,即65a ,所以a 的取值范围为6,5⎛⎤-∞ ⎥⎝⎦.【点睛】思路点睛:对含参数的函数求单调区间,根据导函数分类讨论是解决这类题的一般方法;已知函数的最大值求参数的取值范围,往往转化为不等式恒成立问题,如果能分离参数的话,分离参数是解决这类题的常用方法,然后再求函数的最值即可.12.已知函数()()()21ln 1f x x a x x =-+-+(0a >). (1)讨论函数()f x 的单调性; (2)若关于x 的不等式()1ln x xf x x x-'≥在()1+∞,上恒成立,求实数a 的取值范围. 【答案】(1)答案不唯一,见解析;(2)02a <≤. 【分析】(1)求出函数的导数,通过讨论a 的范围,判断函数的单调性即可; (2原不等式化为:ln 2x a x x ≤-在()1+∞,上恒成立,设()ln 2xh x x x=-,()1,x ∈+∞,求出函数的导数,再令()221ln g x x x =-+,根据函数的单调性求出a 的范围即可. 【详解】(1)()()()1121121x f x x a x a x x -⎛⎫⎛⎫'=-+-=-+⎪ ⎪⎝⎭⎝⎭()()()()12121a x x a x x x x---=--=,()0,x ∈+∞, 令()0f x '=,则2ax =或1x =,当02a <<时,函数()f x 在区间0,2a ⎛⎫ ⎪⎝⎭和()1,+∞上单调递增,在区间,12a ⎛⎫⎪⎝⎭上单调递减, 当2a =时,函数()f x 在()0+∞,上单调递增, 当2a >时,函数()f x 在区间()0,1和,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,在区间1,2a ⎛⎫ ⎪⎝⎭上单调递减; (2)原不等式化为:ln 2xa x x≤-在()1+∞,上恒成立, 设()ln 2xh x x x=-,()1,x ∈+∞, ()2221ln 21ln 2x x x h x x x--+'=-=,令()221ln g x x x =-+,则()140g x x x '=+>, 所以()g x 在()1+∞,上单调递增,()()110g x g >=>,所以()0h x '>, 则函数()h x 在()1+∞,上单调递增,且()12h =,02a ∴<≤. 【点睛】方法点睛:本题考查利用导数研究单调性(含参),考查利用导数研究恒成立问题,解决第(2)问的关键是将原不等式转化为ln 2xa x x≤-在()1+∞,上恒成立,进而利用导数研究函数的单调性,从而得解,考查逻辑思维能力和运算求解能力,考查转化和划归思想,属于常考题. 13.已知函数()ln 2a g x x x x=++. (1)讨论()g x 的单调性;(2)当10a e <<时,函数()()222a f x xg x x x ⎛⎫=-+- ⎪⎝⎭在其定义域内有两个不同的极值点,记作1x 、2x ,且11x x <,若m 1≥,证明:112mm x x e +⋅>.【答案】(1)答案见解析;(2)证明见解析. 【分析】(1)求出函数()g x 的定义域,求得()222x x a g x x+-'=,对实数a 的取值进行分类讨论,分析导数的符号变化,由此可得出函数()g x 的单调递增区间和递减区间;(2)利用分析法得出所证不等式等价于()()()121212121ln0m x x x x x x x mx +-<>>+,令()120,1x t x =∈,构造函数()()()11ln m t ht t t m+-=-+,其中()0,1t ∈,利用导数证明出()0h t <对任意的()0,1t ∈恒成立,由此可证得原不等式成立. 【详解】(1)函数()ln 2ag x x x x=++的定义域为()0,∞+, ()()222122a x x ag x a R x x x+-'=+-=∈, 方程220x x a +-=的判别式18a ∆=+.①当18a ≤-时,0∆≤,()0g x '≥,()g x 在()0,∞+为增函数; ①当18a >-时,0∆>,方程220x x a +-=的两根为114x --'=,214x -'=, (i )当108a -<≤时,120x x ''<≤,对任意的0x >,()0g x '>,()g x 在()0,∞+为增函数; (ii )当0a >时,120x x ''<<,令()0g x '<,可得20x x '<<,令()0g x '>,可得2x x '>. 所以,()g x在1,4⎛⎫+∞ ⎝⎪⎪⎭为增函数,在10,4⎛⎤⎥ ⎝⎦为减函数. 综上所述:当0a ≤时,()g x 的增区间为()0,∞+,无减区间;当0a >时,()g x的增区间为1,4⎛⎫+∞ ⎝⎪⎪⎭,减区间10,4⎛⎤⎥ ⎝⎦; (2)证明:()()2ln 2a f x x x x x a a R =--+∈,所以()ln f x x ax '=-, 因为()f x 有两极值点1x 、2x ,所以11ln x ax =,22ln x ax =, 欲证112mm x x e +⋅>等价于要证:()112ln ln mm x x e +⋅>,即121ln ln m x m x +<+,所以()1212121ln ln m x m x ax max a x mx +<+=+=+,因为m 1≥,120x x <<,所以原不等式等价于要证明121ma x mx +>+.又11ln x ax =,22ln x ax =,作差得()1122lnx a x x x =-,1212ln x x a x x ∴=-, 所以原不等式等价于要证明()()112211212212ln11ln x m x x x x m x x x mx x x mx +-+>⇔<-++, 令12x t x =,()0,1t ∈,上式等价于要证()()11ln m t t t m+-<+,()0,1t ∈,令()()()11ln m t ht t t m+-=-+,所以()()()()221t t m h t t t m --'=+, 当m 1≥时,20t m -<,则()0h t '>,所以()h t 在()0,1上单调递增,因此()()10h t h <=,()()11ln m t t t m+-∴<+在()0,1t ∈上恒成立,所以原不等式成立.【点睛】利用导数研究函数的单调性,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键. 14.已知实数0a >,函数()22ln f x a x x x=++,()0,10x ∈. (1)讨论函数()f x 的单调性;(2)若1x =是函数()f x 的极值点,曲线()y f x =在点()()11,P x f x 、()()22,Q x f x (12x x <)处的切线分别为1l 、2l ,且1l 、2l 在y 轴上的截距分别为1b 、2b .若12//l l ,求12b b -的取值范围.【答案】(1)答案见解析;(2)6ln 4,05⎛⎫- ⎪⎝⎭. 【分析】(1)对函数求导,按照110a ≥、1010a<<分类,求得()0f x '<、()0f x '>的解集即可得解; (2)由极值点的性质可得1a =,由导数的几何意义可得1b 、2b 及()12122x x x x =+,转化条件为1211212221ln 1x x x b b x x x ⎛⎫- ⎪⎝⎭-=++,构造新函数结合导数即可得解. 【详解】(1)由题意,()()()()222212010ax ax a f x a x x x x+-'=-++=<<, 0a >,010x <<,①20ax +>,①当110a ≥,即10,10a ⎛⎤∈ ⎥⎝⎦时,()0f x '<,()f x ∴在()0,10上单调递减; ①当1010a <<,即1,10a ⎛⎫∈+∞ ⎪⎝⎭时, 当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<;当1,10x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>, ()f x ∴在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,10a ⎛⎫⎪⎝⎭上单调递增.综上所述:当10,10a ⎛⎤∈ ⎥⎝⎦时,()f x 在()0,10上单调递减;当1,10a ⎛⎫∈+∞⎪⎝⎭时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,10a ⎛⎫ ⎪⎝⎭上单调递增;(2)①1x =是()f x 的极值点,①()10f '=,即()()210a a +-=, 解得1a =或2a =-(舍), 此时()2ln f x x x x =++,()2211f x x x'=-++, 1l ∴方程为()1112111221ln 1y x x x x x x x ⎛⎫⎛⎫-++=-++-⎪ ⎪⎝⎭⎝⎭, 令0x =,得1114ln 1b x x =+-, 同理可得2224ln 1b x x =+-,12//l l ,221122212111x x x x ∴-++=-++,整理得:()12122x x x x =+,12122x x x ∴=-, 又12010x x <<<,则1112102x x x <<-,解得1542x <<,()1212211111211221222221244ln ln ln 1x x x x x x x x xb b x x x x x x x x x ⎛⎫- ⎪--⎝⎭∴-=+=+=+++,令12x t x =,则1111211,1224x x t x x -⎛⎫=⋅=-∈ ⎪⎝⎭, 设()()211ln ,,114t g t t t t -⎛⎫=+∈ ⎪+⎝⎭,则()()()()222141011t g t t t t t -'=-+=>++, ()g t ∴在1,14⎛⎫⎪⎝⎭上单调递增,又()10g =,16ln 445g ⎛⎫=-⎪⎝⎭,()6ln 4,05g t ⎛⎫∴∈- ⎪⎝⎭, 即12b b -的取值范围为6ln 4,05⎛⎫- ⎪⎝⎭. 【点睛】关键点点点睛:解决本题的关键是利用导数的几何意义转化条件,再构造新函数,结合导数即可得解. 15.已知函数32()23(1)6()f x x m x mx x R =+++∈. (1)讨论函数()f x 的单调性;(2)若(1)5f =,函数2()()(ln 1)0f x g x a x x=+-≤在(1,)+∞上恒成立,求证:2a e <. 【答案】(1)答案不唯一,见解析(2)证明见解析 【分析】(1)求导后分解因式,分类讨论即可得到函数的单调性; (2)由题意求出0m =,转化为23ln 1x a x +≤+在(1,)x ∈+∞上恒成立,利用导数求出23()(1)ln 1x h x x x +=>+的最小值,即可求解.【详解】 (1)()()()'22661661fx x m x m x m x m ⎡⎤=+++=+++⎣⎦6(1)()x x m =++若1m =时,()0f x '≥,()f x 在R 上单调递增;若1m 时,1m -<-,当x m <-或1x >-时,()0f x '>,()f x 为增函数, 当1m x -<<-时,()0f x '<,()f x 为减函数,若1m <时,1m ->-,当1x <-或x m >-时,()0f x '>,()f x 为增函数, 当1x m -<<-时,()0f x '<,()f x 为减函数. 综上,1m =时,()f x 在R 上单调递增;当1m 时,()f x 在(,)-∞-m 和(1,)-+∞上单调递增,在(,1)m --上单调递减; 当1m <时,()f x 在(,1)-∞-和(,)m -+∞上单调递增,在(1,)m --上单调递减. (2)由(1)23(1)65f m m =+++=,解得 0m =, 所以32()23f x x x =+,由(1,)x ∈+∞时,ln 10x +>,可知()(ln 1)230g x a x x =+--≤在(1,)+∞上恒成立可化为23ln 1x a x +≤+在(1,)x ∈+∞上恒成立,设23()(1)ln 1x h x x x +=>+, 则22132(ln 1)(23)2ln ()(ln 1)(ln 1)x x x x x h x x x +-+⨯-'==++, 设3()2ln (1)x x x x ϕ=->,则 223()0x x xϕ'=+>,所以()ϕx 在(1,)+∞上单调递增, 又3ln163(2)2ln 2022ϕ-=-=<,3()20e eϕ=-> 所以方程()0h x '=有且只有一个实根0x ,且 00032,2ln .x e x x <<=所以在0(1,)x 上,()0h x '<, ()h x 单调递减,在0(,)x +∞上,()0,()h x h x '>单调递增,所以函数()h x 的最小值为0000002323()223ln 112x x h x x e x x ++===<++, 从而022.a x e ≤< 【点睛】关键点点睛:解答本题的难点在于得到232ln ()(ln 1)x x h x x -'=+后,不能求出()h x '的零点,需要根据()h x '的单调性及零点存在定理得到0x 的大致范围,再利用0x 的范围及0032ln x x =证明不等式. 16.设()1,,54m h x x x x ⎡⎤=+∈⎢⎥⎣⎦,其中m 是不等于零的常数, (1)写出()4h x 的定义域; (2)求()h x 的单调递增区间;【答案】(1)15,164⎡⎤⎢⎥⎣⎦;(2)答案见解析. 【分析】(1)由已知得出1454x ⎡⎤∈⎢⎥⎣⎦,,解出x 可得()4h x 的定义域; (2)对函数()h x 求导,按0m <,1016m <≤,12516m <<和25m ≥四种情况,分别求出函数的单调递增区间即可. 【详解】(1)①1454x ⎡⎤∈⎢⎥⎣⎦,,①15164x ⎡⎤∈⎢⎥⎣⎦, ①()4h x 的定义域为15164⎡⎤⎢⎥⎣⎦, (2)()21m h x x '=-0m <时,()0h x '>恒成立,()h x 在154⎡⎤⎢⎥⎣⎦,递增;0m >时,令()0h x '>,解得x >x <(,-∞,)+∞14≤即1016m <≤时,()h x 在154⎡⎤⎢⎥⎣⎦,递增当154<<即12516m <<时,()h x 在⎤⎦递增5即25m ≥时,()h x 在154⎡⎤⎢⎥⎣⎦,无递增区间 综上可得:0m <时,()h x 在154⎡⎤⎢⎥⎣⎦,递增; 1016m <≤时,()h x 在154⎡⎤⎢⎥⎣⎦,递增; 12516m <<时,()h x 在⎤⎦递增 【点睛】关键点点睛:本题考查函数的定义域,考查导数研究函数的单调性,解决本题的关键是令()0h x '>求出函数的单调增区间,讨论定义域的区间端点和单调区间的关系,考查了学生分类讨论思想和计算能力,属于中档题. 17.已知1,12k ⎛⎤∈⎥⎝⎦,函数2()(1)x f x x e kx =--.( 2.71828e =为自然对数的底数).(1)求函数()f x 的单调区间; (2)求函数()f x 在[0,]k 上的最大值.【答案】(1)单调增区间为(ln 2,),(0)k +∞-∞,,单调减区间为(0,ln 2)k ;(2)3(1)k k e k --.【分析】(1)由题得()(2)xf x x e k '=-,再利用导数求函数的单调区间得解;(2)证明0(2)ln k k <<,列出表格得出单调区间,比较区间端点与极值即可得到最大值. 【详解】(1)由题得()(1)2(2)xxxf x e x e kx x e k '=+--=-,令0()0,20x x f x e k >⎧'>∴⎨->⎩或020x x e k <⎧⎨-<⎩,因为1,12k ⎛⎤∈⎥⎝⎦,所以122k <≤, 所以不等式组的解为ln 2x k >或0x <,所以函数()f x 的单调增区间为(ln 2,),(0)k +∞-∞,; 令0()0,20x x f x e k >⎧'<∴⎨-<⎩或020x x e k <⎧⎨->⎩,解之得0ln 2x k <<,所以函数()f x 的单调减区间为(0,ln 2)k ;所以函数()f x 的单调增区间为(ln 2,),(0)k +∞-∞,,单调减区间为(0,ln 2)k . (2)令()(2)k k ln k ϕ=-,1(2k ∈,1],11()10k k k kϕ-'=-=所以()k ϕ在1(2,1]上是减函数,ϕ∴(1)1()()2k ϕϕ<,112()2ln k k ϕ∴-<<. 即0(2)ln k k <<所以()'f x ,()f x 随x 的变化情况如下表:(0)1f =-,()(0)f k f -3(1)(0)k k e k f =--- 3(1)1k k e k =--+ 3(1)(1)k k e k =--- 2(1)(1)(1)k k e k k k =---++ 2(1)[(1)]k k e k k =--++。
专题14 利用导数研究函数零点问题(解析版)
专题14利用导数研究函数零点问题一.函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y k =)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像;第三步:结合图像判断零点或根据零点分析参数.二.利用导数确定函数零点的常用方法(1)图象法:根据题目要求画出函数的图象,标明函数极(最)值的位置,借助数形结合的思想分析问题(画草图时注意有时候需使用极限).(2)利用函数零点存在定理:先用该定理判定函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值的符号,进而判断函数在该区间上零点的个数.三.利用函数的零点求参数范围的方法(1)分离参数(()a g x =)后,将原问题转化为()y g x =的值域(最值)问题或转化为直线y a =与()y g x =的图象的交点个数问题(优选分离、次选分类)求解;(2)利用函数零点存在定理构建不等式求解;(3)转化为两个熟悉的函数图象的位置关系问题,从而构建不等式求解.专项突破一判断函数零点的个数一、单选题1.函数()23322f x x x =-+-所有零点的个数为()A .1B .2C .3D .4【解析】由题可知,2x ≠±,且233()()()22f x x f x x -=--+=--,故函数()f x 为定义域上的偶函数,且(0)0f =,当0x >,且2x ≠时,233()22f x x x =-+-,23()2(2)f x x x '=---当02x <<时,()0f x '<,函数()f x 单调递减,且(0)0f =,故函数()f x 在区间(0,2)上无零点,当2x >时,()0f x '<,函数()f x 单调递减,当2x →时,()f x →+∞,当x →-∞时,()f x →-∞,故函数()f x 在区间(2,)+∞上必存在一点0x ,使得0()0f x =,所以函数()f x 在区间(2,)+∞上有1个零点,又函数()f x 为定义域上的偶函数,则函数()f x 在区间(,2)-∞-上有1个零点,又(0)0f =,所以函数()f x 共有3个零点.故选:C.2.已知函数()31ln 01203x x x f x x x +>⎧⎪=⎨+≤⎪⎩,则函数()()1g x f x x =--的零点个数为()A .1B .0C .3D .2【解析】当0x >时,1ln 10x x x +--=,得ln 1x =,即e x =,成立,当0x ≤时,312103x x +--=,得31103x x -+=,设()3113g x x x =-+,()0x ≤,()()()21110g x x x x '=-=+-=,得1x =-或1x =(舍),当(),1x ∈-∞-时,()0g x ¢>,函数()g x 单调递增,当()1,0x ∈-时,()0g x ¢<,函数()g x 单调递减,所以1x =-时,函数取得最大值,()5103g -=>,()010g =>,()350g -=-<,根据零点存在性定理可知,()3,1x ∈--,存在1个零点,综上可知,函数有2个零点.故选:D3.函数()e ln 1xf x x x x =---的零点个数为()A .0B .1C .2D .3【解析】()()()()()1e 1111e e 1e 11e x xxx x x x x f x x x x x x x x+-+⎛⎫'=+--=+-+-= ⎪⎝⎭,令()e 1x h x x =-,,()0x ∈+∞,则()e e 0x xh x x =+>',故h (x )在(0,)+∞上单调递增,∵()010h =-<,()1e 10h =->,∴存在唯一的()00,1x ∈,使得()0 0h x =,即00 e 10xx -=,即001e x x =,00ln x x =-,∴当00x x <<时,()00h x <,()0f x '<,()f x 单调递减,当0x x >时,()00h x >,()0f x '>,()f x 单调递增,∴()0min 000000()e ln 1011xf x f x x x x x x ==--=+---=,∴函数()e ln 1xf x x x x =---的零点个数为1.故选:B .4.已知()e,a ∈+∞,则函数()ln e x f x a x ax x =+-的零点个数为()A .0B .1C .2D .3【解析】函数()ln e x f x a x ax x =+-定义域为(0,)+∞,求导得:()(1)(e )xa f x x x'=+-,令()e xa g x x=-,0x >,显然()g x 在(0,)+∞上单调递减,而e a >,()1e 0a g a =-<,(1)e>0g a =-,则存在0(1,)x a ∈,使得0()0g x =,即00e x ax =,当00x x <<时,()0>g x ,()0f x '>,当0x x >时,()0g x <,()0f x '<,因此,()f x 在0(0,)x 上单调递增,在0(,)x +∞上单调递减,0max 000000()()ln e (ln 1)0x f x f x a x ax x a x x ==+-=+->,而11111e e e (ln 1ln 110aaaf a a a a a a a a a=+-=-+-<-+-<,则存在101(,)x x a ∈使得1()0f x =,即()f x 在0(0,)x 上存在唯一零点,又()(ln e )a f a a a a =+-,令()ln e ,e x h x x x x =+->,1()1e 0x h x x'=+-<,则()h x 在(e,)+∞上单调递减,e x ∀>,e 2()(e)1e e 1e e 0h x h <=+-<+-<,于是得()0f a <,则存在20(,)x x a ∈使得2()0f x =,即()f x 在0(,)x +∞上存在唯一零点,综上得:函数()ln e x f x a x ax x =+-的零点个数为2.故选:C 5.已知a ∈R ,则函数()()32113f x x a x x =-++零点的个数为()A .1B .2C .3D .与a 有关【解析】令()()321103f x x a x x =-++=,得()3231x a x x =++.令()3231x y x x =++,2y a =,只需看两个图像的交点的个数.()()()()()22232222223121121103311x x x x x x x x y x x x x ++-+++'=⨯=⨯>++++所以()3231x y x x =++在R 上单调递增.当x →-∞时,y →-∞;当x →+∞时,y →+∞;所以2y a =与()3231x y x x =++有且只有一个交点.故选:A6.已知()f x 为R 上的可导函数,当0x ≠时,()()0f x f x x'+>,若()()1F x f x x=+,则函数()F x 的零点个数为()A .0B .1C .2D .0或2【解析】构造函数()()1g x xf x =+,其中0x ≠,则()()()g x f x xf x ''=+,当0x ≠时,()()()()0'+'+=>f x xf x f x f x x x.当0x <时,()()()0g x f x xf x =+'<',此时,函数()g x 单调递减,则()()01g x g >=;当0x >时,()()()0g x f x xf x ''=+>,此时,函数()g x 单调递增,则()()01g x g >=.所以,当0x <时,()()()110xf x F x f x x x +=+=<;当0x >时,()()()110xf x F x f x x x+=+=>.综上所述,函数()F x 的零点个数为0.故选:A.二、填空题7.设函数()f x 满足()()3229f x f x x x +-=-,则函数()()()3g x f f x =+的零点个数为______.【解析】因为()()3229f x f x x x +-=-①,所以()()3229f x f x x x -+=--②,①×2-②,得()32339f x x x =-,即()323f x x x =-,则()()23632'=-=-f x x x x x ,当2x >,或0x <时()0f x '>,)f x 单调递增,当02x <<时()0f x '<,()f x 单调递减,所以()f x 的极小值为()24f =-,极大值为()00f =,因为()323f x x x =-的零点为0或3,所以由()()()30g x f f x =+=,得()30f x +=或()33f x +=,即()3f x =-或()0f x =,因为()f x 的极小值为()24f =-,极大值为()00f =,所以方程()3f x =-有3个不同的实数解,又()0f x =有2个不同的实数解,所以()()()3g x f f x =+的零点个数为5.8.已知函数1e ,0,()2e ln ,0,x x x f x x x x +⎧≤=⎨⎩>则函数()()1g x f x =-零点的个数为___________【解析】0x ≤时,1()(1)x f x x e +¢=+,1x <-时,()0f x '<,()f x 递减;10-<≤x 时,()0f x '>,()f x 递增;则1x =-时,()f x 取极小值也是最小值(1)1f -=-;0x >时,()2(1ln )f x e x ¢=+,10x e<<时,()0f x '<,()f x 递减;1x e >时,()0f x '>,()f x 递增;则1=x e 时,()f x 取极小值也是最小值12f e 骣琪=-琪桫,综上所述,可作出()f x 图象,在作两条直线1y =±,结合图象可知,()f x 与1y =±有4个交点.三、解答题9.已知函数()1e 1xx f x x +=--.(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)判断函数f (x )的零点的个数,并说明理由.【解析】(1)由()()()212e e 031(1)x x x f x f x f x x +''=-⇒=+⇒=--,而()02f =,所以该函数在点(0,f (0))处的切线方程为:23(0)320y x x y -=-⇒-+=;(2)函数()f x 的定义域为(,1)(1,)-∞⋃+∞,由(1)可知:()22e (1)xf x x '=+-,当(,1)x ∞∈-时,()0,()f x f x '>单调递增,因为22111(2)(0)(e )22(03e 3f f --=-⋅=-<,所以函数在(,1)x ∞∈-时有唯一零点;当(1,)x ∈+∞时,()0,()f x f x '>单调递增,因为5245(2)()(e 3)(e 9)04f f =-⋅-<,所以函数在(,1)x ∞∈-时有唯一零点,所以函数f (x )有2个零点.10.设函数()2(21)(21)ln(),f x a x a x a R =-++-∈.(1)讨论()f x 在定义域上的单调性;(2)当0a ≥时,判断()f x 在[1-,1]2-上的零点个数.【解析】(1)由题意,函数()2(21)(21)ln()f x a x a x =-++-的定义域为(,0)-∞,可得221()2a f x a x+'=+,①当0a ≤时,()0f x '<,则()f x 在(,0)-∞上是减函数;②当0a >时,22212()212()2a a x a af x a x x+++'=+=,则当221(,2a x a+∈-∞-时,()0f x '>,()f x 单调递增;当221(2a x a+∈-时,()0f x '<,()f x 单调递减,所以函数()f x 在221(,)2a a +-∞-上单调递增,在221(,0)2a a+-上单调递减;(2)①当0a =时,函数()ln()f x x =-,令ln()0x -=,解得1x =-,故()f x 在[211,]--上有一个零点;②当0a >时,因为22112()21221022a a a a-++-=>,则2121[1,](,0)22a a +--⊆-,即()f x 在[1-,1]2-上单调递减,又(1)30f a -=-<,21()2(21)202f a a ln -=--+<,所以函数()f x 在[211,]--上没有零点.11.已知函数()sin f x x ax =+,其中[]0,x π∈.(1)当12a =-时,求()f x 的极值;(2)当1a ≥时,求()f x 的零点个数.【解析】(1)当12a =-时,()1sin 2f x x x =-,[]0,x π∈,求导得()1cos 2f x x '=-,[]0,x π∈,令()0f x '=,得3x π=,当0,3x π⎡⎫∈⎪⎢⎣⎭时,()0f x '>;当,3x ππ⎛⎤∈ ⎥⎝⎦时,()0f x '<.∴()f x 在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,3ππ⎛⎤⎥⎝⎦上单调递减,∴当3x π=时,()f x 取得极大值36f ππ⎛⎫=⎪⎝⎭,无极小值;(2)()cos f x x a '=+,[]0,x π∈,当1a ≥时,∵1cos 1x -≤≤,∴()0f x '≥,∴()f x 在区间[]0,π上单调递增,∴()()00f x f ≥=,故()f x 只有一个零点0.12.已知函数()22ln f x x a x =-,()222ln 2g x x x =-+-.(1)讨论函数()f x 的单调性;(2)当1a =时,判断()()g x f x -的零点个数.【解析】(1)()22a f x x x '=-()22x a x-=,故当0a ≤时,()0f x '≥,所以函数()f x 在()0,∞+上单调递增,当0a >时,令()0f x '>,得x >所以函数()f x 在)+∞上单调递增,令()0f x '<,得x <所以函数()f x 在(上单调递减,综上,当0a ≤时,函数()f x 在()0,∞+上单调递增,当0a >时,函数()f x 在)+∞上单调递增,在(上单调递减.(2)设()()()F x g x f x =-=2ln 22ln 2x x -+-,则()21F x x'=-,令()0F x '=,解得2x =,当()0,2x ∈时,()0F x '>;当()2,x ∈+∞时,()0F x '<;故()F x 最大值为()20F =,所以()()g x f x -有且只有一个零点2.13.已知()()2e 2ln xf x x a x x =-+(1)当e a =时,求()f x 的单调性;(2)讨论()f x 的零点个数.【解析】(1)因为e a =,0x >,()()2e e 2ln xf x x x x =-+所以()()()()()2e 22e 2e e 12e 2e x xx x f x x x x x x x x x x +⎛⎫⎛⎫'=+-+=+-=+- ⎪ ⎪⎝⎭⎝⎭,()10f '=令()e e x g x x x =-,()()2e 1e 0xg x x x'=++>,所以()g x 在()0,+∞单增,且()10g =,当()0,1∈x 时()e e 0xg x x x =-<,当()1,x ∈+∞时()ee 0x g x x x=->,所以当()0,1∈x 时()0f x ¢<,当()1,x ∈+∞时()0f x ¢>,所以()f x 在()0,1单调递减,在()1,+∞单调递增(2)因为()()()2ln 2ln e e 2ln e 2ln 0x x x x f x a x x a x x +=⋅-+=-+=令2ln t x x =+,易知2ln t x x =+在()0,+∞上单调递增,且R t ∈,故()f x 的零点转化为()()2ln e2ln e 0x xt f x a x x at +=-+=-=即e t at =,R t ∈,设()e t g t at =-,则()e t g t a '=-,当0a =时,()e tg t =无零点;当0a <时,()e 0tg t a '=->,故()g t 为R 上的增函数,而()010g =>,11e 10a g a ⎛⎫=-< ⎪⎝⎭,故()g t 在R 上有且只有一个零点;当0a >时,若(),ln t a ∈-∞,则()0g t '<;()ln ,t a ∈+∞,则()0g t '>;故()()()min ln 1ln g t g a a a ==-,若e a =,则()min 0g t =,故()g t 在R 上有且只有一个零点;若0e a <<,则()min 0g t >,故()g t 在R 上无零点;若e a >,则()min 0g t <,此时ln 1a >,而()010g =>,()()22ln 2ln 2ln g a a a a a a a =-=-,设()2ln h a a a =-,e a >,则()20a h a a-'=>,故()h a 在()e,+∞上为增函数,故()()e e 20h a h >=->即()2ln 0g a >,故此时()g t 在R 上有且只有两个不同的零点;综上:当0e ≤<a 时,0个零点;当e a =或0a <时,1个零点;e a >时,2个零点;14.已知函数()[]21sin cos ,0,2f x x x x ax x π=++∈.(1)当0a =时,求()f x 的单调区间;(2)当0a >时,讨论()f x 的零点个数.【解析】(1)当0a =时,函数()[]sin cos ,0,f x x x x x π=+∈,可得()sin cos sin cos f x x x x x x x =+-='.当x 在区间[]0π,上变化时,()f x ',f (x )的变化如下表:x 00,2π⎛⎫ ⎪⎝⎭2π,2ππ⎛⎫ ⎪⎝⎭π()f x '0+0-f (x )极小值1极大值2π -1所以()f x 的单调增区间为0,2π⎛⎫ ⎪⎝⎭;()f x 的单调减区间为,2ππ⎛⎫⎪⎝⎭.(2)由题意,函数()[]21sin cos ,0,2f x x x x ax x π=++∈,可得()()cos cos f x ax x x x a x =+=+'当1a ≥时,cos 0a x +≥在[0,]π上恒成立,所以[0,]x π∈时,()0f x '≥,所以()f x 在[0,]π上单调递增.又因为()01f =,所以f (x )在[0,]π上有0个零点.当01a <<时,令()0f x '=,可得cos x a =-.由10a -<-<可知存在唯一的0,2x ππ⎛⎫∈ ⎪⎝⎭使得0cos x a =-,所以当0[0,)x x ∈时,()0f x '≥,()f x 单调递增;当()0,x x π∈时,()0f x '<,()f x 单调递减,因为()01f =,0()1f x >,()2112f a ππ=-,①当21102a π->,即221a π<<时,()f x 在[0,]π上有0个零点.②当21102a π-≤,即220a π<≤时,()f x 在[0,]π上有1个零点.综上可得,当220a π<≤时,()f x 有2个零点;当22a π>时,()f x 有0个零点.15.已知函数()()()e 12e xxaf x a x a =+---∈R (1)求函数()f x 的单调区间.(2)若(,2]a ∈-∞,求函数()f x 在区间(,2]-∞上的零点个数.【解析】(1)由题意,得()()()()e 1e e 1,e e x x xx xa a f x a x +-=---='∈R当0a ≤时,()0f x '>恒成立,所以()f x 在R 上单调递增.当0a >时,由()0f x '>,得ln x a >,由()0f x '<,得ln x a <,所以()f x 在(,ln )a -∞上单调递减,在(ln ,)a +∞上单调递增.综上所述,当0a ≤时,()f x 的单调递增区间为R ,无单调递减区间,当0a >时,()f x 的单调递减区间为(,ln )a -∞,单调递增区间为(ln ,)a +∞;(2)由(1)可知当0a ≤时,()0f x '>在(,2]-∞上恒成立,所以()f x 在(,2]-∞上单调递增.因为()()22221010,2e 2e 20e e a f a f a a ⎛⎫=-=+-=+- ⎪⎝⎭,所以由零点存在性定理知,函数f 在(,2]-∞上有1个零点,当02a <≤时,若(,ln )x a ∈-∞,则()0f x '<,若(ln ,2]x a ∈,则()0f x '>,所以()f x 在(,ln )a -∞上单调递减,在(ln ,2]a 上单调递增,可得()()()()min ln 11ln f x f a a a ==--,①当1a =时,min ()0f x =,此时()f x 在(,2]-∞上有1个零点②当01a <<时min ()0f x <,因为当x →-∞时()()22,2e 20e af x f a ∞→+=+->,所以此时()f x 在(,2]-∞上有2个零点③当12a <≤时,min ()0f x >,此时()f x 在(,2]-∞上无零点.综上,当0a ≤或1a =时,()f x 在(,2]-∞上有1个零点,当01a <<时()f x 在(,2]-∞上有2个零点,当12a <≤时()f x 在(,2]-∞上无零点.16.已知函数()()e ,xf x ax a R =-∈.(1)讨论()f x 的单调性;(2)讨论()f x 在()0,+∞上的零点个数.【解析】(1)因为()e xf x ax =-,则'()f x e x a =-,当0a ≤时,'()f x 0<,此时()f x 在R 上单调递减;当0a >时,令'()f x 0=,可得ln x a =,则当(),ln x a ∈-∞时,'()f x 0>,()f x 单调递增,当()ln ,x a ∈+∞时,'()f x 0<,()f x 单调递减.综上所述:当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在(),ln a -∞单调递增,在()ln ,a +∞上单调递减.(2)当0a ≤时,()f x 在()0,+∞上单调递减,又()01f =-,故当()0,x ∈+∞时,()1f x <-,故此时()f x 在()0,+∞无零点;当01a <≤时,ln 0a <,故()f x 在)0,+∞单调递减,同0a ≤时,此时()f x 在()0,+∞无零点;当1a >时,ln 0a >,故()f x 在()0,ln a 单调递增,在()ln ,a +∞单调递减,()()()ln ln 1f x f a a a ≤=-,若ln 10a -<,即1e a <<时,()ln 0f a <,故()f x 在()0,+∞无零点;若ln 10a -=,即e a =时,()ln 0f a =,此时()f x 在()0,+∞有一个零点ln a ;若ln 10a ->,即e a >时,()ln 0f a >,又因为()010f =-<,故()f x 在()0,ln a 上一定存在一个零点;又因为2ln ln a a >,且()2ln 0f a <,故()f x 在()ln ,2ln a a 上也一定存在一个零点;下证()2ln 0f a <:()()22ln 2ln 2ln ,e f a a a a a a a a =-=->,令2ln ,e y x x x =->,则'y 20xx-=<,即2ln y x x =-在()e,∞+单调递减,故2ln e e 2e 0y <-=-<,即2ln 0,(e)x x x -<>故()()2ln 2ln 0,e f a a a a a =-.故当e a >时,()f x 有两个零点.综上所述:当e a <时,()f x 在()0,+∞无零点;e a =时,()f x 在()0,+∞有一个零点ln a ;e a >时,()f x 有两个零点.专项突破二由函数零点个数求参数一、单选题1.若函数()2ln 2,02,0x x x f x x x a x ->⎧=⎨++≤⎩有且只有2个零点,则实数a 的取值范围为()A .01a <<B .01a <≤C .01a ≤≤D .01a ≤<【解析】根据题意,0x >时,()ln 2(0)f x x x x =->,此时()12f x x'=-()120f x x -'=>时,102x <<;()120f x x -'=<时,12x >,所以()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减0x >时,()1ln 2102max f x f ⎛⎫==--< ⎪⎝⎭,所以()f x 在()0,+∞上无零点从而0x ≤时,()f x 有2个零点,根据二次函数的性质可得()4400100a a f ∆=->⎧∴≤<⎨≥⎩,故选:D.2.若函数3()12f x x x a =-+有三个不同的零点,则实数a 的取值范围是()A .(,8)-∞-B .(,8)-∞C .[16,16]-D .(16,16)-【解析】3()12f x x x a =-+,2()3123(2)(2)f x x x x '=-=+-.令()0f x '=,解得12x =-,22x =.(,2)x ∈-∞-,()0f x '>,()f x 为增函数,(2,2)x ∈-,()0f x '<,()f x 为减函数,(2,)x ∈+∞,()0f x '>,()f x 为增函数.所以()(2)16f x f a =-=+极大值,()(2)16f x f a ==-+极小值.因为函数3()12f x x x a =-+有三个不同的零点,等价于方程()0f x =有三个不同的根.所以160160a a +>⎧⎨-+<⎩,解得1616a -<<.故选:D3.若关于x 的方程ln 0x ax -=有且只有2个零点,则a 的取值范围是()A .1(,e-∞B .1(,)e -∞C .1(0,]e D .1(0,e【解析】由ln 0x ax -=,得ln x a x=(0x >),令ln ()(0)xf x x x =>,所以关于x 的方程ln 0x ax -=有且只有2个零点,等价于函数()f x 的图像与直线y a =有两个交点,由ln ()(0)x f x x x =>,得'21ln ()(0)xf x x x -=>,当0x e <<时,'()0f x >,当x e >,'()0f x <,所以()f x 在(0,)e 上递增,在(,)e +∞上递减,所以max ln 1()()e f x f e e e===,当x e >时,()0f x >,所以当10a e<<时,函数()f x 的图像与直线y a =有两个交点,所以a 的取值范围是1(0,)e,故选:D4.若函数()ln x f x a x e a =++有两个零点,则实数a 的取值范围为()A .(,)e +∞B .(,2)e -∞-C .(,)e -∞-D .(2,)e +∞【解析】因为函数()ln xf x a x e a =++有两个零点,定义域为()0,∞+;所以方程ln 0x a x e a ++=在()0,∞+上有两不等实根,显然0a ≠即方程ln 11x x a e +-=在()0,∞+上有两不等实根,令()ln 1xx g x e +=,则直线1=-y a 与曲线()ln 1xx g x e +=在()0,∞+上有两不同交点;因为()()211ln 1ln 1x x x xe x e x x x g x e e -+--'==,令()1ln 1h x x x=--,则()2110h x x x '=--<在()0,∞+上显然恒成立,因此()1ln 1h x x x=--在()0,∞+上单调递减,又()10h =,所以当()0,1x ∈时,()0h x >,即()0g x '>,所以()ln 1xx g x e +=单调递增;当()1,x ∈+∞时,()0h x <,即()0g x '<,所以()ln 1xx g x e +=单调递减;因此()()max 11g x g e ==,又当1x e >时,()ln 10x x g x e +=>;当10x e <<时,()ln 10xx g x e +=<,所以为使直线1=-y a 与曲线()ln 1xx g x e +=在()0,∞+上有两不同交点,只需110a e<-<,解得a e <-.故选:C.5.设函数()()ln ,0e 1,0xx x f x x x >⎧=⎨+≤⎩,若函数()y f x b =-有两个零点,则实数b 的取值范围是()A .()0,1B .[)0,1C .[]0,1D .[]{}20,1e-⋃-【解析】当0x >时,函数()ln f x x =单调递增;当0x ≤时,()()e 1xf x x =+,则()()e 20x f x x ='+=时,2x =-,所以当2x <-时,()0f x '<,20x -<≤时,()0f x '>,故当0x ≤时,()f x 在(),2-∞-上单调递减,在()2,0-上单调递增,所以()f x 在2x =-处取极小值,极小值为()22e f --=-,作出函数()f x的图象如图:因为函数()y f x b =-有两个零点,所以函数()y f x =与y b =有两个交点,所以当[]{}20,1e b -∈⋃-时函数()y f x =与y b =有两个交点,所以实数b 的取值范围为[]{}20,1e -⋃-.故选:D.6.已知函数()1e xf x x a -=+-有两个零点,则实数a 的取值范围为()A .21,0e ⎛⎫- ⎪⎝⎭B .21,e ⎛⎫-+∞ ⎪⎝⎭C .()2e ,0-D .()2e ,-+∞【解析】由题意,函数()1e xf x x a -=+-的定义域为R ,令()0f x =,即1e 0x x a -+-=,即()1e xa x =+⋅,设()()1e x g x x =+⋅,可得()()()e 1e 2e x x xg x x x '=++⋅=+⋅,当2x <-时,()0g x '<,当2x >-时,()0g x '>,所以()g x 在(,2)-∞-上单调递减,在(2,)-+∞上单调递增.又()212e g -=-,作出简图,如图所示,要使得函数()1e xf x x a -=+-有两个零点,只需y a =与()()1e xg x x =+⋅的图像有两个交点,所以210e a -<<,即实数a 的取值范围是210ea -<<.故选:A.7.已知函数()2e ln x f x a x x =-有两个极值点,则实数a 的取值范围是()A .10,2e ⎛⎫ ⎪⎝⎭B .1,e 2e ⎛⎫ ⎪⎝⎭C .(,2e)-∞D .10,e ⎛⎫ ⎪⎝⎭【解析】因为函数()2e ln x f x a x =-有两个极值点,所以()()2e ln 1xf x a x '=-+有两个相异的零点,即ln 12e xx a +=有两个交点,令()()ln 1,0,ex x g x x +=∈+∞,则()()()1ln 1,0,e xx x g x x -+'=∈+∞,令()()()1ln 1,0,h x x x x =-+∈+∞,则()2110h x x x'=--<恒成立,所以()h x 在()0,x ∈+∞上递减,且()()11ln1101h =-+=,所以()0,1x ∈时,()0h x >;()1,x ∈+∞时,()0h x <;所以()0,1x ∈时,()0g x '>;()1,x ∈+∞时,()0g x '<;所以()0,1x ∈时,()g x 单调递增;()1,x ∈+∞时,()g x 单调递减;()()max ln1111e e g x g +===,又当x →+∞时,()ln 10e x x g x +=→;0x →时,()ln 1e xx g x +=→-∞;所以当ln 12e xx a +=有两个交点时,则有102a e<<,即102e a <<,所以函数()2e ln x f x a x x =-有两个极值点,则实数a 的取值范围是102ea <<,故选:A 8.已知函数()()22e (e =--x xf x x x a )有三个零点,则实数a 的取值范围是()A .(0,1e -)B .(0,2e -)C .(0,1)D .(0,e )【解析】令()()()22e e 0=--=x xf x x x a ,所以22e 0-=x x 或e 0x x a -=,令()22e =-xg x x ,则()()2e '=-x g x x ,令()2(e )=-x h x x ,则()2(1)e '=-xh x ,当(,0)x ∈-∞时,()0h x '>,h (x )在(-∞,0)上单调递增;当,()0x ∈+∞时,()0h x '<,h (x )在(0,+∞)上单调递减,所以()(0)20h x h ≤=-<,即()0g x '<,所以g (x )在R 上单调递减,又()2110g e-=->,g (0)=20-<,所以存在0(1,0)x ∈-使得()00g x =,所以方程e 0x x a -=有两个异于0x 的实数根,则xxa e =,令()x x k x e =,则()1xx e xk -=',当(,1)x ∞∈-时,()0k x '>,k (x )在(-∞,1)上单调递增;当(1,)x ∈+∞时,()0k x '<,k (x )在(1,+∞)上单调递减,且()0k x >.所以()1()1k x k e ≤=,所以()x xk x e=与y a =的部分图象大致如图所示,由图知10a e<<,故选:A .9.函数()()()1e 21xf x a x x =---有两个零点,则a 的取值范围为()A .()32e ,14,⎛⎫-∞+∞ ⎪⎝⎭U B .321,4e ⎛⎫ ⎪⎝⎭C .()320,14e ,⎛⎫⋃+∞ ⎪⎝⎭D .324e ,⎛⎫+∞ ⎪⎝⎭【解析】令()0f x =得(21)(1)e x x a x -=-,令()e (21)x g x x =-,则()e (21)x g x x '=+,∴当12x <-时,()0g x '<,当12x >-时,()0g x '>,()g x ∴在1(,)2-∞-上单调递减,在1(2-,)∞+上单调递增,作出()g x 与(1)y a x =-的函数图象如图所示:设直线(1)y a x =-与()g x 的图象相切,切点为00(,)x y ,则()()()00000001e 1e 21xx y a x y x a x ⎧=-⎪=-⎨⎪=+⎩,解得00x =,01y =-,1a =,或032x =,3202e y =,324e a =,()f x 有两个不同的零点,()g x ∴(1)a x =-的函数图象有两个交点,01a ∴<<或324e a >,即()320,14e ,a ⎛⎫∈⋃+∞ ⎪⎝⎭.故选:C .10.已知()()()212()12e 1ex x f x x a x a --=-+++恰有三个不同的零点,则实数a 的范围为()A .()0,1B .()1,1-C .()0,e D .()1,0-【解析】由()()()()21212e 1e 0x x f x x a x a --=-+++=,得()()2111e e e x x x a x x ----=-,即()()11e1e0x x x x a --⎡⎤--+=⎣⎦.令()1e x g x x -=-,则()11e x g x -'=-,令()11e 0x g x -'=-=可得1x =,当(),1x ∈-∞时,()0g x '>,当()1,+∈∞x 时,()0g x '<,∴()g x 在(),1-∞单调递增,在()1,+∞单调递减,所以()()g 10x g ≤=,即()1e 0x g x x -=-=仅有唯一的解1x =.依题意,方程()11e 0x x a --+=有两个不同的解,即1y a =+与1ex x y -=有两个不同的交点,令()1ex x h x -=,则()11e x xh x --'=,易得()h x 在(),1-∞单调递增,在()1,+∞单调速减,()()11h x h ≤=,画出()h x 的草图观察图象可得01110a a <+<⇒-<<,故选:D .二、多选题11.已知()e xf x x ax b -=--()A .若24eb >,则()0,a ∞∃∈+,使函数()y f x =有2个零点B .若24e b >,则(),0a ∃∈-∞,使函数()y f x =有2个零点C .若240e b <<,则()0,a ∞∃∈+,使函数()y f x =有2个零点D .若240e b <<,则(),0a ∃∈-∞,使函数()y f x =有2个零点【解析】令()0f x =,则e xx ax b =+,所以设()e x x g x =,则()1e x xg x ='-当1x <时,()0g x '>,()g x 单调递增;当1x >时,()0g x '<,()g x 单调递减()g x 在1x =处取得极大值()11eg =当x 趋向于-∞时,()g x 趋向于-∞;当x 趋向于+∞时,()g x 趋向于0又()2ex x g x -''=,()20g ''=且当2x <时,()0g x ''<;当2x >时,()0g x ''>所以,2x =是函数()g x 的拐点,()222e g =,()212e g '=-所以()g x 在2x =处的切线方程为()2122ey x -=--,即2214e e y x =-+如图所示,ACD 正确,B 错误,故选:ACD12.已知函数()ln f x x x a =--有两个零点1x 、2x ,则下列说法正确的是().A .1a >B .121x x >C .121x x <D .122x x +>【解析】由()0f x =可得ln a x x =-,令()ln g x x x =-,其中0x >,所以,直线y a =与曲线()y g x =的图象有两个交点,()111x g x x x-'=-=,令()0gx '=,可得1x =,列表如下:x()0,11()1,+∞()g x '-+()g x 减极小值1增作出函数y a =与()y g x =的图象如下图所示:由图可知,当1a >时,函数y a =与()y g x =的图象有两个交点,A 对;121212ln ln 2x x x xx x -+<<-,其中12x x ≠,且1x 、2x 均为正数.先证明121212ln ln 2x x x x x x -+<-,其中120x x >>,即证()1122112122212ln 1x x x x x x x x x x ⎛⎫- ⎪-⎝⎭>=++,令121x t x =>,()()21ln 1t p t t t -=-+,其中1t >,则()()()()222114011t p t t t t t -'=-=>++,所以,函数()p t 在()1,+∞上为增函数,当1t >时,()()10p t p >=,所以,当120x x >>时,121212ln ln 2x x x xx x -+<-,接下来证明:1212ln ln x x x x --120x x >>,即证12ln x x <=,令1t =>,即证12ln t t t <-,令()12ln h t t t t ⎛⎫=-- ⎪⎝⎭,其中1t >,则()222212110t t h t t t t -+'=--=-<,所以,函数()h t 在()1,+∞上为减函数,当1t >时,()()10h t h <=,所以,当120x x >>时,1212ln ln x x x x ->-由已知可得1122ln ln x x ax x a -=⎧⎨-=⎩,两式作差可得1212ln ln x x x x -=-,所以,12121ln ln x x x x -=-,1212121ln ln 2x x x xx x -+<=<-,故121x x <,122x x +>,B 错,CD 都对.故选:ACD.13.已知函数35,0()2ln ,0x x x f x x x ⎧-≤=⎨>⎩,若函数()()2g x f x x a =+-有3个零点,则实数a 可能的取值有()A .3B .2C .1D .0【解析】函数()()2g x f x x a =+-有3个零点,即方程()2f x x a +=有3个不同的实根,即函数()2y f x x =+与y a =的图象有3个不同的交点,令()()2h x f x x =+=33,02ln 2,0x x x x x x ⎧-≤⎨+>⎩,当0x ≤时,()()()233311h x x x x '=-=+-,当10x -<<时,()0h x '<,当1x <-时,()0h x '>,所以函数()h x 在(),1-∞-上递增,在()1,0-上递减,故当0x ≤时,()()max 12h x h =-=,又()00h =,当x →-∞时,()h x →-∞,当0x >时,()2ln 2h x x x =+在()0,∞+上递增,又1220e e h ⎛⎫=-+< ⎪⎝⎭,当x →+∞时,()h x →+∞,如图,作出函数()h x 的大致图像,结合图像可知,要使函数()2y f x x =+与y a =的图象有3个不同的交点,则a 的范图为02a ≤<.故选:CD.14.已知函数()()ln 1f x x x a x x =+-+在区间(1,+∞)内没有零点,则实数a 的取值可以为()A .-1B .2C .3D .4【解析】()()ln 1ln 1a f x x x a x x x x a x ⎛⎫=+-+=+-+ ⎪⎝⎭,设()ln 1a g x x a x =+-+则在1x >上,()y f x =与()y g x =有相同的零点.故函数()f x 在区间()1,+∞内没有零点,即()g x 在区间()1,+∞内没有零点,()221a x ag x x x x-'=-=,当1a ≤时,()20x ag x x -'=>在区间)1,+∞上恒成立,则()g x 在区间()1,+∞上单调递增.所以()()110g x g >=>,显然()g x 在区间()1,+∞内没有零点.当1a >时,令()0g x '>,得x a >,令()0g x '<,得1x a <<所以()g x 在区间()1,a 上单调递减增.在区间(),a +∞上单调递增.所以()()ln 2g x g a a a ≥=+-设()()ln 21h a a a a =+->,则()()11101a h a a a a-=-=<>所以()h a 在()1,+∞上单调递减,且()()3ln 310,4ln 420g g =->=-<所以存在()03,4a ∈,使得()00h a =,要使得()g x 在区间()1,+∞内没有零点,则()ln 20g a a a =+->,所以()013,4a a <<∈,综上所述,满足条件的a 的范围是()03,4a a <∈由选项可知:选项ABC 可使得()g x 在区间()1,+∞内没有零点,即满足题意.故选:ABC15.已知函数()()()1e 21xf x a x x =---在(,1)-∞上有两个不同的零点,则实数a 可能取到的值为()A .1-B .14C .12D .1【解析】令()0f x =,即()()1e 210xa x x ---=,所以()e 211x x a x -=-,因为函数()f x 在(,1)-∞上有两个不同的零点,设()()e 211x x g x x -=-,则y a =与()y g x =在(,1)-∞上有两个不同的交点,因为()()()()()()()222e 23e 21e 21e 2111x x x xx x x x x g x x x ⎡⎤--+⋅---⎣⎦'==--,令()0g x '=,则10x =,232x =,因为在(,1)-∞上,e 0x >,()210x ->,所以()g x 在(),0∞-上单调递增,在()0,1上单调递减,所以()()max 01g x g ==,且当0x <时,()0g x >;当1x →时,()g x →-∞,因为y a =与()y g x =在(,1)-∞上有两个不同的交点,所以01a <<,根据选项,符合条件的为B ,C ,故选:BC 三、填空题16.已知函数()2e e xf x x a =-有三个零点,则实数a 的取值范围是___________.【解析】由2e e 0x x a -=,得21e x a x -=.设()21e xg x x -=,则()()1e 2xg x x x -'=-.当(),0x ∈-∞时,()0g x '<,当()0,2x ∈时,()0g x '>,当()2,x ∈+∞时,()0g x '<,所以函数()g x 在区间(),0∞-上单调递减,在区间()0,2上单调递增,在区间()2,+∞上单调递减,又()()400,2eg g ==,故函数()21e xg x x -=的图象如图所示:故当40e a <<时,函数()2e e xf x a =-有三个零点,即40,e a ⎛⎫∈ ⎪⎝⎭.17.已知函数(2),1()ln(1)2,1x x x f x x x x +≤⎧=⎨--+>⎩,若函数()()g x f x a =-有四个零点,则实数a 的取值范围是______________.【解析】因为函数()()g x f x a =-有四个零点,所以方程()()0g x f x a =-=有4个不同的解,所以函数()f x 的图象与直线y a =有4个不同的交点,①当1x >时,()ln(1)2f x x x =--+,则1112()1111x xf x x x x -+-'=-==---,当12x <<时,()0f x '>,当2x >时,()0f x '<,所以()f x 在(1,2)上递增,在(2,)+∞上递减,所以当1x >时,()f x 有最大值(2)ln1220f =-+=,当1x →时,()f x →-∞,当x →+∞时,()f x →-∞②当1x ≤时,2()(2)(1)1f x x x x =+=+-,当1x =-时,()f x 有最小值1-所以()f x 的图象如图所示由图可知,当10a -<<时,函数()f x 的图象与直线y a =有4个不同的交点,所以实数a 的取值范围是(1,0)-18.已知函数()()e sin 0xf x a x x =->有两个零点,则正实数a 的取值范围为______.【解析】因为函数()()e sin 0,0xf x a x x a =->>有两个零点,所以方程()e sin 00,0xa x x a -=>>有两个根,所以()2,2Nx k k k πππ∈+∈,所以方程e sin xa x =其中()2,2N x k k k πππ∈+∈,有两个根,设e ()sin xg x x=,()2,2N x k k k πππ∈+∈,,所以2e sin cos e ()sin x xx x g x x-'=,令()0g x '=可得e sin cos e 0x x x x -=,化简可得24x k ππ=+,N k ∈,所以当22,N 4k x k k πππ<<+∈时,()0g x '<,函数()g x 单调递减,当22,N 4k x k k ππππ+<<+∈时,()0g x '>,函数()g x 单调递增,作函数()g x 的图象可得,由图象可得,当9((44g a g ππ<<时,直线y a =与函数e()sin xg x x=,()2,2N x k k k πππ∈+∈,,的图象有且仅有两个交点,944a ππ<<时,函数()()e sin 0xf x a x x =->()0a >有两个零点,故答案为:944e e )ππ.19.若函数()ln e 1xf x x ax =--+不存在零点,则实数a 的取值范围是______.【解析】因为函数()ln e 1xf x x ax =--+不存在零点,所以方程ln e 10x x ax --+=无实数根,所以方程ln e ln e xx ax -+=无实数根,即方程ln e 1x x a x-+=无实数根,故令()()'2ln e 1e e ln ,x x x x x xg x g x x x -+-+-==,令()e e ln ,0x x h x x x x =-+->,故()'1e 0xh x x x=--<恒成立,所以,()h x 在()0,∞+上单调递减,由于()10h =,所以,当()0,1x ∈时,()0h x >,即()'0g x >,当()1,x ∈+∞时,()0h x <,即()'0g x <,所以函数()g x 在()0,1x ∈上单调递增,在()1,x ∈+∞上单调递减,所以()()max 11e g x g ==-,所以,当方程ln e 1x x a x-+=无实数根时,1e a >-即可.所以,实数a 的取值范围是()1e,+-∞四、解答题20.已知函数()ln 1xf x m x =-+.(1)求()f x 的导函数;(2)若()f x 在1,12⎡⎤⎢⎥⎣⎦上有零点,求m 的取值范围.【解析】(1)因为()ln 1xf x m x =-+,所以()()()()221111l ln 1n 1x x x x x f x x x ++-'==++-(2)由(1)知()()211ln 1x x f x x +-'=+,因为1,12x ⎡⎤∈⎢⎥⎣⎦,所以ln 0x -≥,所以()()211ln 01x x f x x +-'=>+,从而()f x 在1,12⎡⎤⎢⎥⎣⎦上单调递增,所以()min 12ln 223f x f m ⎛⎫==-- ⎪⎝⎭,()()max 1f x f m ==-.因为()f x 在1,12⎡⎤⎢⎥⎣⎦上有零点,所以02ln203m m -≥⎧⎪⎨--≤⎪⎩,解得2ln 203m -≤≤.21.已知函数()ln R kf x x k k x=--∈,(1)讨论函数()f x 在区间(1,e)内的单调性;(2)若函数()f x 在区间(1,e)内无零点,求k 的取值范围.【解析】(1)()ln k f x x k k R x =--∈ ,,(1,e)x ∈,221()k x k f x x x x+'∴=--=-(Ⅰ)当1k -≤,即1k ≥-时,10x k x +≥->()0f x '∴<,()f x ∴在(1,e)单调递减(Ⅱ)当e k -≥,即e k ≤-时,e 0x k x +≤-<()0f x '∴>,()f x ∴在(1,e)单调递增(Ⅲ)当1e k <-<,即e 1k -<<时,当1x k <<-时,()0f x '>,()f x 单调递增;当e k x -<<时,()0f x '<,()f x 单调递减综上所述,(Ⅰ)当1k ≥-时,()f x 在(1,e)单调递减(Ⅱ)当e k ≤-时,()f x 在(1,e)单调递增(Ⅲ)当e 1k -<<-时,()f x 在(1,)k -单调递增,在(,e)k -单调递减(2)由(1)知:当1k ≥-时,()()10f x f <=即()0f x <,()f x ∴在(1,e)无零点,当e k ≤-时,()(1)0f x f >=即()0f x >,()f x ∴在(1,e)无零点当e 1k -<<-时,()f x 在(1,)k -单调递增,在(,e)k -单调递减()(1)0,(1,)f x f x k ∴>=∈-,()(e)1,(,e)ekf x f k x k >=--∈-∴只需(e)10e k f k =--≥即可,即1(11e k -≤-,1e11e 1ek ∴≤=--,ee 1ek ∴-<≤-综上所述,e(,][1,)1ek ∈-∞-+∞- 22.已知函数()3226185=--+f x x x x .(1)求函数()f x 的单调区间;(2)若函数()()g x f x a =+至多有两个零点,求实数a 的取值范围.【解析】(1)依题意:()()()261218631'=--=-+f x x x x x ,故当(),1x ∈-∞-时,()0f x '>,当()1,3x ∈-时,()0f x '<,当()3,x ∈+∞时,()0f x '>,∴()f x 的单调增区间为(),1-∞-,()3,+∞,单调减区间为()1,3-;(2)令()0g x =,得()a f x -=.∵()115f -=,()349=-f ,结合f (x )单调性,作出f (x )图像:。
高考常考题- 函数的零点问题(含解析)
函数的零点问题一、题型选讲题型一 、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。
作图与根分布综合的题目,其中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要注意渐近线的细节,从而保证图像的准确。
例1、(2019苏州三市、苏北四市二调)定义在R 上的奇函数f (x )满足f (x +4)=f (x ),且在区间[2,4)上⎩⎨⎧<≤-<≤-=43,432,2)(x x x x x f 则函数x x f y log 5)(-=的零点的个数为 例2、(2017苏锡常镇调研)若函数f (x )=⎩⎪⎨⎪⎧12x-1,x <1,ln xx 2,x ≥1,)则函数y =|f (x )|-18的零点个数为________.例3、【2018年高考全国Ⅲ卷理数】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________. 题型二、函数零点问题中参数的范围已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法.它的本质就是将函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便地研究问题.(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解.例4、(2020届山东省枣庄、滕州市高三上期末)已知ln ,1()(2),1x x f x f x k x ≥⎧=⎨-+<⎩若函数()1y f x =-恰有一个零点,则实数k 的取值范围是( ) A .(1,)+∞B .[1,)+∞C .(,1)-∞D .(,1]-∞例5、(2020·全国高三专题练习(文))函数()()22log ,1,1,1,x x f x f x x ≥⎧=⎨+<⎩,若方程()2f x x m =-+有且只有两个不相等的实数根,则实数m 的取值范围是 ( ) A .(),4-∞B .(],4-∞C .()2,4-D .(]2,4-例6、【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是 A .1(,)(22,)2-∞-+∞ B .1(,)(0,22)2-∞-C .(,0)(0,22)-∞ D .(,0)(22,)-∞+∞例7、【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >0例8、(2020·浙江学军中学高三3月月考)已知函数2(4),53()(2),3x x f x f x x ⎧+-≤<-=⎨-≥-⎩,若函数()()()1g x f x k x =-+有9个零点,则实数k 的取值范围是( )A .1111,,4664⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭B .1111,,3553⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭C .11,64⎛⎫⎪⎝⎭D .11,53⎛⎫ ⎪⎝⎭例9、(2020届浙江省杭州市第二中学高三3月月考)已知函数()()2,22,2,x f x f x x ≤<=-≥⎪⎩()2g x kx =+,若函数()()()F x f x g x =-在[)0,+∞上只有两个零点,则实数k 的值不可能为A .23- B .12-C .34-D .1-二、达标训练1、(2019·山东师范大学附中高三月考)函数()312xf x x ⎛⎫=- ⎪⎝⎭的零点所在区间为( ) A .()1,0-B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()1,22、【2018年高考全国Ⅰ卷理数】已知函数()e 0ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)3、(2020届浙江省“山水联盟”高三下学期开学)已知,a b ∈R ,函数(),0(),0x x a e ax x f x x x ⎧++≤=⎨>⎩,若函数()y f x ax b =--恰有3个零点,则( ) A .1,0a b >>B .1,0a b ><C .1,0a b <>D .1,0a b <<4、(2020届山东实验中学高三上期中)设定义在R 上的函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.己知存在()()()220111122x x f x x f x x ⎧⎫∈-≥---⎨⎬⎩⎭,且0x 为函数()x g x e a=-(,a R e ∈为自然对数的底数)的一个零点,则实数a 的取值可能是( ) A .12BC .2e D5、(2020届山东师范大学附中高三月考)已知函数(01)()2(1)x f x x x⎧<≤⎪=⎨>⎪⎩,若方程()f x x a =-+有三个不同的实根,则实数a 的取值范围是________.6、【2018年高考浙江】已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.7、【2020届江苏省南通市如皋市高三下学期二模】已知函数()222,01,03x x ax a x f x e ex a x x⎧++≤⎪=⎨-+>⎪⎩,若存在实数k ,使得函数()y f x k =-有6个零点,则实数a 的取值范围为__________.一、题型选讲题型一 、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。
函数与导数之零点问题(解析版)
函数与导数之零点问题一.考情分析零点问题涉及到函数与方程,但函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f (x )=0的解就是函数y =f (x )的图像与x 轴的交点的横坐标,函数y =f (x )也可以看作二元方程f (x )-y =0通过方程进行研究.就中学数学而言,函数思想在解题中的应用主要表现在两个方面:①是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:②是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性 质,达到化难为易,化繁为简的目的.许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决.函数与方程的思想是中学数学的基本思想,也是各地模考和历年高考的重点.二.经验分享1.确定函数f (x )零点个数(方程f (x )=0的实根个数)的方法:(1)判断二次函数f (x )在R 上的零点个数,一般由对应的二次方程f (x )=0的判别式Δ>0,Δ=0,Δ<0来完成;对于一些不便用判别式判断零点个数的二次函数,则要结合二次函数的图象进行判断.(2)对于一般函数零点个数的判断,不仅要用到零点存在性定理,还必须结合函数的图象和性质才能确定,如三次函数的零点个数问题.(3)若函数f (x )在[a ,b ]上的图象是连续不断的一条曲线,且是单调函数,又f (a )·f (b )<0,则y =f (x )在区间(a ,b )内有唯一零点.2.导数研究函数图象交点及零点问题利用导数来探讨函数)(x f y =的图象与函数)(x g y =的图象的交点问题,有以下几个步骤: ①构造函数)()()(x g x f x h -=; ②求导)('x h ;③研究函数)(x h 的单调性和极值(必要时要研究函数图象端点的极限情况); ④画出函数)(x h 的草图,观察与x 轴的交点情况,列不等式;⑤解不等式得解.探讨函数)(x f y =的零点个数,往往从函数的单调性和极值入手解决问题,结合零点存在性定理求解.三、题型分析(一)确定函数的零点与方程根的个数问题例1.【四川省成都七中2020届高三上半期考试,理科数学,12】函数)(x f 是定义在R 上的偶函数,周期是4,当[]2,0∈x 时,3)(2+-=x x f ,则方程0log )(2=-x x f 的根个数为( )A.3B.4C.5D.6 【答案】C【解析】)(x f 是定义在R 上的偶函数,周期是4,当[]2,0∈x 时,3)(2+-=x x f ,根据性质我们可以画出函数图像,方程0log )(2=-x x f 的根个数转化成⎩⎨⎧==x y x f y 2log )(的交点个数,有图像可以看出,一共有5个交点,ABCDE.其中我x=8处是要仔细看图,是易错点。
专题14 利用函数有零点(方程有根)求参数值(取值范围)常用的方法-学会解题必备方法技巧规律
由 得 , , 与 在原点相切时, ,
由 得 , , 与 在原点相切时, ,
所以直线 , , 与曲线 相切,
由直线 与曲线 的位置关系可得:
当 时有两个交点,即函数 恰有两个零点.
故选:C.
【点睛】本题考查函数零点个数问题,解题方法是把函数零点转化为方程的解的个数,再转化为函数图象与直线交点个数,作出函数图象与直线通过数形结合思想求解.
例3
典型例题精选与变式
典型例题
自主解析体会方法
例1【云南省文山州2021届10月质检】已知函数 (e为自然对数的底数),若 有三个零点,则实数 的取值范围为_____.
解:设 ,
当 时, , 单调减,
当 时, , 单调增,
所以当 时, ;
又当 时, ;而令 , 综上: .
故答案为:
【方法】直接法
例2【河南省豫南九校2021届高三11月联考】已知函数 ,若函数 有零点,则实数a的取值范围是()
A. 或 B.
C.1D.
【答案】D
【解析】
【分析】令 ,易知 是 的一个零点.
只需讨论 的情况:分为b=0和b≠0分类讨论.
在b≠0时,根据判别式讨论根的情况即可.
【详解】令 ,即 或 .
显然 是 的一个零点.
下面讨论 的根的情况:
(1)b=0时, .不符合题意.
(2)b≠0时,
①若 时,有 或 ,此时 没有实数根,符合题意;
A. B.
C. D.(0,1)
解:
在定义域上单调增,∴ ,∴ ,
∵ 在 处切线为 ,即 ,又 故 与 没有公共点
∴ 与 有且仅有一个公共点且为
图像法完美解决“分段函数”零点问题
图像法完美解决“分段函数”零点问题在解决“分段函数”零点问题时,传统的代数法往往需要我们手动计算不同段落的交点,非常的繁琐。
另一种解决问题的方法是使用图像法,通过画出函数图像来直观地找到函数零点。
本文将会介绍图像法如何完美解决“分段函数”零点问题。
什么是“分段函数”?在数学中,分段函数是一个在不同区间内具有不同表达式的函数。
例如,下面的函数就是一个分段函数:$$ f(x)= \\begin{cases} x, &x \\leq 0 \\\\ -x, &x > 0 \\\\ \\end{cases} $$从这个函数的定义中,我们可以看到当$x \\leq 0$时,函数的值是x;当x>0时,函数的值是−x。
这种在不同区间内使用不同表达式的函数被称为分段函数。
对于分段函数求解零点的问题,常规的代数法很难适用。
然而,通过绘制函数图像,我们可以很容易地找到函数的零点。
图像法求解分段函数的零点图像法的基本原则是根据函数图像的形状寻找函数的零点。
因此,可以将绘制分段函数的图像作为解决其零点问题的方法。
下面,我们以一个具体的例子来说明如何使用图像法解决分段函数的零点问题。
例子:求解函数$f(x) = \\begin{cases} -x+1, & x<1 \\\\ x^2-3x+2, & x \\geq 1\\end{cases}$的零点。
首先,我们需要绘制出这个分段函数的函数图像。
在下面的代码中,我们使用Python和Matplotlib工具包生成函数图像。
import matplotlib.pyplot as pltimport numpy as npdef f(x):if x <1:return-x +1else:return x**2-3*x +2x = np.linspace(start=-2,stop=4,num=100)y = [f(i) for i in x]plt.plot(x, y)plt.axhline(y=0, color='grey', linestyle='--')plt.axvline(x=0, color='grey', linestyle='--')plt.show()运行上述代码,我们可以得到如下的函数图像:分段函数图像分段函数图像从图像中可以看出,函数在x<1时是下降的,因此,函数和x轴的交点就是这一段的零点;在$x \\geq 1$时函数是上升的,因此,函数和x轴的交点就是这一段的零点。
高考常考题-函数的零点问题(含解析)
函数的零点问题一、题型选讲 题型一、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。
作图与根分布综合的题目,英中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要 注意渐近线的细节,从而保证图像的准确。
例1、(2019苏州三市、苏北四市二调)立义在R 上的奇函数金)满足Λx+4)=Λx),且在区间[2, 4)上例3、【2018年高考全国III 卷理数】函数/(x) = COS^3Λ + ^ ∣^[0,π]的零点个数为 ______ 题型二、函数零点问题中参数的范围已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范囤.(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法.它的本质就是将 函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便 地研究问题.(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画岀函数的图像,然后数形结合求解.1∏Λ∖X≥ 1例4. (2020届山东省枣庄.滕州市髙三上期末)已知/(X) = {…、f ,若函数y = ∕(x)-l 恰有f(2-x) + k,x<∖一个零点,则实数A ∙的取值范围是( )A. (l,4∙s) B ・ ILC. (YU)D ・(Y M]Z、21og^ x,x≥∖. Z 、例5、(2020全国高三专题练习(文))函数/(M = [f(w]) JI yl ,若方程f(x) = ~2x + m 有且只有两个不相等的实数根,则实数加的取值范围是()A. (-oo,4)B. (Y ,4]C. (-2,4)D. (-2,4]2-x,2≤x<3x-4,3≤x<4则函数y=∕ω-iog s H 的零点的个数为 ____________x<b例2、(2017苏锡常镇调研)若函数Λx)=≤ IInx<x>l, )则函数y=^χ)∣~∣的零点个数为 ______若函数F(X) =/(x)-g(x)在[0,2)上只有两个零点,则实数R 的值不可能为A.丄 3 3 C.——4例6、[2020年高考天津】已知函数f(x) = < Λ j'0,若函数g(γ) =γ,(j).∣AΛ^2点,则k 的取值范围是A. (→>,-∣)U(2√2,+oo)B ∙ U(0,2√Σ)c ・(Y,0)U(0,2√Σ) D ・ YO)U(2√Σ,S例7. [2019年髙考浙江】已知t 函数f(x) = < 1x,x < O1 c ・若函数一F --(α + l)f +ax.x≥O 13 2y = f(x)-cιx -b 恰有3个零点,则A. Λ<-L b<0B. αv -l, b>0C. α>-l, XoD ・ α>-l, b>Q例8. (2020浙江学军中学髙三3月月考)已知函数/(X)=(A -÷4)V5≤X <-3J 若函数 /(x-2),x≥-3g(x) = ∕α)-W(X+ 1)1有9个零点,则实数M 的取值范围是()A.[科丿B.1 1)匕'FD.1 1 <55例9.(2020届浙江省杭州市第二中学髙三3月月考)已知函数/(X)=2/V 『心2'B- 4D ・-1-2彳伙WR)恰有4个零二、达标训练1、(2019 IlJ 东师范大学附中高三月考)函数/(x) = √-W 的零点所在区间为()A- (一 1'O)B- [θ,^j C - (Al D- (1'2)e 丫 X V 02、 【2018年髙考全国I 卷理数】已知函数/(X)=g(χ) = f(χ) + x + a •若g(x)存在2个lnx, x>O,零点,则α的取值范用是A. [一 1, 0)B. [0, +∞)C. [-1, +oo)D. [1, +∞)3、 (2020届浙江省“山水联盟"髙三下学期开学)已知αbwR,函数f(x) = <(A+(l)e +αr "≤°,若函x,x>0数y = f{x)-ax-b 恰有3个零点,则()A. a>∖J)>OB. d>l,D<0C. a<tb>OD. a<^b<O4. (2020届山东实验中学髙三上期中)设定义在/?上的函数/(X)满足/(→) + /(X) = X 2,K 当X WO 时,__________ ・若函数沧)恰有2个零点,则2的取值范圉是 _____________≥∕(1~x ))2}且★为函数 g(x) = e λ-y[ex-aZR 疋为自然对数的底数)的一个零点,则实数α的取值可能是()A. 1√E 2D ・√72√7(0<x≤l)5、(2020届山东师范大学附中髙三月考)已知函数fW = ∖2—(X > DIX若方程/(兀)=一力+ α有三个不同的实根,则实数α的取值范围是 _______6、[2018年髙考浙江】已知z∈R.函数沧)=<X - 4, % ≥ Λ X 2-4x + 3,x<2,当z=2时,不等式√(x)vθ的解集是广(X)Vx .己知存在如Λ 2+2ax + a,x ≤ O 74202O届江苏省南通市如皋市高三下学期二模】已知函数f(x) = \e x_ex I ,,若存在实数+-a2,x>O X 3使得函数y = f(χ)-k有6个零点,则实数。
高考数学二轮复习热点难点突破之4、“图”解函数的零点问题(含答案)
热点难点突破系列之四、“图”解函数的零点问题函数零点问题主要有四类:一是判断函数零点或方程根的个数;二是利用函数零点确定函数解析式;三是确定函数零点或方程根的取值范围;四是利用函数零点或根的个数求解参数的取值范围.解决这些问题主要用数形结合法.1.函数零点个数的判断函数零点的个数即为方程f(x)=0根的个数,可转化为函数f(x)的图象与x 轴交点的个数进行判断,也可转化为两个函数图象的交点个数(如例2(1)).2.利用函数零点求解函数解析式由函数的零点利用待定系数法求函数的解析式,求解时要结合函数的图象.[典例1] 如图所示为f(x)=x 3+bx 2+cx +d 的图象,则x 21+x 22的值是( )A.23B.43C.83D.169[解析] 由图象可知,函数图象与x 轴交于三点,(-1,0),(0,0),(2,0),故该函数有三个零点-1,0,2.由f(0)=0,得d =0,故函数解析式可化为f(x)=x 3+bx 2+cx =x(x 2+bx +c),显然-1,2为方程x 2+bx +c =0的两根.由根与系数的关系,得⎩⎪⎨⎪⎧ -1+2=-b ,-=c , 解得⎩⎪⎨⎪⎧ b =-1,c =-2.故f(x)=x 3-x 2-2x. 由图象可知,x 1,x 2为函数f(x)的两个极值点,又f′(x)=3x 2-2x -2,故x 1,x 2为f′(x)=0,即3x 2-2x -2=0的两根,故x 1+x 2=23,x 1·x 2=-23. 故x 21+x 22=(x 1+x 2)2-2x 1·x 2=⎝ ⎛⎭⎪⎫232-2×⎝ ⎛⎭⎪⎫-23=169. [答案] D[题后悟道] 确定零点与三次函数的各个系数之间的关系还可以根据零点写出函数解析式f(x)=a(x -α)(x -β)·(x-γ),然后依据代数恒等式成立的条件——对应系数相等,找出彼此之间的关系.本题所求的问题类似于一元二次方程根与系数关系中的相关问题,要注意式子的灵活变形.类似的变形有(x 1-x 2)2=(x 1+x 2)2-4x 1x 2,1x 1+1x 2=x 1+x 2x 1x 2等. 3.零点取值范围的确定函数零点的取值范围,即为方程f(x)=0的根的取值范围,主要利用零点存在性定理解决,可结合函数的图象和性质,根据图象上的一些特殊点灵活处理(如本节例1).4.由零点个数确定参数的取值范围根据函数零点的个数确定函数解析式中参数的取值范围,主要利用数形结合的方法,根据函数的极值与区间的端点值构造参数所满足的不等式,通过解不等式求解其取值范围.[典例2] 已知函数f(x)=x 3-3x 2-9x +3,若函数g(x)=f(x)-m 在x ∈[-2,5]上有3个零点,则m 的取值范围为( )A .(-24,8)B .(-24,1]C .[1,8]D .[1,8) [解析] f′(x)=3x 2-6x -9=3(x +1)·(x-3),令f′(x)=0,得x =-1或x =3.当x ∈[-2,-1)时,f ′(x)>0,函数f(x)单调递增;当x ∈(-1,3)时,f ′(x)<0,函数f(x)单调递减;当x ∈(3,5]时,f′(x)>0,函数f(x)单调递增.所以函数f(x)的极小值为f(3)=-24,极大值为f(-1)=8;而f(-2)=1,f(5)=8,函数图象大致如图所示.故要使方程g(x)=f(x)-m 在x ∈[-2,5]上有3个零点,只需函数f(x)在[-2,5]内的函数图象与直线y =m 有3个交点.故⎩⎪⎨⎪⎧ m<8,m≥1,即m ∈[1,8).[答案] D[题后悟道] 解决此类问题主要依据函数图象的特征,利用区间端点处的函数值、函数的极值等构造关于参数的不等式.注意函数在区间的端点值对参数取值范围的影响.如该题中f(-2)与f(5)这两个端点值决定着方程g(x)=f(x)-m 在x ∈[-2,5]上的零点个数,若m =8或-24<m<1,则该方程有2个根;若m =-24,则该方程有1个根;当m>8或m<-24时,则该方程没有实根.总之,解决函数零点的有关问题主要利用数形结合的数学思想,利用导数研究函数的有关性质,主要包括函数的单调性与极值以及函数在区间端点处的函数值,然后画出函数图象,结合函数图象的特征判断、求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题14 运用函数的图像研零点问题一、题型选讲题型一: 运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。
作图与根分布综合的题目,其中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要注意渐近线的细节,从而保证图像的准确。
例1、(2019苏州三市、苏北四市二调)定义在R 上的奇函数f (x )满足f (x +4)=f (x ),且在区间[2,4)上题型二: 运用函数图像研究复合函数零点个数复合函数零点问题的特点:考虑关于x 的方程()0g f x =⎡⎤⎣⎦根的个数,在解此类问题时,要分为两层来分析,第一层是解关于()f x 的方程,观察有几个()f x 的值使得等式成立;第二层是结合着第一层()f x 的值求出每一个()f x 被几个x 对应,将x 的个数汇总后即为()0g f x =⎡⎤⎣⎦的根的个数题型三 运用函数图像研究与零点有关的参数问题三类问题之间的联系:即函数的零点⇔方程的根⇔函数图象的交点,运用方程可进行等式的变形进而构造函数进行数形结合,解决这类问题要选择合适的函数,以便于作图,便于求出参数的取值范围为原题型四、运用函数图像研究与零点有关的复合函数的参数问题求解复合函数()y g f x =⎡⎤⎣⎦零点问题的技巧:(1)此类问题与函数图象结合较为紧密,在处理问题的开始要作出()(),f x g x 的图像(2)若已知零点个数求参数的范围,则先估计关于()f x 的方程()0g f x =⎡⎤⎣⎦中()f x 解的个数,再根据个数与()f x 的图像特点,分配每个函数值()i f x 被几个x 所对应,从而确定()i f x 的取值范围,进而决定参数的范围例6、(2018南京、盐城、连云港二模)已知函数f(x)=⎩⎪⎨⎪⎧-x 3+3x 2+t ,x <0,x ,x ≥0,t ∈R .若函数g (x )=f (f (x )-1)恰有4个不同的零点,则t 的取值范围为________.2、(2017南京、盐城二模)若函数f (x )=x 2-m cos x +m 2+3m -8有唯一零点,则满足条件的实数m 组成的集合为________.3、(2017南通、扬州、泰州、淮安三调)已知函数3()3 .x x a f x x x x a ⎧=⎨-<⎩≥,,,若函数()2()g x f x ax =-恰有2个不同的零点,则实数a 的取值范围是 .4、(2017苏北四市期末)已知函数f (x )=⎩⎪⎨⎪⎧sin x ,x <1,x 3-9x 2+25x +a ,x ≥1,)若函数f (x )的图像与直线y =x 有三个不同的公共点,则实数a 的取值集合为________..专题14 运用函数的图像研零点问题一、题型选讲题型一: 运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。
作图与根分布综合的题目,其中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要注意渐近线的细节,从而保证图像的准确。
例1、(2019苏州三市、苏北四市二调)定义在R 上的奇函数f (x )满足f (x +4)=f (x ),且在区间[2,4)上⎩⎨⎧<≤-<≤-=43,432,2)(x x x x x f 则函数x x f y log 5)(-=的零点的个数为 【答案】 5【解析】因为f(x +4)=f(x),可得f(x)是周期为4的奇函数,先画出函数f(x)在区间[2,4)上的图像,根据奇函数和周期为4,可以画出f(x)在R 上的图像,由y =f (x )-log 5| x |=0,得f (x )=log 5| x |,分别画出y =f (x )和y =log 5|x |的图像,如下图,由f (5)=f (1)=1,而log 55=1,f (-3)=f (1)=1,log 5|-3|<1,而f (-7)=f (1)=1,而log 5|-7|=log 57>1,可以得到两个图像有5个交点,所以零点的个数为5.解后反思 本题考查了函数的零点问题,以及函数的奇偶性和周期性,考查了转化与化归、数形结合的思想,函数的零数问题,常转化为函数的图像的交点个数来处理,其中能根据函数的性质作出函数的图像并能灵活地运用图像,找到临界点是解题的关键也是难点.例2、(2017苏锡常镇调研)若函数f (x )=⎩⎪⎨⎪⎧12x-1,x <1,ln xx 2,x ≥1,)则函数y =|f (x )|-18的零点个数为________.【答案】 4【解析】设g (x )=ln xx 2,则由g ′(x )=x -ln x ·2x x 4=1-2ln x x 3=0,可得x =e ,所以g (x )在(1,e)上单调递增,在(e ,+∞)上单调递减,当x →+∞时,g (x )→0,故g (x )在(1,+∞)上的最大值为g (e)=12e >18.在同一平面直角坐标系中画出y =|f (x )|与y =18的图像可得,交点有4个,即原函数零点有4个.易错警示 答案中出现了3和5这两种错误结果,3的主要原因是弄错了(1,+∞)上的单调性或者忘了处理绝对值,5的主要原因是没有发现图像趋近于x 轴.题型二 运用函数图像研究复合函数零点个数复合函数零点问题的特点:考虑关于x 的方程()0g f x =⎡⎤⎣⎦根的个数,在解此类问题时,要分为两层来分析,第一层是解关于()f x 的方程,观察有几个()f x 的值使得等式成立;第二层是结合着第一层()f x 的值求出每一个()f x 被几个x 对应,将x 的个数汇总后即为()0g f x =⎡⎤⎣⎦的根的个数例3、(2017南通期末) 已知函数f (x )是定义在[1,+∞)上的函数,且f (x )=⎩⎨⎧1-|2x -3|,1≤x <2,12f ⎝ ⎛⎭⎪⎫12x , x ≥2,则函数y =2xf (x )-3在区间(1,2 015)上的零点个数为________.【答案】11 【解析】解法1 由题意得当1≤x <2时,f (x )=⎩⎪⎨⎪⎧2x -2,1≤x ≤32,4-2x , 32<x <2. 设x ∈[2n -1,2n)(n ∈N *),则x2n -1∈[1,2),又f (x )=12n -1f ⎝ ⎛⎭⎪⎫12n -1x ,①当x 2n -1∈⎣⎢⎡⎦⎥⎤1,32时,则x ∈[2n -1,3·2n -2],所以f (x )=12n -1f ⎝ ⎛⎭⎪⎫12n -1x =12n -1⎝ ⎛⎭⎪⎫2·12n -1x -2,所以2xf (x )-3=2x ·12n -1⎝ ⎛⎭⎪⎫2·12n -1x -2-3=0,整理得x 2-2·2n -2x -3·22n -4=0.解得x =3·2n -2或x =-2n -2.由于x∈[2n -1,3·2n -2],所以x =3·2n -2;②当x 2n -1∈⎝ ⎛⎭⎪⎫32,2时,则x ∈(3·2n -2,2n),所以f (x )=12n -1f ⎝ ⎛⎭⎪⎫12n -1x =12n -1⎝ ⎛⎭⎪⎫4-2·12n -1x ,所以2xf (x )-3=2x ·12n -1⎝ ⎛⎭⎪⎫4-2x 2n -1-3=0,整理得x 2-4·2n -2x +3·22n -4=0.解得x =3·2n -2或x =2n -2.由于x ∈(3·2n -2,2n),所以无解.综上所述,x =3·2n -2.由x =3·2n -2∈(1,2 015),得n ≤11,所以函数y =2xf (x )-3在区间(1,2 015)上零点的个数是11.解法2 由题意得当x ∈[2n -1,2n)时,因为f (x )=12n -1·f ⎝ ⎛⎭⎪⎫12n -1x ,所以f (x )max =f ⎝ ⎛⎭⎪⎫32·2n -1=12n -1.令g (x )=32x .当x =32·2n -1时,g (x )=g ⎝ ⎛⎭⎪⎫32·2n -1=12n -1,所以当x ∈[2n -1,2n)时,x =32·2n -1为y =2xf (x )-3的一个零点.下面证明:当x ∈[2n -1,2n)时,y =2xf (x )-3只有一个零点.当x ∈[2n -1,3·2n -2]时,y =f (x )单调递增,y =g (x )单调递减,f (3·2n -2)=g (3·2n -2),所以x ∈[2n -1,3·2n -2]时,有一零点x =3·2n -2;当x ∈(3·2n -2,2n)时,y =f (x )=12n -1-12n -1⎝ ⎛⎭⎪⎫x 2n -2-3,k 1=f ′(x )=-122n -3,g (x )=32x ,k 2=g ′(x )=-32x 2∈⎝ ⎛⎭⎪⎫-13·22n -3,-322n +1,所以k 1<k 2.又因为f (3·2n -2)=g (3·2n -2),所以当x ∈[2n -1,2n)时,y =2xf (x )-3只有一个零点.由x =3·2n -2∈(1,2 015),得n ≤11,所以函数y =2xf (x )-3在区间(1,2 015)上零点的个数是11.解法3 分别作出函数y =f (x )与y =32x 的图像,如图,交点在x 1=32,x 2=3,x 3=6,…,x n =3·2n -2处取得.由x =3·2n -2∈(1,2 015),得n ≤11,所以函数y =2xf (x )-3在区间(1,2 015)上零点的个数是11.题型三 运用函数图像研究与零点有关的参数问题三类问题之间的联系:即函数的零点⇔方程的根⇔函数图象的交点,运用方程可进行等式的变形进而构造函数进行数形结合,解决这类问题要选择合适的函数,以便于作图,便于求出参数的取值范围为原则。
例4、(2018镇江期末)已知k 为常数,函数f(x)=⎩⎪⎨⎪⎧x +2x +1,x ≤0,|ln x|,x>0,若关于x 的方程f(x)=kx +2有且只有四个不同解,则实数k 的取值构成的集合为________.【答案】 ⎩⎨⎧⎭⎬⎫1e 3∪(-e ,-1)【解析】 思路分析 作函数y =f(x)和y =kx +2的图像,考察两函数图像的公共点,两函数图像的公共点的个数等价于方程f(x)=kx +2解的个数.作函数y =f(x)和y =kx +2的图像,如图所示,两图像除了(0,2)还应有3个公共点,当k ≥0时,直线应与曲线y =f(x)(x>1)相切,设切点(x 0,ln x 0),则切线斜率为k =1x 0,又k =ln x 0-2x 0,则1x 0=ln x 0-2x 0,解得x 0=e 3,此时k =1e 3,当k<0时,当y =kx +2与曲线y =x +2x +1相切于点(0,2)时,函数y =f(x)和y =kx +2的图像只有三个公共点,不符合题意,此时k =-1,当-1<k<0时,函数y =f(x)和y =kx +2的图像只有三个公共点,不符合题意,当直线y =kx +2与y =f(x)(0<x<1)相切时,两图像只有三个公共点,设切点(x 0,-ln x 0),则切线的斜率k =-1x 0,又k =-ln x 0-2x 0,则-1x 0=-ln x 0-2x 0,解得x 0=e -1,此时k =-e 不符合题意,当k<-e 时,两图像只有两个公共点,不合题意,而当-e <k<-1时,两图像有4个公共点,符合题意,所以实数k 的取值范围是⎩⎨⎧⎭⎬⎫1e 3∪(-e ,-1).解后反思 方程解的个数的判断,常转化为函数图像公共点个数的判断,在转化的过程中,一般将它转化为一个确定的函数与一个不确定的函数,这样,只需要研究不确定的函数的图像的变化情况就可以得到问题的解.转化时有时也会做一些“技术”上的处理,比如本题可以知方程f(x)=kx +2一定有一个零解,在x ≠0时,可以转化为直线y =k 与曲线y =f (x )-2x有三个公共点来处理,这样做的好处是在画出两图像后很容易得到k 的取值范围,但曲线画起来难度增加了.例5、(2019宿迁期末) 已知函数f(x)=⎩⎪⎨⎪⎧x -1,1≤x<2,2f ⎝⎛⎭⎫12x ,x ≥2, 如果函数g(x)=f(x)-k(x -3)恰有2个不同的零点,那么实数k 的取值范围是________. 【答案】 (-1,0)∪⎣⎡⎭⎫1629,813【解析】思路分析 函数g(x)=f(x)-k(x -3)恰有2个不同的零点,表示函数y =f(x),y =k(x -3)的图像有2个交点,所以关键是画出函数y =f(x)的图像,将函数y =f(x)在区间[1,2)上的图像每一点的横坐标和纵坐标都伸长2倍,就得到了y =f(x)在区间[2,4)上的图像,将函数y =f(x)在区间[2,4)上的图像每一点的横坐标和纵坐标都伸长2倍,就得到了y =f(x)在区间[4,8)上的图像,依次类推,然后考察两函数图像有两个交点时直线的斜率.函数g(x)=f(x)-k(x -3)恰有2个不同的零点,表示函数y =f(x),y =k(x -3)的图像有2个交点.画出y =f(x)和y =k(x -3)的图像,可以看出.当k>0时,当且仅当点(16,8)在直线y =k(x -3)的上方且点(32,16)在直线y =k(x -3)的下方(或在其上)时,两图像有两个公共点,可求出1629≤k<813;当k<0时,当且仅当点(2,1)在直线y =k(x -3)的上方时,两图像有两个公共点,可求出-1<k<0,故所求的实数k 的取值范围是(-1,0)∪⎣⎡⎭⎫1629,813.题型四、运用函数图像研究与零点有关的复合函数的参数问题求解复合函数()y g f x =⎡⎤⎣⎦零点问题的技巧:(1)此类问题与函数图象结合较为紧密,在处理问题的开始要作出()(),f x g x 的图像(2)若已知零点个数求参数的范围,则先估计关于()f x 的方程()0g f x =⎡⎤⎣⎦中()f x 解的个数,再根据个数与()f x 的图像特点,分配每个函数值()i f x 被几个x 所对应,从而确定()i f x 的取值范围,进而决定参数的范围例6、(2018南京、盐城、连云港二模)已知函数f(x)=⎩⎪⎨⎪⎧-x 3+3x 2+t ,x <0,x ,x ≥0,t ∈R .若函数g (x )=f (f (x )-1)恰有4个不同的零点,则t 的取值范围为________. 【答案】[-4,0)【解析】思路分析 本题是“复合函数零点”问题,常见思路是借助函数图像,由求外函数零点切入,进而再分析内函数零点个数.当x<0时,有f′(x)=-3x 2+6x =3x(2-x),故函数f(x)在区间(-∞,0)上单调递减,则函数f(x)在区间(-∞,0)上至多一个零点,进而分类讨论即可.当x<0时,有f′(x)=-3x 2+6x =3x(2-x),故函数f(x)在区间(-∞,0)上单调递减,此时f(0)=t.当t ≥0时,令f(x)=0得,x =0,从而当g(x)=f(f(x)-1)=0时,f(x)=1,借助图像1知,此时至多两个零点,不符合题意;当t<0时,令f(x)=0得,x =0,或x =m(m<0),且-m 3+3m 2+t =0,从而当g(x)=f(f(x)-1)=0时,f(x)-1=0或f(x)-1=m ,即f(x)=1或f(x)=1+m ,借助图像2知,欲使得函数g(x)恰有4个不同的零点,则m +1≥0,从而-1≤m<0,又因为t(m)=m 3-3m 2,而t′(m)=3m 2-6m>0,故t(m)在区间[-1,0)上单调递增,从而t ∈[-4,0).,图1),图2)二、达标训练1、(2018南京、盐城一模)设函数f(x)是偶函数,当x ≥0时,f(x)=⎩⎪⎨⎪⎧x (3-x ),0≤x ≤3,-3x +1,x>3,若函数y =f(x)-m 有四个不同的零点,则实数m 的取值范围是________. 【答案】 ⎣⎡⎭⎫1,94 【解析】 先画出x ≥0时的函数图像,再利用偶函数的对称性得到x<0时的图像.令y =0得f(x)=m.令y =f(x),y =m ,由图像可得要有四个不同的零点,则m ∈⎣⎡⎭⎫1,94.易错警示 本题在作图时,易出现没有画出y =1-3x 的渐近线的错误,从而导致交点个数判断错误.2、(2017南京、盐城二模)若函数f (x )=x 2-m cos x +m 2+3m -8有唯一零点,则满足条件的实数m 组成的集合为________. 【答案】 {2}【解析】思路分析 首先判断f (x )是偶函数,而偶函数有唯一零点时,零点只能是x =0.f (x )是偶函数,若f (x )有唯一零点,故f (0)=0,由f (0)=0,得m 2+2m -8=0,解得m =2或m =-4.当m =2时,f (x )=x 2-2cos x +2=x 2+4sin 2x2,有唯一零点x =0;当m =-4时,f (x )=x 2+4cos x -4.因为f (2)=4cos2<0,f (π)=π2-8>0,所以在(2,π)内也有零点,不合题意.解后反思 因为f (0)=0只是偶函数f (x )有唯一零点的必要条件,所以检验是必须的.说明不充分常用举反例的方法.3、(2017南通、扬州、泰州、淮安三调)已知函数3()3 .x x a f x x x x a ⎧=⎨-<⎩≥,,,若函数()2()g x f x ax =-恰有2个不同的零点,则实数a 的取值范围是 ▲ .【答案】3(2)2-,【思路分析】遇到函数零点个数问题,通常转化为两个函数图象交点问题,进而借助数形结合思想解决问题;也可转化为方程解的个数问题,通过具体的解方程达到解决问题的目的.前者由于是通过图形解决问题,故对绘制的函数图象准确度和细节处要求较高,后者对问题转化的等价性和逻辑推理的严谨性要求较高.下面的解法是从解方程的角度考虑的.解析:函数()2()g x f x ax =-恰有2个不同的零点,即方程2()0f x ax -=恰有2个不相等的根,亦即方程(Ⅰ)20x ax ax ≥⎧⎨-=⎩和(Ⅱ)3260x a x x ax <⎧⎨--=⎩共有2个不相等的根. 首先(Ⅰ)中20x ax -=,即(2)0a x -=,若2a =,则2x ≥都是方程20x ax -=的根,不符合题意,所以2a ≠,因此(Ⅰ)中由20x ax -=解得0x =,下面分情况讨论(1)若0x =是方程(Ⅰ)的唯一根,则必须满足0a ≥,即0a ≤,此时方程(Ⅱ)必须再有唯一的一个根,即3260x a x x ax <≤⎧⎨--=⎩有唯一根,因为0x ≠,由3260x x ax --=,得226x a =+必须有满足0x a <≤的唯一根,首先60a +>,其次解得的负根需满足0a <≤,从而解得302a -<≤, (2)若0x =不是方程(Ⅰ)的唯一根,则必须满足0a <,即0a >,此时方程(Ⅱ)必须有两个不相等的根,即30260a x a x x ax ⎧>⎪<⎨⎪--=⎩有两个不相等的根,由3260x x ax --=,得0x a =<适合,另外226x a=+还有必须一满足,0x a a <>的非零实根,首先60a +>,解得的正根需满足a ≥,从而解得02a <≤,但前面已经指出2a ≠,故02a <<,4、(2017苏北四市期末)已知函数f (x )=⎩⎪⎨⎪⎧sin x ,x <1,x 3-9x 2+25x +a ,x ≥1,)若函数f (x )的图像与直线y =x 有三个不同的公共点,则实数a 的取值集合为________. 【答案】 {-20,-16}【解析】当x <1时,f(x)=sin x ,联立⎩⎪⎨⎪⎧y =sin x ,y =x ,得x -sin x =0,令u(x)=x -sin x(x <1),则u ′(x)=1-cos x ≥0,所以函数u(x)=x -sin x(x <1)为单调增函数,且u(0)=0,所以u(x)=x -sin x(x <1)只有唯一的解x =0,这表明当x <1时,函数f(x)的图像与直线y =x 只有1个公共点.因为函数f(x)的图像与直线y =x 有3个不同的公共点,从而当x ≥1时,函数f(x)的图像与直线y =x 只有2个公共点.当x ≥1时,f(x)=x 3-9x 2+25x +a ,联立⎩⎪⎨⎪⎧y =x 3-9x 2+25x +a ,y =x ,得a =-x 3+9x 2-24x ,令h(x)=-x 3+9x 2-24x(x ≥1),则h ′(x)=-3x 2+18x -24=-3(x -2)(x -4).令h ′(x)=0得x =2或x =4,列表如下:实数a =-20或a =-16.综上所述,实数a 的取值集合为{-20,-16}.解后反思 本题中函数f(x)由三角函数和高次函数组成分段函数,对于考生而言是不熟悉的,再研究其与函数y =x 交点个数问题,考生比较擅长的与x 轴平行的直线消失,所以考生对于本题无从下手,此时突破问题瓶颈的关键就是如何将陌生化为熟悉,转化与化归的数学思想就显得特别重要.注意到当x <1时,函数f(x)的图像与直线y =x 只有一个交点,只需求当x ≥1时,函数f(x)的图像与直线y =x 有且只有两个交点,此时实现了第一次转化;当x ≥1时,易得a =-x 3+9x 2-24x ,即研究函数h(x)=-x 3+9x 2-24x(x ≥1)与y =a 有且只有两个交点的问题,此时与x 轴平行的直线出现,实现了第二次转化,这时再求解就非常容易了.5、(2016南京、盐城一模)设f (x )是定义在R 上的奇函数,且f (x )=2x+m2x ,设g (x )=⎩⎨⎧f (x ), x >1,f (-x ), x ≤1,若函数y =g (x )-t 有且只有一个零点,则实数t 的取值范围是________. 【答案】 [-32,32]【解析】思路分析 注意到函数f (x )为奇函数,所以可以求出m 的值,进而将函数y =g (x )-t 的零点问题转化为函数y =g (x )与y =t 的图像的交点的个数问题来加以解决.因为f (x )为奇函数,所以f (-x )=-f (x ),即2-x +m ·2x =-(2x +m ·2-x ),解得m =-1,故g (x )=⎩⎨⎧2x -2-x, x >1,2-x -2x, x ≤1,作出函数g (x )的图像(如图所示).当x >1时,g (x )单调递增,此时g (x )>32;当x ≤1时,g (x )单调递减,此时g (x )≥-32,所以当t ∈[-32,32]时,y =g (x )-t 有且只有一个零点.解后反思 应用数形结合的方法研究函数的零点是一种常用的方法,在用此法时,一般地,会将函数的零点转化为两个函数的图像的交点来加以研究,这两个函数中,一个函数为定函数,另一个函数为动函数,这样,可有效地降低解题的难度.6、(2016苏州期末)已知函数f (x )=|sin x |-kx (x ≥0,k ∈R )有且只有三个零点,设此三个零点中的最大值为x 0,则x 0(1+x 20)sin2x 0=________.【答案】 12【解析】思路分析 转化为定曲线y =|sin x |(x ≥0)与动直线y =kx 的位置关系问题.由y =|sin x |(x ≥0)和y =kx 的图像可知,当曲线与直线恰有三个公共点时,直线y =kx 与曲线y =-sin x (x ∈[π,2π])相切,设切点横坐标为x 0,斜率为-cos x 0.由⎩⎨⎧-sin x 0=kx 0,-cos x 0=k ,得tan x 0=x 0. 因为sin2x 0=2sin x 0cos x 0cos 2x 0+sin 2x 0=2tan x 01+tan 2x 0=2x 01+x 20,所以x 0(1+x 20)sin2x 0=12.解后反思 “函数零点个数”通常转化为“定曲线与动直线的公共点个数”来解决.7、(2015苏州期末) 已知函数f (x )=⎩⎪⎨⎪⎧4, x ≥m ,x 2+4x -3, x <m .若函数g (x )=f (x )-2x 恰有三个不同的零点,则实数m 的取值范围是________.【答案】(1,2]【解析】解法1 问题转化为g (x )=0,即方程f (x )=2x 有三个不同的解,即⎩⎪⎨⎪⎧ x ≥m ,4=2x 或⎩⎪⎨⎪⎧x <m ,x 2+4x -3=2x ,解得⎩⎪⎨⎪⎧ x ≥m ,x =2或⎩⎪⎨⎪⎧ x <m ,x =1或⎩⎪⎨⎪⎧x <m ,x =-3.因为方程f (x )=2x 有三个不同的解,所以⎩⎪⎨⎪⎧2≥m ,1<m ,-3<m ,解得1<m ≤2.解法2 由题意知函数g (x )=⎩⎪⎨⎪⎧4-2x , x ≥m ,x 2+2x -3, x <m .画出函数y =4-2x 和y =x 2+2x -3的图像,可知函数g (x )的三个零点为-3,1,2,因此可判断m 在1与2之间.当m =1时,图像不含点(1,0),不合题意;当m =2时,图像包含点(2,0),符合题意.所以1<m ≤2. 合(1)、(2),得实数a 的取值范围为3(,2)2-.8、(2019扬州期末)已知函数f(x)=a +3+4x -|x +a|有且仅有三个零点,并且这三个零点构成等差数列,则实数a 的值为________. 【答案】 116或-1-332【解析】 思路分析1 函数f(x)有且仅有三个零点,通常转化为方程f(x)=0有三相异实根,再转化为两个新函数的图像有三个不同的交点,这两个新函数如何构建是关键,通常的原则是:一是两个新函数图像是常见初等函数图像,二是一个函数图像是定的,另一个函数图像是动的,三是参数放在直线型中,即定曲线动直线,这样便于解决问题,基于这三点,所以构造的是函数y =4x +3与y =|x +a|-a =⎩⎪⎨⎪⎧x ,x ≥-a ,-x -2a ,x<-a的图像有且仅有三个不同的交点,再通过分类讨论的思想方法和三个零点构成等差数列建立关于a 的方程,从而求得a 的值.思路分析2 注意所研究的函数为分段函数f(x)=⎩⎪⎨⎪⎧x +4x+3+2a ,x<-a ,-x +4x+3,x ≥-a ,因此,分别来研究每一段中的零点的个数,由于函数分为两段,因此,只有两种可能,一段为两个零点,另一段为一个零点.另外,注意到当x ≥-a 时,函数为f(x)=-x +4x+3不含参数,可以直接求解,因此需对这两个零点是否在解法1 由f(x)=a +3+4x -|x +a|=0,得4x+3=|x +a|-a ,原函数有三个零点,即可转化为函数y=4x +3与y =|x +a|-a =⎩⎪⎨⎪⎧x ,x ≥-a ,-x -2a ,x<-a 图像有且仅有三个不同的交点,设三个交点的横坐标为x 1,x 2,x 3,且x 1<x 2<x 3,易知a ≠0.下面分两种情况讨论:(1)a>0.如图1所示.,图1)由⎩⎪⎨⎪⎧y =4x +3,y =x ,解得x 2=-1,x 3=4.又三个零点构成等差数列,则x 2=x 1+x 32,得x 1=-6,则有4-6+3=-(-6)-2a ,解得a =116符合题意.(2)a<0.如图2所示.,图2)由⎩⎪⎨⎪⎧y =4x +3,y =x ,解得x 3=4,由x 2=x 1+x 32,得x 1-2x 2=-4;再由⎩⎪⎨⎪⎧y =4x +3,y =-x -2a ,消去y ,得x 2+(2a +3)x+4=0 (*).由根据与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=-(2a +3),x 1x 2=4,且x 1-2x 2=-4,解得⎩⎪⎨⎪⎧x 1=-4a -103,x 2=1-2a3,即(-4a -10)(1-2a )9=4,化简得4a 2+8a -23=0,综上(1)(2)可得a 的值为116或-1-323. 解得a =-2±332,检验方程(*)Δ(2a +3)2-16=4a 2+12a -7>0,但a<0,则a =-2-332满足题意.解法2 因为f(x)=⎩⎪⎨⎪⎧x +4x+3+2a ,x<-a ,-x +4x+3,x ≥-a ,所以由f(x)=-x +4x+3=0得x =-1或4.(1)若-1≥-a ,即a ≥1时,由于函数有三个零点,且成等差数列,所以,另一个零点x 0<-1,故-2=4+x 0,从而x 0=-6,故-6+4-6+3+2a =0,解得a =116,满足条件;(2)若-1<-a ,即a<1时,设函数f(x)=x +4x +3+2a(x<-a)的两个零点为x 1,x 2(x 1<x 2),即x 1,x 2是方程x 2+(2a +3)x +4=0 (*)的两个实数根,从而x 1+x 2=-2a -3,x 1x 2=4,又由于三个零点成等差数列,所以2x 2=x 1+4,消去x 1,x 2得4a 2+8a -23=0,解得a =-2±332,检验方程(*)Δ>0,而a<1,则a=-2-332满足题意. 综上,实数a 的值为116或-2-332.9、(2018南通、泰州一调) 已知函数f(x)=⎩⎪⎨⎪⎧x 2-2ax -a +1,x ≥0,ln (-x ),x<0,g(x)=x 2+1-2a.若函数y =f(g(x))有4个零点,则实数a 的取值范围是________.【答案】 ⎩⎨⎧⎭⎬⎫a|5-12<a<1或a>1【解析】思路分析 换元g(x)=t ,f(t)=0,由g(x)=x 2+1-2a =t 得x 2=t -(1-2a),因为函数有四个零点,所以方程f(t)=0有且仅有两个不相等的根t 1,t 2,且t 1>1-2a ,t 2>1-2a ,因为方程f(t)=0的一个解为t =-1,故按照1-2a 与-1的大小关系,分三种情况讨论得出a 的取值范围.设g(x)=t ,因为函数y =f(g(x))有四个不同的零点,所以方程f(t)=0有且仅有两个不相等的根t 1,t 2,且由g(x)=x 2+1-2a =t ,得x 2=t -(1-2a),故t 1>1-2a ,t 2>1-2a.当t<0时,由ln (-t)=0得t =-1.若1-2a =-1,则a =1,易得函数f(g(x))有五个不同的零点,舍去.若1-2a<-1,则a>1,所以f(0)<0,所以方程f(t)=0有且仅有一个正根,符合题意. 若1-2a>-1,则a<1,所以方程f(t)=0必有两个正根,且t 1>1-2a ,t 2>1-2a. 因为t>0时,f(t)=t 2-2at -a +1, 所以a>0,Δ=4a 2-4(-a +1)>0,f(0)>0, f(1-2a)=(1-2a)2-2a(1-2a)-a +1>0, 解得5-12<a<1. 综上可知,5-12<a<1或a>1,即{a|5-12<a<1或a>1}. 解后反思 本题考查复合函数的零点问题,处理f(g(x))=0解的个数问题,往往通过换元令t =g(x),f(t)=0,研究t 的解的个数,再讨论每一个解对应的g(x)=t 的解x 的个数,常用数形结合的方法来处理.。