组合图形面积和阴影部分面积计算
阴影部分面积-专题复习-经典例题(含答案)
![阴影部分面积-专题复习-经典例题(含答案)](https://img.taocdn.com/s3/m/3e17a442aeaad1f347933f74.png)
解答小升初阴影部分面积专题☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆ 试题解析1 •求如图阴影部分的面积•(单位:厘米)考点 组合图形的面积;梯形的面积;圆、圆环的面积.分析阴影部分的面积等于梯形的面积减去直径为 4厘米的半圆的面积,利用梯形和半圆的面积公式代入数据即可解答.解:( 4+6)X 4-2-2-3.14 X '十 2,=10-3.14 X 4-2,=10-6.28 ,=3.72 (平方厘米);答:阴影部分的面积是3.72平方厘米.点评 组合图形的面积一般都是转化到已知的规则图形中利用公式计算,这里考 查了梯形和圆的面积公式的灵活应用.2•如图,求阴影部分的面积•(单位:厘米)考点组合图形的面积.分析 根据图形可以看出:阴影部分的面积等于正方形的面积减去 4个扇形的面积•正方形的面积等于(10X 10) 100平方厘米,4个扇形的面积等于半径 为(10-2) 5厘米的圆的面积,即:3.14 X 5X 5=78.5 (平方厘米).解答解:扇形的半径是:10-2,厘米.=5 (厘米);10X 10 - 3.14 X 5X 5,100-78.5 ,=21.5 (平方厘米);答:阴影部分的面积为21.5平方厘米.点评 解答此题的关键是求4个扇形的面积,即半径为5厘米的圆的面积.3•计算如图阴影部分的面积•(单位:厘米)考点组合图形的面积.分析 分析图后可知,10厘米不仅是半圆的直径,还是长方形的长,根据半径等 于直径的一半,可以算出半圆的半径,也是长方形的宽,最后算出长方形 和半圆的面积,用长方形的面积减去半圆的面积也就是阴影部分的面积.解答解:10-2=5 (厘米),长方形的面积=fex 宽=10X5=50 (平方厘米),半圆的面积=nr 2十2=3.14 X52-2=39.25 (平方厘米),阴影部分的面积=长方形的面积-半圆的面积, =50 - 39.25,=10.75 (平方厘米);答:阴影部分的面积是10.75 .点评这道题重点考查学生求组合图形面积的能力,组合图形可以是两个图形拼 凑在一起,也可以是从一个大图形中减去一个小图形得到;像这样的题首 先要看属于哪一种类型的组合图形,再根据条件去进一步解答.考点组合图形的面积.专题 平面图形的认识与计算.分析 由题意可知:阴影部分的面积=长方形的面积-以4厘米为半径的半圆的面积,代入数据即可求解.2解答解:8X4-3.14 X4 -2,=32 - 25.12 ,=6.88 (平方厘米);答:阴影部分的面积是6.88平方厘米.点评解答此题的关键是:弄清楚阴影部分的面积可以由哪些图形的面积和或差求出. 5•求如图阴影部分的面积•(单位:厘米)考点圆、圆环的面积.分析由图可知,正方形的边长也就是半圆的直径,阴影部分由4个直径为4厘米的半圆组成,也就是两个圆的面积,因此要求阴影部分的面积,首先要算1个圆的面积,然后根据“阴影部分的面积=2X圆的面积”算出答案.解答解:S=nr2=3.14 X(4-2)2=12.56 (平方厘米);阴影部分的面积=2个圆的面积,=2X 12.56,=25.12 (平方厘米);答:阴影部分的面积是25.12平方厘米.点评解答这道题的关键是重点分析阴影部分是由什么图形组成的,再根据已知条件去计算. 6•求如图阴影部分面积•(单位:厘米)考点长方形、正方形的面积;平行四边形的面积;三角形的周长和面积. 分析图一中阴影部分的面积=大正方形面积的一半-与阴影部分相邻的小三角形的面积;图二中阴影部分的面积=梯形的面积-平四边形的面积,再将题目中的数据代入相应的公式进行计算.解答解:图一中阴影部分的面积=6X6-2-4X6-2=6(平方厘米);图二中阴影部分的面积=(8+15)X(48-8)十2- 48=21 (平方厘米);答:图一中阴影部分的面积是6平方厘米,图二中阴影部分的面积是21平方厘米.点评此题目是组合图形,需要把握好正方形、三角形、梯形及平行四边形的面积公式,再将题目中的数据代入相应的公式进行计算.7.计算如图中阴影部分的面积.单位:厘米.考点组合图形的面积.分析由图意可知:阴影部分的面积丄圆的面积,又因圆的半径为斜边上的高,4利用同一个三角形的面积相等即可求出斜边上的高,也就等于知道了圆的半径,利用圆的面积公式即可求解.解答解:圆的半径:15X20-2X2-25,=300- 25,=12 (厘米);阴影部分的面积:1X 3.14 X 122,1丄X 3.14 X 144,4=0.785 X 144,=113.04 (平方厘米);答:阴影部分的面积是113.04平方厘米.点评此题考查了圆的面积公式及其应用,同时考查了学生观察图形的能力.8.求阴影部分的面积.单位:厘米.考点组合图形的面积;三角形的周长和面积;圆、圆环的面积.分析(1)圆环的面积等于大圆的面积减小圆的面积,大圆与小圆的直径已知,代入圆的面积公式,从而可以求出阴影部分的面积;(2)阴影部分的面积=圆的面积-三角形的面积,由图可知,此三角形是等腰直角三角形,则斜边上的高就等于圆的半径,依据圆的面积及三角形的面积公式即可求得三角形和圆的面积,从而求得阴影部分的面积.解答解:(1)阴影部分面积:2 23.14 X 煜)-3.14 X (#),=28.26 - 3.14,=25.12 (平方厘米);(2)阴影部分的面积:3.14 X32-丄X(3+3)X 3,1=28.26 - 9,=19.26 (平方厘米);答:圆环的面积是25.12平方厘米,阴影部分面积是19.26平方厘米. 点评此题主要考查圆和三角形的面积公式,解答此题的关键是找准圆的半径.9•如图是三个半圆,求阴影部分的周长和面积•(单位:厘米)考点组合图形的面积;圆、圆环的面积.专题平面图形的认识与计算.分析观察图形可知:图中的大半圆内的两个小半圆的弧长之和与大半圆的弧长相等,所以图中阴影部分的周长,就是直径为10+3=13厘米的圆的周长,由此利用圆的周长公式即可进行计算;阴影部分的面积=大半圆的面积-以10-2=5厘米为半径的半圆的面积-以3-2=1.5厘米为半径的半圆的面积,利用半圆的面积公式即可求解.解答解:周长:3.14 X(10+3),10•求阴影部分的面积. (单位:厘米)解答 解:r=3,R=3+3=6 n=120,=3.14 X 13,=40.82 (厘米); 面积:_X 3.14 X[ (10+3)十2]2- --X 3.14 X (10 十 2) 2- —_L X 3.14 X 2 2 22 二丄X 3.14 X ( 42.25 - 25 - 2.25 ),2—X 3.14 X 15,2=23.55 (平方厘米);答:阴影部分的周长是40.82厘米,面积是23.55平方厘米.点评此题主要考查半圆的周长及面积的计算方法,根据半圆的弧长 =n r ,得出 图中两个小半圆的弧长之和等于大半圆的弧长,是解决本题的关键.考点圆、圆环的面积.分析先用“3+3=6'求出大扇形的半径,然后根据“扇形的面积”分别计360算出大扇形的面积和小扇形的面积,进而根据“大扇形的面积-小扇形的 面积=阴影部分的面积”解答即可.+ - …一—,=37.68 - 9.42,=28.26 (平方厘米);答:阴影部分的面积是28.26平方厘米.点评此题主要考查的是扇形面积计算公式的掌握情况,应主要灵活运用.11 •求下图阴影部分的面积•(单位:厘米)考点组合图形的面积.分析先求出半圆的面积3.14 X(10十2)2-2=39.25平方厘米,再求出空白三角形的面积10X(10-2)十2=25平方厘米,相减即可求解.解答解:3. 14X(10-2)-2- 10X(10-2)-2=39.25 - 25=14.25 (平方厘米).答:阴影部分的面积为14.25平方厘米.点评考查了组合图形的面积,本题阴影部分的面积=半圆的面积-空白三角形的面积. 12.求阴影部分图形的面积.(单位:厘米)10考点组合图形的面积.分析求阴影部分的面积可用梯形面积减去圆面积的丄,列式计算即可.4解答解:(4+10)X 4-2-3.14 X4 2-4,=28- 12.56,=15.44 (平方厘米);答:阴影部分的面积是15.44平方厘米.点评解答此题的方法是用阴影部分所在的图形(梯形)面积减去空白图形(扇形)的面积,即可列式解答.13.计算阴影部分面积(单位:厘米)殳—6—25考点组合图形的面积.专题 平面图形的认识与计算.分析如图所示,阴影部分的面积=平行四边形的面积-三角形①的面积, 平行四 边形的底和高分别为10厘米和15厘米,三角形①的底和高分别为10厘米 和(15-7)厘米,利用平行四边形和三角形的面积公式即可求解.解答解:10X 15- 10X ( 15- 7)十 2,=150- 40,=110 (平方厘米); 答:阴影部分的面积是110平方厘米.点评 解答此题的关键是明白:阴影部分的面积不能直接求出,可以用平行四边 形和三角形的面积差求出.14.求阴影部分的面积.(单位:厘米)— 6 — 76110 计考点梯形的面积.分析如图所示,将扇形①平移到扇形②的位置,求阴影部分的面积就变成了求 梯形的面积,梯形的上底和下底已知,高就等于梯形的上底,代入梯形的 面积公式即可求解.K. 一1Q 习解答解:(6+10)X 6-2,=16X 6-2,=96- 2,=48 (平方厘米);答:阴影部分的面积是48平方厘米.点评此题主要考查梯形的面积的计算方法,关键是利用平移的办法变成求梯形的面积. 15•求下图阴影部分的面积:(单位:厘米)考点组合图形的面积.分析根据三角形的面积公式:S=ah,找到图中阴影部分的底和高,代入计算即可求解. 解答解:2X3-2=6-2=3 (平方厘米).答:阴影部分的面积是3平方厘米.点评考查了组合图形的面积,本题组合图形是一个三角形,关键是得到三角形的底和高.16.求阴影部分面积(单位:厘米).考点组合图形的面积.分析由图意可知:阴影部分的面积=梯形的面积--圆的面积,梯形的上底和高4都等于圆的半径,上底和下底已知,从而可以求出阴影部分的面积.解答解:(4+9)X 4-2-3.14 X42X丄,=13X 4-2-3.14 X 4,解答解: -X( 6+8)X( 6-2) X 3.14 X( 6-2)丄X 14X 3 2护3.14 X 9,=26- 12.56 ,=13.44 (平方厘米);答:阴影部分的面积是13.44平方厘米.点评解答此题的关键是明白:梯形的下底和高都等于圆的半径,且阴影部分的面积=梯形的面积-丄圆的面积.4考点组合图形的面积.分析由图可知,阴影部分的面积=梯形的面积-半圆的面积•梯形的面积=(a+b)h,半圆的面积nr,将数值代入从而求得阴影部分的面积.=21 - 14.13 ,=6.87 (平方厘米);答:阴影部分的面积为6.87平方厘米.点评考查了组合图形的面积,解题关键是看懂图示,把图示分解成梯形,半圆和阴影部分,再分别求出梯形和半圆的面积.(单位:厘米)。
五年级数学组合图形试题
![五年级数学组合图形试题](https://img.taocdn.com/s3/m/e13ac21119e8b8f67d1cb9b2.png)
五年级数学组合图形试题1.计算图形的面积。
(单位:cm)【答案】800cm2【解析】三角形的面积+平行四边形的面积。
解:32×10÷2+32×20=32×5+32×20=32×(5+20)=32×25=800(cm2)2.计算图形的面积。
(单位:cm)【答案】201cm2【解析】三角形的面积+梯形的面积。
解:3×4÷2+(6+20)×15÷2=6+26×15÷2=6+195=201(cm2)3.计算阴影部分的面积。
(单位:cm)【答案】216cm2【解析】阴影面积=平行四边形面积-三角形面积。
解:18×24-18×24÷2=432-432÷2=432-216=216(cm2)4.计算阴影部分的面积。
(单位:cm)【答案】302cm2【解析】阴影面积=长方形面积-梯形面积。
解:26×15-(10+12)×8÷2=390-22×4="390-88"=302(cm2)5.计算阴影部分的面积。
(单位:cm)【答案】84cm2【解析】阴影面积=梯形面积-三角形面积。
解:(14+16)×12÷2-12×16÷2=30×6-192÷2=180-96=84(cm2)6.计算下面组合图形的面积(每个方格的面积为1)。
【答案】6【解析】首先数清楚图形总共占了几个方格,让方格的面积乘以方格的个数即可。
从上往下看,小方格的个数约为6个,所以面积为1×6=6。
7.计算下面组合图形的面积(每个方格的面积为1)。
【答案】10【解析】图中的阴影部分可以分解为一个平行四边形和一个梯形。
4×2+(1+3)×1÷2=8+4×0.5=8+2=108.求阴影部分的面积。
小学求阴影部分面积(例题加习题)
![小学求阴影部分面积(例题加习题)](https://img.taocdn.com/s3/m/99e34570ddccda38376bafd4.png)
小学求阴影部分面积(例题和练习)【经典例题1】求如图阴影部分的面积。
(单位:厘米)考点:组合图形的面积;梯形的面积;圆、圆环的面积。
分析:阴影部分的面积等于梯形的面积减去直径为4厘米的半圆的面积,利用梯形和半圆的面积公式代入数据即可解答。
解答:解:(4+6)×4÷2÷2﹣3.14×÷2=10﹣3.14×4÷2=10﹣6.28=3.72(平方厘米)答:阴影部分的面积是3.72平方厘米.点评:组合图形的面积一般都是转化到已知的规则图形中利用公式计算,这里考查了梯形和圆的面积公式的灵活应用。
【巩固提高】1、如图,求阴影部分的面积.(单位:厘米)2、计算如图阴影部分的面积.(单位:厘米)3、求出如图阴影部分的面积:单位:厘米.4、求如图阴影部分的面积。
(单位:厘米)【经典例题2】求如图阴影部分面积。
(单位:厘米)考点:长方形正方形的面积;平行四边形的面积;三角形的周长和面积。
分析:图一中阴影部分的面积=大正方形面积的一半-与阴影部分相邻的小三角形的面积;图二中阴影部分的面积=梯形的面积-平行四边形的面积。
再将题目中的数据代入公式中计算。
解答:图一中阴影部分的面积=6×6÷2-4×6÷2=6(平方厘米)图二中阴影部分的面积=(8+15)×(48÷8)÷2-48=21(平方厘米)点评:此题目是组合图形,需要把握好正方形、三角形、平行四边形、梯形的面积公式,再将题目中的数据代入相关公式进行计算。
【巩固提高】1、计算如图中阴影部分的面积.单位:厘米.2、求阴影部分的面积.单位:厘米.【经典例题3】如图是三个半圆,求阴影部分的周长和面积。
(单位:厘米)考点:组合图形的面积,圆和圆环的面积。
分析:观察图形可知,图中的大半圆内的两个小半圆的弧长之和与大半圆的弧长相等,所以图中阴影部分的周长等于直径为13厘米的圆的周长,再利用圆的周长公式即可计算;阴影部分的面积=大半圆的面积-两个小半圆的面积解答:解:周长:3.14×(10+3)=3.14×13=40.82(厘米)面积:×3.14×[(10+3)÷2]2﹣×3.14×(10÷2)2﹣×3.14×(3÷2)2=×3.14×(42.25﹣25﹣2.25)=×3.14×15=23.55(平方厘米)点评:此题主要考查半圆的周长及面积的计算方法,根据半圆的弧长=πr,得出图中两个小半圆的弧长之和等于大半圆的弧长,是解决本题的关键。
常见组合图形面积计算实例二
![常见组合图形面积计算实例二](https://img.taocdn.com/s3/m/a53184ac85868762caaedd3383c4bb4cf7ecb73c.png)
求阴影部分面积实例二求左面阴影部分的面积。
(单位:米)提示:阴影面积=大圆面积+ 2个1/2圆的面积-三角形面积。
1、大圆面积:已知圆的直径,求面积,先用直径除以2得到半径,再用圆周率乘以半径的平方可以得到。
答案:1、半圆面积:44÷2=22米3.14×22×22=1519.76平方米2、2个1/2圆的面积:22÷2=11米3.14×11×11=379.94平方米求左面阴影部分的面积。
(单位:米)提示:割补后阴影面积刚好成为半圆的面积减去一个三角形的面积。
1、半圆面积:已知圆的直径,求面积,先用直径除以2得到半径,再用圆周率乘以半径的平方可以得到。
再求圆面积的1/2,就用圆的面积乘以1/2。
2、求三角面积已知三角形形的底和高,求面积,用底乘以高除以2可以得到。
3、求阴影面积=半圆面积-三角形面积答案:1、半圆面积:80÷2=40米3.14×40×40×1/2=2512平方米2、三角形面积:80×40÷2=1600平方米3、阴影面积:2512 - 1600=912平方米2、2个1/2圆的面积:已知圆的直径,求面积,先用直径除以2得到半径,再用圆周率乘以半径的平方可以得到。
3、求三角面积已知三角形形的底和高,求面积,用底乘以高除以2可以得到。
4、阴影面积=大圆面积+ 2个1/2圆的面积-三角形面积。
3、三角形面积:44×44÷2=968平方米4、阴影面积:1519.76 + 379.94 - 968=931.7平方米求左面阴影部分的面积。
(单位:米)提示:阴影面积=大圆面积+ 2个1/2圆的面积-三角形面积。
1、大圆面积:已知圆的直径,求面积,先用直径除以2得到半径,再用圆周率乘以半径的平方可以得到。
2、小圆的面积:已知圆的直径,求面积,先用直径除以2得到半径,再用圆周率乘以半径的平方可以得到。
奥数圆面积计算六年级上册培优
![奥数圆面积计算六年级上册培优](https://img.taocdn.com/s3/m/d726c43a0b4c2e3f57276340.png)
奥数组合图形面积计算1:求出阴影部分的面积(单位:厘米)6×6×3.14×41 =9×3.14=28.26(平方厘米)2、求下面图形的阴影部分面积单位:厘米(1)6×6÷2=18(平方厘米)( 2)6×6=36(平方厘米)3、求出阴影部分的面积(单位:厘米)4×4×3.14×41-4×4÷2+4×2÷2 =12.56-8+4=8.56(平方厘米)4、求下列图形的阴影部分的面积(单位厘米)(1) 4×2=8(平方厘米) (2) 4×4÷2=8(平方厘米)5、两圆半径都是1厘米,且图中两个阴影部分的面积相等。
求长方形ABO 1O 的面积。
3.14×12×41×2=1.57(平方厘米) 6、圆的周长为12.56厘米,AC 两点把圆周分成相等的两段弧,阴影部分(1)的面积与阴影部分(2)的面积相等,求平行四边形ABCD 的面积。
12.56÷3.14=4(厘米) 22×3.14=12.56(平方厘米)7、直径BC=8厘米,AB=AC ,D 为AC 的中点,求阴影部分的面积。
8×4÷2÷2=8(平方厘米)3.14×42×41-4×4÷2=12.56-8=4.56(平方厘米) 8+4.56=12.56(平方厘米)8、求阴影部分的面积。
(单位:厘米)。
CD:DF=FE:EBD F ×FE=CD ×EB=6×4=24(平方厘米)9、求四边形ABCD 的面积。
(单位:厘米)7×7÷2-3×3÷2=24.5-4.5=20(平方厘米)10、BE 长5厘米,长方形AEFD面积是38平方厘米。
小学六年级阴影部分面积专题复习经典例题(含答案)
![小学六年级阴影部分面积专题复习经典例题(含答案)](https://img.taocdn.com/s3/m/f3fd4c335bcfa1c7aa00b52acfc789eb162d9e51.png)
小学六年级阴影部分面积专题复习经典例题(含答案)欢迎下载研究必备资料,本文主要涉及组合图形的面积计算。
以下是各题的解答和点评:1.求如图阴影部分的面积。
(单位:厘米)分析:阴影部分的面积等于梯形的面积减去直径为4厘米的半圆的面积。
利用梯形和半圆的面积公式代入数据即可解答。
解答:$(4+6)\times4\div2\div2-3.14\times2^2=10-6.28=3.72$(平方厘米)。
答案:阴影部分的面积是3.72平方厘米。
点评:组合图形的面积一般都是转化到已知的规则图形中利用公式计算,这里考查了梯形和圆的面积公式的灵活应用。
2.如图,求阴影部分的面积。
(单位:厘米)分析:根据图形可以看出,阴影部分的面积等于正方形的面积减去4个扇形的面积。
正方形的面积等于(10×10)100平方厘米,4个扇形的面积等于半径为(10÷2)5厘米的圆的面积。
解答:扇形的半径是:$10\div2=5$(厘米);$10\times10-3.14\times5\times5=100-78.5=21.5$(平方厘米)。
答案:阴影部分的面积为21.5平方厘米。
点评:组合图形的面积计算需要注意各部分之间的关系,特别是涉及到圆形时需要注意半径的计算。
3.求如图阴影部分面积。
(单位:厘米)解答:该题缺少图形,无法回答。
4.求出如图阴影部分的面积:单位:厘米。
解答:该题缺少图形,无法回答。
5.求如图阴影部分的面积。
(单位:厘米)解答:该题缺少图形,无法回答。
6.求如图阴影部分面积。
(单位:厘米)解答:该题缺少图形,无法回答。
7.计算如图中阴影部分的面积。
单位:厘米。
解答:该题缺少图形,无法回答。
8.求阴影部分的面积。
单位:厘米。
解答:该题缺少图形,无法回答。
9.如图是三个半圆,求阴影部分的周长和面积。
(单位:厘米)分析:阴影部分可以看成是两个半圆和一个矩形组成的,可以分别计算各部分的周长和面积再相加。
解答:矩形的长和宽分别为$8-4\pi$和$4$,面积为$(8-4\pi)\times4=32-16\pi$(平方厘米);半圆的半径为$4$,周长为$2\pi r=8\pi$(厘米),面积为$\pi r^2=16\pi$(平方厘米)。
组合图形面积计算技巧十法
![组合图形面积计算技巧十法](https://img.taocdn.com/s3/m/35b7d098b90d6c85ed3ac655.png)
组合图形面积计算技巧“十法"一、相加相减法【点拨】:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,相加求出整个图形的面积.或者将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.【例题1】:求组合图形的面积。
(单位:厘米)【分析与解答】:上图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了.4÷2=2(米)4×4+2×2×÷2=(平方厘米)【例题2】:长方形长6厘米,宽4厘米,求阴影部分的面积。
【分析与解答】:上图中,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可.4÷2=2(米)6×4-2×2×÷(平方厘米)二、用比例知识求面积【点拨】:利用图形之间的比例关系解题。
【例题3】一块长方形耕地,它由四个小长方形拼合而成,其中三个小长方形的面积分别为15、18、30公顷,图中阴影部分的面积是多少?【分析与解答】:因为阴影部分也是一长方形,所以只要求出它的长、宽是多少就行,为此设它的长、宽分别为a、b,面积为18公顷的长方形的长、宽分别为c、d.直接按比例关系来理解。
因为(a×c):(d×c)=(a×b):(d×b),a:d=15:18=阴影面积:30,阴影面积为15×30÷18=25(公顷)。
三、等分法【点拨】:根据所求图形的对称性,将所求图形面积平均分成若干份,先求出其中的一份面积,然后求总面积。
【例题4】:求阴影部分的面积(单位:厘米)【分析与解答】:把原图平均分成八分,就得到下图,先求出每个小扇形面积中的阴影部分:×22÷4-2×2÷2=(平方厘米)阴影部分总面积为:×8=(平方厘米)四、等积变形【点拨】:将题中的条件或问题替换成面积相等的另外的条件或问题,使原来复杂的图形变为简单明了的图形。
常见组合图形面积计算实例
![常见组合图形面积计算实例](https://img.taocdn.com/s3/m/7c6e11e7d4bbfd0a79563c1ec5da50e2524dd19c.png)
1、求左面阴影部分的面积。
(单位:米)提示:环形面积=外圆面积-内圆面积1.已知圆的半径,求面积,用圆周率乘以半径的平方可以得到。
2.已知圆的半径,求面积,用圆周率乘以半径的平方可以得到。
3.最后用外圆的面积-内圆面积得到阴影部分的面积。
答案:3.14×10×10=314平方米3.14×6×6=113.04平方米314 - 113.04=200.96平方米求左面阴影部分的面积。
(单位:米)提示:阴影面积=外半圆面积-内半圆面积1、已知圆的半径,求圆的面积,用圆周率乘以半径的平方可以得到。
再求圆面积的1/2,就用圆的面积乘以1/2。
2、已知圆的半径,求圆的面积,用圆周率乘以半径的平方可以得到。
再求圆面积的1/2,就用圆的面积乘以1/2。
3、最后用外半圆的面积-内半圆面积得到阴影部分的面积。
答案:3.14×72×72×1/2=8138.88平方米3.14×43×43×1/2=2902.93平方米8138.88 - 2902.93=5235.95平方米求左面阴影部分的面积。
(单位:米)提示:阴影部分面积可以用正方形的面积减去圆形的面积。
1、求正方形面积已知正方形的边长,求面积,用边长乘以边长可以得到。
2、求圆面积已知圆的直径,求面积,先用直径除以2得到半径,再用圆周率乘以半径的平方可以得到。
3、求阴影面积,用正方形面积减去圆的面积答案:1、正方形面积32×32=1024平方米2、圆面积32÷2=16米3.14×16×16=803.84平方米3、阴影面积1024- 803.84=220.16平方米求左面阴影部分的面积。
(单位:米)提示:阴影部分面积可以三角形面积减去右空白面积。
三角形面积是长方形面积的一半,右空白面积是长方形面积与半圆面积差的一半。
长方形的长就是圆的直径,宽是圆的半径。
六年级数学思维:组合图形的面积计算,例题解析!
![六年级数学思维:组合图形的面积计算,例题解析!](https://img.taocdn.com/s3/m/4ebb16c582d049649b6648d7c1c708a1284a0aba.png)
六年级数学思维:组合图形的面积计算,例题解析!主要题型:一、求不规则图形面积(阴影部分面积);二、求不能直接利用公式计算的图形面积;三、求规则图形的面积,但条件比较隐蔽,用常规思路无法解答。
基本解题思路:解题的基本思路是,先通过分割、切拼、旋转、平移、翻折、缩放、等积替换等方法,把不规则图形转化为规则图形(或规则图形面积的和差),让隐蔽条件明朗化,再合理运用面积公式,巧求不规则图形面积。
解题技巧:这一块分六讲,以后会陆续更新,每一块各有侧重地介绍了六种求面积的计算方法,但每一种解题方法并不是孤立存在的,在实际解题时一道题常常需要综合运用多种方法,才能巧妙解题。
例如加减法求面积常需要对图形进行割补,而用割补法求面积常需要添加辅助线、平移、旋转、进行加减运算等。
在解答图形面积问题时,关键就是要注意寻找不同图形或同一个图形的各个部分之间的内在联系,可以变换角度或适当添加辅助线帮助观察,特别要注意观察图形边角的形状、长度和角度,及是否隐藏有等底等高之类的条件。
从而根据图形的形状特征,合理地进行分割重组,化不规则为规则,巧妙地运用题目给出的各种条件。
小学阶段常见的面积公式:长方形的面积=长×宽S=ab正方形的面积=边长×边长S=a.a=a2三角形的面积=底×高÷2S=ah÷2平行四边形的面积=底×高S=ah梯形的面积=(上底+下底)×高÷2S=(a+b)h÷2圆的面积=圆周率×半径×半径S=πr2今天我们讲第一块内容:加减法求面积方法介绍:根据组合图形的形状特征,从整体上观察,将不规则图形分解转化成几个基本规则图形,分别计算它们的面积。
再变化角度思考,通过相加或相减求出所求图形的面积。
例题1:求下图中阴影部分的面积(最后结果保留一位小数)。
(单位:厘米)【解析】:上图阴影部分可以分割成3个完全相同的弓形,先求出其中一个弓形的面积,再求出3个弓形的总面积就是所求阴影部分的面积。
五年级-组合图形的面积
![五年级-组合图形的面积](https://img.taocdn.com/s3/m/d7c3ed5cc4da50e2524de518964bcf84b9d52d89.png)
组合图形的面积知识集结知识元组合图形的面积知识讲解1.1、各图形面积公式:2、组合图形:有几个简单的图形拼出来的图形,我们把它们叫做组合图形。
3、计算组合图形的面积:(1)分割法,即将这个图形分割成几个基本的图形。
分割图形越简洁,其解题的方法也将越简单,同时又要考虑分割的图形与所给条件的关系。
(2)添补法,即通过补上一个简单的图形,使整个图形变成一个大的规则图形。
5.计算组合图形阴影部分的面积:等于组合图形的面积减去空白部分的面积。
例题精讲组合图形的面积例1.'求下图中涂色部分的面积。
(单位:cm)求阴影部分面积。
如图,小正方形ABCD的边长是5cm,大正方形CEFG的边长是10cm,求图中阴影部分面积。
'例3.'在一块梯形菜地里,有一条宽约1m的小路(如图),每平方米产菜4.5kg,这块菜地共产菜多少千克?'例4.'如图是某工艺品的展开图。
它的面积是多少?(单位:cm)'例5.'图4由3个边长是6的正方形组成,则图中阴影部分的面积是________。
计算如图阴影部分的面积.(单位:厘米)'例7.'如图,2个大正方形、2个中正方形和1个小正方形紧挨着排在一起,其中大中小正方形的边长分别为3、2、1,那么阴影部分的面积是多少?'例8.'如图,三角形ABC的面积为10,AD与BF交于点E,且AE=ED,BD=CB,求图中阴影部分的面积和.'例9.'求图形中阴影部分的面积.(单位:dm)例10.'如图中,ADEF是一个长8CM,宽5CM的长方形,ABCD为直角梯形,BEF为直角三角形,图中阴影部分的面积是多少?'探索活动:成长的脚印知识讲解计算不规则图形的面积:估计、计算不规则图形面积的内容主要是以方格图作为背景进行估计与计算的,所以借助方格图能帮助建立估计与计算不规则图形面积的方法。
【考点题型归纳】北师大版五年级上册数学第六单元 组合图形的面积(含答案)
![【考点题型归纳】北师大版五年级上册数学第六单元 组合图形的面积(含答案)](https://img.taocdn.com/s3/m/db7bccfa988fcc22bcd126fff705cc1755275f38.png)
【考点题型归纳】北师大版五年级上册-第六单元 组合图形的面积(含答案)考点题型一:求组合面积要点:常见图形(长方形、正方形、三角形、平行四边形、梯形)练习一:1、求下面各组图形的面积(单位:厘米)2、求各图阴影部分的面积。
(单位:厘米)3、求下面个图形的面积、(单位:分米)812366612 14考点题型二:两个正方形要点:①阴影部分是常见图形可尝试直接求出②阴影部分切割法③整体减去部分得到阴影部分练习二:1、先观察图形特点,再求图形中阴影部分的面积.(单位:厘米)5.44.26431.52.5 82、求阴影部分的面积.(单位:厘米)3、图中两个正方形的边长分别是10厘米和6厘米,求阴影部分的面积。
4、大小正方形如图放置,阴影部分为重叠部分,求空白部分面积。
(单位:厘米)1577225、求下图阴影部分的面积(单位:厘米)考点题型三:平行四边形与三角形练习三:1、下图的平行四边形面积是40平方厘米,求阴影部分的面积.(单位:厘米)2、平行四边形的面积是320平方厘米,求梯形面积.3、已知平行四边形的面积是48平方分米,求阴影部分的面积。
3dm8dm4、如图所示,一个平行四边形被分成A、B两份,A的面积比B的面积打40平方米,A的上底是多少?B8米A5、如图,平行四边形面积240平方厘米,求阴影部分面积。
考点题型四:梯形和三角形练习四:1、阴影部分面积是40平方米,求空白部分面积。
(单位:米)2、求阴影部分的面积.(单位:厘米)3、如图所示,梯形的周长是52厘米,求阴影部分的面积。
1014164、下图直角梯形的面积是49平方分米,求阴影部分的面积。
5、图中梯形中空白部分是直角三角形,它的面积是45平方厘米,求阴影部分面积。
6、阴影部分面积是40平方米,求空白部分面积。
(单位:米)7、下图ABCD是梯形,它的面积是140平方厘米,已知AB=15厘米,DC=5厘米。
求阴影部分的面积。
8、求梯形的面积。
(单位:厘米)9、如图,已知梯形ABCD的面积为37.8平方厘米,BE长7厘米,EC长4厘米,求平行四边形ABED 的面积。
五年级数学上册求组合图形面积阴影应用题面积解答题附解析
![五年级数学上册求组合图形面积阴影应用题面积解答题附解析](https://img.taocdn.com/s3/m/32042a985ebfc77da26925c52cc58bd63086931b.png)
组合图形面积应用1.求下面图形的面积(1)(2)(1)解:8×6+(8+12)×3÷2=48+20×3÷2=48+60÷2=48+30=78(平方米)(2)解:5.4×4.2+5.4×6÷2=22.68+32.4÷2=22.68+16.2=38.88(平方厘米)2.工厂制作一些流动红旗,式样如图,制作一面流动红旗需要多少平方厘米的布料?解:60×30-30×(60-45)÷2=60×30-30×15÷2=1800-450÷2=1800-225=1575(平方厘米)答:制作一面流动红旗需要1575平方厘米的布料。
3.友谊公园的中心有一块长方形草坪,草坪里有一条宽1米的曲折小路。
草坪的实际面积有多大?解:(12-1)×(10-1)=11×9=99(平方米)答:草坪的实际面积有99平方米。
4.李叔叔家原来有一块边长12米的正方形菜地,今年他将这块菜地进行了扩建(如图中的涂色部分)。
(1)原来这块菜地的面积是多少平方米?(2)李叔叔今年扩建了多少平方米的菜地?(1)解:12×12=144(平方米)答:原来这块菜地的面积是144平方米。
(2)解:(12+7)×(12+2)-144=19×14-144=266-144=122(平方米)答:李叔叔今年扩建了122平方米的菜地。
5.求出下面图形的面积。
(1)如图,已知梯形的面积是60米2,那么,阴影部分(三角形)的面积是多少米"?(2)求出下面组合图形的面积。
(单位:厘米)(1)解:(60×2)÷(8+12)=120÷20=6(米)8×6÷2=48÷2=24(平方米)答:阴影部分(三角形)的面积是24平方米。
小升初组合图形面积计算(1)
![小升初组合图形面积计算(1)](https://img.taocdn.com/s3/m/38260ff76c85ec3a86c2c517.png)
权威小升初之-—-阴影部分面积计算【知识精讲】1。
常用公式长方形面积= 正方形面积= 平行四边形面积=三角形面积= 梯形面积=长方形周长= 正方形周长=2。
等积代换最常用的等积变换是三角形,要熟记下面的结论:①等底等高的两个三角形面积相等;②两条平行线间的距离处处相等;③底在同一条直线上并且相等,两底分别所对的两个三角形的两个角的顶点是同一个点或在与底平行的直线上,则这两个三角形面积相等;④若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形的几倍。
一、扇形、环形的面积计算1、(2010成外一)甲乙两人分别绕右图的内圆(半径为30米)和外圆(半径为50米)跑步.①两人各跑一圈相差多少米?(π≈3)②求图中阴影部分的面积?(π≈3)2、右图所示是人行道的转弯处,已知弧AA’和BB'都是45°圆心角所对的弧,AA1的半径为8米,人行道宽为2米,求ABB’A'的面积。
. 3、求下图中阴影部分的面积。
(单位:米)4、(2012成外)圆的半径是4cm,阴影部分的面积是14πcm2,求图中三角形的面积.二、割补法1、(2010成外一)图中阴影部分的面积是()平方厘米.2、(2012成都西川中学)如图所示,正方形ABCD的边长为10cm,以CD为直径作半圆,E为半圆周上的中点,F为BC的中点,求阴影部分的面积。
3、(2009成都西川中学)求下列图形中阴影部分的面积.4、(2009成都西川中学)图中正方形ABCD的边长为3厘米,正方形CEFG的边长为4 厘米。
5、(2012成都七中嘉祥)如图是边长6的正方形和梯形拼成的“火炬",梯形的上底长9m,A为上底的中点,B为下底的中点,线段AB恰好是梯形的高且长为3m,CD长为2m。
那么,图中阴影部分的面积是多少㎡?6、(2010成都七中嘉祥)如图,若长方形APHM、BNHP、CQHN的面积分别为7、4、6,则阴影部分的面积是多少?7、(2010成都实外一)如图,是大小两个正方形组成的图形,大正方形边长是8厘米,小正方形边长为6厘米,求阴影部分的面积。
六年级组合图形、圆形、阴影部分面积
![六年级组合图形、圆形、阴影部分面积](https://img.taocdn.com/s3/m/59fe8a0c580216fc700afdb3.png)
六年级组合图形、圆形、阴影部分面积21.图中四个圆的半径都是1厘米,求阴影部分的面积。
一个正方形和半圆所组成的图形,其中P为半圆周的中点,Q为正方形一边上的中点,求阴影部分的面积。
大正方形的边长为6厘米,小正方形的边长为4厘米。
求阴影的面积。
×-2×圆=7所以阴影部分的面积为:7-=7-×7=1.505解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例4解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米解:这是一个用最常用的方法解最常见的题,为方便起我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)例8解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米解:把右面的正方形平移至左边的正方形部分,则阴影部分合成一个长方形,所以阴影部分面积为:2×3=6平方厘米例10解:同上,平移左右两部分至中间部分,则合成一个长方形,所以阴影部分面积为2×1=2平方厘米(注: 8、9、10三题是简单割、补或平移)ππ×=π(解:梯形面积减去圆面积,4-π,则=12=6 π÷2=3π阴影部分面积为:(3π-6)×=5.13平方厘米[π+ππ]π(116解:上面的阴影部分以AB为轴翻转后,整个阴影部分成为梯形减去直角三角形,或两个小直角三角形AED、BCD所以阴影部分面积为:5×5÷2+5×10÷2=37.5平方厘米例18解:阴影部分的周长为三个扇形弧,拼在一起为一个半圆弧,所以圆弧周长为:2×3.14×3÷2=9.42厘米解:右半部分上面部分逆时针,下面部分顺时针旋转到左半部分,组成一个矩形。
小学数学组合图形中的阴影部分面积的计算教学研究
![小学数学组合图形中的阴影部分面积的计算教学研究](https://img.taocdn.com/s3/m/aeb98dce185f312b3169a45177232f60ddcce7ef.png)
250小学数学组合图形中的阴影部分面积的计算教学研究卢婵娟…(江西省宜春市上高县翰堂中心小学,江西宜春…336405)摘要:组合图形的阴影面积计算是小学数学的重点教学内容,也是以后进行复杂几何计算的入门内容,能充分培养学生的分析几何问题的思维能力,通过运用简单图形基础面积计算知识和数学方法,解决稍微复杂的几何问题。
组合图形的阴影面积的计算对于小学生而言有一定的难度,教师在教学中应该谨记将教材与现实生活联系,提前巩固学生对基础图形面积的计算公式的掌握程度,细化数学计算方法。
关键词:小学数学;组合图形;阴影面积在小学的数学学习阶段,学生对于很多基础图形如圆形、长方形、正方形等都进行了系统的学习,但一些学生仍旧没有充分掌握基础图形面积计算的知识。
而在小学六年级的教学,更加注重图形综合知识的学习,甚至涉及到一些立体几何如圆柱、圆锥的简单计算,这部分学生的学习进度便会难以跟上。
基于此,将从实际教学中遇到的问题,对组合图形的阴影部分面积计算展开教学研究。
1 巩固基础图形面积计算知识,提高学生计算效率人教版小学数学教材,依据学生的成长特性、学习能力等,将图形的学习进行循序渐进的分布在数学学习中,随着年级越高学习的图形知识越复杂,数学图形知识综合性运用也跟着层层递进。
所以学生充分掌握简单图形计算知识的基础,对于组合图形的面积计算尤为重要。
但是学生往往因为简单图形面积学习公式多且杂,出现将计算公式记混的状况,进而影响到后面的组合图形的计算学习。
数学教师在进行图形组合的相关面积计算教学中,可以带领学生进行提问及学生互动等方式,将基础的图形的面积计算知识进行回顾,提高学生的学习效率。
人教版六年级上册中关于《圆的面积》一课的学习中,教师利用多媒体电脑展示将圆形逐步分4等份、8等份直到128等份时,拼接的近乎一个长方形,教师先要带领学生回顾长方形的计算面积为长乘以宽,进而引导学生利用长方形的面积公式推导出圆的面积公式为S=πr2。
小升初专题平面组合图形的面积计算
![小升初专题平面组合图形的面积计算](https://img.taocdn.com/s3/m/072f84a903d276a20029bd64783e0912a2167c14.png)
平面图形面积————圆的面积专题简析:在进行组合图形的面积计算时,要仔细观察,认真思考,看清组合图形是由几个基本单位组成的,还要找出图中的隐蔽条件与已知条件和要求的问题间的关系;并且同学们应该牢记几个常见的圆与正方形的关系量:在正方形里的最大圆的面积占所在正方形的面积的错误!,而在圆内的最大正方形占所在圆的面积的错误!,这些知识点都应该常记于心,并牢牢掌握例题1;求图中阴影部分的面积单位:厘米;分析如图所示的特点,阴影部分的面积可以拼成1/4圆的面积;62××1/4=平方厘米练习11.求下面各个图形中阴影部分的面积单位:厘米;2.求下面各个图形中阴影部分的面积单位:厘米;例题2;求图中阴影部分的面积单位:厘米;分析阴影部分通过翻折移动位置后,构成了一个新的图形如图所示;从图中可以看出阴影部分的面积等于大扇形的面积减去大三角形面积的一半;×42×1/4-4×4÷2÷2=平方厘米练习21、计算下面图形中阴影部分的面积单位:厘米,正方形边长4;2、计算下面图形中阴影部分的面积单位:厘米,正方形边长4;1 2例题3;如图19-10所示,两圆半径都是1厘米,且图中两个阴影部分的面积相等;求长方形ABO1O的面积;分析因为两圆的半径相等,所以两个扇形中的空白部分相等;又因为图中两个阴影部分的面积相等,所以扇形的面积等于长方形面积的一半如图19-10右图所示;所以×12×1/4×2=平方厘米练习31、如图所示,圆的周长为厘米,AC两点把圆分成相等的两段弧,阴影部分1的面积与阴影部分2的面积相等,求平行四边形ABCD的面积;2、如图所示,AB=BC=8厘米,求阴影部分的面积;例题4;如图所示,图中圆的直径AB是4厘米,平行四边形ABCD的面积是7平方厘米,∠ABC=30度,求阴影部分的面积得数保留两位小数;分析阴影部分的面积等于平行四边形的面积减去扇形AOC的面积,再减去三角形BOC的面积;半径:4÷2=2厘米扇形的圆心角:180-180-30×2=60度扇形的面积:2×2××60/360≈平方厘米三角形BOC的面积:7÷2÷2=平方厘米7-+=平方厘米练习41、如图,三角形ABC的面积是平方厘米,圆的直径AC=6厘米,BD:DC=3:1;求阴影部分的面积;2、如图所示,求阴影部分的面积单位:厘米;得数保留两位小数;3、如图所示,求阴影部分的面积单位:厘米;得数保留两位小数;1 2 3例题5;如图所示,求图中阴影部分的面积;分析解法一:阴影部分的一半,可以看做是扇形中减去一个等腰直角三角形如图,等腰直角三角形的斜边等于圆的半径,斜边上的高等于斜边的一半,圆的半径为20÷2=10厘米×102×1/4-10×10÷2×2=107平方厘米解法二:以等腰三角形底的中点为中心点;把图的右半部分向下旋转90度后,阴影部分的面积就变为从半径为10厘米的半圆面积中,减去两直角边为10厘米的等腰直角三角形的面积所得的差;20÷22×1/2-20÷22×1/2=107平方厘米练习51、如图所示,求阴影部分的面积单位:厘米2、如图所示,用一张斜边为29厘米的红色直角三角形纸片,一张斜边为49厘米的蓝色直角三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形;求红蓝两张三角形纸片面积之和是多少例题6如图所示,求图中阴影部分的面积单位:厘米;分析解法一:先用长方形的面积减去小扇形的面积,得空白部分a的面积,再用大扇形的面积减去空白部分a的面积;如图所示;×62×1/4-6×4-×42×1/4=平方厘米解法二:把阴影部分看作1和2两部分如图20-8所示;把大、小两个扇形面积相加,刚好多计算了空白部分和阴影1的面积,即长方形的面积;×42×1/4+×62×1/4-4×6=平方厘米练习61、如图所示,三角形ABC是直角三角形,AC长4厘米,BC长2厘米;以AC、BC为直径画半圆,两个半圆的交点在AB边上;求图中阴影部分的面积;2、如图所示,图中平行四边形的一个角为600,两条边的长分别为6厘米和8厘米,高为厘米;求图中阴影部分的面积;例题7;在图中,正方形的边长是10厘米,求图中阴影部分的面积;分析先用正方形的面积减去一个整圆的面积,得空部分的一半如图所示,再用正方形的面积减去全部空白部分;空白部分的一半:10×10-10÷22×=平方厘米阴影部分的面积:10×10-×2=57平方厘米练习71、求下面各图形中阴影部分的面积单位:厘米;2、求右面各图形中阴影部分的面积单位:厘米;3、求右面各图形中阴影部分的面积单位:厘米;例题8;在正方形ABCD中,AC=6厘米;求阴影部分的面积;分析这道题的难点在于正方形的边长未知,这样扇形的半径也就不知道;但我们可以看出,AC是等腰直角三角形ACD的斜边;根据等腰直角三角形的对称性可知,斜边上的高等于斜边的一半如图所示,我们可以求出等腰直角三角形ACD的面积,进而求出正方形ABCD的面积,即扇形半径的平方;这样虽然半径未求出,但可以求出半径的平方,也可以把半径的平方直接代入圆面积公式计算;既是正方形的面积,又是半径的平方为:6×6÷2×2=18平方厘米 阴影部分的面积为:18-18×÷4=平方厘米答:阴影部分的面积是平方厘米;练习81、 如图所示,图形中正方形的面积是50平方厘米,分别求出每个图形中阴影部分的面积;2、 如图所示,正方形中对角线长10厘米,过正方形两个相对的顶点以其边长为半径分别做弧;求图形中阴影部分的面积试一试,你能想出几种办法;例题9;在图的扇形中,正方形的面积是30平方厘米;求阴影部分的面积;分析阴影部分的面积等于扇形的面积减去正方形的面积;可是扇形的半径未知,又无法求出,所以我们寻求正方形的面积与扇形面积的半径之间的关系;我们以扇形的半径为边长做一个新的正方形如图所示,从图中可以看出,新正方形的面积是30×2=60平方厘米,即扇形半径的平方等于60;这样虽然半径未求出,但能求出半径的平方,再把半径的平等直接代入公式计算;×30×2×1/4-30=平方厘米答:阴影部分的面积是平方厘米;练习91、 如图所示,平行四边形的面积是100平方厘米,求阴影部分的面积;2、如图所示,O 是小圆的圆心,CO 垂直于AB,三角形ABC 的面积是45平方厘米,求阴影部分的面积;上面所举的例子只是常见的圆的组合图形面积解法,在以后的练习中,还希望同学们能举一反三,总结自己的学习方法与心得与体会,达到举一反三的效果圆的面积与组合圆积专题训练一、填空题1.算出圆内正方形的面积为 .2.右图是一个直角等腰三角形,直角边长2厘米,图中阴影部分面积是3.,,这个正方形E D C B A 4.如图所示,以B 、C 为圆心的两个半圆的直径都是2厘米,则阴影部分的周长是 厘米.保留两位小数5.三角形ABC 是直角三角形,阴影部分①的面积比阴影部分②的面积小28平方厘米. A B 长40厘米, BC 长 厘米. 6.如右图,阴影部分的面积为2平方厘米,等腰直角三角形的面积为 . 7.扇形的面积是平方厘米,它所在圆的面积是157平方厘米,这个扇形的圆心角是 度.8.图中扇形的半径OA =OB =6厘米.45=∠AOB , AC 垂直OB 于C ,那么图中阴影部分的面积是 平方厘米.)14.3(=π9.右图中正方形周长是20厘米.图形的总面积是 平方厘米.10.在右图中单位:厘米,两个阴影部分面积的和是 平方厘米. 11.如图,阴影部分的面积是 .12.大圆的半径比小圆的半径长6厘米,且大圆半径是小圆半径的4倍.大圆的面积比小圆的面积大 平方厘米.13.在一个半径是厘米的圆中挖去两个直径都是2厘米的圆.剩下的图形的面积是 平方厘米.π取,结果精确到1平方厘米 14.右图中三角形是等腰直角三角形,阴影部分的面积是 平方厘米.15.如图所求,圆的周长是厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周长是厘米.)14.3(=π16.如图,151=∠的圆的周长为厘米,平行四边形的面积为100平方厘米.阴影部分的面积是 .17.已知:ABC D 是正方形, ED =DA =AF =2厘米,阴影部分的面积是 .18.图中,ADB 的面积的311倍,那么,CAB ∠是 度. 20.,以圆弧为分界线的甲、乙两部分的面6C B A O 4512 15 20 C ② ① A B 2 1 211., BC 是半圆的直径,已知:AB =BC 14.3=π12.如图2的面积是平方厘米.那么长方形阴影 13.如图1521=∠=,那么阴影部分的面积是多少平方厘米)14.3(≈π4个顶点,它们的公共点是该正方形的1厘米,那么阴影部分的总面积是多少平方厘米。