晶体缺陷及运动.
晶体缺陷-位错运动
contents
目录
• 位错概念 • 位错运动 • 位错与材料性能 • 位错研究的意义与展望
01
位错概念
位错的定义
位错是晶体中原子排列的一种“缺 陷”,表现为一个或多个原子在晶体 中的位置发生了偏差。
位错的存在会导致晶体局部的原子排 列出现异常,破坏了晶体原有的周期 性结构。
塑性变形
位错是晶体中塑性变形的主要机 制,当外力作用在晶体上时,位 错会沿滑移面移动,导致晶体发 生塑性变形。
强度与硬度
位错的存在会阻碍裂纹的扩展, 从而提高材料的强度和硬度。
位错对扩散的影响
扩散路径
位错可以作为扩散的快速通道,影响原子沿位错线的扩散速 度。
扩散激活能
某些情况下,位错的存在可能会降低扩散所需的激活能。
位错的类型
01
02
03
刃型位错
由晶体中一个原子层上的 原子位移形成,表现为一 个多余的半原子面。
螺旋型位错
由多个原子层上的原子连 续位移形成,表现为螺旋 状的原子排列。
混合型位错
同时包含刃型和螺旋型位 错的特点,通常为一个刃 型位错与一个螺旋型位错 的组合。
位错的形成与存在
位错的形成
位错的运动
在晶体生长、加工或受到外力作用时, 原子排列可能会发生偏差,从而形成 位错。
性和耐腐蚀性。
半导体材料
在半导体材料中,位错对电子传 输和器件性能有重要影响,研究 位错有助于提高半导体器件的稳
定性和可靠性。
功能材料
在功能材料中,位错的运动和相 互作用对材料的物理性能(如热 学、电学和磁学性能)有重要影 响,通过位错研究可以优化功能
材料的性能和应用。
THANKS FOR WATCHING
《材料科学基础》课件之第四章----04晶体缺陷
41
刃位错:插入半原子面,位错上方,原子间距变小, 产生压应变,下方原子间距变大,拉应变。过渡处 切应变,滑移面处有最大切应力,正应力为0。x NhomakorabeaGb
2 (1 )
y(3x2 (x2
y2) y2 )2
y
Gb
2 (1
)
y(x2 y2) (x2 y2)2
z ( x y )
x
xy
Gb
2 (1 )
21
刃位错b与位错线 垂直
螺位错b与位错线 平行
bb
l
l
正
负
b
b
右旋
左旋
任意一根位错线上各点b相同,同一位错只有一个b。
有大小的晶向指数表示
b a [uvw] 模 n
b a u2 v2 w2 n
22
Burgers矢量合成与分解:如果几条位错线在晶体内
部相交(交点称为节点),则指向节点的各位错的伯氏矢量 之和,必然等于离开节点的各位错的伯氏矢量之和 。
不可能中断于晶体内部(表面露头,终止与 晶界和相界,与其他位错相交,位错环)
半原子面及周围区域统称为位错
18
2. 螺位错
晶体在大于屈服值的切应力作用下,以某晶面为滑移面发生滑移。由于位错线周围 的一组原子面形成了一个连续的螺旋形坡面,故称为螺位错。
几何特征:位错线与原子滑移方向相平行;位错线周围原子的配置是螺旋状的。
d
34
六、位错应变能
位错原子偏移正常位置,产生畸变应力, 处于高能量状态,但偏移量很小,晶格为弹 性应变。
位错心部应变较大,超出弹性范围, 但这部分能量所占比例较小, <10%,可以近似忽略。
35
1. 理论基础:连续弹性介质模型
第三章晶体缺陷
•
(2)质量平衡: 与化学反应方程式相同,缺陷反应方程式两边的质量应该相等。需 要注意的是缺陷符号的右下标表示缺陷所在的位置,对质量平衡无 影响。 (3)电中性: 电中性要求缺陷反应方程式两边的有效电荷数必须相等。 2. 缺陷反应实例 1)杂质(组成)缺陷反应方程式──杂质在基质中的溶解过程 杂质进入基质晶体时,一般遵循杂质的正负离子分别进入基质的 正负离子位置的原则,这样基质晶体的晶格畸变小,缺陷容易形成。 在不等价替换时,会产生间隙质点或空位。
浓度超过平衡浓度。
在晶体中,位于点阵结点上的原子并非静止的,而是以其平衡位置为中 心作热振动。原子的振动能是按几率分布,有起伏涨落的。当某一原子具有足 够大的振动能而使振幅增大到一定限度时,就可能克服周围原子对它的制约作 用,跳离其原来的位置,使点阵中形成空结点,称为空位。 离开平衡位置的原子有三个去处: 一是迁移到晶体表面或内表面的正常结点位置上,而使晶体内部留下空位,称 为肖脱基(Schottky)空位; 二是挤人点阵的间隙位置,而在晶体中同时形成数目相等的空位和间隙原子, 则称为弗兰克尔(Frenkel)缺陷; 三是跑到其他空位中,使空位消失或使空位移位。
6.缔合中心 电性相反的缺陷距离接近到一定程度时,在库仑力作用下会缔合成一组 或一群,产生一个缔合中心, VM和VX发生缔合,记为(VMVX)。
(二) 缺陷反应表示法
对于杂质缺陷而言,缺陷反应方程式的一般式:
1.写缺陷反应方程式应遵循的原则 与一般的化学反应相类似,书写缺陷反应方程式时,应该遵循 下列基本原则: (1)位置关系 (2)质量平衡 (3)电中性
晶体缺陷线缺陷
Fd×dL×ds 外加切应力τ所做的功为:
τ×b×dL×ds 因为:Fd×dL×ds =τ×b×dL×ds 所以有: Fd =τ×b Fd 垂直于位错线沿位错线运动方向一致!
(2)位错滑移时作用在位错线上的力
Fd =τ×b
6.位错的交割
在滑移面上运动的某一位错,必与穿过 此滑移面上的其它位错相交截,该过程即为 “位错交割”。
空位
晶体结构中原来应该有原子的某些结点上因某种 原因出现了原子空缺而形成。
①肖特基空位 脱位原子进入其它空位或逐渐迁移至 晶面或界面。肖特基空位仅形成空位。
②弗兰克空位
脱位原子挤入节点的间隙,同时形成 间隙原子从而产生间隙原子-空位对。
间隙原子 晶体结构中间隙处因某种原因存在的同种原子。
一、点缺陷的类型 --- 空位和间隙原子
晶体缺陷名为缺陷但实际上是材料科学与工程的重要基础例如完美的晶体人们难以改变其性质而晶体的缺陷则赋予人们丰富的材料加工手段如材料的强化方法无不与位错有着直接或间接的关系材料的变形则是依赖于位错的运动实现的材料中的扩散主要借助于点缺陷及其运动
晶体缺陷线缺陷
复习:点 缺 陷
一、点缺陷的类型 --- 空位和间隙原子
“割阶”都是刃型位错,有滑移割阶和攀移割 阶,割阶不会因位错线张力而消失。
五、位错密度
单位体积晶体中所包含的位错线的总长度或穿越单位截 面积的位错线的数目(单位为m-2)。
ρ = S/V 或 ρ = n/A
①一般情况下,金属退 火后,位错密度为103 -104m/cm3。
②一般情况下,金属强 化后的位错密度为1014— 1016m/cm3。
1、位错的滑移
晶体缺陷-线缺陷讲解
(2)刃型位错线可理解为晶体中已滑 移区与未滑移区的边界线;
(3)滑移面必定是同时包含有位错线 和滑移矢量的平面,在其他面上不 A 能滑移;
(4)晶体中存在刃型位错之后,位错 周围的点阵发生弹性畸变;
(5)在位错线周围的过渡区(畸变区 )每个原子具有较大的平均能量。
H D
错中心附近的原子沿柏氏矢量方向在滑移面上不断 地作少量的位移(小于一个原子间距)而逐步实现 的。(刃型位错和螺型位错均可发生) 4.2 位错的攀移
刃型位错在垂直于滑移面的方向上运动,即发 生攀移。实质上就是构成刃型位错的多余半原子面 的扩大或缩小。(螺型位错没有多余的半原子面, 因此不会发生攀移运动)
12
三.柏氏矢量
(a) 实际晶体
(a) 理想晶体
13
三.柏氏矢量
3.2 右手法则(确定刃型位
错的正负): 先人为的规定位错线方向,
用右手的拇指、食指和中指构 成直角坐标,以食指指向位错 线的方向,中指指向柏氏矢量 的方向,则拇指的指向代办多 余半原子面的位向,且规定拇 指向上者为正刃型位错;反之 为负刃型位错。
(2)线缺陷:特征是在两个方向上尺寸很小,另外一 个方向上延伸较长。如各种位错;
(3)面缺陷:特征是在一个方向上尺寸很小,另外两 个方向上扩展很大。如晶界、孪晶界等。
5
二.位错(dislocation)
2.1 位错的定义:晶体的线缺陷表现为各种
类型的位错。即晶体中某处一列或若干列原 子有规律的错排。
3.1 柏氏矢量的确定:柏氏矢量可通过
柏氏回路(Burgers circuit)来确定。 在含有位错的实际晶体中作一个包含位 错发生畸变的回路,然后将这同样大小 的回路置于理想晶体中,此时回路将不 能封闭,需引一个额外的矢量b连接回路 ,才能使回路闭合,这个矢量b就是实际 晶体中位错的柏氏矢量。如图所示: a )实际晶体(b) 完整晶体
第四章 缺陷
混合位错:在实际晶体中可能同时产生刃错位和螺位错
┴
4.2.3 面缺陷
面缺陷的特征: 指二维尺度很大而第三维尺度
很小的缺陷。面缺陷的取向及分布与材料的断裂韧 性有关 ,如解理性。
面缺陷类型:
表面(surface) 内界面(interface):层错、孪晶界、晶界
肖特基缺陷
弗仑克尔缺陷
(2)间隙原子:
在晶体中总是有少部分原子离开正常格点,跳到间隙 位置,形成间隙原子,或者说,间隙原子就是进入点阵间隙 中的原子。间隙原子可以是晶体中的正常原子离位产生,也 可以是外来杂质原子。
间隙原子
空位
图4-4 空位和间隙原子周围的弹性畸变
(3)杂质原子:
取代晶格中的原子,进入正常格点位置或进入间隙位置 的杂质原子。 如氧原子,在硅中主要占据间隙位置;特意掺入的B、 Al、Ga、P、As等杂质,则为替位原子,它们在硅中占据晶 格格点位置。原子半径较硅原子半径大的原子使晶格膨胀, 而原子半径比硅原子半径小的则使晶格收缩,造成晶格缺陷。
第四章 晶体缺陷
4.1 概述 4.2 晶体缺陷
第四章内容提要
1、点缺陷及点缺陷的运动:空位、间隙原子、替 位原子 2、线缺陷及位错运动:刃型位错、螺型位错、混 合型位错; 3、面缺陷:层错、表面、晶界和孪晶缺陷;
4、体缺陷:空隙与析出物。
概 述
前面章节都是就理想状态的完整晶体而 言,即晶体中所有的原子都在各自的平衡位 置,处于能量最低状态。然而在实际晶体中 原子的排列不可能这样规则和完整,而是或 多或少地存在离开理想的区域,出现不完整 性。正如我们日常生活中见到玉米棒上玉米 粒的分布。通常把这种偏离完整性的区域称 为晶体缺陷。
晶体的缺点和不足
晶体的缺点和不足
晶体是由原子、分子或离子按照一定的周期性在空间排列形成的固体物质,具有以下缺点和不足:
1. 晶体生长缓慢:晶体的生长通常需要较长的时间,尤其是对于大尺寸、高质量的晶体,生长过程可能非常耗时。
2. 晶体缺陷:在晶体生长过程中,可能会引入各种缺陷,如点缺陷、线缺陷、面缺陷等。
这些缺陷可能会影响晶体的物理、化学和电子性质。
3. 晶体的各向异性:晶体在不同方向上的物理性质可能会有所不同,这被称为晶体的各向异性。
这可能会导致在某些应用中需要对晶体的取向进行控制,增加了制备的难度。
4. 晶体的脆性:大多数晶体材料相对较脆,容易在受到外力作用时发生断裂或破裂。
这限制了它们在需要一定柔韧性或抗冲击性的应用中的使用。
5. 有限的晶体结构:晶体的周期性结构限制了它们在某些方面的性能。
例如,晶体的能带结构决定了它们的电子传输性质,可能无法满足某些特定应用的要求。
需要注意的是,不同类型的晶体可能具有不同的特点和应用领域。
对于特定的应用,人们可以选择合适的晶体材料或通过晶体工程等方法来克服其缺点和不足。
此外,随着科学技术的发展,人们也在不断探索和研究新的晶体材料和制备方法,以满足各种应用需求。
第四章 晶体缺陷与缺陷运动
第四章晶体缺陷与缺陷运动§4.1 晶体缺陷的基本类型§4.2 位错缺陷的性质、晶体滑移的本质§4.3 热缺陷数目的统计平衡理论§4.4 热缺陷的运动、产生和复合§4.5 晶体中的扩散过程§4.6 离子晶体中的点缺陷与导电性前言理想晶体的主要特征是原子(或分子)的严格规则排列、周期性实际晶体中的原子排列会由于各种原因或多或少地偏离严格的周期性,存在着偏离了理想晶体结构的区域,于是就形成了晶体的缺陷。
晶体中虽然存在各种各样的缺陷,但实际在晶体中偏离平衡位置的原子数目很少(相对于晶体原子总数),在最严重的情况下,一般不会超过原子总数的万分之一,因而实际晶体结构从整体上看还是比较完整的。
缺陷——偏离了晶体周期性排列的局部区域。
前言(续)晶体中缺陷的种类很多,它们分别影响着晶体的力学、热学、电学、光学等各方面的性质。
然而,尽管在晶体中缺陷的数目很少,它们的产生和发展、运动和相互作用、以及合并和消失,对晶体的性能有重要的影响。
因此,晶体缺陷是固体物理中一个重要的研究领域,它对于研究和理解一些不能用完整晶体理论解释和理解的现象具有重要的意义。
例如:塑性与强度、扩散、相变、再结晶、离子电导以及半导体的缺陷导电等现象。
§4.1 晶体缺陷的基本类型一、点缺陷点缺陷——发生在一个或几个晶格常数范围内的缺陷。
如:空位、填隙原子、杂质原子等。
这些空位、填隙原子是由热起伏原因而产生的,所以又称为热缺陷。
晶体中存在的缺陷种类很多,但由于晶体中的晶体结构具有规律性,因此晶体中实际出现缺陷的类型也不是无限制的。
根据晶体缺陷在空间延伸的线度,晶体缺陷可分为点缺陷、线缺陷、面缺陷和体缺陷。
几种重要的点缺陷:1)弗仑克尔缺陷和肖脱基缺陷原子(或离子)在格点平衡位置附近振动,由于存在这样的热振动的能量涨落,使得当某一原子能量大到某一程度时,原子就会克服平衡位置势阱的束缚,脱离格点,而到达邻近的原子空隙中,当它失去多余动能后,就会被束缚在那里,这样产生一个暂时的空位和一个暂时的填隙原子,当又经过一段时间后,填隙原子会与空位相遇,并同空位复合;也有可能跳到较远的间隙中去或跳到晶体边界上去。
晶体结构缺陷(二) 位错的运动
知识点058. 位错的运动滑移攀移位错的运动刃位错的运动螺位错的运动 滑移攀移 滑移刃位错的滑移有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)刃位错的滑移注意:晶体不同部分的相对滑移形成了位错,而位错的滑移是实现塑性变形的机制。
要区别晶体的滑移与位错的滑移。
此例中晶体滑移方向与位错滑移方向相同(相互平行)。
刃位错滑移方向与外力及伯氏矢量平行正、负刃位错滑移方向相反螺位错的滑移注意:晶体不同部分的相对滑移造成位错,而位错的滑移是实现塑性变形的机制。
要注意区别晶体的滑移与位错的滑移。
此例中晶体滑移方向与位错滑移方向不同(相互垂直)。
螺位错滑移方向与外力及伯氏矢量垂直左、右螺位错滑移方向相反混合位错的滑移注意:晶体不同部分的相对滑移造成位错,位错的滑移是实现塑性变形的机制。
要区别晶体的滑移与位错滑移。
此例中晶体滑移方向与位错滑移方向部分相同,部分不相同。
混合位错滑移方向与外力及伯氏矢量成一定角度(沿位错线法线方向滑移)刃位错和螺位错滑移的比较晶体的滑移方向与外力及位错的伯氏矢量相一致但并不一定与位错的滑移方向相同。
位错类型柏氏矢量位错线运动方向晶体滑移方向切应力方向刃位错垂直于位错线垂直于位错线与伯氏矢量方向一致与伯氏矢量方向一致螺位错平行于位错线垂直于位错线与伯氏矢量方向一致与伯氏矢量方向一致混合位错与位错线成角度垂直于位错线与柏氏矢量方向一致与伯氏矢量方向一致有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)位错的攀移定义:分类:正攀移负攀移攀移的特点及与滑移的不同:有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)随堂练习:答:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶体中缺陷和运动晶体缺陷(crystal defect)1定义:实际晶体中原子规则排列遭到破坏而偏离理想结构的区域。
在理想完整晶体中,原子按一定的次序严格地处在空间有规则的、周期性的格点上。
但在实际的晶体中,由于晶体形成条件、原子的热运动及其它条件的影响,原子的排列不可能那样完整和规则,往往存在偏离了理想晶体结构的区域。
这些与完整周期性点阵结构的偏离就是晶体中的缺陷,它破坏了晶体的对称性。
2类型晶体结构中质点排列的某种不规则性或不完善性。
又称晶格缺陷。
表现为晶体结构中局部范围内,质点的排布偏离周期性重复的空间格子规律而出现错乱的现象。
根据错乱排列的展布范围,分为以下4种主要类型。
点缺陷——点缺陷与材料的电学性质、光学性质、材料的高温动力学过程等有关点缺陷只涉及到大约一个原子大小范围的晶格缺陷。
它包括:晶格位置上缺失正常应有的质点而造成的空位;由于额外的质点充填晶格空隙而产生的填隙;由杂质成分的质点替代了晶格中固有成分质点的位置而引起的替位等(图1)。
在类质同象混晶中替位是一种普遍存在的晶格缺陷。
(点缺陷定义由于晶体中出现填隙原子和杂质原子等等,它们引起晶格周期性的破坏发生在一个或几个晶格常数的限度范围内,这类缺陷统称为点缺陷。
这些空位和填隙原子是由热起伏原因所产生的,因此又称为热陷。
空位、填隙原子和杂质■空位:晶体内部的空格点就是空位。
由于晶体中原子热运动,某些原子振动剧烈而脱离格点跑到表面上,在内部留下了空格点,即空位。
■填隙原子:由于晶体中原子的热运动,某些原子振动剧烈而脱离格点进入晶格中的间隙位置,形成了填隙原子。
即位于理想晶体中间隙中的原子。
■杂质原子:杂质原子是理想晶体中出现的异类原子。
几种点缺陷的类型■弗仑克尔缺陷:原子(或离子)在格点平衡位置附近振动,由于非线性的影响,使得当粒子能量大到某一程度时,原子就会脱离格点,而到达邻近的原子空隙中,当它失去多余动能后,就会被束缚在那里,这样产生一个暂时的空位和一个暂时的填隙原子,当又经过一段时间后,填隙原子会与空位相遇,并同空位复合;也有可能跳到较远的间隙中去。
若晶体中的空位与填隙原子的数目相等,这样的热缺陷称为弗仑克尔缺■肖特基缺陷:空位和填隙原子可以成对地产生(弗仑克尔缺陷),也可以在晶体内单独产生。
若脱离格点的原子变成填隙原子,经过扩散跑到晶体表面占据正常格点位置,则在晶体内只留下空位,而没有填隙原子,仅由这种空位构成的缺陷称之为肖特基缺陷. 形成填隙原子时,原子挤入间隙位置所需的能量比产生肖特基缺陷空位所需的能量大,一般地,当温度不太高时,肖特基缺陷的数目要比弗仑克尔缺陷的数目大得多。
【■杂质原子:实际晶体中存在某些微量杂质。
一方面是晶体生长过程中引入的;另一方面是有目的地向晶体中掺入的一些微量杂质。
当晶体存在杂质原子时,晶体的内能会增加,由于少量的杂质可以分布在数量很大的格点或间隙位置上,使晶体组态熵的变化也很大。
因此温度T下,杂质原子的存在也可能使自由能降低。
(F=U-TS)当杂质原子取代基质原子占据规则的格点位置时,形成替位式杂质,如图a;若杂质原子占据间隙位置,形成间隙式杂质,如图b对一定晶体,杂质原子是形成替位式杂质还是间隙式杂质,主要取决于杂质原子与基质原子几何尺寸的的相对大小及其电负性。
杂质原子比基质原子小得多时,形成间隙式杂质;替位式杂质在晶体中的溶解度也决定于原子的几何尺寸和化学因素。
■色心:色心是一种非化学计量比引起的空位缺陷。
该空位能够吸收可见光使原来透明的晶体出现颜色,因而称它们为色心, 最简单的色心是F心。
所谓F心是离子晶体中的一个负离子空位束缚一个电子构成的点缺陷。
与F心相对的色心是V心。
V心和F心在结构上是碱卤晶体中两种最简单的缺陷。
2,2线缺陷——线缺陷的产生及运动与材料的韧性、脆性密切相关。
线缺陷的定义:当晶格周期性的破坏发生在晶体内部一条线的周围则称为线缺陷,通常又称之为位错。
它是由于应力超过弹性限度而使晶体发生范性形变所产生的,从晶体内部看,它就是晶体的一部分相对于另一部分发生滑移,以致在滑移区的分界线上出现线状缺陷。
位错的基本类型:{常见的位错有两种形式:刃位错和螺位错。
■刃位错:亦称棱位错。
其特点是:原子的滑移方向与位错线的方向相垂直。
■螺位错:特点:是原子的滑移方向与位错线平行,且晶体内没有多余的半个晶面。
垂直于位错线的各个晶面可以看成由一个晶面以螺旋阶梯的形式构成。
当晶体中存在螺位错时,原来的一族平行晶面就变成为以位错线为轴的螺旋面。
螺位错■位错线的特征:1.滑移区与未滑移区的分界线;2.位错线附近原子排列失去周期性;3.位错线附近原子受应力作用强,能量高,位错不是热运动的结果;4.位错线的几何形状可能很复杂,可能在体内形成闭合线,可能在晶体表面露头,不可能在体内中断。
】刃型位错的特点是位错线垂直于滑移矢量b;螺型位错的特点是位错线平行于滑移矢量b。
b又称为伯格斯(Burgers)矢量,它的模等于滑移方向上的平衡原子间距,它的方向代表滑移方向。
■除此之外,还存在位错线于滑移矢量既不平行又不垂直的混合型位错。
混合位错的原子排列介于刃型位错和螺型位错之间,可以分解为刃型位错和螺型位错。
面缺陷——面缺陷的取向及分布与材料的断裂韧性有关面缺陷的定义:当晶格周期性的破坏发生在晶体内部一个面的周围则称为面缺陷。
常见的面缺陷的类型:■层错:是由于晶面堆积顺序发生错乱而引入的面缺陷,又称堆垛层错。
堆垛层错是指沿晶格内某一平面,质点发生错误堆垛的现象。
如一系列平行的原子面,原来按ABCABCABC……的顺序成周期性重复地逐层堆垛,如果在某一层上违反了原来的顺序,如表现为ABCABCAB│ABCABC……,则在划线处就出现一个堆垛层错,该处的平面称为层错面。
堆垛层错也可看成晶格沿层错面发生了相对滑移的结果。
■小角晶界:具有完整结构的晶体两部分彼此之间的取向有着小角度θ的倾斜,在角θ里的部分是由少数几个多余的半晶面所组成的过渡区,这个区域称小角晶界。
小角晶界是晶粒内两部分晶格间不严格平行,以微小角度的偏差相互拼接而形成的界面。
它可以看成是由一系列位错平行排列而导致的结果。
…体缺陷:在体缺陷中比较重要的是包裹体。
包裹体是晶体生长过程中界面所捕获的夹杂物。
它可能是晶体原料中某一过量组分形成的固体颗粒,也可能是晶体生产过程中坩埚材料带入的杂质微粒。
体缺陷主要是沉淀相、晶粒内的气孔和第二相夹杂物等。
3按缺陷产生的原因分类:热缺陷、杂质缺陷、非化学计量缺陷、其它原因(如电荷缺陷,辐照缺陷等)。
热缺陷定义:热缺陷亦称为本征缺陷,是指由热起伏的原因所产生的空位或间隙质点(原子或离子)。
类型:弗仑克尔缺陷(Frenkel defect)和肖脱基缺陷(Schottky defect)热缺陷浓度与温度的关系:温度升高时,热缺陷浓度增加杂质缺陷定义:亦称为组成缺陷,是由外加杂质的引入所产生的缺陷。
]特征:如果杂质的含量在固溶体的溶解度范围内,则杂质缺陷的浓度与温度无关。
非化学计量缺陷定义:指组成上偏离化学中的定比定律所形成的缺陷。
它是由基质晶体与介质中的某些组分发生交换而产生。
特点:其化学组成随周围气氛的性质及其分压大小而变化。
4产生原因晶体缺陷有的是在晶体生长过程中,由于温度、压力、介质组分浓度等变化而引起的;有的则是在晶体形成后,由于质点的热运动或受应力作用而产生。
它们可以在晶格内迁移,以至消失;同时又可有新的缺陷产生。
5性质晶体缺陷的存在对晶体的性质会产生明显的影响。
实际晶体或多或少都有缺陷。
适量的某些点缺陷的存在可以大大增强半导体材料的导电性和发光材料的发光性,起到有益的作用;而位错等缺陷的存在,会使材料易于断裂,比近于没有晶格缺陷的晶体的抗拉强度,降低至几十分之一。
6晶体缺陷对材料性能的影响(1)点缺陷对材料性能的影响晶体中点缺陷的不断无规则运动和空位与间隙原子不断产生与复合是晶体中许多物理过程如扩散、相变等过程的基础。
空位是金属晶体结构中固有的点缺陷,空位会与原子交换位置造成原子的热激活运输,空位的迁移直接影响原子的热运输,从而影响材料的电、热、磁等工程性能。
晶体中点缺陷的存在一方面造成点阵畸变,使晶体内能升高,增加了晶体热力学不稳定性,另一方面增大了原子排列的混乱程度,改变了周围原子的振动频率。
使熵值增大使晶体稳定。
矛盾因素使晶体点缺陷在一定温度下有一定平衡数目。
在一般情形下,点缺陷主要影响晶体的物理性质,如比容、比热容、电阻率等。
(1. 比容:为了在晶体内部产生一个空位,需将该处的原子移到晶体表面上的新原子位置,导致晶体体积增大2.比热容:由于形成点缺陷需向晶体提供附加的能量(空位生成焓),因而引起附加比热容。
3.电阻率:金属的电阻来源于离子对传导电子的散射。
在完整晶体中,电子基本上是在均匀电场中运动,而在有缺陷的晶体中,在缺陷区点阵的周期性被破坏,电场急剧变化,因而对电子产生强烈散射,导致晶体的电阻率增大。
4. 密度的变化:对一般金属,辐照引起体积膨胀,但是效应不明显,一般变化很少超过~%,这种现象可以用弗仑克尔缺陷来描述5. 电阻:增加电阻,晶体点阵的有序结构被破坏,使原子对自由电子的散射效果提升。
一般可以通过电阻分析法莱追踪缺陷浓度的变化6.晶体结构:辐照很显著地破坏了合金的有序度,而且一些高温才稳定的相结构可以保持到室温7.力学性能:辐照引起金属的强化和变脆(注,空位使晶格畸变类似置换原子引起的)。
此外,点缺陷还影响其他物理性质,如扩散系数,内耗,介电常数等,在碱金属的卤化物晶体中,由于杂质或过多的金属离子等点缺陷对可见光的选择性吸收,会使晶体呈现色彩,这种点缺陷称为色心。
(2)线缺陷对材料性能的影响位错是一种及重要的晶体缺陷,他对金属的塑性变形,强度与断裂有很重要的作用,塑性变形就其原因就是位错的运动,而强化金属材料的基本途径之一就是阻碍位错的运动,另外,位错对金属的扩散、相变等过程也有重要影响。
所以深入了解位错的基本性质与行为,对建立金属强化机制将具有重要的理论和实际意义。
金属材料的强度与位错在材料受到外力的情况下如何运动有很大的关系。
如果位错运动受到的阻碍较小,则材料强度就会较高。
实际材料在发生塑性变形时,位错的运动是比较复杂的,位错之间相互反应、位错受到阻碍不断塞积、材料中的溶质原子、第二相等都会阻碍位错运动,从而使材料出现加工硬化。
因此,要想增加材料的强度就要通过诸如:细化晶粒(晶粒越细小晶界就越多,晶界对位错的运动具有很强的阻碍作用)、有序化合金、第二相强化、固溶强化等手段使金属的强度增加。
以上增加金属强度的根本原理就是想办法阻碍位错的运动。
·(3)面缺陷对材料性能的影响1. 面缺陷的晶界处点阵畸变大,存在晶界能,晶粒长大与晶界平直化使晶界米面积减小,晶界总能量降低,这两过程通过原子扩散进行,随温度升高与保温时间增长,有利于这两过程的进行。