李廉锟《结构力学》(第5版)(下册)配套模拟试题及详解【圣才出品】
李廉锟《结构力学》笔记和课后习题(含考研真题)详解-第3章 静定梁与静定刚架【圣才出品】
第3章 静定梁与静定刚架
3.1 复习笔记【知识框架】
【重点难点归纳】
一、单跨静定梁 ★★★★
1.内力
表3-1-1 内力的基本概念
图3-1-1
图3-1-22.内力与外力间的微分关系及积分关系(1)由平衡条件导出的微分关系式
计算简图如图3-1-3所示,微分关系式为
(Ⅰ)
d d d d d d s
s N
F q x
x M F
x F p x
x ⎧=⎪⎪⎪=
⎨⎪⎪=-⎪⎩-()()
图3-1-3
(2)荷载与内力之间的积分关系
如图3-1-4
所示,结合式(Ⅰ)可得梁的内力积分公式,积分公式及其几何意义见表3-1-2。
图3-1-4
表3-1-2 内力的积分公式及几何意义
3.叠加法作弯矩图
表3-1-3 常用叠加法及其作图步骤
图3-1-5
图3-1-6
二、多跨静定梁 ★★★★
多跨静定梁是由构造单元(如简支梁、悬臂梁)多次搭接而成的几何不变体系,其计算简图见图3-1-7,几何构造、计算原则、传力关系见表3-1-4。
李廉锟《结构力学》笔记和课后习题(含考研真题)详解-第4章 静定拱【圣才出品】
第4章 静定拱4.1 复习笔记【知识框架】【重点难点归纳】一、拱的基本概念及特点 ★★表4-1-1 拱的基本概念及特点表4-1-2 有拉杆和无拉杆三铰拱的区别与联系二、三铰拱的计算 ★★★★★1.支座反力的计算(见表4-1-3)表4-1-3 支座反力的计算2.内力的计算(见表4-1-4)表4-1-4 三铰拱的内力计算三、三铰拱的合理拱轴线(见表4-1-5) ★★★表4-1-5 三铰拱的合理拱轴线4.2 课后习题详解复习思考题1.拱的受力情况和内力计算与梁和刚架有何异同?答:(1)拱与梁的受力情况和内力计算的区别①约束反力方面,拱在竖向荷载作用下会产生水平反力(推力),而梁在竖向荷载作用下不会产生水平反力(推力);②内力分布方面,由于水平推力的存在,拱的弯矩常比跨度、荷载相同的梁的弯矩小得多,使得拱截面上的应力分布较为均匀;③内力分析方法方面,若只有竖向荷载时,梁只需进行简单的整体分析即可求解,而拱由于水平力的存在,需要整体分析与局部分析相结合。
(2)拱与刚架的受力情况和内力计算的异同①内力分析方法方面,拱与刚架的受力情况和内力计算的特点和所应用方法基本一致,例如三铰刚架也属于拱式结构;②拱的轴线是曲线,刚架杆的轴线是直线,在应用平衡条件计算内力时,拱仍然取投2.在非竖向荷载作用下怎样计算三铰拱的反力和内力?能否使用式(4-1)和(4-2)?答:(1)对于三铰拱承受非竖向荷载的情况,可将非竖向荷载分解为水平荷载和竖向荷载。
(2)仍然可以应用式(4-1)和(4-2),将水平反力加上非竖向荷载水平方向上的分量一起代入公式中进行求解。
(4-1)o AV AV o BV BV o c H F F F F M F f ⎫⎪=⎪⎪=⎬⎪⎪=⎪⎭cos sin (4-2)sin cos o H o S S H o N S H M M F y F F F F F F ϕϕϕϕ⎫=-⎪⎪=-⎬⎪=+⎪⎭3.什么是合理拱轴线?试绘出图4-2-1各荷载作用下三铰拱的合理拱轴线形状。
李廉锟《结构力学》(第5版)(下册)课后习题-第14章 结构的极限荷载【圣才出品】
第14章 结构的极限荷载复习思考题1.什么叫极限状态和极限荷载?什么叫极限弯矩、塑性铰和破坏机构?答:(1)极限状态和极限荷载的含义:①极限状态是指整个结构或结构的一部分超过某一状态就不能满足设计规定的某一功能要求时所对应的特定状态;②极限荷载是指结构在极限状态时所能承受的荷载。
(2)极限弯矩、塑性铰和破坏机构的含义:①极限弯矩是指某一截面所能承受的弯矩的最大数值;②塑性铰是指弯矩不能再增大,但弯曲变形则可任意增长的截面;③破坏机构是指出现若干塑性铰而成为几何可变或瞬变体系的结构。
2.静定结构出现一个塑性铰时是否一定成为破坏机构?n次超静定结构是否必须出现n+1个塑性铰才能成为破坏机构?答:(1)静定结构出现一个塑性铰时一定成为破坏机构。
因为根据几何组成分析,当静定结构出现一个塑性铰时,结构由几何不变变成几何可变或几何瞬变体系,此时该结构一定成为了破坏机构。
(2)n次超静定结构不必出现n+1个塑性铰才能成为破坏机构。
因为n次超静定结构出现n个塑性铰时,如果塑性铰的位置不合适,也可能使原结构变成几何瞬变的体系,此时的结构也成为了破坏机构。
3.结构处于极限状态时应满足哪些条件?答:结构处于极限状态时应满足如下三个条件:(1)机构条件机构条件是指在极限状态中,结构必须出现足够数目的塑性铰而成为机构(几何可变或瞬变体系),可沿荷载作正功的方向发生单向运动。
(2)内力局限条件内力局限条件是指在极限状态中,任一截面的弯矩绝对值都不超过其极限弯矩。
(3)平衡条件平衡条件是指在极限状态中,结构的整体或任一局部仍维持平衡。
4.什么叫可破坏荷载和可接受荷载?它们与极限荷载的关系如何?答:(1)可破坏荷载和可接受荷载的含义:可破坏荷载是指满足机构条件和平衡条件的荷载(不一定满足内力局限条件);可接受荷载是指满足内力局限条件和平衡条件的荷载(不一定满足机构条件)。
(2)与极限荷载的关系极限荷载是所有可破坏荷载中的最小者,是所有可接受荷载中的最大者。
李廉锟《结构力学》笔记和课后习题(含考研真题)详解-第13章 结构弹性稳定【圣才出品】
系不同点:
①对于单、多自由度体系,所建立的平衡方程是齐次方程(一个、多个),由齐次方程
有非零解的条件,建立特征方程,为一次、多次代数方程,进而求解出临界荷载;
②对于无限自由度体系,所建立的平衡方程是微分方程,利用边界条件得到一组与未
知常数数目相同的齐次方程,为了获得非零解使其系数行列式 D 等于零而建立特征方程,
二、用静力法确定临界荷载(见表 13-1-2) ★★ 表 13-1-2 用静力法确定临界荷载
三、具有弹性支座压杆的稳定 ★★ 在一些刚架中,常可将基座中某根压杆取出,以弹性支座代替其余部分对它的约束作
2 / 41
圣才电子书
十万种考研考证电子书、题库视频学习平
台
用,这根压杆称为弹性支座压杆。
图 13-1-1
图 13-1-2
n1
令
F
EI1
n2
、
F EI2 ,有 tan(n1l1)×tan(n2l2)=n1/n2。故只有给出比
4 / 41
圣才电子书
值 I1/I2 和 l1/l2 时才能求解。
十万种考研考证电子书、题库视频学习平 台
六、剪力对临界荷载的影响 ★★ 在实体杆件中,剪力影响很小,通常可略去。
2.试述静力法求临界荷载的原理和步骤,对于单自由度、有限自由度和无限自由度 体系有什么不同?
答:(1)静力法求临界荷载的原理:
6 / 41
圣才电子书
十万种考研考证电子书、题库视频学习平
台
以结构失稳时平衡的二重性为依据,应用静力平衡条件,寻求结构在新的形式下能维
持平衡的荷载,其最小值即为临界荷载。
为超越方程有无穷多个根,即有无穷多个特征荷载值,其中最小者为临界荷载。
李廉锟《结构力学》笔记和课后习题(含考研真题)详解(12-15章)【圣才出品】
阶方阵)。
十、地震作用计算 ★★ 整节非考研初试重点,但为考研复试的考察重点,需重点掌握基本概念。地震作用的基 本概念见表 12-1-14。
表 12-1-14 地震作用的基本概念
十一、计算频率的近似法 ★★ 本节掌握集中质量位置选择的基本思路即可,其他的为非重点。具体内容见表 12-1-15。
表 12-1-15 计算频率的近似法
11 / 150
圣才电子书 十万种考研考证电子书、题库视频学习平台
••
•
简写为 MY+cY+KY=F(t)。
式中,cij 为质点 j 处的运动速度引起质点 i 处的阻力系数;Fi(t)为作用在质点 i 处的
任意荷载;Y 为速度列向量;F(t)为任意荷载列向量(n×1 阶列矩阵);c 为阻尼矩阵(n×n
12 / 150
圣才电子书 十万种考研考证电子书、题库视频学习平台
12.2 课后习题详解 复习思考题
1.怎样区别动力荷载与静力荷载?动力计算与静力计算的主要差别是什么? 答:(1)静力荷载:指施力过程缓慢,不致使结构产生显著的加速度,因而可以略去 惯性力影响的荷载; 动力荷载:指将使结构产生不容忽视的加速度,因而必须考虑惯性力的影响的荷载。 主要差别在于是否考虑惯性力的影响。
圣才电子书
第 12 章 结构动力学
十万种考研考证电子书、题库视频学习平台
12.1 复习笔记
【知识框架】
1 / 150
圣才电子书 十万种考研考证电子书、题库视频学习平台
【重点难点归纳】 一、基本概念 ★★★ 1.动力载荷与静力载荷(见表 12-1-1)
图 12-1-1 (1)刚度系数与柔度系数(见表 12-1-5)
表 12-1-5 刚度系数与柔度系数
李廉锟《结构力学》笔记和课后习题(含考研真题)详解-第7章 力 法【圣才出品】
第7章 力 法
7.1 复习笔记【知识框架】
【重点难点归纳】
一、概述(见表7-1-1) ★★
表7-1-1 概述
二、超静定次数的确定(见表7-1-2) ★★★★
表7-1-2 超静定次数的确定
三、力法的基本概念(见表7-1-3) ★★★
力法的基本概念,包括基本未知量、基本体系、基本结构以及基本方程见表7-1-3,此外,表中还归纳了超静定结构的力法分析步骤。
表7-1-3 力法的基本未知量、基本体系和基本方程
四、力法的典型方程(见表7-1-4) ★★★
表7-1-4 力法的典型方程
五、对称性的利用 ★★★★
1.对称结构及作用荷载的对称性(表7-1-5)
表7-1-5 对称结构及作用荷载的对称性
2.非对称荷载的处理(表7-1-6)
表7-1-6 非对称荷载的处理。
李廉锟《结构力学》(第5版)(上册)配套模拟试题及详解【圣才出品】
李廉锟《结构力学》(第5版)(上册)配套模拟试题及详解一、单项选择题(本大题共5小题,每题3分,共15分;在每小题列出的四个选项中只有一个是符合题目要求的,错选、多选或未选均无分)1.如图1所示的结构中,桁架杆件的零杆个数为()。
A.4B.5C.6D.7图1【答案】D【解析】此对称结构的荷载为反对称,因此DE杆轴力必为零。
再由零杆判别法则,可知DF、AF、FG、HI、EI、BI六杆也为零杆,总共此结构有7根零杆。
2.如图2所示结构,A支座发生沉降∆后,则()。
A.AB杆无内力,BD杆有内力B.AB杆有内力,BD杆无内力C.AB、BD杆均无内力产生D.AB、BD杆均有内力产生图2【答案】C【解析】AB为静定梁,支座移动不引起内力,因此铰B对AB杆的约束力为零,对BD 杆的约束力也为零。
BD杆上又无其他荷载,其内力也等于零。
3.如图3所示结构为对称抛物线三铰拱,铰C右侧截面的轴力(受压为正)为()。
图3A.64kN B .32kN C .24kN D .16kN 【答案】C【解析】由于该结构为对称抛物线拱,截面的轴力必是水平方向,其等于支座的水平反力F H 。
求得F VA =10kN ,F H =24kN ,因此,'24NC H F F kN ==。
4.如图4所示结构,各杆为矩形截面,在温度变化t 1>t 2时,其轴力为( )。
图4【答案】C【解析】因为当温度变化时,AB杆、DC杆可自由伸缩,故F NAB=F NCD=0。
由于BC 杆在B、C结点处有轴向约束,且,故其轴线伸长受阻,则必有F NBC<O,为压力。
5.如图5所示结构为对称刚架,利用对称性简化后的计算简图为()。
图5【答案】A【解析】刚架有两个对称轴AB、AD,此刚架纵横均为两跨,可以取四分之一结构BCD 计算,由于荷载对称,因此,B、D两处有弯矩,无转角和线位移,AB、AD杆无弯矩。
二、填空题(本大题共5小题,每题3分,共15分)1.如图6(a)所示体系的几何组成为______。
李廉锟《结构力学》(第5版)(下册)章节题库-第14章 结构的极限荷载【圣才出品】
2.用试算法求图 14-5 所示刚架的极限荷载。
图 14-5 解:(1)确定基本机构 可能出现塑性铰的截面为 A、B、C、D、E、F,h=6,静不定次数 n=3,所以,基 本机构数 m=3。 图 14-6(a)~(c)分别为机构 1,机构 2 和机构 3。 (2)试算 对组合机构进行试算如下: ①组合机构 I=机构 1+机构 3(侧移机构),如图 14-6(d)所示,虚功方程为
3.超静定梁和刚架成为破坏机构时,塑性铰的数目 m 与结构超静定次数 n 之间的关 系为( )。
A.m=n B.m>n C.m<n
1/9
圣才电子书
十万种考研考证电子书、题库视频学习平
台
D.取决于体系构造和所受荷载的情况
【答案】D
【解析】塑性铰数目与超静定次数并无必然的关系。
二、填空题 1.在同向竖向荷载作用下,连续梁的极限状态通常是______。 【答案】在各跨独立形成破坏机构
2.如图 14-1 所示梁的极限荷载
为______。
图 14-1
【答案】 【解析】图示梁为静定,先作出其弯矩图,如图 14-1(a)所示。分析可知塑性铰产
2/9
圣才电子书
生在 C 处,即
十万种考研考证电子书、题库视频学习平 台
3.如图 14-2 所示阶梯状变截面梁的极限荷载 Pu=______。
图 14-2 【答案】 【解析】注意变截面处的极限弯矩为 Mu。
三、判断题 1.一个 n 次超静定梁必须出现,n+1 个塑性铰后才可能发生破坏。( ) 【答案】× 【解析】不一定必须如此。当塑性铰的出现使某构件或某局部的构件成为破坏机构, 就发生破坏。
机构 1 则
图 14-4
5/9
李廉锟《结构力学》笔记和课后习题(含考研真题)详解-第10章 矩阵位移法【圣才出品】
二、单元刚度矩阵(见表 10-1-2) ★★★★★ 表 10-1-2 单元刚度矩阵
2 / 46
圣才电子书
十万种考研考证电子书、题库视频学习平 台
3 / 46
圣才电子书
十万种考研考证电子书、题库视频学习平 台
三、单元刚度矩阵的坐标转换(见表 10-1-3) ★★★★★ 表 10-1-3 单元刚度矩阵的坐标转换
6.结构的总刚度方程的物理意义是什么?总刚度矩阵的形成有何规律?其每一程的物理意义:尚未进行支承条件处理的表示所有结点外力与 结点位移之间的关系的平衡方程。
(2)总刚矩阵的形成规律:把每个单元刚度矩阵的四个子块按其两个下标号码逐一
9 / 46
圣才电子书
十万种考研考证电子书、题库视频学习平
台
4.为何用矩阵位移法分析时,要建立两种坐标系?
答:在利用矩阵位移法分析结构的时候,要进行单元分析和整体分析,单元分析是为
了建立每个单元的单元刚度矩阵,整体分析是为了建立整体结构的刚度方程。在单元分析
的过程中,以各单元的轴线为局部坐标系的 x 轴,以垂直轴线的方向为局部坐标系的 y 轴,
台
送到结构原始刚度矩阵中相应的行和列的位置上去,就可得到结构原始刚度矩阵,即各单
刚子块“对号入座”形成总刚。
(3)每一元素的物理意义:当其所在列对应的结点位移分量等于 1(其余各结点位移
分量均为零)时,所引起的其所在行对应的结点外力分量的数值。例如 Kij 表示第 j 号位置
3.矩阵位移法中,杆端力、杆端位移和结点力、结点位移的正负号是如何规定的? 答:杆端力沿局部坐标系的、的正方向为正,杆端弯矩逆时针为正;杆端位移的正负 号规定同杆端力和弯矩。结点力沿整体坐标系 x、y 的正方向为正,结点力偶逆时针为正; 结点位移的正负号规定同结点力和力偶。
李廉锟《结构力学》(第5版)(下册)课后习题-第12章 结构动力学【圣才出品】
第12章 结构动力学复习思考题1.怎样区别动力荷载与静力荷载?动力计算与静力计算的主要差别是什么?答:(1)静力荷载:指施力过程缓慢,不致使结构产生显著的加速度,因而可以略去惯性力影响的荷载;动力荷载:指将使结构产生不容忽视的加速度,因而必须考虑惯性力的影响的荷载。
主要差别在于是否考虑惯性力的影响。
(2)计算上的差别:①计算式中是否加入惯性力的数值;②静力计算时,结构处于平衡状态,荷载的大小、方向、作用点及由它引起的结构的内力、位移等各种量值都不随时间而变化;而动力计算时,结构将发生振动,各种量值均随时间而变化;③动力分析方法常与荷载类型有关,而静力分析方法与荷载类型无关。
2.何谓结构的振动自由度?它与机动分析中的自由度有何异同?如何确定结构的振动自由度?答:(1)结构振动的自由度是指结构在弹性变形过程中确定全部质点位置所需的独立参数的数目。
(2)机动分析中的自由度简称静力自由度(又称动力自由度)。
①两者相同点:在数学意义上是一致的,都是强调体系空间质量所需的几何参量的个数。
②不同点:静力自由度是机构移动即刚体位移,排除了各个组成部件的变形运动;而动力自由度是变形位移导致机构位置改变,即体系变形过程质量的运动自由度。
(3)确定结构振动自由度的两种方法:①直接由确定质点位置所需的独立参数数目来判定;②加入最少数量的链杆以限制刚架上所有质点的位置,则该刚架的振动自由度数目即等于所加入链杆的数目。
3.建立振动微分方程有哪两种基本方法?每种方法所建立的方程代表什么条件?答:(1)建立振动微分方程的两种基本方法:刚度法和柔度法。
(2)刚度法代表力的平衡条件,柔度法代表变形协调条件。
4.为什么说结构的自振频率和周期是结构的固有性质?怎样改变它们?答:(1)自振频率和周期是结构的固有性质的原因:结构的自振频率和周期只取决于结构自身的质量和刚度,反映着结构固有的动力特性,而外部干扰力只能影响振幅和初相角的大小并不能改变结构的自振频率。
李廉锟《结构力学》笔记和课后习题(含考研真题)详解-第2章 平面体系的机动分析【圣才出品】
相当于三刚片规则。同理,两刚片规则中链杆仍然可以看作一个刚片。因此三个基本组成
规则实质上只是同一个规则。
5.何谓瞬变体系?为什么土木工程中要避免采用瞬变和接近瞬变的体系? 答:(1)瞬变体系的定义 瞬变体系是指经微小位移后由几何可变转化为几何不变的体系,瞬变体系是一种几何 可变体系。 (2)在土木工程的实际中,由于材料变形,瞬变体系一经受力即偏离原有位置,而 内力通常也很大,甚至可能导致体系的破坏。同时,瞬变体系的位移只是理论上为无穷小, 实际上在很小的荷载作用下也会产生很大的位移。因此,土木工程中要பைடு நூலகம்免采用瞬变和接
二、平面体系的计算自由度 ★★★★★ 1.自由度和约束(见表 2-1-2)
表 2-1-2 自由度和约束
2.平面体系的计算自由度(见表 2-1-3) 表 2-1-3 平面体系的计算自由度
2 / 37
圣才电子书
十万种考研考证电子书、题库视频学习平 台
三、几何不变体系的基本组成规则(见表 2-1-4) ★★★★★ 表 2-1-4 几何不变体系的基本组成规则
9 / 37
圣才电子书
十万种考研考证电子书、题库视频学习平
台
近瞬变的体系,以保证结构的安全和正常使用。
6.试小结机动分析的一般步骤和技巧。 答:(1)机动分析的一般步骤 ①一般先考察体系的计算自由度。如果 W>0,已表明体系是几何可变的;如果 W≤0,进一步做组成分析。 ②运用几何组成的基本规则做几何组成分析。 (2)机动分析的一般技巧 ①对于较复杂的体系,宜先把能直接观察出的几何不变部分当作刚片。 ②以地基或刚片为基础按二元体或两刚片规则逐步扩大刚片范围。 ③拆除二元体使体系的组成简化,以便进一步用基本的组成规则去分析它们。
李廉锟《结构力学》(第5版)(下册)章节题库-第13章 结构弹性稳定【圣才出品】
第13章 结构弹性稳定一、选择题1.用能量法求得的临界荷载值()。
A.总是等于其精确解B.总是小于其精确解C.总是大于其精确解D.总是大于或等于其精确解【答案】D2.如图13-1所示各结构中,F Pcri(i=1,2,3,4)为临界荷载,EI=常数,k为弹簧刚度,则()。
A.F Pcr1>F Pcr2>F Pcr3>F Pcr4B.F Pcr2>F Pcr3>F Pcr4>F Pc1C.F Pcr1>F Pcr4>F Pcr3>F Pcr2D.F Pcr4>F Pcr3>F Pcr2>F Pcr1图13-1【答案】B【解析】当其他条件相同时,约束越强,则临界荷载越大。
3.用能量法求图13-2所示压杆的临界荷载时,设挠曲线用正弦级数表示,若只取两项,则应采用()。
图13-2A .B .C .D .【答案】B【解析】从压杆两端的边界条件:当x =0,y =0,y"=0;当x =l 时,y =0,y"=0,判定。
4.解稳定问题时,将图13-3(a )所示弹性杆件体系,简化为图13-3(b )所示弹性支承单个杆件,其弹性支承刚度系数为( )。
A .33EIk l =B .312EI k l=C .33EI EA k l l =+D .()31/3/k l EI l EA=+图13-3【答案】D【解析】方法一:由于BCD 部分相当于两个串联的弹簧,串联后的等效刚度计算式为111CD BCk k k =+由位移法的形常数可知,33CD EI k l =BC EA k l=所以弹性支承刚度系数()31/3/k l EI l EA=+方法二:根据弹簧刚度是的定义,k 就是8点(去除AB 杆)产生单位水平位移时需要施加的力,如图13-3(c )所示,由整体平衡条件得到33EI k l∆=再取结点C 为隔离体,如图13-3(d )所示,由水平方向平衡可得将Δ代入到,即得33EI k l∆=()31/3/k l EI l EA=+5.用能量法求图13-4所示排架的临界荷载P cr 时,失稳时柱的变形曲线可设为( )。
李廉锟《结构力学》(第5版)(下册)-名校考研真题【圣才出品】
二、选择题
1.如图 12-3 所示结构,不计阻尼与杆件质量,若要发生共振,θ 应等于(
)。
[天津大学 2005 研]
2k
A.
3m
k
B.
3m
2 / 22
圣才电子书
2k
C.
5m
十万种考研考证电子书、题库视频学习平 台
k
D.
5m
图 12-3
【答案】B
【解析】当体系的自振频率与外部激励荷载的频率相同时,体系发生共振。首先求该
该结构的质量矩阵为
。
1 / 22
圣才电子书
十万种考研考证电子书、题库视频学习平
台
2.如图 12-2 所示结构的动力自由度为______(不计杆件质量)。[中南大学 2003 研]
图 12-2 【答案】3 【解析】一个自由质点的动力自由度为两个(不考虑转动自由度),本题所示结构中有 三个质点,第一层的两个质点只有一个水平自由度,第二层的质点有水平和竖向两个自由 度,故一共有三个动力自由度。
2.可用下述方法求如图 12-8(a)所示单自由度体系的频率;由图 12-8(b)可知 , 。( )[西南交通大学 2008 研]
7 / 22
圣才电子书
十万种考研考证电子书、题库视频学习平 台
图 12-8
【答案】错
【解析】设质点 m 处的位移为 u,则体系惯性力分别为 mu&&和 2mu&&,支座处的弹簧弹
圣才电子书
十万种考研考证电子书、题库视频学习平 台
名校考研真题
第 12 章 结构动力学
一、填空题 1.设直杆的轴向变形不计,则图 12-1 所示体系的质量矩阵[M]=______。[西南交通 大学 2007 研]
李廉锟《结构力学》(下册)笔记和课后习题(含考研真题)详解(结构弹性稳定)【圣才出品】
圣才电子书
b.F>Fcr
十万种考研考证电子书、题库视频学习平台
如图 13-1-2(b)所示,当 F 达到临界值 Fcr(比上述中心受压直杆的临界荷载小)时,
即使荷载丌增加甚至减小,挠度仍继续增加。
②特征
平衡形式并丌发生质变,变形按原有形式迅速增长,使结构丧失承载能力。
圣才电子书 十万种考研考证电子书、题库视频学习平台
第 13 章 结构弹性稳定
13.1 复习笔记
【知识框架】
结构失稳形式 第一类失稳(分支点失稳)
结构失稳概述
第二类失稳(极值点失稳)
临界荷载的确定
结构稳定的自由度
静力法的描述
用静力法确定临界荷载 单自由度结构的丼例
多自由度结构的丼例
当 φ≠0 时,φ 不 F 的数值仍是一一对应的(图 13-1-3(c)中的曲线 AC)。 ③近似处理 若丌涉及失稳后的位秱计算而只要求临界荷载的数值。则可采用近似方程求解。 3.多自由度结构 对于具有 n 个自由度的结构 (1)对新的平衡形式列出 n 个平衡方程,它们是关于 n 个独立参数(丌全为 0)的齐次 方程; (2)由系数行列式 D=0 建立稳定方程; (3)求解稳定方程的 n 个特征荷载,其最小值便为临界荷载。
图 13-1-3 (1)平衡条件
Flsinφ-kφ=0 当位秱很微小时,sinφ=φ,式(13-1)可近似写为
(Fl-k)φ=0 (2)平衡二重性 ①对于原有的平衡形式,φ=0,上式成立; ②对于新的平衡形式,φ≠0,因而 φ 的系数应等于零,即
5 / 61
(13-1) (13-2)
圣才电子书
4 / 61
圣才电子书 十万种考研考证电子书、题库视频学习平台
李廉锟《结构力学》笔记和课后习题(含考研真题)详解-第9章 渐近法【圣才出品】
9.1 复习笔记【知识框架】【重点难点归纳】一、力矩分配法(见表9-1-1) ★★★★图9-1-1二、无剪力分配法(见表9-1-2) ★★表9-1-2 无剪力分配法表9-1-3 剪力分配法9.2 课后习题详解复习思考题1.什么是转动刚度?什么是分配系数?为什么一刚结点处各杆端的分配系数之和等于1?答:(1)转动刚度的定义杆端的转动刚度是指当杆件的近端转动单位角时,在该近端产生的弯矩。
(2)分配系数的定义分配系数是指结点某一杆端的劲度系数与该结点处所有杆端的劲度系数的比值。
(3)刚结点处各杆端的分配系数之和等于1的原因:因为分配系数的计算公式,在刚节点处各杆端分配系数之和应为1ijij n ijj S Sμ==∑111n ij j ij n ijj SSμ====∑∑2.单跨超静定梁的劲度系数和传递系数与杆件的线刚度有何关系?答:单跨超静定梁的劲度系数不仅与杆件线刚度i=EI/l相关,而且与杆件另一端(又称远端)的支承情况有关;传递系数与杆件的线刚度无关,只与远端支承形式有关。
3.图9-2-1所示三个单跨梁,仅B端约束不同。
它们的劲度系数S AB和传递系数C AB 是否相同,为什么?图9-2-1答:不考虑杆件轴向变形,(a)、(b)、(c)三个单跨梁的劲度系数均相同,即S AB=4i,其中i为杆件的线刚度;(a)、(b)、(c)三个图的传递系数均相同,即C AB=0.5。
因为虽然B端约束表面上形式各异,但在不考虑杆件轴向变形的条件下,(a)、(b)、(c)三个单跨梁在B端的最终约束效果上均可以当成固定端来处理。
若考虑杆件轴向变形,(a)、(c)的劲度系数相同,(b)远端可在水平向自由收缩,A端转到相同的转角需要的力更小,因此劲度系数略小于(a)、(c)。
4.什么是不平衡力矩?如何计算不平衡力矩?为什么要将它反号才能进行分配?答:(1)不平衡力矩的定义不平衡力矩是指在附加约束结点处各固端弯矩所不能平衡的差额。
李廉锟《结构力学》(下册)笔记和课后习题(含考研真题)详解(结构的极限荷载)
第14章 结构的极限荷载14.1 复习笔记【知识框架】结构分析方法 弹性分析方法 塑性分析方法的基本概念 塑性分析方法 塑性分析中力学性能的简化 塑性分析的注意事项塑性铰 塑性铰的定义 塑性铰与普通铰的区别 极限弯矩、塑性铰、破坏机构与静定梁的计算 极限弯矩的定义及求法 破坏机构超静定梁的特点 静定梁的极限荷载计算 单跨超静定梁的极限荷载 静力法求极限荷载极限荷载的计算 机动法求极限荷载 比例加载的定义 机构条件 结构处于极限状态时满足的条件 内力局限条件 比例加载时有关极限荷载的几个定理 破坏荷载与接受荷载 平衡条件 极小定理 比例加载时有关极限荷载的几个定理 极大定理结构的极限荷载穷举法的描述唯一性定理计算极限荷载的穷举法和试算法试算法的描述穷举法的计算步骤试算法的计算步骤连续梁的可能破坏机构形式连续梁的极限荷载计算方法连续梁的极限荷载的计算计算步骤刚架的可能破坏机构形式刚架的极限荷载计算方法刚架的极限荷载的计算计算步骤矩阵位移法求刚架极限荷载的概念【重点难点归纳】一、塑性分析方法的基本概念1.结构分析方法(1)弹性分析方法①定义弹性分析方法是指以结构在弹性阶段的最大应力达到极限应力作为结构破坏的标志的结构分析方法,又称为许用应力法。
②强度条件式中,σmax为结构的实际最大应力;[σ]为材料的许用应力;σu为材料的极限应力,对于脆性材料为其强度极限σb,对于塑性材料则为其屈服极限σs;k是安全因数。
③优点结构在设计荷载作用下,大多数仍处于弹性阶段,因此弹性分析对于研究结构的实际工作状态及其性能仍是很重要的。
④缺点按许用应力法以个别截面的局部应力来衡量整个结构的承载能力是不够经济合理的,而且以确定许用应力的安全因数k也不能反映整个结构的强度储备。
(2)塑性分析方法①定义塑性分析方法是指以结构进入塑性阶段并最后丧失承载能力时的极限状态作为结构破坏的标志的结构分析方法。
②极限载荷极限荷载是指结构在极限状态时所能承受的荷载。
李廉锟《结构力学》笔记和课后习题(含考研真题)详解-第6章 结构位移计算【圣才出品】
第6章 结构位移计算6.1 复习笔记【知识框架】【重点难点归纳】一、结构位移的基本概念(见表6-1-1) ★★表6-1-1 结构位移的基本概念二、刚体的虚功原理 ★★★平衡方程是一种直接的受力分析方法,而虚功原理是一种间接手法。
虚功原理是(任意平衡力系)在(任意可能位移)上所做的总虚功为零。
根据虚设对象不同,刚体的虚功原理分两种应用形式(虚力原理、虚位移原理),具体见表6-1-2。
表6-1-2 刚体的虚功原理三、变形体系的虚功原理(见表6-1-3) ★★★表6-1-3 变形体系的虚功原理四、位移计算的一般公式单位荷载法 ★★★★★基于化整为零、积零为整的原则,结构位移的计算从局部变形入手,通过虚力原理中的单位荷载法推导其拉伸、剪切、弯曲变形公式,再对这些局部变形公式进行叠加,得到整体变形公式,最后通过虚功方程推导出位移计算公式,见表6-1-4。
表6-1-4 单位荷载法求变形体系的位移注:为虚设单位荷载在支座处引起的反力;、N、Error!S分别为单位荷载在截面引起的弯矩、轴力、剪力。
拟求位移Δ可以引申理解为广义位移,将结构位移广义化,可以求解两点之间的广义位移。
广义位移、广义单位荷载和外力虚功三者之间满足:W=1·Δ。
单广义位移分类及单位荷载施加方式见表6-1-5。
表6-1-5 单广义位移分类及单位荷载施加方式五、静定结构在荷载作用下的位移计算(见表6-1-6) ★★★★表6-1-6 静定结构在荷载作用下的位移计算注:G为材料的切变模量;A为杆件截面的面积;k为切应力沿截面分布不均匀而引用的改正系数(考试作为已知条件)。
六、图乘法(见表6-1-7) ★★★★★。
李廉锟《结构力学》(第5版)(下册)课后习题-第13章 结构弹性稳定【圣才出品】
第13章 结构弹性稳定复习思考题1.第一类失稳和第二类失稳有何异同?答:第一类失稳和第二类失稳的异同点:(1)相同点两类失稳的结果都是造成结构失去稳定性而破坏,分析这两种稳定的关键都是确定临界荷载。
(2)不同点①两类失稳的特征不同。
第一类失稳的特征是:结构的平衡形式即内力和变形的状态发生质的改变,原有平衡形式成为不稳定的,同时出现新的有质的区别的平衡形式;而第二类失稳的特征是平衡形式并不发生质的改变,变形按原有的形式迅速增长,使结构丧失承载能力。
②问题的复杂程度不同。
第二类稳定问题的分析比第一类稳定问题的分析更复杂,第二类稳定问题的分析需要以第一类稳定问题的分析为基础。
2.试述静力法求临界荷载的原理和步骤,对于单自由度、有限自由度和无限自由度体系有什么不同?答:(1)静力法求临界荷载的原理:以结构失稳时平衡的二重性为依据,应用静力平衡条件,寻求结构在新的形式下能维(2)静力法求解临界荷载的步骤:①假设结构已处于新的平衡形式,建立平衡方程;②平衡方程为齐次方程,利用齐次方程有非零解的条件,建立特征方程;③根据特征方程求解出临界荷载。
(3)静力法求临界荷载的原理和步骤,对于单自由度、有限自由度和无限自由度体系不同点:①对于单、多自由度体系,所建立的平衡方程是齐次方程(一个、多个),由有非零解的条件,建立特征方程,为一次、多次代数方程,进而求解;②对于无限自由度体系,所建立的平衡方程是齐次微分方程,由微分方程的解(连同边界条件)有非零解的条件,建立特征方程,一般为超越方程,通过试算法求解。
3.增大或减小杆端约束的刚度,对压杆的临界荷载数值有何影响?答:增大或减小杆端约束的刚度会对压杆的计算长度产生影响:①增大杆端约束刚度,则对压杆的计算长度减小,临界荷载值增大;②减小杆端约束刚度,则对压杆的计算长度增大,临界荷载值减小。
4.怎样根据各种刚性支承压杆的临界荷载值来估计弹性支承压杆临界荷载值的范围?答:弹性支承压杆的极限情况是刚性支承压杆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
李廉锟《结构力学》(第5版)(下册)配套模拟试题及详解
一、选择题(本大题共5小题,每题3分,共15分;在每小题列出的四个选项中只有一个是符合题目要求的,错选、多选或未选均无分)
1.如图1所示单自由度动力体系,质量m 在杆件中点,各杆EI 、l 相同,其自振频率的大小排列次序为( )。
A .(a )>(b )>(c )
B .(c )>(b )>(a )
C .(b )>(a )>(c
)D .(a )>(c )>(b )
图1
【答案】C
【解析】(1)解法一:由,δ11小者ω大。
(2)解法二:由,k 11大者ω大,图(b )约束最多,刚度最大,
图(
a )次之,图(c )刚度最小,ω最小。
2.下列选项中动位移放大系数与动内力放大系数相同的是( )。
【答案】C
【解析】只有单自由度体系质体上直接施加沿振动方向的简谐荷载时,动内力放大系数才与动位移放大系数相等。
3.如图2(a )所示的弹性支承刚性压杆体系,其临界荷载F Pcr 为( )。
A .0
B .F Pcr =kl
C .F Pcr =2kl
D .F Pcr =2
kl
图2
【答案】B
【解析】结构失稳形式如图2(b)所示,由∑M B=0得
kyl×2-F Pcr×2y=0F Pcr=kl 4.如图3所示体系的运动方程为()。
图3
A.
B.
C.
D.
【答案】A
【解析】,其中。
5.如图4所示等截面梁实际出现的破坏机构形式是()。
图4
【答案】D
二、填空题(本大题共5小题,每题3分,共15分)
1.如图5(a)所示结构,不计阻尼与杆件的质量,若要发生共振,θ应等于______。
图5
【答案】
【解析】若要发生共振,则应使θ=ω,故本题实际是求自振频率问题,与外荷载无
关。
用刚度法求解,动平衡受力图如图5(b)所示。
列动平衡方程∑M A=0,得
2.如图6所示体系中,已知:θ=0.5ω(ω为自振频率),EI=常数,不计阻尼。
杆
长均为l。
A点的动位移幅值Y为______。
图6
【答案】
【解析】A点动位移幅值,将自振频率代入后可求出结果。
3.如图7所示结构,已知:ω1=1.673s-1,ω2=5.070s-1。
主振型矩阵
实加荷载P(t)=
时,质点位移(y)=______。