八年级数学下册第一章复习同步练习

合集下载

北师大版八年级数学下册第一章复习(知识点+试题)

北师大版八年级数学下册第一章复习(知识点+试题)

北师大版八年级数学下册第一章复习(知识点+试题)第一次课第一章:三角形的证明本章主要介绍了三角形的几何性质和证明方法。

等腰三角形等腰三角形是指两条边相等的三角形。

它的性质定理有三条:1.两底角相等(等边对等角)。

2.底边的高、顶角的角平分线和底边的中线重合(“三线合一”)。

3.两底角的角平分线相等,两腰的中线相等,两腰的高相等(特殊线段相等)。

等边三角形等边三角形是指三条边相等的三角形。

它的性质定理有两条:1.三个内角都相等,且都等于60°。

2.有一个角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形。

反证法反证法是一种证明方法,步骤如下:1.假设结论不成立。

2.将假设当条件继续推论,得出与已知条件、公理、定义、定理相矛盾的结论。

3.假设不成立。

4.原命题成立。

直角三角形直角三角形是指其中一个角是90°的三角形。

它的性质定理有两条:1.两锐角互余。

2.勾股定理:直角三角形中,两直角边的平方和等于斜边的平方。

垂直平分线垂直平分线是指将一条线段垂直平分的直线。

它的性质定理有一条:垂直平分线上的点到这条线段两个端点的距离相等。

角平分线角平分线是指将一个角平分的直线。

它的性质定理有一条:角平分线上的点到角两边的距离相等。

以上是本章的主要内容,其中涉及到了三角形的各种性质和证明方法,对于初学者来说是非常重要的基础知识。

2、角平分线定理的符号语言为:在三角形ABC中,若点D在角ABC的角平分线BM上,且DE⊥AB,DF⊥BC,则有DE=DF。

3、角平分线判定定理表述为:在三角形内部,若有一点到角的两边的距离相等,则该点在该角的角平分线上。

4、平分线判定定理的符号语言为:在三角形ABC中,若有DE⊥AB,DF⊥BC,且DE=DF,则点D在角ABC的角平分线上。

性质定理:角平分线上的点到角的两边的距离相等。

判定定理:若点到角的两边的距离相等,则该点在该角的角平分线上。

北师大版八年级数学下册第一章:三角形的证明 复习

北师大版八年级数学下册第一章:三角形的证明 复习

北师大版八年级数学下册第一章三角形的证明同步测试一.选择题1.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还要添加一个条件是()A.AB=DC B.∠A=∠D C.∠B=∠C D.AE=BF 2.如图,点O在直线AE上,OC平分∠AOE,∠BOD是直角.若∠1=25°,那么∠BOE的度数是()A.90°B.145°C.155°D.165°3.如图,平面直角坐标系xOy中,点M的坐标为(2,2),点N在x轴上,若△OMN是等腰三角形,则满足条件的点N共有()个.A.3 B.4 C.5 D.84.如图,以的顶点为圆心,适当长为半径画弧,交于点,交于点.再分别以点为圆心,大于的长为半径画弧,两弧在内部交于点,过点作射线,连接.则下列说法错误的是()A. .两点关于所在直线对称B. .两点关于所在直线对称C. 是等腰三角形D. 射线是的平分线5.如图,关于△ABC,给出下列四组条件:①△ABC中,AB=AC;②△ABC中,∠B=56°,∠BAC=68°;③△ABC中,AD⊥BC,AD平分∠BAC;④△ABC中,AD⊥BC,AD平分边BC.其中,能判定△ABC是等腰三角形的条件共有()A.1组B.2组C.3组D.4组6.如图,AB⊥BD,CD⊥BD,AD=BC,则能直接判断Rt△ABD≌Rt△CDB的理由是()A.HL B.ASA C.SAS D.SSS7.如图,已知∠ACB=60°,PC=12,点M,N在边CB上,PM=PN.若MN =3,则CM的长为()A.3 B.3.5 C.4 D.4.58.在如图中,,于,于,.交于点,则下列结论中不正确的是()A. B. 点在的平分线上C. D. 点是的中点9.如图,在△ABC中,∠ACB=90°,D是AB上的点,过点D作DE⊥AB交BC于点F,交AC的延长线于点E,连接CD,∠DCA=∠DAC,则下列结论正确的有()①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE =EF+CF.A.①②③B.①②④C.②③④D.①②③④10.如图,电信部门要在公路l旁修建一座移动信号发射塔.按照设计要求,发射塔到两个城镇M,N的距离必须相等,则发射塔应该建()A.A处B.B处C.C处D.D处11.如图,公路互相垂直,公路的中点与点被湖隔开.若测得的长为,则两点间的距离为()A. B. C. D.12.下列命题是假命题的是()A.矩形的对角线相等且互相平分B.两点之间,线段最短C.垂直于同一条直线的两条直线互相垂直D.角平分线上的点到角两边的距离相等二.填空题13.如图,∠C=∠D=90°,添加一个条件:(写出一个条件即可),可使Rt△ABC与Rt△ABD全等.14.如图,正方形网格中,点A,B,C,D均在格点上,则∠ACD+∠BDC=°.15.如图,已知,垂直平分交.于.两点,若,,则的周长为.16.如图,在中,,平分,交于点,若,则.17.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE 是等腰三角形,那么∠OEC的度数为.18.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上.若AB=5cm,BC =6cm,则AC=,DE=.三.解答题19.已知:如图1,在Rt△ABC和Rt△A′B′C′中,AB=A′B′,AC=A′C′,∠C=∠C′=90°求证:Rt△ABC和Rt△A′B′C′全等.(1)请你用“如果…,那么…”的形式叙述上述命题;(2)如图2,将△ABC和A′B′C′拼在一起(即:点A与点B′重合,点B与点A′重合),BC和B′C′相交于点O,请用此图证明上述命题.20.如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB,DF⊥AC,垂足分别为E.F,求证:DE=DF.21.如图,在△ABC中,AB=AC,AD是△ABC的角平分线,FE是AC的垂直平分线,交AD于点F,连接BF.求证:AF=BF.22.已知:如图,在△BAC中,AB=AC,D,E分别为AB,AC边上的点,且DE∥BC,求证:△ADE是等腰三角形.23.如图,已知∠CPB=65°,AB∥CP,点D,E分别是PC,PB上一点,连接DE,使DE=PE,∠CDE的平分线与∠ABE的平分线交于点F.(1)∠BED=130°;(2)求∠BFD的度数.24.如图,∠ABC的两边分别平行于∠DEF的两条边,且∠ABC=45°.(1)图1中:∠DEF=45°,图2中:∠DEF=135°;(2)请观察图1.图2中∠DEF分别与∠ABC有怎样的关系,请你归纳出一个命题.北师大版八年级数学下册第一章三角形的证明同步测试答案一.选择题1.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还要添加一个条件是()A.AB=DC B.∠A=∠D C.∠B=∠C D.AE=BF解:条件是AB=CD,理由是:∵AE⊥BC,DF⊥BC,∴∠CFD=∠AEB=90°,在Rt△ABE和Rt△DCF中,,∴Rt△ABE≌Rt△DCF(HL),故选:A.2.如图,点O在直线AE上,OC平分∠AOE,∠BOD是直角.若∠1=25°,那么∠BOE的度数是()A.90°B.145°C.155°D.165°解:∵点O在直线AE上,OC平分∠AOE,∴∠AOC=∠COE=90°,∵∠DOB是直角,∠1=25°,∴∠BOC=∠DOB﹣∠1=90°﹣25°=65°,∴∠BOE=∠COE+∠BOC=90°+65°=155°.故选:C.3.如图,平面直角坐标系xOy中,点M的坐标为(2,2),点N在x轴上,若△OMN是等腰三角形,则满足条件的点N共有()个.A.3 B.4 C.5 D.8解:如上图:满足条件的点N共有(﹣2,0)(2,0)(2,0)(4,0).故选:B.4.如图,以的顶点为圆心,适当长为半径画弧,交于点,交于点.再分别以点为圆心,大于的长为半径画弧,两弧在内部交于点,过点作射线,连接.则下列说法错误的是()A. .两点关于所在直线对称B. .两点关于所在直线对称C. 是等腰三角形D. 射线是的平分线解:连接.,根据作图得到..在与中,(),,即射线是的平分线,正确,不符合题意;根据作图得到,是等腰三角形,正确,不符合题意;根据作图得到,又射线平分,是的垂直平分线,.两点关于所在直线对称,正确,不符合题意;根据作图不能得出平分,不是的平分线,.两点关于所在直线不对称,错误,符合题意.故答案为:.两点关于所在直线对称5.如图,关于△ABC,给出下列四组条件:①△ABC中,AB=AC;②△ABC中,∠B=56°,∠BAC=68°;③△ABC中,AD⊥BC,AD平分∠BAC;④△ABC中,AD⊥BC,AD平分边BC.其中,能判定△ABC是等腰三角形的条件共有()A.1组B.2组C.3组D.4组解:①.∵△ABC中,AB=AC,∴△ABC是等腰三角形,故①正确;②.∵△ABC中,∠B=56°,∠BAC=68°,∴∠C=180°﹣∠BAC﹣∠B=180°﹣68°﹣56°=56°,∴∠B=∠C,∴△ABC是等腰三角形,故②正确;③∵△ABC中,AD⊥BC,AD平分∠BAC,∴∠BAD=∠CAD,∠ADB=∠ADC,∵∠B+∠BAD+∠ADB=180°,∠C+∠CAD+∠ADC=180°,∴∠B=∠C,∴△ABC是等腰三角形,故③正确;④.∵△ABC中,AD⊥BC,AD平分边BC,∴AB=AC,∴△ABC是等腰三角形,故④正确;即正确的个数是4,故选:D.6.如图,AB⊥BD,CD⊥BD,AD=BC,则能直接判断Rt△ABD≌Rt△CDB的理由是()A.HL B.ASA C.SAS D.SSS解:∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),故选:A.7.如图,已知∠ACB=60°,PC=12,点M,N在边CB上,PM=PN.若MN=3,则CM的长为()A.3 B.3.5 C.4 D.4.5解:过点P作PD⊥CB于点D,∵∠ACB=60°,PD⊥CB,PC=12,∴DC=6,∵PM=PN,MN=3,PD⊥OB,∴MD=ND=1.5,∴CM=6﹣1.5=4.5.故选:D.8.在如图中,,于,于,.交于点,则下列结论中不正确的是()A. B. 点在的平分线上C. D. 点是的中点解:,于,于,,,故本选项正确;,,,,,,点在的平分线上,故本选项正确;,,,,,,正确;是的中点,无法判定,故本选项错误.9.如图,在△ABC中,∠ACB=90°,D是AB上的点,过点D作DE⊥AB交BC于点F,交AC的延长线于点E,连接CD,∠DCA=∠DAC,则下列结论正确的有()①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE =EF+CF.A.①②③B.①②④C.②③④D.①②③④解:∵在△ABC中,∠ACB=90°,DE⊥AB,∴∠ADE=∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠DCB=90°,∵∠DCA=∠DAC,∴AD=CD,∠DCB=∠B;故①正确;∴CD=BD,∵AD=CD,∴CD=AB;故②正确;∠DCA=∠DAC,∴AD=CD,但不能判定△ADC是等边三角形;故③错误;∵若∠E=30°,∴∠A=60°,∴△ACD是等边三角形,∴∠ADC=60°,∵∠ADE=∠ACB=90°,∴∠EDC=∠BCD=∠B=30°,∴CF=DF,∴DE=EF+DF=EF+CF.故④正确.故选:B.10.如图,电信部门要在公路l旁修建一座移动信号发射塔.按照设计要求,发射塔到两个城镇M,N的距离必须相等,则发射塔应该建()A.A处B.B处C.C处D.D处解:根据作图可知:EF是线段MN的垂直平分线,所以EF上的点到M.N的距离相等,即发射塔应该建在C处,故选:C.11.如图,公路互相垂直,公路的中点与点被湖隔开.若测得的长为,则两点间的距离为()A. B. C. D.解:在中,,为的中点,.12.下列命题是假命题的是()A.矩形的对角线相等且互相平分B.两点之间,线段最短C.垂直于同一条直线的两条直线互相垂直D.角平分线上的点到角两边的距离相等解:A.矩形的对角线相等且互相平分,是真命题;B.两点之间,线段最短,是真命题;C.在同一平面内,垂直于同一条直线的两条直线互相平行,原命题是假命题;D.角平分线上的点到角两边的距离相等,是真命题;故选:C.二.填空题13.如图,∠C=∠D=90°,添加一个条件:AC=AD(写出一个条件即可),可使Rt△ABC与Rt△ABD全等.解:条件是AC=AD,∵∠C=∠D=90°,在Rt△ABC和Rt△ABD中,∴Rt△ABC≌Rt△ABD(HL),故答案为:AC=AD.14.如图,正方形网格中,点A,B,C,D均在格点上,则∠ACD+∠BDC=90°.解:在Rt△AEC和Rt△DAB中∴Rt△AEC≌Rt△DAB(HL),∴∠ACE=∠ABD,∵∠EAC+∠ACE=90°,∴∠EAC+∠ABD=90°,∴∠AFB=90°,即∠CFD=90°,∴∠ACD+∠BDC=90°,故答案为90.15.如图,已知,垂直平分交.于.两点,若,,则的周长为.解:垂直平分,,的周长.故答案为:.16.如图,在中,,平分,交于点,若,则.解:,,平分,,.17.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE 是等腰三角形,那么∠OEC的度数为120°或75°或30°.【解答】解:∵∠AOB=60°,OC平分∠AOB,∴∠AOC=30°,①当E在E1时,OE=CE,∵∠AOC=∠OCE=30°,∴∠OEC=180°﹣30°﹣30°=120°;②当E在E2点时,OC=OE,则∠OEC=∠OCE=(180°﹣30°)=75°;③当E在E3时,OC=CE,则∠OEC=∠AOC=30°;故答案为:120°或75°或30°.18.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上.若AB=5cm,BC =6cm,则AC=5cm,DE=8cm.解:∵BC=6cm,∴BD=DC=3(cm),∵AD⊥BC,BD=DC,AB=5cm,∴AC=AB=5(cm),∵点C在AE的垂直平分线上,∴EC=AC=5(cm),∴DE=DC+EC=8(cm),故答案为:5cm;8cm.三.解答题19.已知:如图1,在Rt△ABC和Rt△A′B′C′中,AB=A′B′,AC=A′C′,∠C=∠C′=90°求证:Rt△ABC和Rt△A′B′C′全等.(1)请你用“如果…,那么…”的形式叙述上述命题;(2)如图2,将△ABC和A′B′C′拼在一起(即:点A与点B′重合,点B与点A′重合),BC和B′C′相交于点O,请用此图证明上述命题.解:(1)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边分别相等,那么这两个直角三角形全等;(2)在△ACO和直角△A'C'O′中,,∴△ACO≌△A′C′O,∴OC=C′O,AO=A′O,∴BC=B′C′,在△ABC与△A′B′C′中,∴△ABC≌△A'B'C'(SSS).20.如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB,DF⊥AC,垂足分别为E.F,求证:DE=DF.证明:∵AB=AC,∴∠B=∠C,又∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵点D为BC中点,∴DB=DC,∴在△DBE和△DCF中,∴△DBE≌DCF(AAS),∴DE=DF.21.如图,在△ABC中,AB=AC,AD是△ABC的角平分线,FE是AC的垂直平分线,交AD于点F,连接BF.求证:AF=BF.证明:连接CF,∵AB=AC,AD平分∠BAC,∴BD=CD,AD⊥BC,∴BF=CF,∵FE垂直平分AC,∴AF=CF,∴AF=BF.22.已知:如图,在△BAC中,AB=AC,D,E分别为AB,AC边上的点,且DE∥BC,求证:△ADE是等腰三角形.证明:∵AB=AC,∴∠B=∠C,又∵DE∥BC,∴∠B=∠ADE,∠C=∠AED,∴∠ADE=∠AED,∴AD=AE,∴△ADE是等腰三角形.23.如图,已知∠CPB=65°,AB∥CP,点D,E分别是PC,PB上一点,连接DE,使DE=PE,∠CDE的平分线与∠ABE的平分线交于点F.(1)∠BED=130°;(2)求∠BFD的度数.解:(1)∵DE=PE,∴∠EDP=∠CPB=65°,∴∠BED=∠EDP+∠CPB=130°,故答案为:130;(2)∵AB∥CP,∴∠ABP+∠CPB=180°,∴∠ABP=115°,∵∠EDP=65°,∴∠CDE=115°,∵∠CDE的平分线与∠ABE的平分线交于点F.∴∠FBE=∠ABE=57.5°,∠FDE=∠CDE=57.5°,∴∠BFD=360°﹣57.5°﹣57.5°﹣130°=115°.24.如图,∠ABC的两边分别平行于∠DEF的两条边,且∠ABC=45°.(1)图1中:∠DEF=45°,图2中:∠DEF=135°;(2)请观察图1.图2中∠DEF分别与∠ABC有怎样的关系,请你归纳出一个命题.解:(1)图1,∵AB∥DE,∴∠B=∠DGC=45°,∵BC∥EF,∴∠DEF=∠DGC=45°;图2,∵AB∥DE,∴∠B=∠BGE=45°,∵BC∥EF,∴∠DEF+∠BGE=180°,∴∠DEF=180°﹣45°=135°;故答案为45°,135°;(2)∠DEF与∠ABC相等,∠DEF与∠ABC互补,结论:如果两个角的两边分别平行,那么这两个角相等或互补.。

2020-2021学年北师大版八年级数学下册第一章 1.3-1.4 同步练习题

2020-2021学年北师大版八年级数学下册第一章 1.3-1.4 同步练习题

2020-2021学年北师大版八年级数学下册第一章 1.3-1.4 同步练习题一、选择题1.如图,∠MON=60°,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点.若OP=4,则PQ的最小值为( )A.2 3 B.4 C.2 D. 32.如图,已知∠AOB=60°,点P在边OA上,OP =12,点M,N在边OB上,PM=PN.若MN=2,则OM=( )A.3 B.4 C.5 D.63.如图,在△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为( ) A.80°B.75°C.65° D.45°4.如图,在△ABC中,∠ABC=90°,∠A=30°,BC=1,M,N分别是AB,AC上的任意一点,则MN+NB的最小值为( )A.1.5 B.2 C.32+34D.325.已知正方形桌子桌面边长为80 cm,要买一块正方形桌布,如图铺设时,四周垂下的桌布都是等腰直角三角形,且桌面四个角的顶点恰好在桌布边上,那么要买桌布的边长是(精确到个位,备用数据:2≈1.4,3≈1.7)( )A.56 cm B.112 cm C.124 cm D.136 cm二、填空题6.如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN上运动,当△ABC是锐角三角形时,BC的取值范围是_______.7.如图,在Rt△ABC中,∠C=90°,AC=3,BC=1,点D在AC上,将△ADB沿直线BD翻折后,点A落在点E处.如果AD⊥ED,那么△ABE的面积是_______.8.如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC.若AN=1,则BC的长为_______.9.如图,在平面直角坐标系中,已知A(0,4),B(2,0),在第一象限内的点C,使△ABC为等腰直角三角形,则点C的坐标为_______.三、解答题10.如图,△ABC为等腰直角三角形,∠BAC=90°,AB=AC,D是AC上一点.若∠AEB =45°.求证:CE⊥BD.11.如图,△ABC为等腰直角三角形,∠BAC=90°,AB=AC,D是AC上一点.若CE⊥BD于点E,连接AE.求证:∠AEB=45°.12.如图,在△ABC中,∠BAC=90°,AB=AC,D为BC的中点,E,F分别是AB,AC 上的点,且BE=AF.求证:△DEF为等腰直角三角形.13.如图,∠CAB=40°,点D为∠CAB的平分线与线段BC的垂直平分线的交点,连接CD,试求∠DCB的度数.14.如图,在△ABC中,∠BAC=90°,AB=AC,D为BC的中点,E,F分别在AC,AB 上,且DE⊥DF.试判断DE,DF的数量关系,并说明理由.15.如图,在△ABC中,∠BAC=90°,AB=AC,D为BC的中点,E,F分别为AB,CA 延长线上的点,且BE=AF,那么△DEF是否仍为等腰直角三角形?证明你的结论.16.如图,AB∥CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD.17.已知,在△ABC中,BD为∠ABC的平分线.(1)如图1,若∠A=100°,∠C=50°,求证:BC=BA+AD;(2)如图2,若∠BAC=100°,∠C=40°,求证:BC=BD+AD.18.如图,在四边形ABCD中,若对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=2,BE=22,求CD的长和四边形ABCD的面积.19.如图1,在Rt△ABC中,∠BAC=90°,AB=AC,∠ABC的平分线交直线AC于点D,过点C作CE⊥BD,交直线BD于点E.(1)请直接写出线段BD与CE的数量关系_______;(2)在(1)中,如果把BD改为∠ABC的外角∠ABF的平分线,其他条件均不变(如图2),(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.20.感知:如图1,AD平分∠BAC,∠B+∠C=180°,∠B=90°,易知:DB=DC.探究:(1)如图2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求证:DB=DC;(2)如图3,AD平分∠BAC,BD=DC,AC≠AB,求证:∠ABD+∠ACD=180°.21.如图,在等腰Rt△ABC中,AB=AC,点D是斜边BC的中点,点E,F分别为AB,AC上的点,且DE⊥DF.(1)若设BE=a,CF=b,满足a-12+|b-5|=m-2+2-m,求BE及CF的长;(2)求证:BE2+CF2=EF2;(3)在(1)的条件下,求△DEF的面积.参考答案2020-2021学年北师大版八年级数学下册第一章 1.3-1.4 同步练习题一、选择题1.如图,∠MON=60°,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点.若OP=4,则PQ的最小值为(C)A.2 3 B.4 C.2 D. 32.如图,已知∠AOB=60°,点P在边OA上,OP =12,点M,N在边OB上,PM=PN.若MN=2,则OM=(C)A.3 B.4 C.5 D.63.如图,在△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为(D) A.80°B.75°C.65° D.45°4.如图,在△ABC中,∠ABC=90°,∠A=30°,BC=1,M,N分别是AB,AC上的任意一点,则MN+NB的最小值为(A)A.1.5 B.2 C.32+34D.325.已知正方形桌子桌面边长为80 cm,要买一块正方形桌布,如图铺设时,四周垂下的桌布都是等腰直角三角形,且桌面四个角的顶点恰好在桌布边上,那么要买桌布的边长是(精确到个位,备用数据:2≈1.4,3≈1.7)(B)A.56 cm B.112 cm C.124 cm D.136 cm二、填空题6.如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN上运动,当△ABC是锐角三角形时,BC的取值范围是3<BC<23.7.如图,在Rt△ABC中,∠C=90°,AC=3,BC=1,点D在AC上,将△ADB沿直线BD翻折后,点A落在点E处.如果AD⊥ED,那么△ABE的面积是1.8.如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC.若AN=1,则BC的长为6.9.如图,在平面直角坐标系中,已知A(0,4),B(2,0),在第一象限内的点C,使△ABC为等腰直角三角形,则点C的坐标为(6,2)或(4,6)或(3,3).三、解答题10.如图,△ABC为等腰直角三角形,∠BAC=90°,AB=AC,D是AC上一点.若∠AEB =45°.求证:CE⊥BD.证明:过点A作AF⊥AE交BE于点F,得等腰直角△AFE,△ABF≌△ACE(SAS).∴∠ABE=∠ACE.∴∠BEC=∠BAC=90°,即CE⊥BD.11.如图,△ABC为等腰直角三角形,∠BAC=90°,AB=AC,D是AC上一点.若CE⊥BD于点E,连接AE.求证:∠AEB=45°.证明:在BE上截取BF=CE,连接AF.易证∠ABF=∠ACE,△ABF≌△ACE(SAS),得等腰Rt△AFE,∴∠AEB=45°.12.如图,在△ABC中,∠BAC=90°,AB=AC,D为BC的中点,E,F分别是AB,AC 上的点,且BE=AF.求证:△DEF为等腰直角三角形.证明:连接AD ,∵AB =AC ,∠BAC =90°,D 为BC 中点,∴AD =BD =CD ,∠BAD =∠CAD =∠B =45°,AD ⊥BC. 在△BDE 和△ADF 中,⎩⎪⎨⎪⎧BD =AD ,∠B =∠DAF ,BE =AF ,∴△BDE ≌△ADF(SAS).∴DE =DF ,∠BDE =∠ADF. ∵∠BDE +∠ADE =90°,∴∠ADF +∠ADE =90°,即∠EDF =90°. ∴△EDF 为等腰直角三角形.13.如图,∠CAB =40°,点D 为∠CAB 的平分线与线段BC 的垂直平分线的交点,连接CD ,试求∠DCB的度数.解:过点D 作DE ⊥AC 于点E ,DF ⊥AB 于点F ,连接BD. ∵AD 平分∠BAC ,DE ⊥AC ,DF ⊥AB , ∴DE =DF ,∠DEC =∠DFB =90°. ∵∠CAB =40°,∴∠EDF =140°. ∵点D 在线段BC 的垂直平分线上, ∴DC =DB.∴Rt △DEC ≌Rt △DFB(HL). ∴∠EDC =∠FDB.∴∠CDB =∠CDF +∠FDB =∠CDF +∠EDC =∠EDF =140°. ∴∠DCB =12×(180°-40°)=20°.14.如图,在△ABC 中,∠BAC =90°,AB =AC ,D 为BC 的中点,E ,F 分别在AC ,AB 上,且DE ⊥DF.试判断DE ,DF 的数量关系,并说明理由.解:DE =DF ,理由如下:连接AD ,∵∠BAC =90°,AB =AC ,D 为BC 中点,∴CD =AD ,∠C =∠DAF =45°,AD ⊥BC. ∴∠CDE +∠EDA =∠ADF +∠EDA =90°. ∴∠CDE =∠ADF.在△CDE 和△ADF 中,⎩⎪⎨⎪⎧∠C =∠DAF ,CD =AD ,∠CDE =∠ADF ,∴△CDE ≌△ADF(ASA).∴DE =DF.15.如图,在△ABC 中,∠BAC =90°,AB =AC ,D 为BC 的中点,E ,F 分别为AB ,CA 延长线上的点,且BE =AF ,那么△DEF 是否仍为等腰直角三角形?证明你的结论.解:△DEF 仍为等腰直角三角形. 证明:连接AD , ∵AB =AC ,∴△ABC 为等腰三角形.∵∠BAC =90°,D 为BC 的中点, ∴AD =BD ,AD ⊥BC. ∴∠DAC =∠ABD =45°. ∴∠DAF =∠DBE =135°. 又∵AF =BE ,∴△DAF ≌△DBE(SAS). ∴FD =ED ,∠FDA =∠EDB.∴∠EDF =∠EDB +∠FDB =∠FDA +∠FDB =∠ADB =90°. ∴△DEF 仍为等腰直角三角形.16.如图,AB ∥CD ,BE 平分∠ABC ,CE 平分∠BCD ,点E 在AD 上,求证:BC =AB +CD.证明:在BC 上截取BF =AB ,连接EF. ∵BE 平分∠ABC ,CE 平分∠BCD , ∴∠ABE =∠FBE ,∠FCE =∠DCE. 在△ABE 和△FBE 中, ⎩⎪⎨⎪⎧AB =FB ,∠ABE =∠FBE ,BE =BE ,∴△ABE ≌△FBE(SAS).∴∠A =∠BFE.∵AB ∥CD ,∴∠A +∠D =180°.∴∠BFE +∠D =180°.∵∠BFE +∠CFE =180°,∴∠CFE =∠D.在△FCE 和△DCE 中,⎩⎪⎨⎪⎧∠CFE =∠D ,∠FCE =∠DCE ,CE =CE ,∴△FCE ≌△DCE(AAS).∴CF =CD.∴BC =BF +CF =AB +CD.17.已知,在△ABC 中,BD 为∠ABC 的平分线.(1)如图1,若∠A =100°,∠C =50°,求证:BC =BA +AD;(2)如图2,若∠BAC =100°,∠C =40°,求证:BC =BD +AD.图1 图2证明:(1)在边BC 上截取BE =BA ,连接DE.∵BD 为∠ABC 的平分线,∴∠ABD =∠DBE.又∵BA =BE ,BD =BD ,∴△ABD ≌△EBD(SAS).∴AD =DE ,∠A =∠BED.∵∠A =100°,∴∠BED =100°.∵∠C =50°,∴∠CDE =50°.∴∠C =∠CDE.∴DE =CE.∴AD =CE.∵BC =BE +CE ,∴BC =BA +AD.(2)以BC 为边作等边△A ′BC ,在A ′C 上截取CD ′=BD ,连接AA ′,AD ′. ∵∠BAC =100°,∠ACB =40°,∴∠ABC =40°.∴∠ABC =∠ACB.∴AB =AC.∵BD 为∠ABC 的平分线,∴∠ABD =12∠ABC =20°.∴△A ′BC 为等边三角形. ∴A ′B =A ′C =BC ,∠A ′BC =∠A ′CB =∠BA ′C =60°.∴∠A ′CA =∠A ′CB -∠ACB =20°.∵A ′B =A ′C ,AB =AC ,A ′A =A ′A ,∴△A ′BA ≌△A ′CA(SSS).∴∠BA ′A =∠CA ′A =30°.∵AB =AC ,∠ABD =∠ACD ′,BD =CD ′,∴△ABD ≌△ACD ′(SAS).∴∠BAD =∠CAD ′=100°,AD =AD ′.∴∠AD ′C =180°-∠CAD ′-∠ACD ′=60°.∴∠D ′AA ′=∠AD ′C -∠D ′A ′A =30°.∴∠D ′AA ′=∠DA ′A.∴A ′D ′=AD ′.∴A ′D ′=AD.∴BC =A ′C =A ′D ′+CD ′=AD +BD.18.如图,在四边形ABCD 中,若对角线AC ,BD 交于点E ,∠BAC =90°,∠CED =45°,∠DCE =30°,DE =2,BE =22,求CD 的长和四边形ABCD 的面积.解:过点D 作DH ⊥AC 于点H.∵∠CED =45°,∴△DEH 是等腰直角三角形.∴EH =DH.∵EH 2+DH 2=ED 2=2,∴EH =DH =1.又∵∠DCE =30°,∴DC =2,HC = 3.∵∠AEB =∠DEC =45°,∠BAC =90°,BE =22,∴AB =AE =2.∴AC =AE +EH +CH =3+ 3.∴S 四边形ABCD =S △ABC +S △ADC =12×2×(3+3)+12×1×(3+3)=33+92. 19.如图1,在Rt △ABC 中,∠BAC =90°,AB =AC ,∠ABC 的平分线交直线AC 于点D ,过点C 作CE ⊥BD ,交直线BD 于点E.(1)请直接写出线段BD 与CE 的数量关系BD =2CE ;(2)在(1)中,如果把BD 改为∠ABC 的外角∠ABF 的平分线,其他条件均不变(如图2),(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.解:结论BD =2CE 仍然成立.证明:延长CE ,AB 交于点G .∵BD 平分∠ABF ,∴∠DBF =∠DBA.又∵∠DBF =∠CBE ,∠DBA =∠GBE ,∴∠CBE =∠GBE.∵CE ⊥BD ,∴∠GEB =∠CEB =90°.又∵BE =BE ,∴△GBE ≌CBE(ASA).∴GE =CE.∴CG =2CE.∵∠D +∠DCG =∠G +∠DCG =90°,∴∠D =∠G.又∵∠DAB =∠GAC =90°,AB =AC ,∴△DAB ≌△GAC(AAS).∴BD =CG.∴BD =2CE.20.感知:如图1,AD 平分∠BAC ,∠B +∠C =180°,∠B =90°,易知:DB =DC. 探究:(1)如图2,AD 平分∠BAC ,∠ABD +∠ACD =180°,∠ABD <90°,求证:DB =DC ;(2)如图3,AD 平分∠BAC ,BD =DC ,AC ≠AB ,求证:∠ABD +∠ACD =180°.图1 图2图3证明:(1)过点D 作DE ⊥AB 于点E ,DF ⊥AC 交AC 的延长线于点F.∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴DE =DF ,∠F =∠DEB =90°.∵∠EBD +∠ACD =180°,∠ACD +∠FCD =180°,∴∠EBD =∠FCD.在△DFC 和△DEB 中,⎩⎪⎨⎪⎧∠F =∠DEB ,∠FCD =∠EBD ,DF =DE ,∴△DFC ≌△DEB(AAS).∴DC =DB.(2)过点D 作DE ⊥AB 于点E ,DF ⊥AC 交AC 的延长线于点F.∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴DE =DF ,∠DFC =∠DEB =90°.在Rt △DEB 和Rt △DFC 中,⎩⎪⎨⎪⎧DB =DC ,DE =DF , ∴Rt △DEB ≌Rt △DFC(HL).∴∠ABD =∠DCF.∵∠DCF +∠ACD =180°,∴∠ABD +∠ACD =180°.21.如图,在等腰Rt △ABC 中,AB =AC ,点D 是斜边BC 的中点,点E ,F 分别为AB ,AC 上的点,且DE ⊥DF.(1)若设BE =a ,CF =b ,满足a -12+|b -5|=m -2+2-m ,求BE 及CF 的长;(2)求证:BE 2+CF 2=EF 2;(3)在(1)的条件下,求△DEF 的面积.解:(1)由题意,得⎩⎪⎨⎪⎧m -2≥0,2-m ≥0, 解得m =2. ∴a -12+|b -5|=0.∴a -12=0,b -5=0.∴a =12,b =5,即BE =12,CF =5.(2)证明:延长ED 到P ,使DP =DE ,连接FP ,CP.∵D 是BC 的中点,∴BD =CD.在△BED 和△CPD 中,∵ED =PD ,∠EDB =∠PDC ,BD =CD ,∴△BED ≌△CPD(SAS).∴BE =CP ,∠B =∠DCP.在△EDF 和△PDF 中,∵DE =DP ,∠EDF =∠PDF =90°,DF =DF ,∴△EDF ≌△PDF(SAS).∴EF =FP.∵∠BAC =90°,∠B +∠ACB =90°,∠B =∠DCP ,∴∠ACB +∠DCP =90°,即∠FCP =90°.在Rt △FCP 中,根据勾股定理,得CF 2+CP 2=PF 2.又∵BE =CP ,PF =EF ,∴BE 2+CF 2=EF 2.(3)连接AD ,∵△ABC 为等腰直角三角形,D 为BC 的中点,∴∠BAD =∠FCD =45°,AD =BD =CD ,AD ⊥BC.∴∠ADF +∠FDC =90°.∵ED ⊥FD ,∴∠EDA +∠ADF =90°.∴∠EDA =∠FDC.在△AED 和△CFD 中,∵∠EAD =∠FCD ,AD =CD ,∠ADE =∠CDF ,∴△AED ≌△CFD(ASA).∴AE =CF =5,DE =DF.∴△EDF 为等腰直角三角形.∴AB =AE +EB =5+12=17.∴AF =AC -FC =AB -CF =17-5=12.在Rt △EAF 中,根据勾股定理,得EF =AE 2+AF 2=13.设DE =DF =x ,在Rt △DEF 中,根据勾股定理,得x 2+x 2=132,解得x =1322,即DE =DF =1322, 则S △DEF =12DE ·DF =12×1322×1322=1694.。

初二下册第一章数学练习题

初二下册第一章数学练习题

初二下册第一章数学练习题数学是一门重要的学科,也是我们学习中必不可少的一部分。

在初二下册的第一章中,我们将开始接触一系列的数学练习题,旨在加深对数学知识的理解和掌握。

下面是一些典型的练习题,希望对同学们的学习有所帮助。

1. 小明有20本书,他想将这些书平均分给他的4个朋友。

每个朋友能得到几本书?解析:要计算每个朋友能得到几本书,我们可以将总数目除以朋友的数量。

即:20 ÷ 4 = 5。

所以每个朋友能得到5本书。

2. 某商品原价为200元,现在打8折出售,打折之后的价格是多少?解析:首先,将原价乘以打折折扣,即:200 * 0.8 = 160。

所以,打折之后的价格是160元。

3. 一个长方形的长是10厘米,宽是5厘米,请计算它的周长和面积分别是多少?解析:周长可以通过长和宽的和乘以2来计算,即:(10 + 5) * 2 = 30。

面积可以通过长乘以宽来计算,即:10 * 5 = 50。

所以,这个长方形的周长是30厘米,面积是50平方厘米。

4. 某地一天的平均温度是18摄氏度,其中白天的平均温度是25摄氏度,夜间的平均温度是12摄氏度。

白天和夜间的温度相差多少摄氏度?解析:白天和夜间的温度差可以通过将白天的温度减去夜间的温度来计算。

即:25 - 12 = 13。

所以,白天和夜间的温度相差13摄氏度。

5. 小明用一半的时间做完了一道数学题,他需要再用多长时间来完成剩下的一半?解析:如果小明已经用一半的时间做完了一道数学题,那么他还需要用相同的时间来完成剩下的一半。

所以,他需要再用一半的时间来完成剩下的一半。

以上是一些典型的数学练习题,希望可以帮助同学们更好地理解和掌握数学知识。

通过不断练习,我们可以提高自己的数学能力,更好地应对学习中的各种挑战。

希望大家能够在接下来的学习中不断进步,取得好成绩!。

八下数学第一章练习题

八下数学第一章练习题

八下数学第一章练习题一、选择题(每题3分,共15分)1. 若a,b,c是三角形的三边长,且满足a² + b² = c²,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形2. 已知x² - 5x + 6 = 0,求x的值,正确的选项是:A. x = 2 或 x = 3B. x = -2 或 x = 3C. x = 2 或 x = -3D. x = -2 或 x = -33. 某商品的进价为每件40元,标价为每件60元,商店允许最低价为标价的60%,那么该商品最多可以打几折出售?A. 6折B. 7折C. 8折D. 9折4. 一个数的平方根是正数还是负数?A. 正数B. 负数C. 0D. 无法确定5. 如果一个多项式f(x) = ax³ + bx² + cx + d,其中a,b,c,d 都是整数,且f(1) = 2,f(2) = 10,f(3) = 36,那么f(4)的值是多少?A. 80B. 92C. 100D. 104二、填空题(每题2分,共10分)6. 一个直角三角形的两条直角边分别为3和4,其斜边的长度是_________。

7. 如果一个数的立方根等于它本身,那么这个数可以是_________。

8. 一个数的相反数是-8,那么这个数是_________。

9. 如果一个数的绝对值是5,那么这个数可以是_________或_________。

10. 若a,b,c是三角形的三边长,且满足a + b > c,那么这个三角形是_________三角形。

三、计算题(每题10分,共30分)11. 计算下列表达式的值:(2x³ - 3x² + 4x - 5) - (5x³ - x²+ 2x - 1),其中x = 2。

12. 已知一个直角三角形的两条直角边分别为6和8,求斜边的长度。

湘教版八年级数学下册第一章复习2同步练习题

湘教版八年级数学下册第一章复习2同步练习题

《直角三角形》复习一、选择题(每小题3分,共30分)1.如图,∠BAC=90°,AD⊥BC,则图中互余的角有( )A.2对B.3对C.4对D.5对第1题图第3题图第6题图2.在直角△ABC中,∠C=30°,斜边AC的长为5 cm,则AB的长为( )A.2 cmB.2.5 cmC.3 cmD.4 cm3.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,已知BC=8,AC=6,则斜边AB上的高是( )A.10B.5C.245D.1254.直角三角形斜边上的中线长是6.5,一条直角边是5,则另一直角边长等于( )A.13B.12C.10D.55.在下列选项中,以线段a,b,c的长为边,能构成直角三角形的是( )A.a=3,b=4,c=6B.a=5,b=6,c=7C.a=6,b=8,c=9D.a=7,b=24,c=256.如图,在四边形ABCD中,AD=CB,DE⊥AC于点E,BF⊥AC于点F,且DE=BF,则图中全等三角形有( )A.1对B.2对C.3对D.4对7.△ABC中,∠A∶∠B∶∠C=1∶2∶3,则BC∶AB=( )A.1∶1B.1∶2C.1∶3D.2∶38.如图,在△ABC中,AD是△ABC中∠BAC的平分线,且BD>DC,则下列说法中正确的是( )A.点D到AB边的距离大于点D到AC边的距离B.点D到AB边的距离等于点D到AC边的距离C.点D到AB边的距离小于点D到AC边的距离D.点D到AB边的距离与点D到AC边的距离大小关系不确定第8题图第10题图9.等腰三角形的一腰长为3a,底角为15°,则另一腰上的高为( )A.aB.3a C.2a2D.3a10.如图,已知点P到AE,AD,BC的距离相等,下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P在∠BAC,∠CBE,∠BCD的平分线的交点上.其中正确的是( )A.①②③④B.①②③C.④D.②③二、填空题(每小题3分,共18分)11.若直角三角形的一个锐角为50°,则另一个锐角的度数是__________.12.在Rt△ABC中,∠C=90°,∠B=2∠A,BC=3 cm,AB=__________cm.13.已知,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,且AD=3,AC=6.则AB=__________.14.如图,在△ABC中,CF⊥AB于点F,BE⊥AC于点E,M为BC的中点,EF=4,BC=6,则△EFM的周长是__________.第14题图第16题图15.生活经验表明:靠墙摆放梯子时,若梯子底端离墙约为梯子长度时,则梯子比较稳定.现有一长度为9 m的梯子,当梯子稳定摆的13放时,它的顶端能到达8.5 m高的墙头吗?__________(填“能”或“不能”).16.如图,每个小正方形的边长均为1,△ABC的三边长分别为a,b,c;则a,b,c的大小关系是__________.三、解答题(共52分)17.(8分)已知Rt△ABC中,其中两边的长分别是3,5,求第三边的长.18.(10分)如图,在Rt△ACB中,∠C=90°,BE平分∠ABC,ED垂直平分AB于点D,若AC=9,求AE的长.19.(10分)如图,等腰△ABC中,底边BC=20,D为AB上一点,CD =16,BD=12,求△ABC的周长.20.(12分)如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.(1)Rt△ADE与Rt△BEC全等吗?并说明理由;(2)△CDE是不是直角三角形?并说明理由.21.(12分)如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=2,求AD的长.参考答案1.C2.B3.C4.B5.D6.C7.B8.B9.B 10.A11.40°12.6 13.12 14.10 15.不能 16.c<a<b 17.当已知两条边是直角边时,由勾股定理得第三条边的长为22+3435当已知两条边中有一条是直角边而另一条是斜边时,第三边长为22-5334 4.18.设AE=x,则CE=9-x.∵BE平分∠ABC,CE⊥CB,ED⊥AB,∴DE=CE=9-x.又∵ED垂直平分AB,∴AE=BE,∠A=∠ABE=∠CBE.∵在Rt△ACB中,∠A+∠ABC=90°,∴∠A=∠ABE=∠CBE=30°.∴DE=12AE.即9-x=12x.解得x=6.即AE的长为6.19.设AD=x,AC=AB=12+x.∵BC=20,CD=16,BD=12,∴BC2=CD2+BD2.∴△BDC是直角三角形.∴∠BDC=∠ADC=90°.在Rt△ACD中,AD2+CD2=AC2.∴x2+162=(12+x)2.∴x=143.∴△ABC的周长为:2AB+BC=2×(12+143)+20=5313.20.(1)Rt△ADE与Rt△BEC全等.理由:∵∠1=∠2,∴DE=CE.∵∠A=∠B=90°,AE=BC,∴Rt△ADE≌Rt△BEC(HL).(2)△CDE是直角三角形.理由:∵Rt△ADE≌Rt△BEC,∴∠ADE=∠BEC.∵∠ADE+∠AED=90°,∴∠BEC+∠AED=90°.∴∠DEC=90°.∴△CDE是直角三角形.21.(1)证明:∵AD⊥BC,∠BAD=45°,∴∠ABD=∠BAD=45°.∴AD=BD.∵AD⊥BC,BE⊥AC,∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°.∴∠CAD=∠CBE.又∵∠CDA=∠BDF=90°,∴△ADC≌△BDF(ASA).∴AC=BF.∵AB=BC,BE⊥AC,∴AE=EC,即AC=2AE,∴BF=2AE;(2)∵△ADC≌△BDF,∴2∴在Rt△CDF中,22DF CD∵BE⊥AC,AE=EC,∴AF=FC=2,∴2考试备考应试篇备考充分,答题就不丢分——学会调节你的身心状态能否考出好成绩,实力是关键。

北师大八年级下数学第一章复习及习题

北师大八年级下数学第一章复习及习题

不等式一、不等关系:1、定义凡用符号连接的式子叫做不等式.2、列不等式是数学化与符号化的过程,列不等式注意找到问题中不等关系的词,如:“正数(>0)”,“负数(<0)”,“非正数(≤0)”,“非负数(≥0)”,“超过(>0)”,“不足(<0)”,“至少(≥0)”,“至多(≤0)”,“不大于(≤0)”,“不小于(≥0)”3、不等号具有方向性,其左右两边不能随意交换。

c≥可转换为cd≤b>,da<可转换为ab二、不等式的基本性质:性质1 性质2 性质3不等式有3个基本性质,以这三个基本性质为依据,可求得不等式的解——即对不等式进行变形,最终化为“x<a”或“x>a”的形式。

三、不等式的解(集)1、能使不等式成立的-________________________,叫做不等式的解。

2、一个含有_____________________________,组成这个不等式的解集。

不等式的解集,包含两方面的含义:1)未知数取解集中的任何一个值时,不等式都成立;2)未知数取解集外的任何一个值时,不等式都不成立。

3、求____________________的过程叫做解不等式。

4、不等式的解集可在数轴上直观表示。

用数轴表示不等式的解集,应记住规律:大于向画,小于向画,有等号(≤,≥)画,无等号(<,>)画。

四、一元一次不等式和它的解法1.一元一次不等式左右两边都是___,只含有一个未知数,并且未知数的最高次数是____,像这样的不等式.叫做一元一次不等式.2.一元一次不等式标准形式ax+b<0或ax+b≤0,ax+b>0或ax+b≥0(a≠0).3.解一元一次不等式的一般步骤:1)去______(根据不等式的基本性质2、3)2)去__________(根据整式运算法则)3)______(根据不等式基本性质1)4)__________(根据整式运算法则)5)_______________(根据不等式的基本性质2、3)4、根据实际问题列不等式并求解,主要有以下环节:(1)审题,找出不等关系;(2)设未知数;(3)列出不等式;(4)求出不等式的解集;(5)找出符合题意的值;(6)作答。

湘教版八年级数学下册数 第一章-直角三角形-同步基础练习

湘教版八年级数学下册数 第一章-直角三角形-同步基础练习

湘教版八年级下册数第一章-直角三角形-同步基础练习姓名:________ 班级:________ 成绩:________一、单选题1 . 如图,∠MON=90°,OB=4,点A是直线OM上的一个动点,连结AB,作∠MAB与∠ABN的角平分线AF与BF,两条角平分线所在的直线相交于点F,则点A在运动过程中线段BF的最小值为()A.4B.C.8D.22 . 如图,在△ABC中,E,D分别是边AB,AC上的点,且AE=AD,BD,CE交于点F,AF的延长线交BC于点H,若∠EAF=∠DAF,则图中的全等三角形共有()A.4对B.5对C.6对D.7对3 . 用下列图形不能进行平面镶嵌的是()A.正三角形和正四边形B.正三角形和正六边形C.正四边形和正八边形D.正四边形和正十二边形4 . 下列判断正确的是()A.等腰三角形的角平分线、中线和高线互相重合;B.有一个角是60º的等腰三角形,其它两个内角也为60ºC.等腰三角形的各角都是锐角.D.直角三角形不可能是等腰三角形5 . 下列说法中正确的有多少个()①等边三角形是等腰三角形;②正五边形有五条对称轴;③等腰三角形的一边长为4,另一边长为9,则它的周长是17或22;④等腰三角形的一个角是80°,则另外两个角的分别是80°,20°或50°,50°A.4个B.3个C.2个D.1个6 . AD是△BAC的角平分线,过D向AB、AC两边作垂线,垂足为E、F,则下列错误的是()A.DE=DF B.AE=AF C.BD=CD D.∠ADE=∠ADF7 . 下列说法:①等腰三角形的两底角相等;②角的对称轴是它的角平分线;③成轴对称的两个图形中,对应点的连线被对称轴垂直平分;④全等三角形的对应边上的高相等;⑤在直角三角形中,如果有一条直角边长等于斜边长的一半.那么这条直角边所对的角等于30°.以上结论正确的个数()A.1个B.2个C.3个D.4个8 . 下列条件中,不能判定两个直角三角形全等的是()A.两条直角边对应相等B.斜边和一个锐角对应相等C.斜边和一条直角边对应相等D.一条直角边和一个锐角分别相等9 . 下列条件中,不能保证两个直角三角形一定全等的是()A.一个锐角和这个锐角的对边对应相等B.一个锐角和斜边对应相等C.一条直角边和斜边对应相等D.有两条边分别相等10 . 如图,Rt△ACB中,∠ACB=90°,O为AB的中点,AE=AO,BF=BO,OE=2,OF=3,则AB的长为()A.B.5C.8D.11 . 如图所示,△DEF是由△ABC经过平移得到的,若∠B=50°,∠C=75°,则∠D=_____,∠E=________.12 . 如图,在△ABC中,AB=AC,D,E,F分别在BC,AC,AB上的点,且BF=CD,BD=CE,∠FDE=α,则∠A的度数是_____度.(用含α的代数式表示)13 . 如图,已知,垂足点为,若,则=______________.14 . 如图,,交于,于,若,则等于_______15 . 如图,正方形ABCD中,AB=12,点E在边BC上,BE=EC,将△DCE沿DE对折至△DFE,延长EF交边AB 于点G,连接DG、BF,给出以下结论:①△DAG≌△DFG:②BG=2AG;③S△DGF=120;④S△BEF=,其中所有正确结论有:______.16 . 如图,已知为边延长线上一点,于交于,,,求的度数.17 . 已知:如图,∠ABC和∠ACB的平分线交于点O,EF经过点O且平行于BC,分别与AB,AC交于点E,A.(1)若∠ABC=50°,∠ACB=60°,求∠BOC的度数;(2)若∠ABC=a,∠ACB=b ,用a,b 的代数式表示∠BOC的度数.18 . 已知△ABC中,∠BAC=90°,AB=AC.(1)如图,D为AC上任一点,连接BD,过A点作BD的垂线交过C点与AB平行的直线CE于点E.求证:BD =AE.(2)若点D在AC的延长线上,如图,其他条件同(1),请画出此时的图形,并猜想BD与AE是否仍然相等?说明你的理由.参考答案一、单选题1、2、3、4、5、6、7、8、9、10、二、填空题1、2、3、4、5、三、解答题1、2、3、。

北师大版八年级数学下册第1章1.1等腰三角形一课一练教材同步培优练习及解析

北师大版八年级数学下册第1章1.1等腰三角形一课一练教材同步培优练习及解析

4、如图,在△ ABC 中, AB= AC,∠A= 36 °,BD、 CE 分别是∠ ABC、∠BCD 的角平分线,则图中的等腰三角
形有 ( )
A. 5 个 B.4 个
C. 3 个 D . 2 个
解析:共有 5 个. (1) ∵AB = AC ,∴△ABC 是等腰三角形; (2) ∵BD 、 CE 分别是∠ ABC、∠BCD 的角平分线,∴
A.有一个内角大于 60 °
B.有一个内角小于 60 °
C.每一个内角都大于 60 °
D .每一个内角都小于 60 °
解析:用反证法证明命题时,应先假设结论不成立,所以可先假设三角形中每一个内角都不小于或等于
60 °,
即都大于 60 °.故选 C.
方法总结:在假设结论不成立时,要注意考虑结论的反面所有可能的情况,必须把它全部否定.
18 、如图,在等边△ ABC 中,∠ABC 与∠ACB 的平分线相交于点 O ,且 OD ∥AB , OE∥AC.试判定△ODE 的形 状,并说明你的理由.
19 、 如图,在△ EBD 中, EB= ED,点 C 在 BD 上, CE= CD, BE⊥ CE, A 是 CE 延长线上一点, AB = BC.试 判断△ABC 的形状,并证明你的结论.
30 °角是顶角还是底角,
因此要分类讨论.
解:①当底角是 30 °时,顶角的度数为 180 °-2 ×30 °=120 °;
②顶角即为 30 °.
因此等腰三角形的顶角的度数为 30 °或120 °. 方法总结:已知的一个锐角可以是等腰三角形的顶角,也可以是底角;一个钝角只能是等腰三角形的顶角.分 类讨论是正确解答本题的关键. 8、 如图, 在△ABC 中,已知 AB = AC ,∠BAC 和∠ACB 的平分线相交于点 D,∠ADC = 125 °.求∠ACB 和∠BAC 的度数.

北师大版八年级下学期数学第一章三角形的证明同步练习题

北师大版八年级下学期数学第一章三角形的证明同步练习题

新北师大版八年级下学期《第一章三角形的证明》同步测试题一、选择题1、用反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设【】A、a不垂直于cB、a,b都不垂直于cC、a⊥bD、a与b相交2、有下列四个命题:①等腰三角形两腰上的中线相等,②等腰三角形两腰上的高相等,③等腰三角形两底角的平分线相等,④等腰三角形底边上的中点到两腰的距离相等. 正确的命题的个数有【】 A、1个B、2个C、3个D、4个3、如图,△A BC中,∠B=∠BAD,∠ADC=∠C,BD=5,DC=m,则AC是【】A、4B、m-5C、5D、m+54、下列图形中,两个三角形一定全等的是【】A、含80°角的两个锐角三角形 B、边长为20cm的两个等边三角形 C、腰长对应相等的两个等腰三角形 D、有一个钝角对应相等的两个等腰三角形5、在证明“在△ABC中至多有一个直角或钝角”时,第一步应假设【】A、三角形中至少有一个直角或钝角B、三角形中至少有两个直角或钝角C、三角形中没有直角或钝角D、三角形中三个角都是直角或钝角6、下列命题中正确的个数是【】①等腰三角形的两腰相等;②等腰三角形的两底角相等;③等腰三角形底边上的中线与底边上的高重合;④只有两条边相等的等腰三角形是轴对称图形,对称轴有1条.A、1个B、2个 C、3个 D、4个7、等腰三角形的一个外角是120°,一边长为acm,那么它的周长是【】A、3acmB、2acmC、acmD、无法确定8、如图,在∠AOB的两边上截取AO=BO,CO=DO,连接AD,BC交于点P,则下列结论正确的是:(1)△AOD≌△BOC;(2)△APC≌△BPD;(3)点P在∠AOB的平分线上【】A、只有(1) B、只有(2)C、只有(1)(2)D、(1)(2)(3)9、如图,∠AOB和一条定长线段a,在∠AOB内找一点P,使P到OA,OB的距离都等于a,作法如下:(1)作OB的垂线NH,使NH=a,H为垂足.(2)过N作NM∥OB.(3)作∠AOB的平分线OP,与NM交于P.(4)点P即为所求.其中(3)的依据是【】A、平行线之间的距离处处相等 B、到角的两边距离相等的点在角的平分线上 C、角的平分线上的点到角的两边的距离相等 D、到线段的两个端点距离相等的点在线段的垂直平分线上10、△ABC中,若,则此三角形为【】三角形. A、等腰B、直角C、等腰直角 D、等边11、如图,已知△ABC是等边三角形,点O是BC上任意一点,OE、OF分别与两边垂直,等边三角形的高为1,则OE+OF的值为【】 A、B、1 C、2 D、不确定12、已知等边三角形的面积是,则它的高是【】A、cmB、cmC、cmD、cm13、Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论:①BE+CF=BC;②;③=AD·EF;④AD≥EF;⑤AD与EF可能互相平分,其中正确结论的个数是【】A、1个B、2个C、3个D、4个14、如图所示,AD平分∠BAC,AD=BD,AC=AB,则【】A、AC⊥CDB、AC=2CDC、AC=BDD、BD=2CD15、如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,,则y关于x的函数图象大致为【】A、B、C、D、二、填空题16、等边三角形的每个内角都等于______________________.17、如图,已知∠A=∠D=90°,若要依据“HL”证明△ABC≌△DCB,应添加条件_________ ___________ _____;若要依据“AAS”证明△ABC≌△DCB,应添加的条件是_________________________________.18、等腰三角形是轴对称图形,它的对称轴是__________________.19、如图,在△ABC中,AB=AC,∠B=40°,则∠A=____________.20、如图,在△ABC中,AB=AC,D、E、F分别为边BC、AB、AC上的点,且BE=CD,CF=BD.若∠A=40°,则∠EDF=______°.21、在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为50°,则∠B 等于_______________度.22、△ABC中,AB=AC,若BC=CD=DE=EF=FA,则∠A=______°.23、如图,AC平分∠BAD,CE⊥AB,且2AE=AB+AD,∠ADC=146°,则∠BCE=___________°.三、解答题24、(1)小丽同学说“每一个定理不一定都有逆定理,因为逆命题不一定正确.”你认为她的说法正确吗?如果不正确,应如何改正?25、写出命题“平行于同一条直线的两条直线互相平行”的逆命题,并判定这对互逆命题的真假.26、如下图所示,在△ABC中,∠ACB=120°,CD平分∠ACB,AE∥DC,交BC的延长线于点E,试说明△ACE是等边三角形.27、如图,△ABC中,∠A=60°,高BD、CE交于M,MD=5,ME=7. 求BD、CE的长.28、如图,△ABC中,AB=AC,∠A=100°,BD平分∠ABC交AC于D.求证:AD+BD=BC.四、证明题29、求证:在一个三角形中,如果两个角不等,那么它们所对的边也不等.30、如图所示,AB=AC,DB=DC,AD的延长线交BC于点E.求证:BE=EC.31、写出下列命题的已知、求证,并完成证明过程.命题:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:“等角对等边”).已知:如图,____________________________________.求证:______________________________________________________.证明:32、如图所示,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB于E,DF⊥AC于F.求证:∠B=∠C.33、如图,△ABC中,从点C向∠BAC的平分线引垂线,垂足为点E,设AE交BC于点D,且AB=AD.求证:.五、应用题34、如图是某市部分街道示意图,AB=BC=AC,CD=CE=DE,A、B、C、D、E、F、G、H为“公共汽车”停靠点,“公共汽车甲”从A站出发,按照A、H、G、D、E、C、F的顺序到达F站,“公共汽车乙”从B站出发,沿F、H、E、D、C、G的顺序到达G站.如果甲、乙分别从A、B 站同时出发,在各站耽误的时间忽略不计,两车的速度一样,试问哪一辆汽车先到达指定站?为什么?35、有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.参考答案题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 答案 D D C B B D A D B C B C C A B题号16 17 18 19 20 21 22 23答案60AB=DC或AC=DB;∠ABC=∠DCB或∠ACB=∠DBC顶角平分线所在直线100°7070或2020 5624)、解:她的说法正确,理由如下:命题有真假命题之分,而定理是经过证明后得出的正确的命题,命题正确时逆命题不一定正确,即定理的逆命题不一定是真命题,所以虽然每个命题都有逆命题,但每个定理不一定存在逆定理,只有当原定理的逆命题是真命题时,原定理的逆命题才能称为逆定理.25)、【解答】1、逆命题:“如果两条直线互相平行,那么这两条直线都与第三条直线平行”,该命题是假命题;而原命题是真命题.26)、【解答】1、因为CD平分∠ACB,∠ACB=120°,所以∠ACE=180°-∠ACB=60°,且.因为AE∥DC,所以∠ACD=∠CAE,∠BCD=∠E.所以∠CAE=∠E=∠ACE=60°.所以△ACE是等边三角形.27)、【解答】解:∵BD⊥AC,∴∠ADB=90°.又∵∠A=60°,∴∠ABD=90°-60°=30°,同理可得∠ACE=30°,在Rt△BEM中,∠EBM=30°,∠BEM=90°,∴BM=2ME.∵ME=7,∴BM=14.同理由MD=5,得CM=2MD=10,∴BD=BM+MD=19,CE=CM+EM=10+7=17. CE取点F,使DE=DF.∵AB=AC,∠A=100°,∴∠ABC=∠C==40°.∵BD平分∠ABC,∴∠ABD=∠DBE=20°.∵在△ABD和△EBD中,AB=EB,∠ABD=∠DBE,BD=BD,∴△ABD≌△EBD,∴∠BED=∠A=100°,∴∠DEF=180°-100°=80°.∵DE=DF,∴∠DFE=∠DEF=80°,∴∠BDF=180°-80°-20°=80°,∴BD=BF,∠DFC=180°-80°=100°,∴∠FDC=180°-100°-40°=40°,∴DF=FC,∴DF=FC=DE=AD,∴BC=BF+FC=BD+AD.29)、【解答】1、证明:假设在一个三角形中,这两个不等的角所对的边相等,根据等边对等角,它们所对的两个角也相等,这与已知条件相矛盾,说明假设不成立,所以在一个三角形中,如果两个角不等,那么它们所对的边也不等.30)、【解答】1、证明:因为AB=AC,BD=DC,AD=AD,所以∠BAE=∠CAE.又因为AB=AC,所以BE=EC.31)、【解答】解:在△ABC中,∠B=∠C,求证:AB=AC.证明:过点A作AD⊥BC于D,∴∠ADB=∠ADC=90°,在△ABD和△ACD中,∴△ABD≌△ACD(AAS),∴AB=AC.32)、【解答】1、∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF.又∵BD=CD,∠DEB=∠DFC=90°,∴(Rt)△DEB≌(Rt)△DFC(HL).∴∠B=∠C.33)、【解答】1、分别延长AB,CE交于点F.∵AE平分∠FAC,∴∠FAE=∠CAE.∵∠FAE=∠CAE,∠AEF=∠AEC=90°,AE=AE,∴△AEF≌△AEC(AS A),∴AF=AC,EF=EC.又过点E作EG∥AF,交BC于点G,∴,∠ABD=∠DGE.∵AB=AD,∠ABD=∠ADB=∠GDE=∠DGE,∴DE=EG,∴AE=AD+DE=AB+EG====. 所以△ABC与△ECD均为等边三角形,且∠ACE=60°.在△ACD和△BCE中,AC=BC,∠ACD=∠BCE=120°,CD=CE,所以△ACD≌△BCE(SAS).所以AD=BE,∠1=∠2.在△BCF和△ACG中,∠1=∠2,BC=AC,∠BCF=∠ACG=60°,所以△BCF≌△ACG(ASA).所以CF=CG.又因为DE+EC=ED+CD,所以AD+DE+EC+CF=BE+ED+CD+CG.即甲、乙两车同时到达指定站.35)、【解答】1、解:在Rt△ABC中,∠ACB=90°,AC=8,BC=6,由勾股定理有AB=10.扩充部分为Rt△ACD,扩充成等腰△ABD,应分以下三种情况:①如图1,当AB=AD=10时,可求CD=CB =6.得△ABD的周长为32m.②如图2,当AB=BD=10时,可求CD=4.由勾股定理,得.得△ABD的周长为m.如图③,当AB为底时,设AD=BD=x,则CD=x-6,由勾股定理,得.得△ABD 的周长为m.====Word行业资料分享--可编辑版本--双击可删====。

北师大版八年级数学下册第一章同步测试题及答案

北师大版八年级数学下册第一章同步测试题及答案

北师大版八年级数学下册第一章同步测试题及答案1 等腰三角形一、选择题1.如图1-22所示,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于( ) A.30°B.40°C.45°D.36°2.在等腰梯形ABCD中,∠ABC=2∠ACB,BD平分∠ABC,AD∥BC,如图1-23所示,则图中的等腰三角形有( )A.1个B.2个C.3个D.4个3.如图1-24所示,在□ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC 交BC边于点E,则BE等于( )A.2 cm B.4 cm C.6 cm D.8 cm4.下面几种三角形:①有两个角为60°的三角形;②三个外角都相等的三角形;③一条边上的高也是这条边上的中线的三角形;④有一个角为60°的等腰三角形.其中是等边三角形的有( )A.4个B.3个C.2个D.1个二、填空题5.用反证法证明命题“三角形中至少有一个角大于或等于60°”时,第一步应假设.6.等腰三角形的顶角α>90°,如果过其顶角的顶点作一条直线将这个等腰三角形分成了两个等腰三角形,那么α的度数为.三、解答题7.如图1-25所示,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4.求证:(1)△ABC≌△ADC;(2)BO=DO.8.文文和彬彬在证明“有两个角相等的三角形是等腰三角形”这一命题时,画出图形,如图1-26所示,写出已知、求证,她们对各自所作的辅助线描述如下:文文:过点A作BC的中垂线AD,垂足为D.彬彬:作△ABC的角平分线AD.数学老师看了两位同学的辅助线作法后,说:“彬彬的作法是正确的,而文文的作法需要改正.”(1)请你简要说明文文的辅助线作法错在哪里;(2)根据彬彬的辅助线作法,完成证明过程.9.已知四边形ABCD是正方形.(1)如图1-27(1)所示,点G是BC边上任意一点(不与B,C两点重合),连接AG,作BF⊥AG于点F,DE ⊥AG于点E.求证△ABF≌△DAE.(2)在(1)中,线段EF与AF,BF的等量关系是.(不需证明,直接写出结论即可)(3)如图1-27(2)所示,若点G是CD边上任意一点(不与C,D两点重合),作BF⊥AG于点F,DE⊥AG于点E,那么图中的全等三角形是,线段EF与AF,BF的等量关系是.(不需证明,直接写出结论即可)10.如图1-28所示,D为△ABC的边AB的延长线上一点,过D作DF⊥AC,垂足为F,交BC于E,且BD =BE,求证△ABC是等腰三角形.11.如图1-29所示,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上.CE=BC,过点E作AC 的垂线,交CD的延长线于点F,求证AB=FC.参考答案1.D[提示:本题综合考查三角形内角和定理、外角的性质及等腰三角形的性质.由AD=BD,得∠A=∠ABD,∠BDC=2∠A,由BD=BC,得∠C=∠BDC=2∠A.由AB=AC,得∠ABC=∠C=2∠A,由三角形内角和定理,得∠A+2∠A+2∠A=180°,即∠A=36°.]2.D[提示:△ABD,△ACD,△AOD,△BOC都是等腰三角形.]3.A[提示:由DE平分∠ADC,得∠ADE=∠CDE,由AD∥BC,得∠ADE=∠CED,∴∠CED=∠CDE,∴EC=DC=6 cm,∴BE=BC-EC=8-6=2(cm).]4.B[提示:利用等边三角形的判定定理可知①②④为等边三角形,③为等腰三角形.]5.三角形中没有大于或等于60°的角(或三角形的所有内角都小于60°)6.108°[提示:画出图形,利用三角形内角和求解.]7.证明:(1)在△ABC和△ADC中,∵∠1=∠2,AC=AC,∠3=∠4,∴△ABC≌△ADC.(2)由(1)知AB=AD,又∵∠1=∠2,AO=AO,∴△ABO≌△ADO,∴OB=OD.8.解:(1)过点A作BC的垂线,不一定过BC的中点,如果连接点A和BC中点D,则AD与BC不一定垂直.(2)证明:作△ABC的角平分线AD,则∠BAD=∠CAD,又∵∠B=∠C,AD=AD,∴△ABD≌△ACD,∴AB=AC.9.(1)证明:在正方形ABCD中,AB=AD,∠BAD=90°,∴∠BAF+∠DAE=90°.在Rt△ABF中,∠BAF+∠ABF=90°,∴∠ABF=∠DAE.在△ABF与△DAE中,∠ABF=∠DAE,∠AFB=∠DEA=90°,AB=DA,∴△ABF≌△DAE(AAS).(2)EF=AF-BF.(3)△ABF≌△DAE EF=BF-AF.10.证明:∵DF⊥AC,∴∠DFA=∠EFC=90°,∴∠A+∠D=90°,∠C+∠1=90°,∴∠A+∠D=∠C+∠1.又∵BD=BE,∴∠2=∠D(等边对等角).又∵∠1=∠2,∴∠1=∠D,∴∠A+∠D=∠C+∠D,∴∠A=∠C,∴AB=BC(等角对等边),∴△ABC是等腰三角形.11.证明:∵FE⊥AC于点E,∠ACB=90°,∴∠FEC=∠ACB=90°,∴∠F+∠ECF=90°.又∵CD⊥AB于点D,∴∠A+∠ECF=90°,∴∠A=∠F.在△ABC和△FCE中,∠A=∠F,∠ACB=∠FEC,BC=CE,∴△ABC≌△FCE,∴AB=FC.2 直角三角形1. 下列各组条件中,能判断两个直角三角形全等的是()A. 一组边对应相等B. 两组直角边对应相等C. 两组锐角对应相等D. 一组锐角对应相等2. 在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,如图,那么下列各条件中,不能使Rt△ABC≌Rt△A′B′C′的是()A. AB=A′B′=5,BC=B′C′=3B. AB=B′C′=5,∠A=∠B′=40°C. AC=A′C′=5,BC=B′C′=3D. AC=A′C′=5,∠A=∠A′=40°3. 在两个直角三角形中,若有一对角(非直角)相等,一对边相等,则两个直角三角形()A. 一定全等B. 一定不全等C. 不一定全等D. 以上都不是4. 如图所示,∠C=∠D=90°添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等.以下给出的条件适合的是()A. AC=ADB. AB=ABC. ∠ABC=∠ABDD. ∠BAC=∠BAD5. 如图所示,在Rt△ACD和Rt△BCE中,若AD=BE,DC=EC,则无法得出的结论是()A. OA=OBB. E是AC的中点C. △AOE≌△BODD. AE=BD6. 如图,四边形ABCD中,CB=CD,∠ABC=∠ADC=90°,∠BAC=35°,则∠BCD的度数为_____.7. 如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F.若BF=AC,那么∠ABC的大小是_____.8. 如图所示,过正方形ABCD的顶点B作直线a,过点A、C作a的垂线,垂足分别为点E、F,若AE=1,CF=3,则AB的长度为_____.9. 如图,有一个直角△ABC,∠C=90°,AC=10,BC=5,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,当AP=_____时,才能使△ABC≌△PQA.10. 如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上.求证:△CDA≌△CEB.11. 如图,在△ABC中,∠C=90°,D为BC上一点,且DE⊥AB于E,AC=AE.求证:AD平分∠BAC.12. 杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语.其具体信息汇集如下,如图,AB∥OH∥CD,相邻两平行线间的距离相等.AC、BD相匀于O,OD⊥CD垂足为D.已知AB=20米.请根据上述信息求标语CD 的长度.13. 如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF.(2)若∠CAE=30°,求∠ACF的度数.14. 如图,∠ABC=∠ADE=90°,AD=AB,AC=AE,BC与DE相交于点F,连接CD、EB.(1)图中共有几对全等三角形,请你一一列举.(2)求证:CF=EF.参考答案1.B 【解析】A、两直角三角形隐含一个条件是两直角相等,现已知一组边对应相等,要判定两直角三角形全等,还需要一组角对应相等地或是另一组边对应相等才能进行判定,故选项错误;B、可以利用边角边判定两三角形全等,故本选项正确;C、两个锐角分别相等,只有角没有边,不能判定全等,此选项错误;D、一组锐角对应相等,隐含一个条件是两直角相等,根据角对应相等,不能判定三角形全等,故选项错误.故选B.2.B3.C4.A【解析】根据题意可知∠C=∠D=90°,AB=AB,然后由AC=AD,可根据HL判定两直角三角形全等,故符合条件;而B答案只知道一边一角,不能够判定两三角形全等,故不正确;C答案符合AAS,证明两三角形全等,故不正确;D答案是符合AAS,能证明两三角形全等,故不正确.故选A.5.B6.110°【解析】∵∠ABC=∠ADC=90°,CB=CD,且CA=CA,∴△ABC≌△ADC,∴∠BCA=∠DCA,∵∠BAC=35°,∠ABC=90°,∴∠BCA=55°,∴∠BCD=2∠BCA=110°.7.45°8.【解析】∵四边形ABCD是正方形,∴∠CBF+∠FBA=90°,∠CBF+∠BCF=90°,∴∠BCF=∠ABE.∵∠AEB=∠BFC=90°,AB=BC,∴△ABE≌△BCF(AAS),∴AE=BF,BE=CF,∴AB=.9.5或10【解析】∵AX⊥AC,∠C=90°,∴∠C=∠PAQ=90°,又∵AP=CB=5,PQ=AB,∴△ABC≌△PQA.点P运动到C点时,△ABC≌△PQA.∵AX⊥AC,∠C=90°,∴∠BCA=∠QAP =90°,又∵AP=CA=10,PQA=AB,∴△ABC≌△PQA.10.【证明】∵△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,∴CE=CD,BC=AC,∴∠ACB﹣∠ACE=∠DCE﹣∠ACE,∴∠ECB=∠DCA,在△CDA与△CEB中,,∴△CDA≌△CEB.11.【证明】∵DE⊥AB,∴∠AED=90°,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴∠CAD=∠EAD,即AD平分∠BAC.12.【解】∵AB∥CD,∴∠ABO=∠CDO,∵OD⊥CD,∴∠CDO=90°,∴∠ABO=90°,即OB⊥AB,∵相邻两平行线间的距离相等,∴OD=OB,在△ABO与△CDO中,,∴△ABO≌△CDO(ASA),∴CD=AB=20(m).13.(1)【证明】∵AB=CB,∠ABC=90°,AE=CF,∴Rt△ABE≌Rt△CBF.(2)【解】∵AB=BC,∠ABC=90°,∴∠CAB=∠ACB=45°,又∵∠BAE=∠CAB﹣∠CAE=45°﹣30°=15°,由(1)知Rt△ABE≌Rt△CBF,∴∠BCF=∠BAE=15°,∴∠ACF=∠BCF+∠ACB=45°+15°=60°.14.(1)【解】图中有3对全等三角形有Rt△ABC≌Rt△ADE,△ACD≌△AEB,△CDF≌△EBF.(2)【证明】连接AF,∵∠ABC=∠ADE=90°,AB=AD,AC=AE,∴Rt△ABC≌Rt△ADE(HL).∴BC=DE.在Rt△ABF和Rt△ADF中,AB=AD,AF=AF,∴Rt△ABF≌Rt△ADF(HL),∴BF=DF,∴BC-BF=DE-DF,即CF=EF.3线段的垂直平分线1.如图,已知线段a、h,作等腰三角形ABC,使AB=AC,且BC=a,BC边上的高AD=h.张红的作法是:①作线段BC=a;②作线段BC的垂直平分线MN,MN与BC相交于点D;③在直线MN上截取线段h;④连接AB、AC,则△ABC为所求的等腰三角形.上述作法的四个步骤中,你认为有错误的一步是()A.①B.②C.③D.④2.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm3.如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处4.如图,在等腰三角形ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A 的度数是.5.如图,在锐角三角形ABC中,∠BAC=60°,边AC、AB的垂直平分线交于点O,交AC、AB于点D、E,则∠BOC等于.6.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到的锐角为50°,则∠B等于.7.线段垂直平分线上的点到这条线段两个端点的距离.8.如图,点D在BC上,DE⊥AB,DF⊥AC,垂足分别为E、F,DE=DF.求证:AD垂直平分EF.9.如图,在△ABC中,∠ACB=90°,D是BC延长线上一点,E是BD垂直平分线与AB的交点,DE交AC于点F.求证:点E在AF的垂直平分线上.10.如图,在△ABC中,AB=AC,∠BAC=120°,AB的垂直平分线交AB于点E,交BC于点F.若BF =3cm.求BC.11. 如图,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.求∠ECD 的度数.12.如图,已知线段AB.(1)用尺规作图的方法作出线段AB的垂直平分线l(保留作图痕迹,不要求写作法);(2)在(1)中所作的直线l上任意取的两点M、N(在线段AB的上方),连接AM、AN、BM、BN.求证:∠MAN=∠MBN.参考答案1. C2. C3. D4. 50°5. 120°6. 70°或20°7. 相等8.【证明】∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°.∵DE=DF,AD=AD,∴Rt△AED≌Rt△AFD,∴AE=AF,∴AD垂直平分EF.9.【证明】∵E是BD垂直平分线上一点,∴EB=ED,∴∠B=∠D.∵∠ACB=90°,∴∠A=90°-∠B,∠CFD=90°-∠D.∵∠B=∠D,∴∠CFD=∠A.∵∠AFE=∠CFD,∴∠AFE=∠A,∴EF=EA,∴点E在AF的垂直平分线上.10.【解】连接AF.∵AB=AC,∠BAC=120°,∴∠B=∠C=30°.∵EF垂直平分AB,∴BF=AF,∴∠B=∠BAF=30°,∴∠CAF=∠BAC-∠BAF=120°-30°=90°.在Rt△ACF中,∠C=30°,∴AF=12CF,∴CF=2AF.∵AF=BF,∴CF=2BF.∴BC=3BF=3×3=9(cm).11.∠ECD=36°12.【解】(1)画图略.(2)∵点M、N在线段AB的垂直平分线上,∴MA=MB,NA=NB,∴∠MAB=∠MBA,∠NAB=∠NBA,∴∠MAB-∠NAB=∠MBA-∠NBA,∴∠MAN=∠MBN.4 角平分线1. 如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为( )A.1 B.2 C.3 D.42.如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC等于( )A. 3 B.2 C.3 D.3+23.如图,AB∥CD,O为∠BAC,∠ACD的平分线的交点,OE⊥AC,垂足为E,若OE=2 cm,则AB与CD间的距离为( )A.2 cm B.3 cm C.4 cm D.5 cm4. 如图,AB∥CD,AD⊥DC,AE⊥BC,垂足分别为D,E,∠DAC=35°,AD=AE,则∠B等于( )A.50°B.60°C.70°D.80°5. 如图,△ABC是等边三角形,P是∠ABC的平分线上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为( )A.2 B.2 3 C. 3 D.36.在△ABC中,∠C=90°,O为△ABC三条角平分线的交点,OD⊥BC于点D,OE⊥AC于点E,OF⊥AB 于点F,且AB=10 cm,BC=8 cm,AC=6 cm,则点O到三边AB,AC,BC的距离分别为( )A.2 cm,2 cm,2 cm B.3 cm,3 cm,3 cmC.4 cm,4 cm,4 cm D.2 cm,3 cm,5 cm7.如图,O为△ABC内任意一点,OD⊥AB于点D,OE⊥AC于点E,OF⊥BC于点F,若OD=OE=OF,连接OA,OB,OC,下列结论不一定正确的是( )A.△BOD≌△BOF B.∠OAD=∠OBF C.∠COE=∠COF D.AD=AE8.如图,在△ABC中,∠C=90°,∠B=30°,DE垂直平分AB,交BC于点D,垂足为E.则下列结论错误的是( )A.DE+BD=BC B.BD=2CD C.BE+DE=BC D.BE+AC=AB9.如图,在△ABC中,∠B,∠C的平分线交于点O,OD⊥AB于点D,OE⊥AC于点E,则OD与OE 的大小关系是( )A.OD>OE B.OD=OE C.OD<OE D.无法确定10. 在Rt△ABC中,∠C=90°,若BC=10,AD平分∠BAC交BC于点D,且BD∶CD=3∶2,则点D 到线段AB的距离为____.11. 如图,在△ABC中,∠BAC=60°,点D在BC上,DE⊥AB于点E,DF⊥AC于点F,且DE=DF,若DE=4,则AD=____.12.如图,已知DB⊥AN于点B,交AE于点O,OC⊥AM于点C,且OB=OC,若∠EAN=25°,则∠ADB =____.13. 如图,在△ABC中,∠ABC=120°,∠C=26°,且DE⊥AB,DF⊥AC,DE=DF,则∠ADC的度数为____.14. 如图,BO,CO分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=3.若△ABC的周长是22,则△ABC的面积是____.15. 如图,AB=AC,PB=PC,PD⊥AB,PE⊥AC,垂足分别是D,E.求证:PD=PE.16. 如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,求AC的长.参考答案1.B2.C3.C4.C5.C6.A7.B8.C9.B10. 4 11. 8 12. 40°13. 137°14. 3315.【证明】连接AP.∵AB=AC,PB=PC,AP=AP,∴△ABP≌△ACP(SSS),∴∠BAP=∠CAP.又∵PD⊥AB,PE⊥AC,∴PD=PE(角平分线上的点到这个角的两边的距离相等).16.【解】过点D作DF⊥AC.∵AD是∠BAC平分线,DE⊥AB,∴DF=DE=2.∵S△ABD=4×22=4,∴S△ACD=7-4=3.∴2AC2=3,即AC=3。

北师大版八年级数学下册第一章1.2直角三角形 同步测试

北师大版八年级数学下册第一章1.2直角三角形    同步测试

北师大版八年级数学下册第一章1.2直角三角形同步测试一.选择题1.下列可使两个直角三角形全等的条件是( )A.一条边对应相等B.两条直角边对应相等C.一个锐角对应相等D.两个锐角对应相等2.已知直角三角形ABC,有一个锐角等于50°,则另一个锐角的度数是( ).A. 30° B.40° C. 45° D. 50°3.下列说法:①一个底角和一条边分别相等的两个等腰三角形全等;②底边及底边上的高分别相等的两个等腰三角形全等;③两边分别相等的两个直角三角形全等;④一个锐角和一条边分别相等的两个直角三角形全等,其中正确的个数是()A.1 B.2 C.3 D.44.如图,AB⊥BC于点B,AD⊥DC于点D,若CB=CD,且∠1=30°,则∠BAD 的度数是( )A.90°B.60°C.30°D.15°5.下列命题中,逆命题不正确的是()A.两直线平行,同旁内角互补B.直角三角形的两个锐角互余C.全等三角形对应角相等D.直角三角形斜边上的中线等于斜边的一半6.下列性质中,等腰三角形具有而直角三角形不一定具有的是()A.任意两边之和大于第三边B.有一个角的平分线垂直于这个角的对边C.至少有两个角是锐角D.内角和等于180°7.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2 km,则M,C两点间的距离为( )A.0.5 km B.0.6 km C.0.9 km D.1.2 km 8.直角三角形两个锐角平分线相交所成的钝角的度数为( )A.120°B.135°C.150°D.120°或135°9.如图,AD是Rt△ABC斜边BC上的高,将△ACD沿AD所在的直线折叠,点C恰好落在BC的中点E处,则∠B等于()A. 25° B. 30° C. 45° D. 60°10.下列命题为假命题的是()A.若a=b,则a﹣2019=b﹣2019 B.若a=b,则C.若a>b,则a2>ab D.若a<b,则a﹣2c<b﹣2c二.填空题11.命题“在同一个三角形中,等角对等边”的逆命题是________.12.如图,D为Rt△ABC斜边BC上的一点,且BD=AB,过点D作BC的垂线,交AC于点E,若AE=12 cm,则DE=_________cm.13.如图,在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,若利用“HL”证明Rt△ABC≌Rt△DCB,你添加的条件是.(不添加字母和辅助线)14.用直尺和圆规作△ABC,使BC=a,AC=b(a>b),∠B=30°,若这样的三角形能作两个,则a,b间满足的关系式是________.15.命题“两直线平行,同旁内角相等”是命题(填“真”或“假”).16.如图,∠C=90°,AC=10,BC=5,AX⊥AC,点P和点Q从A点出发,分别在线段AC和射线AX上运动,且AB=PQ,当点P运动到AP=__________时,△ABC与△QPA全等.17.举一个能证明命题“若x,y都是实数,则+≠”是假命题的反例:.18.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为√65,此时正方形EFGH的而积为5.问:当格点弦图中的正方形ABCD 的边长为√65时,正方形EFGH的面积的所有可能值是________(不包括5).三.解答题19.如图,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分别是点E,F,那么CE=DF吗?请说明理由.20.如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?21.如图,在△ABC中,AC>AB,AD平分∠BAC,点D到点B与点C的距离相等,过点D作DE⊥BC于点E.(1)求证:BE=CE;(2)请直接写出∠ABC,∠ACB,∠ADE三者之间的数量关系;(3)若∠ACB=40°,∠ADE=20°,求∠DCB的度数.22.如图1,∠BAC=∠ACD=90°,∠ABC=∠ADC,CE⊥AD,且BE平分∠ABC.(1)求证:∠ACE=∠ABC;(2)求证:∠ECD+∠EBC=∠BEC;(3)求证:∠CEF=∠CFE.23.边长为6的等边△ABC中,点P从点A出发沿射线AB方向移动,同时点Q从点B出发,以相同的速度沿射线BC方向移动,连接AQ、CP,直线AQ、CP相交于点D.(1)如图①,当点P、Q分别在边AB、BC上时,①连接PQ,当△BPQ是直角三角形时,AP等于________;②∠CDQ的大小是否随P,Q的运动而变化?如果不会,请求出∠CDQ的度数;如果会,请说明理由;________(2)当P、Q分别在边AB、BC的延长线上时,在图②中画出点D,并直接写出∠CDQ的度数.24.按要求完成下列各小题.(1)将命题“两个钝角的和一定大于180°”写成“如果…那么…”的形式,并判断该命题是真命题还是假命题;(2)判断命题“若a2>b2,则a>b”是真命题还是假命题,若是真命题,则举一个满足命题的例子;若是假命题,则举一个反例.25.如图,在Rt△ABC中,∠ACB=90°,M是边AB的中点,CH⊥AB于点H,CD平分∠ACB.(1)求证:∠1=∠2.(2)过点M作AB的垂线交CD的延长线于点E,连结AE,BE.求证:CM=EM.答案提示1.B. 2.B. 3.A .②正确.4.B. 5.C . 6.B .7.D.8.B.9.B. 10.C . 11.在同一个三角形中,等边对等角. 12.12.13.AB =DC (答案不唯一). 14.a <b <a . 15.假. 16.5或10.17.x =1,y =﹣4(答案不唯一).18.9或13或4919. 解:CE =DF .理由如下:在Rt △ABC 和Rt △BAD 中,⎩⎨⎧BC =AD ,AB =BA ,∴Rt △ABC ≌Rt △BAD(HL),∴AC =BD ,∠CAB =∠DBA .在△ACE 和△BDF 中,⎩⎨⎧∠CAB =∠DBA ,∠AEC =∠BFD =90°,AC =BD ,∴△ACE ≌△BDF(AAS),∴CE =DF .20.解:连接BD在Rt △ABD 中,BD 2=AB 2+AD 2=32+42=52 ,在△CBD 中,CD 2=132 , BC 2=122 , 而122+52=132 ,即BC 2+BD 2=CD 2 ,∴∠DBC=90°,S 四边形ABCD =S △BAD +S △DBC = 12 AD·AB+ 12 DB· BC= 12 ×4×3+ 12 ×5×12=36 所以需费用36×200=7200(元) 21.解:(1)证明:∵DB =DC ,DE ⊥BC ,∴CE =BE(三线合一).(2) 结论:∠ABC -∠ACB =2∠ADE .点拨:作BF ⊥AD 于点F ,交AC 于点G ,求出∠ABG =∠BGA ,∠ADE =∠CBG . (3) 作DM ⊥AC 于点M ,DN ⊥AB 的延长线于点N ,图略.∵∠DAN=∠DAM,DM⊥AC,DN⊥AB,∴DM=DN,∵DB=DC,∴Rt△DBN≌Rt△DCM(HL),∴∠BDN=∠CDM,∴∠CDB=∠MDN,∵∠CAB+∠MDN=180°,∴∠CDB+∠CAB=180°,∵∠ACB=40°,∠ADE=20°,∠ABC-∠ACB=2∠ADE,∴∠ABC=80°.∴∠CAB=180°-80°-40°=60°,∴∠CDB=120°,∴∠EDB=∠EDC=60°,∴∠DCB=90°-∠EDC=30°.22.证明:(1)∵CE⊥AD,∠ACD=90°,∵∠ACE+∠ECD=∠D+∠ECD=90°,∴∠ACE=∠D.∵∠D=∠ABC,∴∠ACE=∠ABC;(2)∵∠BAC=∠ACD=90°,∠ABC=∠ADC,∴∠ACB=∠DAC,∴AD∥BC,∵CE⊥AD,∴CE⊥BC,∴∠BEC+∠EBC=90°,∵∠D+∠ECD=90°,∠D=∠ABC,∴∠ABC+∠ECD=90°,∵BE平分∠ABC,∴∠ABC=2∠EBC∴2∠EBC+∠ECD=90°,∴2∠EBC+∠ECD=∠BEC+∠EBC,即∠EBC+∠ECD=∠BEC;(3)∵∠ABF+∠AFB=90°,∠AFB=∠CFE,∴∠ABF+∠CFE=90°,∵∠CBE+∠CEF=90°,∠ABF=∠CAE,∴∠CEF=CFE.23.(1)2或4;解:∠CDQ的大小不变∵P、Q用时出发,速度相同,所以AP=BQ,∵△ABC是等边三角形,∴BA=AC,∠B=∠CAP=60°,在△ABQ和△CAP中,BA=AC,∠B=∠APC,BQ=AP,∴△ABQ≌△CAP,∴∠BAQ=∠ACP,∴∠CDQ=∠DAC+∠ACP=∠DAC+∠BAQ=∠CAB=60°;(2)解:如图4,∠CDQ=120°,理由如下:∵△ABC是等边三角形,∴BA=AC,∠ABC=∠CAP=60°,在△ABQ和△CAP中,BA=AC,∠ABQ=∠CAP,BQ=AP,∴△ABQ≌△CAP,∴∠Q=∠P,∵∠P+∠BCP=60°,∴∠Q+∠DCQ=60°,∴∠CDQ=120°.24.解:(1)如果两个角是钝角,那么这两个角的和一定大于180°,真命题;(2)假命题,反例:a=﹣2,b=﹣1.25.解:(1)∵∠ACB=90°,∴∠BCH+∠ACH=90°.∵CH⊥AB,∴∠CAH+∠ACH=90°,∴∠CAH=∠BCH.∵M是斜边AB的中点,∴CM=AM=BM,∴∠CAM=∠ACM.∴∠BCH=∠ACM.∵CD平分∠ACB,∴∠BCD=∠ACD,∴∠BCD-∠BCH=∠ACD-∠ACM,即∠1=∠2.(2)∵CH⊥AB,ME⊥AB,∴ME∥CH,∴∠1=∠MED.∵∠1=∠2,∴∠2=∠MED,∴CM=EM.。

北师八下数学教材习题课件-第一章复习题

北师八下数学教材习题课件-第一章复习题
北师版
八(下)数学教材习题
第一章 复习题
知识技能
1. 请将下面证明中每一步的理由填在括号内.
已知:如图,D,E,F分别是BC,CA,AB上的点,DE∥BA,
DF∥CA.
A
求证:∠FDE=∠A. 证明:∵DE∥BA( 已知 ),
B
∴∠FDE=∠BFD(两直线平行,内错角相等 ),
F E
D
C
∵DF∥CA( 已知 ),
解:此题答案不唯一.可添加条件:
C
D
∠CAB=∠DBA或∠CBA=∠DAB
或AC=BD或BC=AD.
A
B
选择添加条件AC=BD加以证明.
证明:在Rt△ACB和Rt△BDA中,
∵AC=BD,AB=BA,
∴Rt△ACB≌Rt△BDA (HL).
14. 求证:等腰三角形的底角必为锐角. 已知:在△ABC中,AB=AC. 求证:∠B与∠C都是锐角. 证明:∵AB=AC,∴∠B=∠C. 假设∠B与∠C为直角或钝角,于是∠B+∠C≥180°, 这与三角形内角和定理矛盾,因此∠B和∠C必为锐 角.即等腰三角形的底角必为锐角.
AO的延长线交BC于点M,请你从图中找出几对全等
的直角三角形,并给出证明.
A
解:①Rt△AOD≌Rt△AOE .
证明:∵△ABC的高BD与CE相交于点O,
∴∠ADO=∠AEO=90°.
E
OD
∵OD=OE,AO=AO, ∴Rt△AOD≌Rt△AOE (HL).
B
M
C
②Rt△BOE≌Rt△COD.
证明:由①知∠BEO=∠CDO=90°,
1 2
BC

AD=
1×6×4=12.

湘教版八年级数学下册第1章复习1(同步练习)

湘教版八年级数学下册第1章复习1(同步练习)

《直角三角形》复习一.选择题(共8小题)1.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC 的大小为( )A .140°B .160°C .170°D .150°2.设计一张折叠型方桌子如图,若AO=BO=50cm ,CO=DO=30cm ,将桌子放平后,要使AB 距离地面的高为40cm ,则两条桌腿需要叉开的∠AOB 应为( )A .60°B .90°C .120°D .150°3.如图,在Rt △ABC 中,∠ACB=90°,CD 为AB 边上的高,若点A 关于CD 所在直线的对称点E 恰好为AB 的中点,则∠B 的度数是( )A .60°B .45°C .30°D .75°4.如图,在四边形ABDC 中,∠BDC=90°,AB ⊥BC ,E 、F 分别是AC 、BC 的中点,BE 、DF 的大小关系是( )A .BE >DFB .BE=DFC .BE <DFD .无法确定5.如图,已知∠MON=60°,OP 是∠MON 的角平分线,点A 是OP 上一点,过点A 作ON 的平行线交OM 于点B ,AB=4.则直线AB 与ON 之间的距离是( )A .3B .2 C.23 D .4第1题图 第2题图 第3题图 第4题图第5题图6.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()A.如果∠C﹣∠B=∠A,则△ABC是直角三角形B.如果c2=b2﹣a2,则△ABC是直角三角形,且∠C=90°C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形7.如图,某公司举行周年庆典,准备在门口长25米,高7米的台阶上铺设红地毯,已知台阶的宽为3米,则共需购买()m2的红地毯.A.21 B.75 C.93 D.968.如图,有两棵树,一棵高10米,另一棵树高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米二.填空题(共8小题)9.Rt△ABC中,∠C=90°,∠A=35°30′,则∠B=°.10.某市在旧城改造中,计划在市内一块如图所示三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要.11.如图,BE、CF分别是△ABC的高,M为BC的中点,EF=4,BC=10,则△EFM的周长是.12.如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交数轴上原点右边于一点,则这个点表示的实数是.第7题图第8题图第10题图第11题图第12题图13.如图,在2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一点C ,使△ABC 为直角三角形的点C有个.14.如果三角形的三边a ,b ,c 满足a 2+b 2+c 2+50=6a+8b+10c ,则三角形为 三角形. 15.如图是一个棱长为4cm 的正方体盒子,且蚂蚁在正方体盒子的内部D 1C 1的中点M 处.它爬到BB 1的中点N 的最短路线长是 . 16.如图,在等腰Rt △OAA 1中,∠OAA 1=90°,OA=1,以OA 1为直角边作等腰Rt △OA 1A 2,以OA 2为直角边作等腰Rt △OA 2A 3,…,则OA n 的长度为 .三.解答题(共7小题)17.现要在三角地ABC 内建一中心医院,使医院到A 、B 两个居民小区的距离相等,并且到公路AB 和AC 的距离也相等,请确定这个中心医院的位置.18.如图,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F ,且DB=DC ,求证:EB=FC .19.观察、思考与验证(1)如图1是一个重要公式的几何解释,请你写出这个公式 ;第13题图第15题图第16题图(2)如图2所示,∠B=∠D=90°,且B,C,D在同一直线上.试说明:∠ACE=90°;(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.20.观察下列勾股数:①3、4、5,且32=4+5;②5、12、13,且52=12+13;③7、24、25,且72=24+25;④9,b,c,且92=b+c;…(1)请你根据上述规律,并结合相关知识求:b=,c=.(2)猜想第n组勾股数,并证明你的猜想.21.(1)如图甲,在水塔O的东北方向32m处有一抽水站A.在水塔的东南方向24m处有一建筑工地B,在AB间建一条直水管,求水管AB的长.(2)如图乙,在△ABC中,D是BC边上的点.已知AB=13,AD=12,AC=15,BD=5,求DC的长.22.如图,△ABC的外角∠DAC的平分线交BC边的垂直平分线于P点,PD⊥AB于D,PE⊥AC于E.(1)求证:BD=CE;(2)若AB=6cm,AC=10cm,求AD的长.23.如图,△ABC和△ADE都是等腰直角三角形,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)求证:△ACE≌△ABD;(2)若AC=2,EC=4,DC=2.求∠ACD的度数;(3)在(2)的条件下,直接写出DE的长为.(只填结果,不用写出计算过程)参考答案:一.选择题(共8小题)1.B.2.C.3.C.4.A.5.C.6.B.7.C.8.B.二.填空题(共8小题)9.54.5°.10.150a元.11.14.12..13.4.14.直角15.2cm.16.2n.三.解答题(共7小题)17.18.证明:∵AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,∴DE=DF;∵DE⊥AB于E,DF⊥AC于F.∴在Rt△DBE和Rt△DCF中∴Rt△DBE≌Rt△DCF(HL);∴EB=FC.19.(1)解:这个公式是完全平方公式:(a+b)2=a2+2ab+b2;理由如下:∵大正方形的边长为a+b,∴大正方形的面积=(a+b)2,又∵大正方形的面积=两个小正方形的面积+两个矩形的面积=a2+b2+ab+ab=a2+2ab+b2,∴(a+b)2=a2+2ab+b2;故答案为:(a+b)2=a2+2ab+b2;(2)证明:∵△ABC≌△CDE,∴∠BAC=∠DCE,∵∠ACB+∠BAC=90°,∴∠ACB+∠DCE=90°,∴∠ACE=90°;(3)证明:∵∠B=∠D=90°,∴∠B+∠D=180°,∴AB∥DE,即四边形ABDE是梯形,∴四边形ABDE的面积=12(a+b)(a+b)=12ab+12c2+12ab,整理得:a2+b2=c2.20.解:(1)∵由勾股定理得:c2﹣b2=92,∴(c﹣b)(c+b)=81,∵b+c=81,∴c﹣b=1,解得:b=40,c=41.故答案为:40;41;(2)猜想第n组勾股数为:2n+1,2n2+2n,2n2+2n+1,∵(2n+1)2+(2n2+2n)2=4n4+8n3+8n2+4n+1,(2n2+2n+1)2=4n4+8n3+8n2+4n+1,∴(2n+1)2+(2n2+2n)2=(2n2+2n+1)2,∵n是整数,∴2n+1,2n2+2n,2n2+2n+1,是一组勾股数.21.解:(1)由题意可得:∠AOB=90°,在Rt△AOB中,AB===40(m),答:水管AB的长为40m;(2)∵AB=13,AD=12,BD=5,∴AB2=132=169,BD2=52=25,DA2=122=144,∴AB2=BD2+DA2,∴∠ADB=∠ADC=90°,在Rt△ADC中,又AC=15,∴CD===9.22.(1)证明:连接BP、CP,∵点P在BC的垂直平分线上,∴BP=CP,∵AP是∠DAC的平分线,∴DP=EP,在Rt△BDP和Rt△CEP中,,∴Rt△BDP≌Rt△CEP(HL),∴BD=CE;(2)解:在Rt△ADP和Rt△AEP中,,∴Rt△ADP≌Rt△AEP(HL),∴AD=AE,∵AB=6cm,AC=10cm,∴6+AD=10﹣AE,即6+AD=10﹣AD,解得AD=2cm.23.解:(1)∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠EAC=∠BAD.∵在△ACE和△ABD中,∴△ACE≌△ABD(SAS);(2)∵△ACE≌△ABD(SAS),∴DB=EC=4,在Rt△ABC中,AB2+AC2=BC2,∴BC2=22+22=8在△DBC中,BC2+DC2=8+8=16=42=BD2∴∠DCB=90°∴∠ACD=90°+45°=135°;(3)∵BC2=8,DC2=8∴BC=DC.∵∠DCB=90°,∴∠DBC=45°.∵∠ABC=45°,∴∠ABD=90°.在Rt△ABD中由勾股定理,得AD==2.在Rt△AED中由勾股定理,得ED==2.故答案为:2.(赠品,不喜欢可以删除)数学这个家伙即是科学界的“段子手”,又是“心灵导师”一枚。

2022年最新北师大版八年级数学下册第一章三角形的证明同步训练试题(精选)

2022年最新北师大版八年级数学下册第一章三角形的证明同步训练试题(精选)

北师大版八年级数学下册第一章三角形的证明同步训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、等腰三角形的一个角是80°,则它的一个底角的度数是( )A .50°B .80°C .50°或80°D .100°或80°2、下列三个数为边长的三角形不是直角三角形的是( )A .3,3,B .4,8,C .6,8,10D .5,5,3、如图,△ABC 中,∠ABC 与∠ACB 的平分线交于点F ,过点F 作DE ∥BC 交AB 于点D ,交AC 于点E ,那么下列结论:①△BDF 是等腰三角形;②DE =BD +CE ;③若∠A =50°,则∠BFC =115°;④DF =EF .其中正确的有( )A .1个B .2个C .3个D .4个4、如图,在△AAA 中,110BAC ∠=︒,AB AC =,AD BC ⊥于点D ,AB 的垂直平分线交AB 于点E ,交BC 于点F ,连接AF ,则FAD ∠的度数为( ).A.20°B.30°C.35°D.70°5、如图,在△ABC中,∠C=90°,点D为BC上一点,DE⊥AB于E,并且DE=DC,F为AC上一点,则下列结论中正确的是()A.DE=DF B.BD=FD C.∠1=∠2D.AB=AC6、有两边相等的三角形的两边长为4cm,5cm,则它的周长为()A.8cm B.14cm C.13cm D.14cm或13cm7、如图,△ABC中,AB<AC<BC,如果要用尺规作图的方法在BC上确定一点P,使PA+PB=BC,那么符合要求的作图痕迹是()A.B.C.D.8、以下列各组数据为三角形三边,能构成直角三角形的是()A.4,8,7 B.5,12,14 C.2,2,4 D.6,8,109、如图,已知Rt △ABC 中,∠C =90°,∠A =30°,在直线BC 上取一点P ,使得△PAB 是等腰三角形,则符合条件的点P 有( )A .1个B .2个C .3个D .4个10、下列以a ,b ,c 为边的三角形不是直角三角形的是( )A .a =1,b =1,c =√2B .a =2,b =3,c =√13C .a =3,b =5,c =7D .a =6,b =8,c =10第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在Rt △ABC 中,∠A =90°,∠ABC 的平分线BD 交AC 于点D ,AD =2,BC =6,则△BDC 的面积是 _____.2、如图,BD 是ABC ∠的平分线,DE AB ⊥于点E ,DF BC ⊥于点F ,12AB =,15BC =,△AAA 的面积是36,则DE 的长是______.3、如图,点D 是△ABC 内一点,AD =CD ,∠BAD =∠BCD ,则以下结论:①AB =AC ;②∠DAC =∠DCA ;③BD 平分∠ABC ;④BD 与AC 的位置关系是互相垂直.其中正确的是:_____.4、已知△ABC 的面积是12,AB =AC =5,AD 是BC 边上的中线,E ,P 分别是AC ,AD 上的动点,则CP +EP 的最小值为_______.5、如图,正三角形ABC 中,D 是AB 的中点,DE AC ⊥于点E ,过点E 作EF AB ∥与BC 交于点F .若8BC =,则EFC △的周长为______.三、解答题(5小题,每小题10分,共计50分)1、如图,在四边形ABCD 中,点E 在BC 上,连接DE 、AC 相交于点F ,∠BAE =∠CAD ,AB =AE ,AD =AC .(1)求证:∠DEC=∠BAE;(2)如图2,当∠BAE=∠CAD=30°,AD⊥AB时,延长DE、AB交于点G,请直接写出图中除△ABE、△ADC以外的等腰三角形.2、如图,△ABC是等边三角形,点D、E、F分别同时从A、B、C以同样的速度沿AB、BC、CA方向运动,当点D运动到点B时,三个点都停止运动.(1)在运动过程中△DEF是什么形状的三角形,并说明理由;(2)若运动到某一时刻时,BE=4,∠DEC=150°,求等边△ABC的周长;3、已知,在△ABC中,∠BAC=30°,点D在射线BC上,连接AD,∠CAD=α,点D关于直线AC的对称点为E,点E关于直线AB的对称点为F,直线EF分别交直线AC,AB于点M,N,连接AF,AE,CE.(1)如图1,点D在线段BC上.①根据题意补全图1;②∠AEF=(用含有α的代数式表示),∠AMF=°;③用等式表示线段MA,ME,MF之间的数量关系,并证明.(2)点D在线段BC的延长线上,且∠CAD<60°,直接用等式表示线段MA,ME,MF之间的数量关系,不证明.4、如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点,点A,B,C均落在格点上.(1)计算线段AB的长度;(2)判断△ABC的形状;(3)写出△ABC的面积;(4)画出△ABC关于直线l的轴对称图形△A1B1C1.AA的长为半径作5、如图,在△AAA中,按以下步骤作图:①分别以点A和A为圆心,以大于12弧,两弧相交于点A和A;②作直线AA交AA于点A,连接AA.若AA=6,AA=4,求△AAA的周长.-参考答案-一、单选题1、C【分析】已知给出一个角的的度数为80º,没有明确是顶角还是底角,要分类讨论,联合内角和求出底角即可.【详解】解:等腰三角形的一个角是80°,当80º为底角时,它的一个底角是80º,当80º为顶角时,它的一个底角是180801005022︒-︒︒==︒,则它的一个底角是50º或80º.故选:C.【点睛】本题考查等腰三角形的性质,内角和定理,掌握分类讨论的思想是解决问题的关键.2、D【分析】根据勾股定理的逆定理,若两条短边的平方和等于最长边的平方,那么就能够成直角三角形来判断.【详解】解:A、32+32=(2,能构成直角三角形,故此选项不合题意;B、42+(2=82,能构成直角三角形,故此选项不符合题意;C、62+82=102,能构成直角三角形,故此选项不合题意;D、52+52≠(2,不能构成直角三角形,故此选项符合题意.故选:D.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3、C【分析】根据平行线的性质和角平分线的定义以及等腰三角形的判定和性质逐个判定即可解答.【详解】解:∵BF是∠AB的角平分线,∴∠DBF=∠CBF,∵DE∥BC,∴∠DFB=∠CBF,∴∠DBF=∠DFB,∴BD=DF,∴△BDF是等腰三角形;故①正确;同理,EF=CE,∴DE =DF +EF =BD +CE ,故②正确;∵∠A =50°,∴∠ABC +∠ACB =130°,∵BF 平分∠ABC ,CF 平分∠ACB , ∴11,22FBC ABC FCB ACB ∠=∠∠=∠, ∴∠FBC +∠FCB =12(∠ABC +∠ACB )=65°,∴∠BFC =180°﹣65°=115°,故③正确;当△ABC 为等腰三角形时,DF =EF ,但△ABC 不一定是等腰三角形,∴DF 不一定等于EF ,故④错误.故选:C .【点睛】本题主要考查等腰三角形的性质、角平分线的定义及平行线的性质等知识点,根据两直线平行、内错角相等以及等角对等边来判定等腰三角形是解答本题的关键.4、A【分析】利用等边对等角依次可求得∠B 和∠BAF 的大小,根据等腰三角形三线合一可得∠BAD 的度数,从而可得∠FAD 的度数.【详解】解:∵110BAC ∠=︒,AB AC =,∴35B C ∠=∠=︒,∵AB 的垂直平分线交AB 于点E ,∴AF =BF ,∴∠BAF =∠B =35°,∵AB AC =,AD BC ⊥, ∴1552BAD BAC ∠=∠=︒, ∴553520BAF FAD BAD ∠=∠-=︒-︒=∠︒,故选:A .【点睛】本题考查等腰三角形的性质,垂直平分线的性质.理解等边对等角和等腰三角形三线合一,并能依此求得相应角的度数是解题关键.5、C【分析】在直角三角形DCF 中,利用斜边长度大于直角边长度,可以得到DF >DC ,又DC =DE ,所以DF >DE ,故A 选项错误,同理,D 选项错误,假设BD =FD ,则可以判定△DBE ≌△DFC ,所以∠B =∠DFC ,而在题目中,∠B 是定角,∠DFC 随着F 的变化而变化,假设不成立,故B 选项是错误的,由DE =DC ,DC ⊥AC ,DE ⊥AB ,根据Rt△DEA ≌Rt△DCA (HL )得到C 选项是正确的.【详解】解:(1)在直角三角形DCF 中,利用斜边长度大于直角边长度,可以得到DF >DC ,又DC =DE ,所以DF >DE ,故A 选项错误;(2)△BDE 与△DCF ,只满足∠DEB =∠DCF =90°,DC =DE 的条件,不能判定两个三角形全等,故不能得到BD =FD ,另一方面,假设BD =FD ,在Rt △DBE 与△DFC 中,BD FD DE DC=⎧⎨=⎩, ∴Rt △DBE ≌Rt △DFC (HL ),∴∠B =∠DFC ,而图中∠B 大小是固定的,∠DFC 的大小随着F 的变化而变化,故上述假设是不成立的,故B 选项错误;(3)∵DC ⊥AC ,DE ⊥AB ,DC =DE ,在Rt△DEA 和Rt△DCA 中,AD AD DE DC=⎧⎨=⎩, ∴Rt△DEA ≌Rt△DCA (HL ),∴∠1=∠2,故C 选项正确;(4)在直角三角形ABC 中,利用斜边长度大于直角边长度,可以得到AB >AC ,故D 选项错误,故选:C .【点睛】本题考查了全等三角形的性质与判定,三角形三边不等关系关系,掌握全等三角形的性质与判定,直角三角形三边关系是解题关键.6、D【分析】有两边相等的三角形,是等腰三角形,两边分别为5cm 和4cm ,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【详解】解:当4为底时,其它两边都为5,4、5、5可以构成三角形,周长为14cm;当4为腰时,其它两边为4和5,4、4、5可以构成三角形,周长为13cm.综上所述,该等腰三角形的周长是13cm或14cm.故选:D.【点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题的关键是对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.7、D【分析】根据线段的垂直平分线的性质判断即可.【详解】解:如图,连接AP,由作图可知,所画直线垂直平分线段AC,∴PA=PC,∴PA+PB=PC+PB=BC,故选:D.【点睛】本题考查作图﹣基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8、D【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、42+72≠82,故不为直角三角形;B、52+122≠142,故不为直角三角形;C、2+2=4,故不能构成三角形,不能构成直角三角形;D、62+82=102,能构成直角三角形;故选:D.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.勾股定理的逆定理:若三角形三边满足a2+b2=c2,那么这个三角形是直角三角形.9、B【分析】根据等腰三角形的判定定理,结合图形即可得到结论.【详解】,P P,然后作AB的垂直平分线交直线解:以点A、B为圆心,AB长为半径画弧,交直线BC于两个点12P,如图所示:BC于点3∵∠C =90°,∠A =30°,∴60ABC ∠=︒,∵33AP BP =,∴3△ABP 是等边三角形,∴点32,P P 重合,∴符合条件的点P 有2个;故选B .【点睛】本题主要考查等腰三角形的性质及等边三角形的性质与判定,熟练掌握等腰三角形的性质是解题的关键.10、C【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【详解】解:A 、22211+=,该三角形是直角三角形,故此选项不符合题意;B 、22223+=,该三角形是直角三角形,故此选项不符合题意;C 、222357+≠,该三角形不是直角三角形,故此选项符合题意;D 、2226810+=,该三角形是直角三角形,故此选项不符合题意;故选:C .【点睛】本题考查了勾股定理的逆定理,解题的关键是在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.二、填空题1、6【分析】过D作DE⊥BC于E,根据角平分线的性质求出AD=DE=2,再根据三角形的面积公式求出即可.【详解】解:过D作DE⊥BC于E,∵∠ABC的平分线是BD,∠A=90°(即DA⊥AB),DE⊥BC,∴AD=DE,∵AD=2,∴DE=2,∵BC=6,∴S △BDC=11626 22BC DE,故答案为:6.【点睛】本题考查的是角平分线的性质的应用,掌握“角平分线上的点到这个角的两边的距离相等”是解本题的关键.2、83##【分析】根据角平分线性质,得出DE =DF ,利用S △ABC =S △ABD +S △BCD 得出()11215362DE +⋅=,求解即可. 【详解】解:∵BD 是ABC ∠的平分线,DE AB ⊥,DF BC ⊥,∴DE =DF , S △ABC =S △ABD +S △BCD =()()11111215362222AB DE BC DF AB BC DE DE ⋅+⋅=+⋅=+⋅=, 解得728273DE ==. 故答案为83.【点睛】本题考查角平分线性质,三角形面积,一元一次方程,掌握角平分线性质,三角形面积,一元一次方程,关键是利用S △ABC =S △ABD +S △BCD 列出方程.3、②③④【分析】由题意知,ADC 为等腰三角形,DAC DCA ∠=∠,BAD DAC BCD DCA ∠+∠=∠+∠,ABC 为等腰三角形,可知BD 是ABC ∠的平分线,BD 与AC 互相垂直,进而得到结果.【详解】解:∵AD =CD∴∠DAC =∠DCA故②正确;∵∠BAD =∠BCD∴∠BAD +∠DAC =∠BCD +∠DCA即∠BAC=∠BCA∴AB=BC故①错误;∵AB=BC,AD=DC∴BD垂直平分AC故④正确;∴BD平分∠ABC,BD与AC的位置关系是互相垂直故③正确;故答案为:②③④.【点睛】本题考查了等腰三角形的性质与判定,角平分线,垂直平分线等知识.解题的关键在于灵活运用等腰三角形的性质与判定.4、24 5【分析】作BM⊥AC于M,交AD于P,根据等腰三角形的性质得到AD⊥BC,求得点B,C关于AD为对称,得到BP=CP,根据垂线段最短得出CP+EE=BP+EP=BE≥BM,根据数据线的面积公式即可得到结论.【详解】解:作BM⊥AC于M,交AD于P,∵△ABC是等腰三角形,AD是BC边上的中线,∴AD⊥BC,∴AD是BC的垂直平分线,∴点B,C关于AD为对称,∴BP=CP,根据垂线段最短得出:CP+EP=BP+EP=BE≥BM,∵AC=BC=5,∵S △ABC =12BC •AD =12AC •BM =12,∴BM =AD =245, 即EP +CP 的最小值为245, 故答案为:245.【点睛】本题考查了等腰三角形的性质和轴对称等知识,熟练掌握等腰三角形和轴对称的性质是本题的关键. 5、18【分析】利用正三角形ABC 以及平行关系,求出EFC △是等边三角形,在Rt ADE ∆中,利用含30角的直角三角形的性质,求出AE 的长,进而得到CE 长,最后即可求出EFC △的周长.【详解】解:ABC ∆是等边三角形,60A B C ∴∠=∠=∠=︒,8BC AB AC ===,EF AB ∥,60EFC A B FEC ∴∠=∠=∠=∠=︒,EFC ∴∆为等边三角形,3EFC C EC ∆∴=,由于D 是AB 的中点,故142AD AB ==, DE AC ⊥, 90ADE ∴∠=︒,在Rt ADE ∆中,9030ADE A ∠=︒-∠=︒,122AE AD ∴==, 6EC AC AE ∴=-=,18EFC C ∆∴=,故答案为:18.【点睛】本题主要是考查了等边三角形的判定及性质、含30角的直角三角形的性质,熟练地综合应用等边三角形和含30角的直角三角形的性质求解边长,是解决该题的关键.三、解答题1、(1)见解析;(2)△AEF 、△ADG 、△DCF 、△ECD【分析】(1)根据已知条件得到∠BAE =∠CAD ,根据全等三角形的性质得到∠AED =∠ABC ,根据等腰三角形的性质得到∠ABC =∠AEB ,于是得到结论;(2)根据等腰三角形的判定定理即可得到结论.【详解】证明:(1)如图1,∵∠BAE =∠CAD ,∴∠BAE +∠CAE =∠CAD +∠CAE ,即∠BAC =∠EAD ,在△AED 与△ABC 中,AB AE BAC EAD AD AC ⎧⎪∠∠⎨⎪⎩=== ∴△AED ≌△ABC ,∴∠AED =∠ABC ,∵∠BAE +∠ABC +∠AEB =180°, ∠CED +∠AED +∠AEB =180°, ∵AB =AE ,∴∠ABC =∠AEB ,∴∠BAE +2∠AEB =180°,∠CED +2∠AEB =180°,∴∠DEC =∠BAE ;(2)解:如图2,①∵∠BAE =∠CAD =30°,∴∠ABC =∠AEB =∠ACD =∠ADC =75°, 由(1)得:∠AED =∠ABC =75°, ∠DEC =∠BAE =30°,∵AD ⊥AB ,∴∠BAD =90°,∴∠CAE =30°,∴∠AFE =180°−30°−75°=75°, ∴∠AEF =∠AFE ,∴△AEF 是等腰三角形,②∵∠BEG =∠DEC =30°,∠ABC =75°, ∴∠G =45°,在Rt △AGD 中,∠ADG =45°,∴△ADG 是等腰直角三角形,③∠CDF =75°−45°=30°,∴∠DCF =∠DFC =75°,∴△DCF 是等腰直角三角形;④∵∠CED =∠EDC =30°,∴△ECD 是等腰三角形.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定,等腰三角形的判定和性质,熟练掌握全等三角形的判定与性质是解题的关键.2、(1)△DEF 是等边三角形,理由见解析(2)等边△ABC 的周长为18【分析】(1)利用△DEF 是等边三角形的性质以及三点的运动情况,求证EBD FCE ∆∆≌和ECF FAD ∆∆≌,进而证明==DE EF FD ,最后即可说明△DEF 是等边三角形.(2)利用题(1)的条件即∠DEC =150°,得出DEB ∆是含30角的直角三角形,求出122BD BE ==,最后求解出等边△ABC 的BC 长,最后即可求出等边△ABC 的周长. 【详解】(1)解:△DEF 是等边三角形,证明:由点D 、E 、F 的运动情况可知:AD BE CF ==,△ABC 是等边三角形,60A B C ∴∠=∠=∠=︒,AB BC CA ==,BD AB AD BC BE CE ∴=-=-=,CE BC BE CA CF AF =-=-=,在EBD ∆与FCE ∆中,BD CE B C BE CF =⎧⎪∠=∠⎨⎪=⎩()EBD FCE SAS ∴∆∆≌,DE EF ∴=,同理可证ECF FAD ∆∆≌,进而有=EF FD ,DE EF FD ∴==,故△DEF 是等边三角形.(2)解:由(1)可知△DEF 是等边三角形,且EBD FCE ∆∆≌,60DEF ∴∠=︒,BDE CEF ∠=∠,BD CE =,150DEC ∠=︒,90BDE CEF DEC DEF ∴∠=∠=∠-∠=︒,在Rt DEB ∆中,9030DEB B ∠=︒-∠=︒,122BD BE ∴==, 6BC BE CE BE BD ∴=+=+=,AB BC CA ==,∴等边△ABC 的周长为318BC =.【点睛】本题主要是考查了全等三角形的性质及判定、等边三角形的判定及性质和含30角直角三角形的性质,熟练利用等边三角形的性质,找到相等条件,进而证明全等三角形,综合利用全等三角形以及含30角直角三角形的性质,求出对应边长,是解决该题的关键.3、(1)①见解析; ②60α︒-,60;③MF =MA +ME ,证明见解析;(2)MF MA ME =-【分析】(1)①按照要求旋转作图即可;②由旋转和等腰三角形性质解出∠AEF ;再由三角形外角定理求出∠AMF ; ③在FE 上截取GF =ME ,连接AG ,证明△AFG ≌△AEM 且△AGM 为等边三角形后即可证得MF =MA +ME ;(2)根据题意画出图形,根据含30°的直角三角形的性质,即可得到结论.【详解】解:(1)①补全图形如下图:②∵∠CAE=∠DAC=α,∴∠BAE=30°+α∴∠FAE=2×(30°+α)∴∠AEF=()180-2+302α︒⨯︒=60°-α;∵∠AMF=∠CAE+∠AEF=α+60°-α=60°,故答案是:60°-α,60°;③MF=MA+ME.证明:在FE上截取GF=ME,连接AG.∵点D 关于直线AC 的对称点为E ,∴△ADC ≌△AEC .∴∠CAE =∠CAD =α.∵∠BAC =30°,∴∠EAN =30°+α.又∵点E 关于直线AB 的对称点为F ,∴AB 垂直平分EF .∴AF =AE ,∠FAN =∠EAN =30°+α,∴∠F =∠AEF =()180230602αα︒-︒+=︒-.∴∠AMG =6060αα︒-+=︒.∵AF =AE ,∠F =∠AEF , GF =ME ,∴△AFG ≌△AEM .∴AG =AM .又∵∠AMG =60︒,∴△AGM 为等边三角形.∴MA =MG .∴MF =MG +GF =MA +ME .(2)MF MA ME =-,理由如下:如图1所示,∵点E 与点F 关于直线AB 对称,∴∠ANM =90°,NE =NF ,又∵∠NAM =30°,∴AM=2MN,∴AM=2NE+2EM =MF+ME,∴MF=AM-ME;如图2所示,∵点E与点F关于直线AB对称,∴∠ANM=90°,NE=NF,∵∠NAM=30°,∴AM=2NM,∴AM=2MF+2NF=2MF+NE+NF=ME+MF,∴MF=MA-ME;综上所述:MF=MA-ME.【点睛】本题考查轴对称、三角形全等判定与性质、等边三角形判定与性质,掌握这些是本题关键.4、(1(2)直角三角形(3)5(4)图形见解析【分析】(1)根据勾股定理计算即可;(2)求出BC 、AC 的长即可判断△ABC 的形状;(3)由(2)可知△ABC 是直角三角形,直接利用公式求面积;(4)分别画出A 、B 、C 关于直线l 的轴对称点111A B C 、、,再依次链接111A B C 、、即可.(1)AB (2)AC BC =∴22220AB AC BC +==∴△ABC 的形状是一个直角三角形(3)由(2)可知△ABC 是直角三角形∴11==22ABC S AB AC ∆⋅ (4)图形如图所示:【点睛】 本题考查网格中作对称及利用勾股定理求边长,属于常规题,解题的关键是熟练在网格中找到线段所在的直角三角形.5、10【分析】依据垂直平分线的性质得DB DC =.ABD ∆周长转化为+AB AC 即可求解.【详解】解:由已知作图方法可得,DN 是线段BC 的垂直平分线,所以,BD CD =,因为,6AC =,4AB =,所以,4610AB BD AD AB CD AD AB AC ++=++=+=+=,因此,ABD △的周长是10.【点睛】本题主要考查中垂线性质,解题的关键是掌握中垂线上一点到线段两端点距离相等,将所求周长转化为+AB AC 的和即可.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章复习
一、填空题(每空3分,共36分)
1.在△ABC中,AB=AC,∠A=44°,则∠B=度.
2.等腰三角形的一个角为50°,则顶角是度.
3.如图,AB=AD,只需添加一个条件,就可以判定△ABC≌△ADE.
4.已知等腰三角形两条边的长分别是3和6,则它的周长等于.
5.如图,在△ABC中,∠C=90°,D为BC上的一点,且DA=DB,DC=AC.则∠B=度.
(第3题图) (第5题图) (第6题图) 6.如图,△ABC中,∠ACB=90°,CD⊥AB于点D,∠A=30°,BD=1.5cm,则
AD= cm.
7.在△ABC中,∠A:∠B:∠C=1:2:3,AB=6cm,则BC=cm.
8.在△ABC中,AB=AC,∠BAC=120°,延长BC到D,使CD=AC,则∠CDA =度.
9.等边△ABC的周长为12cm,则它的面积为cm2.
10.如图,ED为△ABC的AC边的垂直平分线,且AB=5,△BCE的周长为8,则BC=.
(第10题图) (第11题图)
11.如图,在△ABC中,∠C=90°,∠B=15°,AB的垂直平分线交BC于D,交AB于E,若DB=10cm,则AC=.
12.命题“角平分线上的点到这个角的两边的距离相等”的逆命题是。

二、选择题(每空3分,共24分)
13.下列条件中能判定△ABC≌△DEF的是( )
A.AB=DE,BC=EF,∠A=∠D B.∠A=∠D,∠B=∠E,∠C=∠F C.AC=DF,∠B=∠F,AB=DE D.∠B=∠E,∠C=∠F,AC=DF 14.下列命题中正确的是( )
A.有两条边相等的两个等腰三角形全等B.两腰对应相等的两个等腰三角形全等C.两角对应相等的两个等腰三角形全等D.一边对应相等的两个等边三角形全等15.对“等角对等边”这句话的理解,正确的是( )
A.只要两个角相等,那么它们所对的边也相等
B.在两个三角形中,如果有两个角相等,那么它们所对的边也相等
C.在一个三角形中,如果有两个角相等,那么它们所对的边也相等
D.以上说法都是错误的
16.以下各组数为三角形的三条边长,其中能作成直角三角形的是( )
A.2,3,4 B.4,5,6 C.1,2,3D.2,2,4
17.如图,△ABC与△BDE都是等边三角形,AB<BD.若△ABC不动,将△BDC绕B点旋转,则在旋转过程中,AE与CD的大小关系为( )
A.AE=CD B.AE>CD C AE<CD D.无法确定
(第17题图)(第18题图)
18.如图,△ABC中,AC=BC,直线l经过点C,则( )
A.l垂直AB B.l平分AB C.l垂直平分AB D.不能确定
19.三角形中,若一个角等于其他两个角的差,则这个三角形是( )
A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形
20.已知△ABC中,A B=AC,AB的垂直平分线交AC于D,△ABC和△DBC的周长分别是60 cm和38 cm,则△ABC的腰和底边长分别为( )
A.24 cm和12 cm B.16 cm和22 cm C.20 cm和16 cm D.22 cm和16 cm
三、解答题(6+6+6+6+8+8分,共40分)
21.如图,在△ABC中,∠ACB=90°,BC=15,AC=20,CD是高.
(1)求AB的长;
(2)求△ABC的面积;
(3)求CD的长.
22.已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.
23.已知:如图,△ABC和△CDE都是等边三角形,点D在BC边上.求证:AD=BE.
24.求证:等腰三角形两腰上的中线的交点到底边两个端点的距离相等.
25.已知:如图,等腰三角形ABC中,AC=BC,∠ACB=90°,直线l经过点C(点A、B都在直线l的同侧),AD⊥l,BE⊥l,垂足分别为D、E.你知道线段AD、DE、BE的关系吗?证明你的结论。

26. 已知:如图,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合.
(1)当∠A满足什么条件时,点D恰为AB的中点?写出
一个你认为适当的条件,并利用此条件证明D为AB的中点;
(2)在(1)的条件下,若DE=1,求△ABC的面积.。

相关文档
最新文档