分子对称性
分子的对称性.
当原子由位置1(x,y,z)转至位置2 (x`,y`,z)时,坐标关系为
o
O
x = − sin ( 30 + α ) = −1/ 2 x − 3 / 2 y
` o
30o+α
y ` = cos ( 30o + α ) = 3 / 2 x − 1/ 2 y
y
α
n x
与C4轴相关的转动操作及其表示矩阵为
所有分子都有无限多个C1旋转轴,因为绕通过分子的任一 直线旋转360o都使分子复原,是个恒等操作,常用E表示。 E 称为主操作,和乘法中的1相似。严格地说,一个分子若只有E 能使它复原,这个分子不能称为对称分子,或只能看作对称分 子的一个特例。在分子的对称操作群中, E是一个不可缺少的 元素。 对于分子等有限物体, Cn的轴次并不受限制,n可为任意 正整数。分子中常见的旋转轴有C2 , C3 , C4 , C5 , C6 , C∞等。
•
生 物 界 的 对 称 性
分子对称性是联系分子结构和分子性质的重要桥梁之一。 对称性概念和有关原理对化学十分重要: ◆它能简明地表达分子的构型。例如Ni(CN)42-离子具有D4h点群 的对称性,用D4h这个符号就能准确地表达9个原子在同一平面 上,Ni在离子的中心位置,周围4个CN完全等同,都是直线 型,Ni-C-N互成90o 角。 ◆可简化分子构型的测定工作。将对称性基本原理用于量子力 学、光谱学、X射线晶体学等测定分子பைடு நூலகம்晶体结构时,许多计 算可简化,图像更为明确。
⎡ 1/ 2 − 3 / 2 0 ⎤ ⎡ 1/ 2 ⎢ ⎥ 5 ⎢ 1 C6 = ⎢ 3 / 2 1/ 2 0 ⎥ , C6 = ⎢ − 3 / 2 ⎢ 0 ⎥ ⎢ 0 0 1 ⎢ ⎥ ⎢ ⎣ ⎦ ⎣ 3 / 2 0⎤ ⎥ 1/ 2 0 ⎥ 0 1⎥ ⎥ ⎦
结构化学第四章 分子对称性2
۞ 具有偶极矩分子所属的点群:
Cn, 偶极矩在转轴上; Cnv, 偶极矩在平面交线(转轴)上 Cs, 在对称面上 C1, 无对称性的分子 其它点群的分子没有偶极矩。
双原子分子的偶极矩:
同核双原子分子: 0 异核双原子分子: 0
偶极矩大,极性大,通常电负性差异大。
多原子分子的偶极矩:
对于n=奇数,Sn= Cn+ h Cnh n=偶数:
对称元素:(1)n=4的倍数:Sn 群阶(n为偶数):n
n阶
(2)n4的倍数:Cn/2+ i
n阶
5、Dn点群 Cn+ nC2(Cn) Dn
对称元素:Cn+ nC2(Cn)
对称操作:2n个
Dn :
ˆ1, C ˆ 2 , , C ˆ n 1 , C ˆ (1) , C ˆ (1) , , C ˆ (1) ˆ, C E n n n 2 2 2
确定分子点群的流程简图
4.4 分子的偶极矩和极化率
分子的永久偶极矩和分子的结构 偶极矩的定义:偶极矩 是正负电荷重心间的距离矢量 r 与电荷量q 的乘积,即:
qr
偶极矩的方向为正电荷重心指向负电荷重心。
对于多原子分子,偶极矩为: qi ri
用来判断手性分子的几种结构特征: 含有不对称C(或 N)的化合物:有 机上,常用有无不 对称C作为有无旋 光性的标准。
例外
螺旋型分子:无论有无不对称C均有旋光性,无 例外。
螺旋型分子都是手性分子, 旋光方向与螺旋方向一致;匝
数越多旋光度越大;螺距小者
旋光度大;分子旋光度是螺旋 旋光度的代数和.
(2)n=奇数:Cn,h,I2n
分子的对称性的概念和性质
分子的对称性的概念和性质
分子的对称性是指分子内部的元素和化学键的排列方式能够使分子具有某种对
称性质,例如轴对称、面对称或中心对称等。
分子的对称性具有以下性质:
1. 对称性越高,分子越稳定。
高对称性的分子能更好地分散电荷,使电子对于分子的外界环境的影响降低,从而提高其稳定性。
2. 对称性决定了部分分子性质。
例如,分子的光学旋光性、通过红外光谱确定的基团、共振能力和一些电学性质,都与其对称性有关。
3. 不同的分子对称性能够使分子之间的相互作用发生变化。
例如,对称性相同的分子之间的吸引力强于对称性不同的分子,因为它们之间的电场相互作用更强。
4. 分子的对称性还决定了它们在不同状态下的性质。
例如,具有闭壳层分子轨道的分子具有惰性,而具有非闭壳层分子轨道的分子具有较强的反应性和化学活性。
分子的对称性
4.1.1 旋转轴和旋转操作
1. 基转角:能够得到等价构型的最小旋转角。
轴次(n):
C4:
特殊的旋转轴: C∞轴
2. 主轴:一般来说,一个分子中轴次最高的旋转轴。
3. 付轴:除主轴外其余的旋转轴。
S4点群
S6(C3i)点群 1
2. D点群 Dn点群:
D2点群
D3点群 [Co(en)3]3+ 三草酸合铁(III)
Dnh点群
D2h点群 CH2=CH2 对-二氯苯
D3h点群 BF3
环丙烷
பைடு நூலகம்
D4h点群
(PtCl4)2-
D5h点群 (二茂铁) D6h点群 (苯)
Dnd点群
D2d点群 丙二烯
分子的对称性
对称的世界
4.1 对称操作和对称元素
1. 对称操作: 不改变分子中任何两原子间的距离而使其成为等价构 型的操作或动作。 2. 对称元素: 对称操作进行时所依据的几何元素。 3. 复原:分子经过某种动作后,所有同类的原子都与 动作前完全重合,无法区分分子构型是动作前还是动 作后。
等价构型:物理上不可区分的构型。 恒等构型:物理上不可区分且化学上不可区分的构 型,是等价构型的特例。
SF6:
主轴:C4 副轴:C3,C2 对称操作的矩阵表示:
4.1.2 对称中心和反演操作
对称中心 i
4.1.3 镜面(对称面)和反映操作
镜面σ
σv:通过主轴的对称面 σd:通过主轴且平分两个副轴C2的夹角的对称面 σh:垂直主轴的对称面
三种镜面 σv σd 和 σh
第四章分子的对称性
有机化学中的判据:分子含有不对称C原子时可产生旋光性。 但有例外:无不对称C,也可能有旋光性(六螺烯分子); 有不对称C,也可能没有旋光性(分子内消旋)。
H2O2中的C2
(旋转轴上的椭圆形为C2的图形符 号。类似地,正三角形、正方形、 正六边形分别是C3、C4和C6的图形
符号)
3、镜面和反映操作
分子中若存在一个平面,将分子两半部分互相反映 而能使分子复原,则该平面就是镜面σ,这种操 作就是反映. (1)分类:A:包含主轴的镜面v
C2
O
v1
H
H
v2
[B6H6]2-
10、Ih :120阶群, 是目前已知的分子中对称性最高的
对称操作:
E 12C5 12C52 20C3 15C2
i 12S10 12S103 20S6 15σ
C60
n=120
四、分子点群的确定
分子
线形分子:
Cv , Dh
Td , Th , Oh , I h ...
C1 , Ci , Cs
(2) C2 群:
R2
R1
R2
R1
(3)C3群
C3通过分子中心且垂直于荧光屏
2、 Cnv群 :除有一条n次旋转轴Cn外,还有包含主轴的 n个镜面σ 元素: Cn + nv
v
ˆ k (k 1 ˆ,C ˆv ,n 1 ), n 操作: E n
阶数:2n
C2v群:
H2O中的C2和两个σv
结构化学基础-4分子的对称性
S3 = h + C 3
S 4:
ˆ1 ˆ 1 ˆ 1 S 4 hC4
ˆ2 ˆ 2 ˆ 2 ˆ1 S 4 h C4 C2 ˆ4 ˆ 4 ˆ 4 ˆ S 4 h C4 E
ˆ3 ˆ 3 ˆ 3 ˆ ˆ 3 S 4 h C4 h C4
S S 5:ˆ
S 4 的操作中既没有h,也没有C4,是真正的映轴
ˆ1 C4
4 3
iˆ
4 3 3 4 2 1
iˆ
2 1
ˆ1 C4
对称元素的独立性
• 分子中的某一对称元素,不依赖于分子内 的其它元素或元素的结合而独立存在。
不同轴次的I所包含的操作
I 1:
ˆ ˆ ˆ1 ˆ I11 i 1C1 i 1
ˆ ˆ1 ˆ I 2 i 1C 2 h
ˆ ˆ ˆ ˆ I12 i 2C12 E ˆ2 ˆ ˆ 2 ˆ I 2 i 2C 2 E
I 6 C3 h
由此可知:对于反轴In有 Cn + i In = 2n个操作 n为奇数
Cn/2 + h n个操作 n为偶数但不是4的倍数
In n个操作 n为4的倍数(同时有Cn/2与
之重叠)
旋转反映操作和映轴
旋转反映操作:绕轴转360/n,接着按垂直于轴的镜面 进行反映
ˆ ˆ ˆ S C n h h C n 旋转轴Cn和垂直于Cn镜面h的组合
绕轴转360n接着按垂直于轴的镜面进行反映的组合不同轴次的s所包含的操作n个操作n为偶数但不是4的倍数2n个操作n为奇数n个操作n为4的倍数2nn为奇数n为4的倍数对称操作对称元素旋转第一类对称操作实操作旋转轴第一类对称元反演第二类对称操作虚操作对称中心第二类对称元反映镜面旋转反演在一定的坐标系下对物体进行对称操作使得其对应的坐标发生改变对这种坐标的变化关系可以使用矩阵来描述
分子的对称性
第四章 分子的对称性§4.1 对称性操作和对称元素§ <1>分子对称性概念原子组成分子构成有限的图形,具有对称性。
与晶体的对称性不同。
晶体的主要对称性是点阵结构,而分子的对称性主要是指分子骨架在空间的对称性以及分子轨道(波函数)的对称性。
○1分子对称性:指分子的几何图形(原子骨架和原子、分子轨道空间形状)中有相互等同的部分,而这些等同部分互相交换以后,与原来的状态相比,不发生可辨别的变化,即交换前后图形复原。
○2对称操作:不改变物体内部任何两点间的距离,使图形完全复原的一次或连续几次的操作。
(借助于一定几何实体)○3对称元素:对图形进行对称操作,所依赖的几何要素,如:点,线,面及其组合。
<2>对称元素及相应的对称操作○1恒等元素和恒等操作,(E ) ΛE 所有分子图形都具有。
○2旋转轴(对称轴)和旋转操作,Λn n C C ,;对称轴是一条特定的直线。
绕该线按一定方向(逆时针方向为正方面)进行一个角度θ旋转,nπθ2=如:H 2O : πθ21==n 。
分子中可能有 n 个对称轴,其中n 最大的称为主轴,其它称为非主轴,如:BF 3 ,主轴C 3 ,三个C 2垂直于C 3 与分子平面平行。
n C 将产生n 个旋转操作:E =-nn n n n n C C C C ,,,,12逆时旋转为正操作,k n C ;顺时旋转为逆操作,k n C -。
)(k n nk n C C --= 分子图形完全复原的最少次数称操作周期,旋转操作的周期为 n ;分子中,nC的轴次不受限制,n 为任意整数。
如: E =→332333,,C C C C○3对称和反映操作。
Λσσ, :对称面是一个特定的镜面,把分子图形分成两个完全相等的对称部分,两部分之间互为镜中映像,对称操作是镜面的一个反映。
图形中相等的部分互相交换位置,其反映的周期为2。
E =Λ2σ。
对称面可分为:v σ面:包含主轴; h σ面:垂直于主轴;d σ面:包含主轴且平分相邻'2C 轴的夹角(或两个v σ之间的夹角)。
第 4 章 分子的对称性
例2
NH3
c
▲
b
y
a
x
图4-6 NH3分子的对称性
表 4-1 C3v 群的乘法表
C3v
E
C
1 3
E E
1 C3
1 C3 1 C3
C32 C32
E
1 C3
a a
b b
a
c c b
a
C32
1 C3
C32
E
c b
E
C32
a
C32
c
1 C3
b c
a b
b c
a
都具有某种对称性,这些
对称性是电子运动状态和 分子结构特点的内在反映。
利用对称性原理探讨分子的结构和性质,是
认识分子结构、性质的重要途径,而且使许多繁
杂的计算得到简化,利用对称性也可以判断分子
的一些静态性质(例如:偶极矩,旋光性等)。
总之,对称性的概念(群是其高度概括或抽象) 非常重要,在理论无机、高等有机等课程中经常 用到。在本课程学习阶段,主要要求掌握分子点 群的判断及给出点群指明所包含对称操作(群的
两个镜面的组合: 两个镜面的交线必为Cn轴
偶次轴与对称中心或垂直此轴的对称面的组合:一个偶 次轴与对称中心的组合,必产生一垂直此轴的镜面;
对称中心与镜面组合,必产生一垂直此面的二次轴。
4.2.2 对称操作的集合
一个对称元素可 以对应多个对称操作, 分子中所有对称元素 对应的对称操作的集 合,满足一些特殊的
个别类型的对称元素,也可能是多种对称元素的共
同存在。另外,分子中的两种对称元素也可能导出
第三种对称元素(例:C2, I 与h 之间的关系),但它
们之间的组合必须满足一定原则:
第三章 分子的对称性
逆元素
I--- I C3+---C3– v1--- v1 v2---v2 v3 ---v3
封闭性
结合律 v1(v2 v3) = v1 C3+ = v2
(v1v2)v3 = C3+ v3 = v2
3.5 群的表示
矩阵乘法 矩阵 方阵 对角元素
分子的所有对称操作----点群
如果每一种对称操作可以用一个矩阵(方阵)表示, 矩 阵集合满足群的要求,矩阵乘法表与对称操作乘法表
相似, 矩阵集合---群的一个表示
恒等操作I
矩阵
C2v: I C2 v v
特征标: 对角元素和 9
特征标3
特征标 1
特征标 -1
单位矩阵
I 矩阵, C2 矩阵, v 矩阵, v 矩阵 满足群的要求, 是C2v 点群的一个表示
集合G 构成群
1 –1, 乘法
1X1=1, 1X(-1)= -1 (-1)X1= -1, (-1)X(-1)=1 封闭性 恒等元素1 逆元素 1---1, -1--- -1,
群的乘法表 I A I A
I
I
IA
AA
I
I
A
?
A AI
A A
交叉线上元素 = 行元素 X 列元素
已知,I,A,B构成群, I 为恒等元素, 写出群的乘法表
3) 如果对称中心上无任何原子, 则同类原子是成双出现的.
例如: 苯中C, H
NH3 有无对称中心, 为什么? C2H3Cl有无对称中心, 为什么?
(b) 旋转轴Cp
绕轴旋转3600/p, 等价构型 水分子----绕轴旋转1800, 等价构型 C2轴 C3轴 360/2=180
BF3, 旋转1200, 等价构型 360/3=120
结构化学第四章分子对称性
X射线晶体学对于理解分子结构和性质具有重要意义 ,尤其在化学、生物学和材料科学等领域中广泛应 用。
分子光谱方法
分子光谱方法是研究分子对称 性的另一种实验方法。通过分 析光谱数据,可以确定分子的 振动、转动和电子等运动状态 ,从而推断出分子的对称性。
04
分子的点群
点群的分类
80%
按照对称元素类型分类
分子点群可按照对称元素类型进 行分类,如旋转轴、对称面、对 称中心等。
100%
按照对称元素组合分类
分子点群可按照对称元素的组合 进行分类,如Cn、Dn、Sn等。
80%
按照分子形状分类
分子点群可按照分子的形状进行 分类,如线性、平面、立体等。
点群的判断方法
分子没有对称元素,如 NH3。
分子有一个对称元素, 如H2O。
分子有两个对称元素, 如CO2。
分子有多个对称元素, 如立方烷。
02
分子的对称性
对称面和对称轴
对称面
将分子分成左右两部分的面。
对称轴
将分子旋转一定角度后与原分子重合的轴。
对称中心
• 对称中心:通过分子中心点,将分子分成互为镜像的两部分。
具有高对称性的分子往往表现出较弱的磁性,因为它们具有较低的轨道和自旋分 裂能。相反,对称性较低的分子可能表现出较强的磁性,因为它们的轨道和自旋 分裂能较高。
对称性与化学反应活性
总结词
分子对称性对化学反应活性也有重要影响,可以通过对称性 分析来预测和解释分子的化学反应行为。
详细描述
具有高对称性的分子往往具有较低的反应活性,因为它们的 电子云分布较为均匀,难以发生化学反应。相反,对称性较 低的分子可能具有较高的反应活性,因为它们的电子云分布 较为不均匀,容易发生化学反应。
结构化学第四章分子对称性精讲
共同对称元素:
6C5,10C3,15C2,等
对称操作:
E
12C5
i
12S10
12C52
20C3 15C2
12S103
20S6 15σ h=120
C60
四面体群Td
八面体群Oh
十二面体群 Id
11、线形分子
共同对称元素: C ,v 对于HCN,无对称中心,对称点群为 Cv 若有对称中心,如CO2,对称点群为Dh
ˆ n 1 , C ˆ (1) , C ˆ (1) , ,C n 2 2
ˆ (1) ,C 2
群阶:2n
D2 群
主轴C2垂直于荧光屏
6、Dnh点群 Cn+ nC2(Cn) + h Dnh
对称元素: Cn+ nC2(Cn) + h Dnh
n=偶数:Cn, nC2(Cn), h, In, nv, i n=奇数:Cn, nC2(Cn), h, I2n, nv
药物分子的不对称合成
对称性破缺在生命科学中产生了极为深远的影响,因为构成生命 的重要物质如蛋白质和核酸等都是由手性分子缩合而成,生物体中 进行的化学反应也受到这些分子构型的影响. 药物分子若有手性中心 ,则对映异构体对人体可能会有完全不同的作用,许多药物的有效 成份只有左旋异构体有活性, 右旋异构体无效甚至有毒副作用。例如 ,早期用于减轻妇女妊娠反应的药物酞胺哌啶酮因未能将R构型对映 体分离出去而导致许多胎儿畸形. 类似的情况还有很多,仅举几例, 它们的有效对映体和另一对映体的构型与作用如下:
手性有机化合物的合成方法主要有4种: (1)旋光拆分,(2)用 光学活性化合物作为合成起始物,(3)使用手性辅助剂,(4)使用手 性催化剂. 一个好的手性催化剂分子可产生10万个手性产物. 21世纪的第一个诺贝尔化学奖授予威廉· S· 诺尔斯、野依良治、 K· 巴里· 夏普莱斯, 就是表彰他们在手性催化反应方面的贡献.
化学中的分子对称性和分子手性
化学中的分子对称性和分子手性化学是一门研究物质变化和构成的科学。
在研究物质的时候,人们关注物质的各个层面,从宏观到微观,从物理性质到化学性质。
其中,分子结构是理解物质性质的关键。
分子是由原子组成的,分子的性质受到原子数目、类型和结合方式的影响。
分子的对称性和手性是分子结构研究中的两个关键概念。
接下来,我们一起来了解分子对称性和分子手性的相关内容吧。
一、分子对称性对称性是物理学和数学中的一个基本概念,指物体在某种操作下,保持不变或沿着某个方向镜像对称。
在分子结构中,分子的对称性表现为分子各个部分在某些几何变换下保持不变。
如旋转、反演、镜面反射等。
分子对称性可以分为平面对称和空间对称。
平面对称是指分子中的某个平面将分子分为两个完全对称的部分。
例如在水分子中,氢原子相对于氧原子距离相等,形成了一个平面对称。
在NH3(氨)中,氢原子的三条化学键排列在一个平面上,这也是一个平面对称。
空间对称是指分子围绕空间中的轴或平面进行旋转或反演后,与原始结构重合。
如果转动360度之后重合,称为完全对称。
一个分子的对称性影响了分子的物理化学性质,也影响了分子的稳定性。
二、分子手性在分子结构中,当一个分子与其镜像分子之间不能重叠时,这个分子就是手性分子。
手性分子有左右两种形态,称为立体异构体。
因为它们的分子结构相似,但是它们的化学特性却不同。
手性分子存在于自然界中的生命物质、毒物、药物以及合成材料中。
例如,我们生活中常见的左旋糖和右旋糖就是一种手性分子,两种结构相同,但化学性质不同。
左旋糖不被人体代谢,而右旋糖能够被人体利用。
分子的手性是由分子中心对称性元素和键的排列方式决定的。
对角线和点对称元素都是分子手性的明显表现。
手性分子可以分为两种类型:左旋和右旋的手性分子。
三、分子对称性和手性的应用分子对称性和手性的研究是化学和生物化学不可或缺的一部分,因为它们关乎着各种物质的性质。
根据分子对称性和手性的不同表现,可以研究物质的反应规律以及物质的作用机理。
结构化学:分子的对称性
对称元素:对称操作所依据的几何元素(点、线、面) 分子中的对称元素有:
1. 恒等元素E 和恒等操作
ˆ E
恒等元素E是所有分子几何图形都有的,其相应的操作是恒等操 作 E。对分子施行这种操作后,分子保持完全不动,即分子中各原子 的位置及其轨道方位完全不变。
恒等操作对向量(x, y, z)不产生任何影响。
6. 映轴 Sn 和旋转反映
ˆ S n
对应的操作为
ˆ ˆ ˆ hC S n n
当对分子施行 轴的 S k次操作
n
时 Sn
k
k ˆk ˆk ˆ S n n Cn
k k ˆ ˆ ˆ S C n n k ˆ C ˆk S n n
当k为奇数时
当k为偶数时 当n为奇数时 当n为偶数时
4. 对称中心 i 和反演(倒反)操作
iˆ
5. 反轴 In 和旋转反演
ˆ I n
若将分子绕某轴旋转2/n角度后,再经对称中心反演产生分 子的等价图形,该对称操作称为反演,表示为 ,相应的 对称元素称反轴,用In表示。
ˆ I n
旋转反演是一种复合操作,且先反演后旋转( 转后反演(
),和先旋
ˆi ˆ C n
4.1.1 分子的对称性
对称性是物质内部分子结构对称性的反映。在
分子中,原子可以看做是固定在其平衡位置上的, 分子的结构参数,如键长、键角等决定了分子的几 何构型和分子的对称性。许多分子的几何构型具有 一定的对称性。
分子的对称性
对称操作和相应的对称元素
4.1.2 对称操作和相应的对称元素
对称操作:指不改变物体内部任何 两点间的距离而使物体复原的操作。
例: CH4 (放在正方体中)
ˆ I n
分子的对称性.
4.1.2 反演操作和对称中心
当分子有对称中心i时,从分子中任一原子至对称中心连 一直线,将此线延长,必可在和对称中心等距离的另一侧找到 加一相同原子。和对称中心相应的对称操作叫反演或倒反。两 个由对称中心联系的分子是对映体,它们不一定完全相同,如 左右手关系。 若对称中心位置在原点(0,0,0)处,反演操作i的表示矩阵 为。连续进行两次反演操作等于主操作,反 演操作和它的逆操作相等。
4.1.4
旋转反演操作和反轴
反轴In的基本操作为绕轴转360o/n,接着按轴上的中心点进 行反演,In1 = iCn1。这个操作是Cn1和i相继进行的联合操作。Ii 对称元素等于i;I2等于σh; I3包括下列6个对称操作。
I31 = iC31 , I32 = C32 , I33 = i , I34 = C31 , I35 = iC32 , I36 = E ,
式中右上角的负号表示逆操作。 由上可见,反轴和映轴两者是相通的,对它们只要选择一种 即可。通常对分子的对称性用Sn较多,对晶体对称性则采用In , 因为按特征对称元素划分晶系时,按反轴轴次规定进行。为了将 分子对称性和晶体对称性统一起来,我们主要用反轴。
C31 c
C31 b c
C31 b
C31 和C32操作的表示矩阵
⎡ −1/ 2 − 3 / 2 0 ⎤ ⎡ −1/ 2 ⎢ ⎥ 2 ⎢ 1 c3 = ⎢ 3 / 2 −1/ 2 0 ⎥ c3 = ⎢ − 3 / 2 ⎢ 0 ⎥ ⎢ 0 0 1 ⎢ ⎥ ⎢ ⎣ ⎦ ⎣
3 / 2 0⎤ ⎥ −1/ 2 0 ⎥ 0 1⎥ ⎥ ⎦
当原子由位置1(x,y,z)转至位置2 (x`,y`,z)时,坐标关系为
结构化学基础课件 第四章 分子的对称性
②第二步,进行右上角的乘法, 分子进行 反映,N和H1保持不变,H2与H3互换位置,
再绕 轴旋转120度,则N还是不变,H2到H1 位置,H1到H2位置,H3回到原位置,两个操 作的净结果,相当于一个 镜面反映……可
写出右上角的九个结果。
③同理也可写出左下角的九个结果。旋转操 作和反映操作相乘,得到的是反映操作;两 个旋转操作相乘和两个反映操作相乘得到的 是旋转操作。
学时安排 学时----- 4学时
第四章.分子的对称性
对称 是一种很常见的现象。在自然界
我们可观察到五瓣对称的梅花、桃花,六瓣 的水仙花、雪花、松树叶沿枝干两侧对称, 槐树叶、榕树叶又是另一种对称……在人工 建筑中,北京的古皇城是中轴线对称。在化 学中,我们研究的分子、晶体等也有各种对 称性,有时会感觉这个分子对称性比那个分 子高,如何表达、衡量各种对称?数学中定 义了对称元素来描述这些对称。
I1 S2 i
S1
I
2
I2 S1
S2 I1 i
I3
S
6
C3
i
S3
I
6
C3
I4 S4
S4
I
4
I5 S10 C5 i
S5 I10 C5
I6 S3 C3 S6 I3 C3 i
负号代表逆操作,即沿原来的操作退回去的操作。
S4 S6
对称元 素符号
E Cn
I1n=iC1n 4.1.5.映轴和旋转反映操作
映轴S1n的基本操作为绕轴转3600/n, 接着按垂直于轴的平面进行反映,是C1n和 σ相继进行的联合操作:
S1n=σC1n
如果绕一根轴旋转2/n角度后立即对垂直于这根轴的一 平面进行反映,产生一个不可分辨的构型,那么这个轴就
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ˆ ,4C ˆ ,4C ˆ 2 ,3S ˆ 1 ,3S ˆ 3 ,6 ˆ ,3C ˆd Td E 2 3 3 4 4
24阶群
CH4 (P4、SO42-)
(2) Oh群:
(正八面体分子)
元素:3C4,4C3,6C2, 3 h, 6d,3S4,4S6,i
1 3 1 2 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ E , 3 C , 3 C , 3 C , 4 C , 4 C 4 4 2 3 3 ,6C2 ' ,3 h ,6 d , Oh 1 3 1 5 ˆ ˆ ˆ ˆ ˆ 3S 4 ,3S 4 ,4S6 ,4S6 , i
NH3: 逆时针旋转 =2/3 等价 于旋转2 (复原), 有C3 轴。
H2O: 逆时针旋转 =2/2 等价 于旋转2 (复原), 有C2 轴。
1 ,C 2, C 3,…C n-1,C n =E 共 n个旋转操作 C C n轴: n n n n n
一般将逆时针旋转定为正操作CnK ,顺时针旋转定 为逆操作Cn-K,且CnK =Cn-(n-K)
子中心,且垂直分子平面 的直线为轴)。
如 :BF3 ( 以通过 B 原
C3: C31 C32 C33=E
共个3个操作, 且 Ĉ32= Ĉ3ˉ1
BCl3分子有1C3、3C2 同一分子中可具有多 根对称轴,其中n最大 的为主轴。 ∴BCl3分子中C3轴为主轴
常见的对称轴有: C2,C3,C4 ,C5,C6,C
(2) 相互交成2π/2n角的两个镜面,其交线必为一 n 次轴Cn。 两个反映的乘积是一个旋转操作
(3) Cn轴与一个v 组合 ,则必有n个v 交成2/2n的 夹角。
旋转与反映的乘积是n个反映 (4) 偶次旋转轴和与它垂直的镜面的组合
一个偶次轴与一个垂直于它的镜面组合,必定在 交点上出现一个对称中心;一个偶次轴与对称中心 组合,必有一垂直于该轴的镜面;对称中心与一镜 面组合,必有一垂直于该镜面的偶次轴。
1、恒等操作和恒等元素(E)
不改变图形中任意一点的位置的操作称为 恒等操作。恒等操作也称为“不动”,是每个 分子都具有的。
附图 C C60 60结构图
2、旋转操作和旋转轴(Cn)
旋转轴是分子中一条特定直线,以该直线为轴旋转 某个角度 ( =2π /n),能产生分子的等价图形。 则称该分子具有Cn 轴,对应的操作为旋转操作。
群的阶:n
C2 H
H H Cl C2 Cl H
二氯丙二烯 C2
C2 C2轴穿过中心C原 子,与两个平面形 成45°夹角。
C
3
旋转一定角度 的三氯乙烷
(2)Cnh群
产生:Cn + h
对称元素:Cn+h 对称操作:{E,Cn,Cn2 … Cnn-1,σn,Sn2……Snn-1} 阶数:2n
C2h 萘的二氯化物
S1 h ; S 2 i ; S3 C3 h ; S 4独立,包含C2 ; S 5 C5 h ; S 6 C 3 i
如果一个分子中存在Cn轴以及垂直于Cn轴的σh 面,则必 然有Sn 轴,但分子有Sn 轴不一定存在Cn轴和σh 面。
(a) 旋转 3600/4 (b) 按通过C的垂直于 S4轴的平面反映 4.1
4. 反演操作和对称中心 i
当分子有对称中心时,从分子中任一原子至对称 中心连一直线,将此线延长,必在和对称中心等距离 的另一侧找到另一相同原子。与对称中心(i)相对 应的对称操作叫反演。
二氯乙烷 C2H2Cl2
i :i、E 2个操作。
一个分子若有 i 时,除 i 上的原子,其他原 子必定成对出现。
, ˆ ˆ ˆ V , ˆV E ,C2 ,
对称操作:
3.对称元素组合
两个对称元素组合必产生第三个对称元素。
如果一个操作产生的结果和两个或多个其他操作连续作用 的结果相同,通常称这一操作为其他操作的积。
积就是对称操作的连续使用。C =A· B
(1)两个旋转的乘积必为另一个旋转
两个C2的乘积(交角为) 是一个垂直于 C2轴平面的转动 Cn(n=2/2)。 推论:Cn+垂直的C2 n个C2
第六节 分子对称性
是指分子的几何图形中(原子骨架、分子轨道空 间形状),有相互等同的部分,而这些等同部分互相 交换以后,与原来的状态相比,不发生可辨别的变化。 即交换前后图形复原。也就是说,分子中所有相同类 型的原子在平衡构型时的空间排布是对称的。
根据分子的对称性可以: 了解物体平衡时的几何构型, 分子中原子的平衡位置;
C4v
O Xe F F
F F F F
v
F F
IF5
3、二面体群—— 有一个Cn轴和n个垂直于
Cn的C2轴, Dn,Dnh,Dnd。
(1) Dn群
对称操作:
产生:nC2⊥Cn
Dn分子很少见
对称元素: E,nC2Cn
阶数 :
2n
C2主轴穿过联苯轴线,经过2个O为水平面上 的C2轴,还有一个C2轴与这两个C2轴垂直。
♥点群:一个有限分子的全部对称操作,构成一个对称操作群。 点操作,所有对称元素至少交于一点,有限性。群中元素的数 目,称为群的阶,用h表示。
2. 群的乘法表
一个h阶有限群的元素及这些元素所有可能的乘积共h2个, 可以用乘法表表示。 乘法表由h行和h列组成。在行坐标为x、列坐标为y的交点 上的元素为yx,即先操作x,再操作y所得的元素。 例:H2O 对称元素:E, C2, v, v’
二、对称操作群和对称元素的组合 1.群
按一定的运算规则,相互联系的一些元素的集合。
其中的元素可以是操作、矩阵、算符或数字等。
构成群的条件:
(1) (2) (3) (4)
ˆ G, B ˆB ˆ G; ˆ G , 则A ˆ C 封闭性:若A ˆ( B ˆ )( A ˆB ˆ; ˆC ˆ )C 结合律:A ˆE ˆ A ˆ; ˆ E ˆA 有单位元素E:A ˆA ˆ A ˆ A ˆ E ˆ 逆操作:A
48阶群
立方烷C8H8
SF6
[B6H6]2-
5. 线性分子点群(非折叠)
直线形分子的键轴是次旋转轴和无穷个包含键轴
的反映面的点群:
① C v (异核双原子,NO, CO,HF ,HCN等)
D3:三二乙胺络钴离子螯合物 [Co(NH2CH2CH2NH2)3]3+
(2) Dnh群
操作:
阶数:4n
D2h
nC2Cn+h
元素: E,Cn,nC2,h
特点: (1) Cn· hSn, Cn就是Sn (2) C2· h n个Cv, n个Cv通过Cn (3) n为偶数时有i
D5h D5h
Br Cl
没有其它对称元素的平面分子属于Cs 。 2-氯吡啶 4.2
2 、单轴群(轴向群) ——仅含 1 个 Cn 轴或 Sn 轴的
群,如 Cn,Cnv,Cnh, Sn 群
(1)Cn群
n 2(只有1个n 重旋转轴 Cn)
对称元素: E,Cn
ˆ 1 ,C ˆ 2 ,C ˆ 3 ,C ˆ n 1 ,C ˆn E ˆ } 对称操作:{ C n n n n n
3 反映操作和镜面()
若有一平面能把分子分成二个完全相等的对称部分,即 互为镜面,则此平面为对称面也称为镜面,对应的操作为反 映。
E (n为偶数) n (n为奇数)
一个镜面有:σ 、E 2个操作。
按镜面和主轴的关系,对称面可分为:
v面:包含主轴的对称面; h面:垂直于主轴的对称面; d 面: 包含主轴且平分相邻C2轴夹角 的对称面 。
表示分子构型,简化描述;简化计算;指导合成;
平衡构型取决于分子的能态, 据此了解、预测分子的性质。
一、对称元素和对称操作
对称操作是指不改变物体内部任何两点间的距离 而使物体复原的操作。 每一次对称操作都能够产生一个和原来图形等价的 图形,经过一次或连续几次操作能使图形完全复原。
等价图形:当一个操作作用于一个分子上时,所产生的新的分 子几何图形和作用前的图形如果不借助标号(原子的标号)是 无法区分的。
(1)C1群:对称元素 E;对称操作:E
C1 = {E},分子完全不对称 群的阶(order)=1
H C F Cl
一氟一氯一溴甲烷
CO2H
Br
HO
H CH3
(2) Ci 群:对称元素: E, i; ˆ ,ˆ 对称操作:E i 群的阶为2
(3) Cs 群:对称元素: E, σ;
ˆ , ˆ 群的阶为2。 E 对称操作:
平面正方形PtCl42-
具有对称中心
四面体SiF4
不具有对称中心
5. 旋转反映操作和象转轴(Sn)
若分子图形绕某一轴进行旋转操作后,再以垂直 于该 轴的平面进行反映的复合操作,可以产生分子 的等价图形,则将该轴和镜面组合所得到的对称元 素称为象转轴。这种操作称为旋转反映。
Sn Cn h hCn
螺壬烷 联苯
常见D2d~D5d
丙二烯
D2d
D3d 乙烷交错型
一些过渡金属八配位化合物, ReF82-、TaF83-和Mo(CN)83+等 均形成四方反棱柱构型,属D4d。
D5d
D4d :单质硫 S8分子为皇冠型构型,属D4d点群,C4旋转轴位于 皇冠中心。4个C2轴分别穿过S8环上正对的2个S原 子,4个包含C4垂直C2的镜面把皇冠均分成八部分。
H3BO3
C3h
C4h
C3h
(3) Cnv群
对称操作:
产生:Cn + nv
阶数:2n
对称元素: E, Cn, n v
C2v群:
H C Cl
与水分子类似的V 型分子,如SO2、 NO2、H2S等均为 C2v点群。