高中数学-解三角形应用举例练习及答案
高中数学解三角形应用举例(有答案)

解三角形应用举例一.选择题(共19小题)1.(2014•海南模拟)如图,已知A,B两点分别在河的两岸,某测量者在点A所在的河岸边另选定一点C,测得AC=50m,∠ACB=45°,∠CAB=105°,则A、B两点的距离为()A.m B.m C.m D.m2.(2014•海淀区二模)如图所示,为了测量某湖泊两侧A、B间的距离,李宁同学首先选定了与A、B 不共线的一点C,然后给出了三种测量方案:(△ABC的角A、B、C所对的边分别记为a、b、c):①测量A、C、b;②测量a、b、C;③测量A、B、a;则一定能确定A、B间距离的所有方案的序号为()A.①②B.②③C.①③D.①②③3.(2014•重庆一模)在O点测量到远处有一物体在做匀速直线运动,开始时该物体位于P点,一分钟后,其位置在Q点,且∠POQ=90°,再过两分钟后,该物体位于R点,且∠QOR=30°,则tan∠OPQ的值为()A.B.C.D.4.(2014•成都三模)在一条东西走向的水平公路的北侧远处有一座高塔,塔底与这条公路在同一水平面上,为了测量该塔的高度,测量人员在公路上选择了A、B两个观测点,在A处测得该塔底部C在西偏北α的方向上,在B处测得塔底C在西偏北β的方向上,并测得塔顶D的仰角为γ,已知AB=a,0<γ<β<α<,则此塔高CD为()B.tanγA.tanγC.D.tanγtanγ5.(2014•浙江模拟)如图,在铁路建设中,需要确定隧道两端的距离(单位:百米),已测得隧道两端点A,B到某一点C的距离分别为5和8,∠ACB=60°,则A,B之间的距离为()A.7B.10C.6D.86.(2014•房山区一模)如图,有一块锐角三角形的玻璃余料,欲加工成一个面积不小于800cm2的内接矩形玻璃(阴影部分),则其边长x(单位:cm)的取值范围是()A.[10,30]B.[25,32]C.[20,35]D.[20,40]7.(2014•濮阳一模)如图所示,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救,甲船立即前往营救,同时把消息告知在甲船的南偏西30°相距10海里C处的乙船,乙船立即朝北偏东θ+30°角的方向沿直线前往B处营救,则sinθ的值为()A.B.C.D.8.(2014•成都三模)某公司要测量一水塔CD的高度,测量人员在该水塔所在的东西方向水平直线上选择A,B两个观测点,在A处测得该水塔顶端D的仰角为α,在B处测得该水塔顶端D的仰角为β,已知AB=a,0<β<α<,则水塔CD的高度为()A .B.C.D.9.(2014•怀化一模)在等腰Rt△ABC中,AB=AC=4,点P是边AB上异于A,B的一点,光线从点P 出发,经BC,CA反射后又回到原来的点P.若,则△PQR的周长等于()A.B.C.D.10.(2012•珠海一模)台风中心从A地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B在A的正东40千米处,则B城市处于危险区内的时间为()A.B.1小时C.D.2小时11.(2011•宝鸡模拟)一质点受到平面上的三个力F1,F2,F3(单位:牛顿)的作用而处于平衡状态.已知D成120°角,且y=g(x)的大小分别为1和2,则有()A.F1,F3成90°角B.F1,F3成150°角C.F2,F3成90°角D.F2,F3成60°角12.(2011•大连二模)已知A船在灯塔C北偏东75°且A到C的距离为3km,B船在灯塔C西偏北15o 且B到C的距离为km,则A,B两船的距离为()A.5km B.km C.4km D.km13.(2011•安徽模拟)如图,在山脚下A测得山顶P的仰角为α,沿倾斜角为β的斜坡向上走a米到达B,在B处测得山顶P的仰角为γ,则山高PQ为()A.B.C.D.14.(2010•武昌区模拟)某人朝正东方向走xkm后,向右转150°,然后朝新方向走3km,结果他离出发点恰好,那么x的值为()A.2或B.2C.D.315.(2010•江门一模)海事救护船A在基地的北偏东60°,与基地相距海里,渔船B被困海面,已知B距离基地100海里,而且在救护船A正西方,则渔船B与救护船A的距离是()A.100海里B.200海里C.100海里或200海里D.海里16.(2010•武汉模拟)飞机从甲地以北偏西15°的方向飞行1400km到达乙地,再从乙地以南偏东75°的方向飞行1400km到达丙地,那么丙地距甲地距离为()A.1400km B.700km C.700km D.1400km17.(2010•石家庄二模)如图,一条宽为a的直角走廊,现要设计一辆可通过该直角走廊的矩形面平板车,其宽为b(0<b<a).则该平板车长度的最大值为()A.B.C.D.18.(2009•韶关二模)北京2008年第29届奥运会开幕式上举行升旗仪式,在坡度15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为米(如图所示),则旗杆的高度为()A.10米B.30米C.10米D.米19.(2009•温州一模)北京2008年第29届奥运会开幕式上举行升旗仪式,在坡度15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,看台上第一排和最后一排的距离米(如图所示),旗杆底部与第一排在一个水平面上,已知国歌长度约为50秒,升旗手匀速升旗的速度为()A.(米/秒)B.(米/秒)C.(米/秒)D.(米/秒)二.填空题(共7小题)20.(2014•重庆模拟)如图,割线PBC经过圆心O,PB=OB=1,PB绕点O逆时针旋120°到OD,连PD 交圆O于点E,则PE=_________.21.(2014•南昌模拟)已知△ABC中,角A,B,C所对应的边的边长分别为a,b,c,外接圆半径是1,且满足条件2(sin2A﹣sin2C)=(sinA﹣sinB)b,则△ABC面积的最大值为_________.22.(2014•韶关二模)一只艘船以均匀的速度由A点向正北方向航行,如图,开始航行时,从A点观测灯塔C的方位角(从正北方向顺时针转到目标方向的水平角)为45°,行驶60海里后,船在B点观测灯塔C的方位角为75°,则A到C的距离是_________海里.23.(2014•潍坊二模)如图所示,位于东海某岛的雷达观测站A,发现其北偏东45°,与观测站A距离20海里的B处有一货船正匀速直线行驶,半小时后,又测得该货船位于观测站A东偏北θ(0°<θ<45°)的C处,且cosθ=,已知A、C两处的距离为10海里,则该货船的船速为_________海里/小时.24.(2014•潍坊三模)如图,C、D是两个小区所在地,C、D到一条公路AB的垂直距离分别为CA=1km,DB=2km,A、B间的距离为3km,某公交公司要在A、B之间的某点N处建造一个公交站点,使得N对C、D两个小区的视角∠CND最大,则N处与A处的距离为_________km.25.(2014•台州一模)为了测量A,C两点间的距离,选取同一平面上B,D两点,测出四边形ABCD 各边的长度(单位:km)如图所示,且∠B+∠D=180°,则AC的长为_________km.m/s的速率,从路灯在地面上的射影点C处,沿某直线离开路灯,那么人影长度的变化速率v为_________m/s.三.解答题(共4小题)27.(2014•广州模拟)如图,某测量人员,为了测量西江北岸不能到达的两点A,B之间的距离,她在西江南岸找到一个点C,从C点可以观察到点A,B;找到一个点D,从D点可以观察到点A,C;找到一个点E,从E点可以观察到点B,C;并测量得到数据:∠ACD=90°,∠ADC=60°,∠ACB=15°,∠BCE=105°,∠CEB=45°,DC=CE=1(百米).(1)求△CDE的面积;(2)求A,B之间的距离.28.(2014•福建模拟)如图,经过村庄A有两条夹角为60°的公路AB,AC,根据规划拟在两条公路之间的区域内建一工厂P,分别在两条公路边上建两个仓库M、N (异于村庄A),要求PM=PN=MN=2(单位:千米).如何设计,使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离最远).29.(2010•福建)某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.(Ⅰ)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(Ⅱ)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值;(Ⅲ)是否存在v,使得小艇以v海里/小时的航行速度行驶,总能有两种不同的航行方向与轮船相遇?若存在,试确定v的取值范围;若不存在,请说明理由.30.在平地上有A、B两点,A在山的正东,B在山的东南,且在A的西偏南65°距离为300米的地方,在A测得山顶的仰角是30°,求山高(精确到10米,sin70°=0.94).2014年12月27日高中数学解三角形应用举例参考答案与试题解析一.选择题(共19小题)1.(2014•海南模拟)如图,已知A,B两点分别在河的两岸,某测量者在点A所在的河岸边另选定一点C,测得AC=50m,∠ACB=45°,∠CAB=105°,则A、B两点的距离为()A.m B.m C.m D.m考点:解三角形的实际应用.专题:应用题;解三角形.分析:依题意在A,B,C三点构成的三角形中利用正弦定理,根据AC,∠ACB,B的值求得AB解答:解:由正弦定理得,∴AB===50,∴A,B两点的距离为50m,故选:D.点评:本题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.2.(2014•海淀区二模)如图所示,为了测量某湖泊两侧A、B间的距离,李宁同学首先选定了与A、B 不共线的一点C,然后给出了三种测量方案:(△ABC的角A、B、C所对的边分别记为a、b、c):①测量A、C、b;②测量a、b、C;③测量A、B、a;则一定能确定A、B间距离的所有方案的序号为()A.①②B.②③C.①③D.①②③考点:解三角形的实际应用.专题:应用题;解三角形.分析:根据图形,可以知道a,b可以测得,角A、B、C也可测得,利用测量的数据,求解A,B两点间的距离唯一即可.解答:解:对于①③可以利用正弦定理确定唯一的A,B两点间的距离.对于②直接利用余弦定理即可确定A,B两点间的距离.故选:D.点评:本题以实际问题为素材,考查解三角形的实际应用,解题的关键是分析哪些可测量,哪些不可直接测量,注意正弦定理的应用.3.(2014•重庆一模)在O点测量到远处有一物体在做匀速直线运动,开始时该物体位于P点,一分钟后,其位置在Q点,且∠POQ=90°,再过两分钟后,该物体位于R点,且∠QOR=30°,则tan∠OPQ的值为()A.B.C.D.考点:解三角形的实际应用.专题:计算题;解三角形.分析:根据题意设PQ=x,可得QR=x,∠POQ=90°,∠QOR=30°,∠OPQ+∠R=60°.算出∠R=60°﹣∠OPQ,分别在△ORQ、△OPQ中利用正弦定理,计算出OQ长,再建立关于∠OPQ的等式,解之即可求出tan∠OPQ的值.解答:解:根据题意,设PQ=x,则QR=2x,∵∠POQ=90°,∠QOR=30°,∴∠OPQ+∠R=60°,即∠R=60°﹣∠OPQ在△ORQ中,由正弦定理得∴OQ==2xsin(60°﹣∠OPQ)在△OPQ中,由正弦定理得OQ=×sin∠OPQ=xsin∠OPQ∴2xsin(60°﹣∠OPQ)=xsin∠OPQ∴2sin(60°﹣∠OPQ)=sin∠OPQ∴=sin∠OPQ整理得cos∠OPQ=2sin∠OPQ,所以tan∠OPQ==.故选:B点评:本题考查利用正弦定理解决实际问题,要把实际问题转化为数学问题,利用三角函数有关知识进行求解是解决本题的关键.4.(2014•成都三模)在一条东西走向的水平公路的北侧远处有一座高塔,塔底与这条公路在同一水平面上,为了测量该塔的高度,测量人员在公路上选择了A、B两个观测点,在A处测得该塔底部C在西偏北α的方向上,在B处测得塔底C在西偏北β的方向上,并测得塔顶D的仰角为γ,已知AB=a,0<γ<β<α<,则此塔高CD为()B.tanγA.tanγC.D.tanγtanγ考点:解三角形的实际应用.专题:计算题.分析:先求出BC,再求出CD即可.解答:解:在△ABC中,∠ACB=α﹣β,∠ACBA=π﹣α,AB=a,∴,∴BC=,∴CD=BCtanγ=tanγ.故选:B.点评:本题主要考查了解三角形的实际应用.考查了运用数学知识,建立数学模型解决实际问题的能力.5.(2014•浙江模拟)如图,在铁路建设中,需要确定隧道两端的距离(单位:百米),已测得隧道两端点A,B到某一点C的距离分别为5和8,∠ACB=60°,则A,B之间的距离为()A.7B.10C.6D.8考点:解三角形的实际应用.专题:解三角形.分析:由余弦定理和已知边和角求得AB的长度.解答:解:由余弦定理知AB===7,所以A,B之间的距离为7百米.故选:A.点评:本题主要考查了余弦定理的应用.已知两边和一个角,求边常用余弦定理来解决.6.(2014•房山区一模)如图,有一块锐角三角形的玻璃余料,欲加工成一个面积不小于800cm2的内接矩形玻璃(阴影部分),则其边长x(单位:cm)的取值范围是()A.[10,30]B.[25,32]C.[20,35]D.[20,40]考点:解三角形的实际应用.专题:应用题;解三角形.分析:设矩形的另一边长为ym,由相似三角形的性质可得:,(0<x<60).矩形的面积S=x(60﹣x),利用S≥800解出即可.解答:解:设矩形的另一边长为ym,由相似三角形的性质可得:,解得y=60﹣x,(0<x<60)∴矩形的面积S=x(60﹣x),∵矩形花园的面积不小于800m2,∴x(60﹣x)≥800,化为(x﹣20)(x﹣40)≤0,解得20≤x≤40.满足0<x<60.故其边长x(单位m)的取值范围是[20,40].故选:D.点评:本题考查了相似三角形的性质、三角形的面积计算公式、一元二次不等式的解法等基础知识与基本技能方法,属于中档题.7.(2014•濮阳一模)如图所示,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救,甲船立即前往营救,同时把消息告知在甲船的南偏西30°相距10海里C处的乙船,乙船立即朝北偏东θ+30°角的方向沿直线前往B处营救,则sinθ的值为()A.B.C.D.考点:解三角形的实际应用.专题:应用题;解三角形.分析:连接BC,在三角形ABC中,利用余弦定理求出BC的长,再利用正弦定理求出sin∠ACB的值,即可求出sinθ的值.解答:解:连接BC,在△ABC中,AC=10海里,AB=20海里,∠CAB=120°根据余弦定理得:BC2=AC2+AB2﹣2AC•AB•cos∠CAB=100+400+200=700,∴BC=10海里,根据正弦定理得,即,∴sin∠ACB=,∴sinθ=.故选:A.点评:解三角形问题,通常要利用正弦定理、余弦定理,同时往往与三角函数知识相联系.8.(2014•成都三模)某公司要测量一水塔CD的高度,测量人员在该水塔所在的东西方向水平直线上选择A,B两个观测点,在A处测得该水塔顶端D的仰角为α,在B处测得该水塔顶端D的仰角为β,已知AB=a,0<β<α<,则水塔CD的高度为()A .B.C.D.考点:解三角形的实际应用.专题:应用题;解三角形.分析:设CD=x,求出AC,BC,利用a=BC﹣AC,即可求出水塔CD的高度.解答:解:设CD=x,则AC=,∵BC=,a=BC﹣AC,∴a=﹣,∴x==,故选:B.点评:本题考查解三角形的实际应用,考查学生的计算能力,求出AC,BC是关键.9.(2014•怀化一模)在等腰Rt△ABC中,AB=AC=4,点P是边AB上异于A,B的一点,光线从点P 出发,经BC,CA反射后又回到原来的点P.若,则△PQR的周长等于()A.B.C.D.考点:解三角形的实际应用.专题:综合题;解三角形.分析:建立坐标系,设点P的坐标,可得P关于直线BC的对称点P1的坐标,和P关于y轴的对称点P2的坐标,由P1,Q,R,P2四点共线可得△PQR的周长.解答:解:建立如图所示的坐标系:可得B(4,0),C(0,4),P(,0)故直线BC的方程为x+y=4,P关于y轴的对称点P2(﹣,0),设点P关于直线BC的对称点P1(x,y),满足,解得,即P1(4,),由光的反射原理可知P1,Q,R,P2四点共线,故△PQR的周长等于|P1P2|==.故选:A.点评:本题考查直线与点的对称问题,涉及直线方程的求解以及光的反射原理的应用,属中档题.10.(2012•珠海一模)台风中心从A地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B在A的正东40千米处,则B城市处于危险区内的时间为()A.B.1小时C.D.2小时考点:解三角形的实际应用.专题:计算题.分析:先以A为坐标原点,建立平面直角坐标系,进而可知B点坐标和台风中心移动的轨迹,求得点B 到射线的距离,进而求得答案.解答:解:如图,以A为坐标原点,建立平面直角坐标系,则B(40,0),台风中心移动的轨迹为射线y=x(x≥0),而点B到射线y=x的距离d==20<30,故l=2=20,故B城市处于危险区内的时间为1小时,故选B.点评:本题主要考查了解三角形的实际应用.通过建立直角坐标系把三角形问题转换成解析几何的问题,方便了问题的解决.11.(2011•宝鸡模拟)一质点受到平面上的三个力F1,F2,F3(单位:牛顿)的作用而处于平衡状态.已知D成120°角,且y=g(x)的大小分别为1和2,则有()A.F1,F3成90°角B.F1,F3成150°角C.F2,F3成90°角D.F2,F3成60°角考点:解三角形的实际应用;向量的模;向量在物理中的应用.分析:处于平衡状态即三个力合力为0,利用向量表示出等式,将等式变形平方,利用数量积公式求出,T通过三角形边的关系求出角.解答:解:由⇒⇒=+2||•||cos120°=由知,F1,F3成90°角,故选A.点评:本题考查向量的数量积公式、向量模的求法、及解三角形.12.(2011•大连二模)已知A船在灯塔C北偏东75°且A到C的距离为3km,B船在灯塔C西偏北15o 且B到C的距离为km,则A,B两船的距离为()A.5km B.km C.4km D.km考点:解三角形的实际应用.专题:计算题.分析:先画出简图求出角A的值,再由余弦定理可得到AB的值.解答:解:依题意可得简图,可知A=150°,根据余弦定理可得,AB2=BC2+AC2﹣2BC×ACcosC=16,∴AB=4.故选C.点评:本题主要考查余弦定理的应用.属基础题.主要在于能够准确的画出图形来.13.(2011•安徽模拟)如图,在山脚下A测得山顶P的仰角为α,沿倾斜角为β的斜坡向上走a米到达B,在B处测得山顶P的仰角为γ,则山高PQ为()A.B.C.D.考点:解三角形的实际应用.专题:计算题;应用题.分析:△PAB中,由正弦定理可得PB=,根据PQ=PC+CQ=PB•sinγ+asinβ通分化简可得结果.解答:解:△PAB中,∠PAB=α﹣β,∠BPA=(﹣α)﹣(﹣γ)=γ﹣α,∴=,即PB=.PQ=PC+CQ=PB•sinγ+asinβ=,故选B.点评:本题考查正弦定理的应用,直角三角形中的边角关系,求出PB=,是解题的关键.14.(2010•武昌区模拟)某人朝正东方向走xkm后,向右转150°,然后朝新方向走3km,结果他离出发点恰好,那么x的值为()A.2或B.2C.D.3考点:解三角形的实际应用.专题:计算题.分析:作出图象,三点之间正好组成了一个知两边与一角的三角形,由余弦定理建立关于x的方程即可求得x的值.解答:解:如图,AB=x,BC=3,AC=,∠ABC=30°.由余弦定理得3=x2+9﹣2×3×x×cos30°.解得x=2或x=故选A.点评:考查解三角形的知识,其特点从应用题中抽象出三角形.根据数据特点选择合适的定理建立方程求解.15.(2010•江门一模)海事救护船A在基地的北偏东60°,与基地相距海里,渔船B被困海面,已知B距离基地100海里,而且在救护船A正西方,则渔船B与救护船A的距离是()A.100海里B.200海里C.100海里或200海里D.海里考点:解三角形的实际应用.专题:计算题.分析:先根据正弦定理求得sinB的值,进而确定B的值,最后根据B的值,求得AB.解答:解:设基地为与O处,根据正弦定理可知=∴sinB=•OA==∴B=60°或120°当B=60°,∠BOA=90°,∠A=30°BA=2OB=200当B=120°,∠A=∠B=30°∴OB=AB=100故渔船B与救护船A的距离是100或200海里.故选C点评:本题主要考查了解三角形的实际应用.考查了学生转化和化归思想和逻辑思维的能力.16.(2010•武汉模拟)飞机从甲地以北偏西15°的方向飞行1400km到达乙地,再从乙地以南偏东75°的方向飞行1400km到达丙地,那么丙地距甲地距离为()A.1400km B.700km C.700km D.1400km考点:解三角形的实际应用.专题:计算题;数形结合.分析:设A,B,C分别对应甲、乙、丙三地,由B向x轴做垂线垂足为D,则∠BAD和∠DBC可知,进而求得∠ABC=60°判断出三角形为正三角形,进而求得AC.解答:解:依题意,设A,B,C分别对应甲、乙、丙三地,由B向x轴做垂线垂足为D,则∠BAD=75°,∠DBC=75°∴∠ABC=75°﹣15°=60°∴AB=BC=1400∴△ABC为正三角形∴AC=1400千米.故选A.点评:本题主要考查了解三角形的应用.要注意特殊三角形的运用.17.(2010•石家庄二模)如图,一条宽为a的直角走廊,现要设计一辆可通过该直角走廊的矩形面平板车,其宽为b(0<b<a).则该平板车长度的最大值为()A.B.C.D.考点:解三角形的实际应用.专题:应用题.分析:先设平板手推车的长度不能超过x米,此时平板车所形成的三角形:ADG为等腰直角三角形.连接EG与AD交于点F,利用ADG为等腰直角三角形即可求得平板手推车的长度解答:解:设平板车的长度的最大值为x由题意可得△ADG为等腰直角三角形,连接EG交AD于F,则EG== aFG=EG﹣EF=得△ADG为等腰直角三角形,AD=2AF=2FG=故选:C点评:本题主要考查了在实际问题中建立三角函数模型,解答的关键是由实际问题:要想顺利通过直角走廊,转化为数学问题:此时平板手推车所形成的三角形为等腰直角三角形18.(2009•韶关二模)北京2008年第29届奥运会开幕式上举行升旗仪式,在坡度15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为米(如图所示),则旗杆的高度为()A.10米B.30米C.10米D.米考点:解三角形的实际应用.专题:计算题;数形结合.分析:先画出示意图,根据题意可求得∠AEC和∠ACE,则∠EAC可求,然后利用正弦定理求得AC,最后在Rt△ABC中利用AB=AC•sin∠ACB求得答案.解答:解:如图所示,依题意可知∠AEC=45°,∠ACE=180°﹣60°﹣15°=105°∴∠EAC=180°﹣45°﹣105°=30°由正弦定理可知=,∴AC=•sin∠CEA=20米∴在Rt△ABC中,AB=AC•sin∠ACB=20×=30米答:旗杆的高度为30米故选B.点评:本题主要考查了解三角形的实际应用.此类问题的解决关键是建立数学模型,把实际问题转化成数学问题,利用所学知识解决.19.(2009•温州一模)北京2008年第29届奥运会开幕式上举行升旗仪式,在坡度15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,看台上第一排和最后一排的距离米(如图所示),旗杆底部与第一排在一个水平面上,已知国歌长度约为50秒,升旗手匀速升旗的速度为()A.(米/秒)B.(米/秒)C.(米/秒)D.(米/秒)考点:解三角形的实际应用.专题:计算题;应用题.分析:先根据题意可知∠DAB,∠ABD和∠ADB,AB,然后在△ABD利用正弦定理求得BD,进而在Rt△BCD求得CD,最后利用路程除以时间求得旗手升旗的速度.解答:解:由条件得△ABD中,∠DAB=45°,∠ABD=105°,∠ADB=30°,AB=10,由正弦定理得BD=•AB=20则在Rt△BCD中,CD=20×sin60°=30所以速度V==米/秒故选A.点评:本题主要考查了解三角形的实际应用.考查了学生分析问题和基本的推理能力,运算能力.二.填空题(共7小题)20.(2014•重庆模拟)如图,割线PBC经过圆心O,PB=OB=1,PB绕点O逆时针旋120°到OD,连PD 交圆O于点E,则PE=.考点:三角形中的几何计算.专题:计算题.分析:先由余弦定理求出PD,再根据割线定理即可求出PE,问题解决.解答:解:由余弦定理得,PD2=OD2+OP2﹣2OD•OPcos120°=1+4﹣2×1×2×(﹣)=7,所以PD=.根据割线定理PE•PD=PB•PC得,PE=1×3,所以PE=.故答案为.点评:已知三角形两边与夹角时,一定要想到余弦定理的运用,之后做题的思路也许会豁然开朗.21.(2014•南昌模拟)已知△ABC中,角A,B,C所对应的边的边长分别为a,b,c,外接圆半径是1,且满足条件2(sin2A﹣sin2C)=(sinA﹣sinB)b,则△ABC面积的最大值为.考点:三角形中的几何计算;三角函数中的恒等变换应用.专题:计算题.分析:把b=2sinB 代入已知等式并应用正弦定理得a2+b2﹣c2=ab,由余弦定理得cosC=,得到C=60°,由ab=a2+b2﹣3≥2ab﹣3 求得ab最大值为3,从而求得△ABC面积的最大值.解答:解:由正弦定理可得b=2RsinB=2sinB,代入已知等式得2sin2A﹣2sin2C=2sinAsinB﹣2sin2B,sin2A+sin2B﹣sin2C=sinAsinB,∴a2+b2﹣c2=ab,∴cosC==,∴C=60°.∵ab=a2+b2﹣c2=a2+b2﹣(2rsinC)2=a2+b2﹣3≥2ab﹣3,∴ab≤3 (当且仅当a=b时,取等号),∴△ABC面积为≤×3×=,故答案为.点评:本题考查正弦定理、余弦定理,基本不等式的应用,求出ab≤3是解题的难点.22.(2014•韶关二模)一只艘船以均匀的速度由A点向正北方向航行,如图,开始航行时,从A点观测灯塔C的方位角(从正北方向顺时针转到目标方向的水平角)为45°,行驶60海里后,船在B点观测灯塔C的方位角为75°,则A到C的距离是30(+)海里.考点:解三角形的实际应用.专题:应用题;解三角形.分析:由题意,∠ABC=105°,∠C=30°,AB=60海里,由正弦定理可得AC.解答:解:由题意,∠ABC=105°,∠C=30°,AB=60海里.由正弦定理可得AC==30(+)海里.故答案为:30(+).点评:本题考查正弦定理,考查学生的计算能力,属于基础题.23.(2014•潍坊二模)如图所示,位于东海某岛的雷达观测站A,发现其北偏东45°,与观测站A距离20海里的B处有一货船正匀速直线行驶,半小时后,又测得该货船位于观测站A东偏北θ(0°<θ<45°)的C处,且cosθ=,已知A、C两处的距离为10海里,则该货船的船速为4海里/小时.考点:解三角形的实际应用.专题:解三角形.分析:根据余弦定理求出BC的长度即可得到结论.解答:解:∵cosθ=,∴sin=,由题意得∠BAC=45°﹣θ,即cos∠BAC=cos(45°﹣θ)=,∵AB=20,AC=10,∴由余弦定理得BC2=AB2+AC2﹣2AB•ACcos∠BAC,即BC2=(20)2+102﹣2×20×10×=800+100﹣560=340,即BC=,设船速为x,则=2,∴x=4(海里/小时),故答案为:4点评:本题主要考查解三角形的应用,根据条件求出cos∠BAC,以及利用余弦定理求出BC的长度是解决本题的关键.24.(2014•潍坊三模)如图,C、D是两个小区所在地,C、D到一条公路AB的垂直距离分别为CA=1km,DB=2km,A、B间的距离为3km,某公交公司要在A、B之间的某点N处建造一个公交站点,使得N对C、D两个小区的视角∠CND最大,则N处与A处的距离为2﹣3km.考点:解三角形的实际应用.专题:应用题;三角函数的求值.分析:设出NA的长度x,把∠CNA与∠DNB的正切值用含有x的代数式表示,最后把∠CND的正切值用含有x的代数式表示,换元后再利用基本不等式求最值,最后得到使N对C、D两个小区的视角∠CND最大时的x值,即可确定点N的位置.解答:解:设NA=x,∠CNA=α,∠DNB=β.依题意有tanα=,tanβ=,tan∠CND=tan[π﹣(α+β)]=﹣tan(α+β)=﹣=,令t=x+3,由0<x<3,得3<t<6,则=∵4≤t+<3+∴t=2,即x=2﹣3时取得最大角,故N处与A处的距离为(2﹣3)km.故答案为:2﹣3.点评:本题考查解三角形的实际应用,考查了利用基本不等式求最值,解答的关键是把实际问题转化为数学问题,是中档题.25.(2014•台州一模)为了测量A,C两点间的距离,选取同一平面上B,D两点,测出四边形ABCD 各边的长度(单位:km)如图所示,且∠B+∠D=180°,则AC的长为km.考点:解三角形的实际应用.专题:计算题;解三角形.分析:利用余弦定理,结合∠B+∠D=180°,即可求出AC的长.解答:解:由余弦定理可得AC2=22+32﹣2•2•3•cosD=13﹣12cosD,AC2=52+82﹣2•5•8•cosB=89﹣80cosB,∵∠B+∠D=180°,∴2AC2=13+89=102,∴AC=km.故答案为:点评:本题考查余弦定理,考查三角函数知识,正确运用余弦定理是关键.m/s的速率,从路灯在地面上的射影点C处,沿某直线离开路灯,那么人影长度的变化速率v为m/s.考点:解三角形的实际应用.专题:解三角形.分析:由题意画出几何图形,设出人从C点运动到B处路程、运动时间及人影长度,由三角形相似求出人影长度与运动路程间的关系式,把运动路程用运动速度和运动时间替换,求导后得答案.解答:解:如图,路灯距地平面的距离为DC,人的身高为EB.设人从C点运动到B处路程为x米,时间为t(单位:秒),AB为人影长度,设为y,∵BE∥CD,∴.∴,∴y=x,又∵x=t,∴y=x=t.则y′=,∴人影长度的变化速率为m/s.故答案为:.点评:本题考查了解三角形的实际应用,解答此题的关键是明确题意,把实际问题转化为数学问题,是。
【高二】高二数学解三角形的实际应用举例综合测试题(含答案)

【高二】高二数学解三角形的实际应用举例综合测试题(含答案)解三角形的实际应用举例同步练习1.在△ ABC,下面的公式是正确的()a.ab=sinbsinab.asinc=csinbc、 asin(a+b)=csinad。
c2=a2+b2-2abcos(a+b)2.已知三角形的三边长分别为a、b、a2+ab+b2,则这个三角形的最大角是()a、135°b.120°c.60°d.90°3.海上有a、b两个小岛相距10nmile,从a岛望b岛和c岛成60°的视角,从b岛望a岛和c岛成75°角的视角,则b、c间的距离是()a、 52nmileb。
103nmilec。
1036nmiled。
56N英里4.如下图,为了测量隧道ab的长度,给定下列四组数据,测量应当用数据a、α、a、bb。
α、β、ac.a、b、γd.α、β、γ5.有人以每小时AKM的速度向东走,而南风以每小时AKM的速度吹,那么此人感到的风向为,风速为.6.在△ ABC,tanb=1,Tanc=2,B=100,然后是C=7.某船开始看见灯塔在南偏东30°方向,后来船沿南偏东60°然后朝着灯塔的方向航行塔的距离是.8.a层和B层之间的距离为20m。
B栋底部至a栋顶部的仰角为60°,a栋顶部至B栋顶部的俯角为300。
那么a层和B层的高度分别为9.在塔底的水平面上某点测得塔顶的仰角为θ,由此点向塔沿直线行走30米,测得塔顶的仰角为2θ,再向塔前进103米,又测得塔顶的仰角为4θ,则塔高是米.10.在△ ABC,确认cos2aa2-cos2bb2=1a2-1b211.欲测河的宽度,在一岸边选定a、b两点,望对岸的标记物c,测得∠cab=45°,∠cba=75°,ab=120m,求河宽.(精确到0.01m)12.a船在a,B船在a船以东偏南45°,距离a船9海里,以20海里/小时的速度向西偏南15度行驶。
高中数学 必修五 解三角形应用举例(三)-角度及面积

2
2
例7. 在△ABC中,根据下列条件,求三角形的面积S
(精确到0.1cm²)
(4)已知 a 2,b 6, A 45 ;
解:由正弦定理可得sin B bsin A 6 sin 45 3
a
2
2
b a B 60 或B 120
(1)若B 60 ,则C 180 45 60 75
S=15,求角A的大小。
解: ABC的面积为S 1 ab sinC 30sinC 15
sin C 1
2
2
∵a>c , ∴∠C为锐角,故C=30o
B 180 C A 150 A
sin A cos B cos(150 A) 3 cos A 1 sin A
2
2
整理得 tan A 3
54.0sin137 113.15
0.3255,
ABC 137o 90o
故∠CAB≈19.0°,
∴75°-∠CAB=56.0°. 答:此船应该沿北偏东56.0°的方向航行,
需要航行113.15n mile.
变题:如图,甲船在 A 处观察到乙船在它的北偏东 60 方向的 B 处,且乙船正在向正北方向行驶,如果甲船的速度是乙船的
解:(2) b c sin B sin C
c b sin C 3.16 sin 65.8 3.24(cm)
sin B
sin 62.7
又 A 180 (62.7 65.8 ) 51.5
S bc sin A 1 3.163.24sin 51.5 4.0(cm2). 2
例7. 在△ABC中,根据下列条件,求三角形的面积S (精确到0.1cm²) (1)已知a=14.8cm,c=23.5cm,B=148.5°; (2)已知B=62.7°,C=65.8°,b=3.16cm; (3)已知三边的长分别为a=41.4cm,b=27.3cm,c=38.7cm.
高中数学解三角形-练习及详细答案

解三角形练习题一:在△ABC中,若∠A=60°,∠B=45°,BC=32,则AC=(). A.43B.2 3C. 3D.3 2题二:在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=23,c=22,1+tan Atan B=2cb,则C =().A.30°B.45°C.45°或135°D.60°题三:在△ABC中,角A、B、C所对的边分别是a、b、c.若b=2a sin B,则角A的大小为________.题四:在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2b-c)cos A-a cos C=0.求角A的大小.题五:在△ABC中,内角A,B,C依次成等差数列,AB=8,BC=5,则△ABC外接圆的面积为________.题六:在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sin B(tan A+tan C)=tan A tan C. 求证:a,b,c成等比数列.题七:某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值.题八:如图,在△ABC中,已知B=π3,AC=43,D为BC边上一点.若AB=AD,则△ADC的周长的最大值为________.题九:如图,在△ABC中,点D在BC边上,AD=33,sin∠BAD=513,cos∠ADC=35.(1)求sin∠ABD的值;(2)求BD的长.题十:如图,在湖面上高为10 m处测得天空中一朵云的仰角为30°,测得湖中之影的俯角为45°,则云距湖面的高度为(精确到0.1 m)().A.2.7 m B.17.3 mC.37.3 m D.373 m题十一:在△ABC中,若sin2A+sin2B < sin2C,则△ABC的形状是().A.锐角三角形B.直角三角形C.钝角三角形D.不能确定题十二:在△ABC中,a=2b cos C,则这个三角形一定是().A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形解三角形参考答案题一: B.详解:由正弦定理得:BC sin A = AC sin B ,即32sin 60° = AC sin 45° ,所以AC = 3232×22 =2 3. 题二: B.详解:由1+tan A tan B =2c b和正弦定理, 得cos A sin B +sin A cos B =2sin C cos A ,即sin C =2sin C cos A ,所以cos A =12,则A =60°. 由正弦定理得23sin A = 22sin C , 则sin C = 22, 又c < a ,则C < 60°,故C = 45°.题三: 30°或150°详解:由正弦定理得sin B =2sin A sin B ,因为sin B ≠ 0,所以sin A = 12,所以A =30°或A =150°. 题四: A =π3. 详解:由(2b -c )cos A -a cos C =0及正弦定理,得(2sin B -sin C )cos A -sin A cos C =0,所以2sin B cos A -sin(A +C )=0,即sin B (2cos A -1)=0.因为0 < B < π,所以sin B ≠ 0,所以cos A = 12. 因为0 < A < π,所以A = π3. 题五: 49π3. 详解:记△ABC 的外接圆半径为R .依题意得2B =A +C ,又A +C +B =π,因此有B = π3,所以AC =AB 2+BC 2-2AB ·BC ·cos B =7.又2R =AC sin B = 7sin 60°,即R = 73,故△ABC 的外接圆的面积是πR 2= 49π3. 题六: 见详解.详解:在△ABC 中,由于sin B (tan A +tan C )=tan A tan C ,所以sin B ()sin A cos A +sin C cos C =sin A cos A ·sin C cos C, 因此sin B (sin A cos C +cos A sin C )=sin A sin C ,所以sin B sin(A +C )=sin A sin C .又A +B +C =π,所以sin(A +C )=sin B ,因此sin 2B =sin A sin C .由正弦定理得b 2=ac ,即a ,b ,c 成等比数列.题七: (1) 303;(2) 小艇航行速度的最小值为1013 海里/小时. 详解:(1)设相遇时小艇航行的距离为S 海里, 则S =900t 2+400-2·30t ·20·cos (90°-30°)=900t 2-600t +400 = 900()t -132+300, 故当t = 13时,S min =103,v = 10313=303, 即小艇以303海里/小时的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在B 处相遇,如图所示.由题意可得:(vt )2=202+(30t )2-2·20·30t ·cos(90°-30°),化简得: v 2=400t 2-600t +900=400()1t -342+675. 由于0 < t ≤ 12,即1t ≥ 2,所以当 1t=2时,v 取得最小值1013, 即小艇航行速度的最小值为1013海里/小时.题八: 8+4 3.详解:因为AB =AD ,B = π3,所以△ABD 为正三角形, 在△ADC 中,根据正弦定理,可得AD sin C = 43sin 2π3 = DC sin ()π3-C , 所以AD =8sin C ,DC =8sin ()π3-C ,所以△ADC 的周长为AD +DC +AC=8sin C +8sin ()π3-C +4 3=8⎝⎛⎭⎫sin C +32cos C -12sin C +4 3 =8⎝⎛⎭⎫12sin C +32cos C +4 3 =8sin ()C +π3+43,因为∠ADC = 2π3,所以0 < C < π3,所以π3 < C +π3 < 2π3,所以当C +π3 = π2,即C = π6时,△ADC 的周长的最大值为8+4 3. 题九: (1) 3365.(2) 25. 详解:(1)因为cos ∠ADC = 35, 所以sin ∠ADC =1-cos 2∠ADC = 45. 又sin ∠BAD = 513, 所以cos ∠BAD =1-sin 2∠BAD =1213. 因为∠ABD =∠ADC -∠BAD ,所以sin ∠ABD =sin(∠ADC -∠BAD )=sin ∠ADC cos ∠BAD -cos ∠ADC sin ∠BAD= 45 × 1213 - 35 × 513 = 3365. (2)在△ABD 中,由正弦定理得BD sin ∠BAD = AD sin ∠ABD, 所以BD = AD ×sin ∠BAD sin ∠ABD= 33×5133365=25. 题十: C.详解:在△ACE 中,tan 30°=CE AE = CM -10AE . 所以AE = CM -10tan 30°. 在△AED 中,tan 45°=DE AE = CM +10AE , 所以AE =CM +10tan 45°, 所以CM -10tan 30° = CM +10tan 45°, 所以CM = 10(3+1)3-1=10(2+3)≈37.3(m). 题十一: C.详解:由正弦定理得a 2+b 2 < c 2,所以cos C = a 2+b 2-c 22ab < 0,所以C 是钝角,故△ABC 是钝角三角形. 题十二: A.详解:由余弦定理知cos C = a 2+b 2-c 22ab, 所以a =2b ·a 2+b 2-c 22ab = a 2+b 2-c 2a, 所以a 2=a 2+b 2-c 2,所以b 2=c 2,所以b =c .。
高中数学-解三角形知识点汇总情况及典型例题1.docx

实用标准解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中, C=90°,AB= c, AC= b , BC= a。
(1)三边之间的关系:a2+b2=c2。
(勾股定理)(2)锐角之间的关系:A+B= 90 °;(3)边角之间的关系:(锐角三角函数定义)sin A= cos B=a, cos A=sin=b, tan A=a。
c bc2.斜三角形中各元素间的关系:在△ABC 中, A、 B、 C 为其内角, a、b、 c 分别表示 A、 B、C 的对边。
(1)三角形内角和:A+B+C=π。
(2 )正弦定理:在一个三角形中,各边和它所对角的正弦的比相等a b c2R (R为外接圆半径)sin A sin B sin C( 3 )余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2 =b2+2- 2bccosA;b2 = 2 +a2- 2cacosB;c2= 2 +b2-2abcos。
c c a C3.三角形的面积公式:1ah a=11(1)S=bh b=ch c( h a、 h b、 h c分别表示 a、b、 c 上的高);22211bc sin A=1(2)S=ab sin C=ac sin B;222求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型:(1 )两类正弦定理解三角形的问题:第 1、已知两角和任意一边,求其他的两边及一角.第 2、已知两角和其中一边的对角,求其他边角.(2 )两类余弦定理解三角形的问题:第 1、已知三边求三角 .第 2、已知两边和他们的夹角,求第三边和其他两角.5.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。
( 1)角的变换因为在△ABC 中, A+B+C=π,所以sin(A+B)=sinC;cos(A+B)=-cosC;tan(A+B)=-tanC。
高中数学 第二章 解三角形 3 解三角形的实际应用举例 第1课时 距离和高度问题练习(含解析)北师大

距离和高度问题A 级 基础巩固一、选择题1.海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是(D )A .103海里B .106海里C .52海里D .56海里[解析]如图,由正弦定理得 BCsin60°=10sin45°,∴BC =5 6.2.学校体育馆的人字形屋架为等腰三角形,如图,测得AC 的长度为4 m ,∠A =30°,则其跨度AB 的长为( D )A .12 mB .8 mC .3 3 mD .4 3 m[解析] 在△ABC 中,已知可得BC =AC =4,∠C =180°-30°×2=120°,所以由余弦定理得AB 2=AC 2+BC 2-2AC ·BC cos120°=42+42-2×4×4×⎝ ⎛⎭⎪⎫-12=48,∴AB =43(m).3.如图所示,为测一树的高度,在地面上选取A ,B 两点,从A 、B 两点分别测得树尖的仰角为30°,45°,且A ,B 两点之间的距离为60 m ,则树的高度为( A )A .(30+303)mB .(30+153)mC .(15+303)mD .(15+153)m[解析] 由正弦定理可得60sin45°-30°=PBsin30°,PB =60×12sin15°=30sin15°.h =PB ·sin45°=30sin15°·sin45°=(30+303)(m).4.甲船在湖中B 岛的正南A 处,AB =3 km ,甲船以8 km/h 的速度向正北方向航行,同时乙船从B 岛出发,以12 km/h 的速度向北偏东60°方向驶去,则行驶15分钟时,两船的距离是( B )A .7 kmB .13 kmC .19 kmD .10-3 3 km[解析] 由题意知AM =8×1560=2,BN =12×1560=3,MB =AB -AM =3-2=1,所以由余弦定理得MN 2=MB 2+BN 2-2MB ·BN cos120°=1+9-2×1×3×(-12)=13,所以MN =13km.5.如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a (km),灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( B )A .a (km)B .3a (km)C .2a (km)D .2a (km)[解析]在△ABC 中,∠ACB =180°-(20°+40°)=120°. ∵AB 2=AC 2+BC 2-2AC ·BC cos120°=a 2+a 2-2a 2×(-12)=3a 2,∴AB =3a (km).6.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为( A )A .4003米B .40033米C .20033米D .2003米[解析] 解法一:如图,设AB 为山高,CD 为塔高,则AB =200,∠ADM =30°,∠ACB =60°,∴BC =200tan30°=20033,AM =DM tan30°=BC tan30°=2003.∴CD =AB -AM =4003.解法二:如图AB 为山高,CD 为塔高. 在△ABC 中,AC =ABsin60°=40033, 在△ACD 中,∠CAD =30°,∠ADC =120°. 由正弦定理CD sin ∠CAD =ACsin ∠ADC .∴CD =40033×1232=4003(米).二、填空题7.一只蜘蛛沿正北方向爬行x cm 捕捉到一只小虫,然后向右转105°,爬行10 cm 捕捉到另一只小虫,这时它向右转135°爬行回它的出发点,则x =1063cm.[解析] 如图,由题意知,∠BAC =75°,∠ACB =45°.∠B =60°,由正弦定理,得x sin ∠ACB =10sin B,∴x =10sin ∠ACB sin B =10×sin45°sin60°=1063.8.如图所示,设A 、B 两点在河的两岸,一测量者在A 所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算A 、B 两点的距离为50 2 m.[解析] 因为∠ACB =45°,∠CAB =105°, 所以∠ABC =30°, 根据正弦定理可知:AC sin ∠ABC =ABsin ∠ACB,即50sin30°=ABsin45°,解得AB =50 2 m.三、解答题9.海面上相距10海里的A 、B 两船,B 船在A 船的北偏东45°方向上,两船同时接到指令同时驶向C 岛,C 岛在B 船的南偏东75°方向上,行驶了80分钟后两船同时到达C 岛,经测算,A 船行驶了107海里,求B 船的速度.[解析] 如图所示,在△ABC 中,AB =10,AC =107,∠ABC =120°由余弦定理,得AC 2=BA 2+BC 2-2BA ·BC ·cos120°即700=100+BC 2+10BC ,∴BC =20,设B 船速度为v ,则有v =2043=15(海里/小时).即B 船的速度为15海里/小时.10.在某某世博会期间,小明在中国馆门口A 处看到正前方上空一红灯笼,测得此时的仰角为45°,前进200米到达B 处,测得此时的仰角为60°,小明身高1.8米,试计算红灯笼的高度(精确到1 m).[解析] 由题意画出示意图(AA ′表示小明的身高).∵AB =200,∠CA ′B ′=45°,∠CB ′D ′=60°, ∴在△A ′B ′C 中,A ′B ′sin ∠A ′CB ′=B ′Csin45°,∴B ′C =A ′B ′sin45°sin15°=200×226-24=200(3+1).在Rt △CD ′B ′中,CD ′=B ′C ·sin60°=100(3+3),∴CD =1.8+100(3+3)≈475(米). 答:红灯笼高约475米.B 级 素养提升一、选择题1.一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°,与灯塔S 相距20海里,随后货轮按北偏西30°的方向航行30分钟后,又测得灯塔在货轮的东北方向,则货轮的速度为( B )A .20(2+6)海里/时B .20(6-2)海里/时C .20(6+3)海里/时D .20(6-3)海里/时[解析] 设货轮航行30分钟后到达N 处,由题意可知∠NMS =45°,∠MNS =105°, 则∠MSN =180°-105°-45°=30°.而MS =20, 在△MNS 中,由正弦定理得MN sin30°=MSsin105°,∴MN =20sin30°sin105°=10sin 60°+45°=10sin60°cos45°+cos45°sin45°=106+24=10(6-2).∴货轮的速度为10(6-2)÷12=20(6-2)(海里/时).2.如图所示,在山底A 处测得山顶B 的仰角∠CAB =45°,沿倾斜角为30°的山坡向山顶走1 000米到达S 点,又测得山顶仰角∠DSB =75°,则山高BC 为( D )A .500 2 mB .200 mC .1 000 2 mD .1 000 m[解析] ∵∠SAB =45°-30°=15°,∠SBA =∠ABC -∠SBC =45°-(90°-75°)=30°, 在△ABS 中,AB =AS ·sin135°sin30°=1 000×2212=1 0002,∴BC =AB ·sin45°=1 0002×22=1 000(m). 3.一船向正北航行,看见正西方向有相距10 n mlie 的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向上,另一灯塔在船的南偏西75°方向上,则这艘船的速度是每小时( C )A .5 n mlieB .5 3 n mlieC .10 n mlieD .10 3 n mlie[解析] 如图,依题意有∠BAC =60°,∠BAD =75°,∴∠CAD =∠CDA =15°,从而CD =CA =10, 在Rt △ABC 中,求得AB =5,∴这艘船的速度是50.5=10(n mlie/h).4.要测量底部不能到达的东方明珠电视塔的高度,在黄浦某某岸选择甲、乙两观测点,在甲、乙两点分别测得塔顶的仰角分别为45°,30°,在水平面上测得电视塔与甲地连线及甲、乙两地连线所成的角为120°,甲、乙两地相距500米,则电视塔在这次测量中的高度是( D )A .1002米B .400米C .2003米D .500米[解析] 由题意画出示意图,设高AB =h , 在Rt △ABC 中,由已知BC =h ,在Rt △ABD 中,由已知BD =3h ,在△BCD 中,由余弦定理BD 2=BC 2+CD 2-2BC ·CD ·cos∠BCD 得3h 2=h 2+5002+h ·500,解之得h =500(米).二、填空题5.某地电信局信号转播塔建在一山坡上,如图所示,施工人员欲在山坡上A 、B 两点处测量与地面垂直的塔CD 的高,由A 、B 两地测得塔顶C 的仰角分别为60°和45°,又知AB 的长为40米,斜坡与水平面成30°角,则该转播塔的高度是4033米.[解析] 如图所示,由题意,得∠ABC =45°-30°=15°,∠DAC =60°-30°=30°. ∴∠BAC =150°,∠ACB =15°,∴AC =AB =40米,∠ADC =120°,∠ACD =30°, 在△ACD 中,由正弦定理,得CD =sin ∠CAD sin ∠ADC ·AC =sin30°sin120°·40=4033.6.如图,一辆汽车在一条水平的公路上向正东行驶,到A 处时,测量公路南侧远处一山顶D 在东偏南15°的方向上,行驶5 km 后到达B 处,测得此山顶在东偏南30°的方向上,仰角为15°,则此山的高度CD 等于5(2-3)km.[解析] 在△ABC 中,∠A =15°,∠ACB =30°-15°=15°, 所以BC =AB =5.又CD =BC ·tan∠DBC =5×tan15°=5×tan(45°-30°)=5(2-3).三、解答题7.(2018·全国卷Ⅰ理,17)在平面四边形ABCD 中,∠ADC =90°,∠A =45°,AB =2,BD =5.(1)求cos ∠ADB ; (2)若DC =22,求BC .[解析] (1)在△ABD 中,由正弦定理得BD sin ∠A =ABsin ∠ADB ,即5sin 45°=2sin ∠ADB ,所以sin ∠ADB =25.由题设知,∠ADB <90°, 所以cos ∠ADB =1-225=235. (2)由题设及(1)知,cos ∠BDC =sin ∠ADB =25. 在△BCD 中,由余弦定理得BC 2=BD 2+DC 2-2BD ·DC ·cos∠BDC =25+8-2×5×22×25=25, 所以BC =5.8.某人在M 汽车站的北偏西20°的方向上的A 处,观察到点C 处有一辆汽车沿公路向M 站行驶.公路的走向是M 站的北偏东40°.开始时,汽车到A 的距离为31千米,汽车前进20千米后,到A 的距离缩短了10千米.问汽车还需行驶多远,才能到达M 汽车站?[解析] 由题画出示意图如图所示,设汽车前进20千米后到达B 处,在△ABC 中,AC =31,BC =20,AB =21.由余弦定理得cos C =AC 2+BC 2-AB 22AC ·BC =2331,则sin C =12331,所以sin ∠MAC =sin(120°-C )=sin120°cos C -cos120°sin C =35362.在△MAC 中,由正弦定理得MC =AC ·sin∠MAC sin ∠AMC =3132×35362=35,从而MB =MC -BC =15.即汽车还需行驶15千米才能到达M汽车站.。
高中数学经典题型--解三角形(含详细答案)

高中数学经典题型解三角形【编著】黄勇权【第1题】在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c , 且sinC bsinBasinA = 3a32 sinB + c求:角C 的大小【第1题】答案:已知:sinCbsinB asinA += 3a 32 sinB + c等号左边:因为分子、分母每一项含有sin ,故用正弦定理,将sin 替换成边即:cb *b a *a += 3a 32 sinB +c 特别提示: 等号右边的sinB 不能换成边b , 这是因为sinB=R 2b ,这样就会多出R 21,等号两边同时乘以ca 2+b 2 = 3ac 32 sinB +c 2将c 2移到等号左边,a 2+b 2- c 2 = 3ac 32 sinB由于等号左边是a 2+b 2-c 2,只能构建cosC ,故等号两边同时除以2ab ,这一步非常重要。
2a b c b a 222-+ = b 3c 3 sinBc osC = b 3c 3 sinB等号右边,左边分子含c ,分母含b ,故用正弦定理把c 、b 换成sinC ,sinB 这一步非常重要,很多同学想不到,因此就解不出来。
c osC = B sin 3sinC 3 sinBc osC =33 sinCtanC= 3 即C=60°经典技巧:对于正弦定理,很多同学都不知道什么时候能用,什么时候不能用,其实,在运用正弦定理将sin与对应边换时,一定要遵循能够消除2R为原则。
例如1:acosB+bcosA=2c 【能用】由正弦定理:a=2RsinA,b=2RsinB,c=2RsinC代入上式,2RsinA*cosB+2RsinB*cosA=2*2RsinC因为每一项都有2R,故能消除2R,化简:sinA*cosB+sinB*cosA=2sinC所以能用正弦定理。
例如2:bcosA+sinB=3c 【不能用】由正弦定理:b=2RsinB,c=2RsinC代入上式,得:2RsinB*cosA+sinB=2RsinC*3因为第二项不含2R,无法消除2R, 所以不能用正弦定理例如3:sin2A+sin2B=2sinBsinC 【能用】a b c(R 2a )2 + (R 2b )2 = 2 *R 2b *R 2c因为每一项都有(R 21)2,故能消除2R ,化简得:a 2 +b 2=2bc 所以能用正弦定理 例如4:acosB+bcosA=4bc 【能用】由正弦定理:a=2RsinA ,b=2RsinB ,c=2RsinC 代入上式,2RsinA*cosB+2RsinB*cosA=4b*2RsinC因为要消除2R ,所以只能代入一项,要么是b 或c 而等号右边化简后sinA*cosB+sinB*cosA=sin (A+B )=sinC所以我们只把c 换为sinC ,而b 不动。
高中数学-解三角形知识点汇总情况及典型例题1

实用标准解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
(1)三边之间的关系:a 2+b 2=c 2。
(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba。
2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。
(1)三角形内角和:A +B +C =π。
(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R Cc B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。
3.三角形的面积公式:(1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)∆S =21ab sin C =21bc sin A =21ac sin B ;4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)例1.(1)在∆ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形;(2)在∆ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。
解:(1)根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=;根据正弦定理, 0sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A(2)根据正弦定理, 0sin 28sin40sin 0.8999.20==≈b A B a 因为00<B <0180,所以064≈B ,或0116.≈B①当064≈B 时,00000180()180(4064)76=-+≈-+=C A B ,sin 20sin7630().sin sin40==≈a C c cm A ②当0116≈B 时,180()180(40116)24=-+≈-+=C A B ,0sin 20sin2413().sin sin40==≈a C c cm A 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器 题型2:三角形面积例2.在∆ABC 中,sin cos A A +=22,AC =2,3=AB ,求A tan 的值和∆ABC 的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学-解三角形应用举例练习
一、选择题
1. △ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC
为………………………………………………( )
A.直角三角形
B.等腰直角三角形
C.等边三角形
D.等腰三角形
2.海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C
间的距离是……………………………………………………….( )
A.103海里
B.3610海里
C. 52海里
D.56海里
3. 有一长为1公里的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要伸长( )
A. 1公里
B. sin10°公里
C. cos10°公里
D. cos20°公里
4. .已知平行四边形ABCD 满足条件0)()(=-⋅+→
-→-→-→-AD AB AD AB ,则该四边形是………( )
A.矩形
B.菱形
C.正方形
D.任意平行四边形 5. 一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°, 另一灯塔在船的南偏西75°,则这只船的速度是每小时………………………………………………………………………………………… . ( )
A.5海里
B.53海里
C.10海里
D.103海里
6.某人站在山顶向下看一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于他看见第二辆车与第三辆车的俯角差,则第一辆车与第二辆车的距离1d 与第二辆车与第三辆车的距离d 2之间的关系为 ………………………………………………………………………..( )
A. 21d d >
B. 21d d =
C. 21d d <
D. 不能确定大小
二、 填空题
7.一树干被台风吹断折成与地面成30°角,树干底部与树尖着地处相距20米,则树干原来的高度为
8.为了测量上海东方明珠的高度,某人站在A处测得塔尖的仰角为75.5o,前进38.5m后,到达B处测得塔尖的仰角为80.0o.试计算东方明珠塔的高度(精确到1m).
9.某舰艇在A处测得遇险渔船在北偏东45°距离为10海里的C处,此时得知,该渔船沿北偏东105°方向,以每小时9海里的速度向一小岛靠近,舰艇时速21海里,则舰艇到达渔船的最短时间是
10.一船以每小时15km的速度向东航行,船在A处看到一个灯塔B在北偏东60o,行驶4h后,船到达C处,看到这个灯塔在北偏东15o,这时船与灯塔的距离为km.
三、解答题
11.在奥运会垒球比赛前,C国教练布置战术时,要求击球手以与连结本垒及游击手的直线成15°方向把球击出,根据经验,通常情况下,球速为游击手最大跑速的4倍,问按这样布置,游击手能否接
着球?
12.如图,用两根绳子把重10 N的物体W吊在水平杆子AB上.△ACW=150°,△BCW=120°,求A和B处所受力的大小.(忽略绳子重量)
13.某观察站C在A城的南偏西20°方向,由A城出发有一条公路,走向是南偏
东40°,距C处31千米的公路上的B处有一人正沿公路向A城走去,走了20千米后到达D处,此时CD距离为21千米,问人还需走多少千米才能到达A城?
1.2.1解三角形应用举例参考答案
一、选择题
1.A 2.D 3.A 4.B 5.C 6.C
二、填空题
7.米320 8.468m 9. 32小时 10. 302 三、解答题
11.不能 12. 解:设A 、B 处所受力分别为f 1、f 2,10 N 的重力用f 表示,则f 1+f 2=f .以重力作用点C 为f 1、f 2的始点,作平行四边形CFWE ,使CW 为对角线,则CF =f 1,CE =f 2,CW =f ,则△ECW =1800-150°=30°,△FCW =180°-120°=60°,△FCE =90°.
△四边形CE W F 为矩形.△|CE |=|CW |cos30°=10·
23=53, |CF |=|CN |cos60°=10×21
=5.△A 处受力为53 N ,B 处受力为5 N.
13. 解:设AD=x ,AC=y ,
2222040602cos6021,
BAC ACD x y xy ∠=︒+︒=︒
∴∆+-︒=Q 在中有
44122=-+xy y x 即 △ 而在△ABC 中,,3160cos )20(2)20(222=︒+-++y x y x 即561204022=-+-+y x xy y x △
△—△得62-=x y ,代入△得013562=--x x
得)(15km x =,即此人还需走15km 才能到达A 城.。