单回路控制系统实验过程控制实验指导书
过程控制实验指导书

过程控制及仪表实验指导书襄樊学院实验装置的基本操作与仪表调试一、实验目的1、了解本实验装置的结构与组成。
2、掌握压力变送器的使用方法。
3、掌握实验装置的基本操作与变送器仪表的调整方法。
二、实验设备1、THKGK-1型过程控制实验装置GK-02 GK-03 GK-04 GK-072、万用表一只三、实验装置的结构框图图1-1、液位、压力、流量控制系统结构框图四、实验内容1、设备组装与检查:1)、将GK-02、GK-03、GK-04、GK-07挂箱由右至左依次挂于实验屏上。
并将挂件的三芯蓝插头插于相应的插座中。
2)、先打开空气开关再打开钥匙开关,此时停止按钮红灯亮。
3)、按下起动按钮,此时交流电压表指示为220V,所有的三芯蓝插座得电。
4)、关闭各个挂件的电源进行连线。
2、系统接线:1)、交流支路1:将GK-04 PID调节器的自动/手动切换开关拨到“手动”位置,并将其“输出”接GK-07变频器的“2”与“5”两端(注意:2正、5负),GK-07的输出“A、B、C”接到GK-01面板上三相异步电机的“U1、V1、W1”输入端;GK-07 的“SD”与“STF”短接,使电机驱动磁力泵打水(若此时电机为反转,则“SD”与“STR”短接)。
2)、交流支路2:将GK-04 PID调节器的给定“输出”端接到GK-07变频器的“2”与“5”两端(注意:2正、5负);将GK-07变频器的输出“A、B、C”接到GK-01面板上三相异步电机的“U2、V2、W2”输入端;GK-07 的“SD”与“STR”短接,使电机正转打水(若此时电机为反转,则“SD”与“STF”短接)。
3、仪表调整:(仪表的零位与增益调节)在GK-02挂件上面有四组传感器检测信号输出:L T1、PT、L T2、FT(输出标准DC0~5V),它们旁边分别设有数字显示器,以显示相应水位高度、压力、流量的值。
对象系统左边支架上有两只外表为蓝色的压力变送器,当拧开其右边的盖子时,它里面有两个3296型电位器,这两个电位器用于调节传感器的零点和增益的大小。
过程控制实验指导书

过程控制实验指导书THKGK-1过程控制实验装置的组成和各部分使用说明THKGK-1型过程控制实验装置是根据自动化专业及相关专业教学的特点,吸收了国内外同类实验装置的特点和长处,经过精心设计,多次实验和反复论证,向广大师生推出一套全新的实验设备。
该设备可以满足《过程控制》、《自动化仪表》、《工程检测》、《计算机控制系统》等课程的教学实验、课程设计等。
整个系统结构紧凑、功能多样、使用方便,既能进行验证性、研究性实验,又能提供综合性实验。
本实验装置可满足本科、大专及中专等不同层次的教学实验要求,还可为科学研究的开发提供实验手段。
本实验装置的控制信号及被控信号均采用IEC标准,即电压0~5V或1~5V,电流0~10mA或4~20mA。
实验系统供电要求为单相交流220V±10%,10A;外型尺寸为:182×160×70,重量:380Kg。
装置特点本实验装置具有以下特点:1、多种被控参数:液位、压力、流量、温度。
2、多种控制方式:位式控制、PID控制、智能仪表控制、单片机控制、PLC控制、计算机控制等。
3、多种计算机控制软件:西门子PROTOOL-CS组态软件、北京昆仑公司的MCGS组态软件以及本公司开发的上位机监控软件,另外还可以用台湾HITECH公司的ADP6.0软件与PLC 相连进行控制。
4、丰富的计算机控制算法:P、PI、PID、死区PID、积分分离、不完全积分、模糊控制、神精元控制、基于SIMULINK的动态参数自适应补偿控制等。
5、开放的软件平台:在我们提供的软件平台上,学生既可以利用我们所提供的算法程序进行实验,又可以用自己编写的PLC程序、MATLAB`程序等进行实验,还可以利用人机界面(触摸屏)的组态再结合PLC的编程来进行控制实验。
6、灵活多样的实验组合:可以很方便地对控制方式与被控参数进行不同组合,得到自己需要的单回路、多回路等多种控制系统。
系统组成被控对象包括上水箱、下水箱、复合加热水箱以及管道。
过程控制实训指导书

过程控制工程实训报告学号:班别:姓名:实验一上水箱特性测试实验一、实验目的:了解调节器的功能和操作方法,学会使用调节器。
通过实验,了解对象特性曲线的测量的思路和方法,掌握对象模型参数的求取方法。
二、实验设备:水泵Ⅰ、变频器、压力变送器、调节器、主回路调节阀、上水箱、上水箱液位变送器、调节器、电流表。
图1.1实验接线图三、实验步骤:1、认识实验系统,了解本实验系统中的各个对象。
了解本实验系统中各仪表的名称、基本原理以及功能,掌握其正确的接线与使用方法,以便于在实验中正确、熟练地操作仪表读取数据。
熟悉实验装置面板图,做到根据面板上仪表的图形、文字符号找到该仪表。
熟悉系统构成和管道的结构,认清电磁阀和手动阀的位置及其作用。
本实验采用调节器手动输出控制调节阀,计算机采集并记录数据。
图1.2 上水箱特性测试(调节器控制)系统框图图1.3 恒压供水(调节器控制)系统框图2、将上水箱特性测试(调节器控制)实验所用的设备,参照流程图和系统框图接线。
3、确认接线无误后,接通总电源、各仪表的电源,打开上水箱进水阀和下水箱排水阀。
4、设置调节器参数,使用手动输出功能。
(注意:更改调节器参数时,严禁用指甲按调节器面板,为防止损坏面板上的按钮,应用手指均匀用力)按调节器的增/减键改变输出值,使上水箱的液位处于某一平衡位置,记下此时手动输出值。
5、按调节器的增/减键增加调节器手动输出,给系统输入幅值适宜的阶跃信号(阶跃信号不要太大),使系统的输出产生变化,在液位较高处达到新的平衡状态。
6、观察计算机采集的上水箱液位的阶跃响应和历史曲线。
7、调节器的手动输出回到原来的输出值,记录液位下降的曲线。
8、曲线的分析处理,对实验的记录曲线分别进行分析和处理,处理结果记录于表格1。
四、试验报告:根据试验结果编写实验报告,并计算出K、T、τ的平均值,写出系统的广义传递函数(等效成惯性环节,K为静态增益,T为时间常数,τ为延迟时间)。
实验二压力单闭环实验一、实验目的:通过实验掌握单回路控制系统的构成。
计算机过程控制系统(DCS)课程实验指导书

计算机过程控制系统(DCS)课程实验指导书实验一、单容水箱液位PID整定实验一、实验目的1、通过实验熟悉单回路反馈控制系统的组成和工作原理。
2、分析分别用P、PI和PID调节时的过程图形曲线。
3、定性地研究P、PI和PID调节器的参数对系统性能的影响。
二、实验设备AE2000A型过程控制实验装置、JX-300X DCS控制系统、万用表、上位机软件、计算机、RS232-485转换器1只、串口线1根、网线1根、24芯通讯电缆1根。
三、实验原理图2-15为单回路水箱液位控制系统单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。
本系统所要保持的参数是液位的给定高度,即控制的任务是控制水箱液位等于给定值所要求的高度。
根据控制框图,这是一个闭环反馈单回路液位控制,采用SUPCON JX-300X DCS控制。
当调节方案确定之后,接下来就是整定调节器的参数,一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数选择有着很大的关系。
合适的控制参数,可以带来满意的控制效果。
反之,控制器参数选择得不合适,则会使控制质量变坏,达不到预期效果。
一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。
一般言之,用比例(P)调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。
比例积分(PI)调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数δ,Ti调节合理,也能使系统具有良好的动态性能。
比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。
但是,并不是所有单回路控制系统在加入微分作用后都能改善系统品质,对于容量滞后不大,微分作用的效果并不明显,而对噪声敏感的流量系统,加入微分作用后,反而使流量品质变坏。
过程控制实验指导书

过程控制及仪表实验指导书襄樊学院实验装置的基本操作与仪表调试一、实验目的1、了解本实验装置的结构与组成。
2、掌握压力变送器的使用方法。
3、掌握实验装置的基本操作与变送器仪表的调整方法。
二、实验设备1、THKGK-1型过程控制实验装置GK-02 GK-03 GK-04 GK-072、万用表一只三、实验装置的结构框图图1-1、液位、压力、流量控制系统结构框图四、实验内容1、设备组装与检查:1)、将GK-02、GK-03、GK-04、GK-07挂箱由右至左依次挂于实验屏上。
并将挂件的三芯蓝插头插于相应的插座中。
2)、先打开空气开关再打开钥匙开关,此时停止按钮红灯亮。
3)、按下起动按钮,此时交流电压表指示为220V,所有的三芯蓝插座得电。
4)、关闭各个挂件的电源进行连线。
2、系统接线:1)、交流支路1:将GK-04 PID调节器的自动/手动切换开关拨到“手动”位置,并将其“输出”接GK-07变频器的“2”与“5”两端(注意:2正、5负),GK-07的输出“A、B、C”接到GK-01面板上三相异步电机的“U1、V1、W1”输入端;GK-07 的“SD”与“STF”短接,使电机驱动磁力泵打水(若此时电机为反转,则“SD”与“STR”短接)。
2)、交流支路2:将GK-04 PID调节器的给定“输出”端接到GK-07变频器的“2”与“5”两端(注意:2正、5负);将GK-07变频器的输出“A、B、C”接到GK-01面板上三相异步电机的“U2、V2、W2”输入端;GK-07 的“SD”与“STR”短接,使电机正转打水(若此时电机为反转,则“SD”与“STF”短接)。
3、仪表调整:(仪表的零位与增益调节)在GK-02挂件上面有四组传感器检测信号输出:L T1、PT、L T2、FT(输出标准DC0~5V),它们旁边分别设有数字显示器,以显示相应水位高度、压力、流量的值。
对象系统左边支架上有两只外表为蓝色的压力变送器,当拧开其右边的盖子时,它里面有两个3296型电位器,这两个电位器用于调节传感器的零点和增益的大小。
过程控制系统实验指导书

过程控制系统实验指导书王永昌西安交通大学自动化系2015.3实验一先进智能仪表控制实验一、实验目的1.学习YS—170、YS—1700等仪表的使用;2.掌握控制系统中PID参数的整定方法;3.熟悉Smith补偿算法。
二、实验内容1.熟悉YS-1700单回路调节器与编程器的操作方法与步骤,用图形编程器编写简单的PID仿真程序;2.重点进行Smith补偿器法改善大滞后对象的控制仿真实验;3.设置SV与仿真参数,对PID参数进行整定,观察仿真结果,记录数据。
4.了解单回路控制,串级控制及顺序控制的概念,组成方式。
三、实验原理1、YS—1700介绍YS1700 产于日本横河公司,是一款用于过程控制的指示调节器,除了具有YS170一样的功能外,还带有可编程运算功能和2回路控制模式,可用于构建小规模的控制系统。
其外形图如下:YS1700 是一款带有模拟和顺序逻辑运算的智能调节器,可以使用简单的语言对过程控制进行编程(当然,也可不使用编程模式)。
高清晰的LCD提供了4种模拟类型操作面板和方便的双回路显示,简单地按前面板键就可进行操作。
能在一个屏幕上对串级或两个独立的回路进行操作。
标准配置I/O状态显示、预置PID控制、趋势、MV后备手动输出等功能,并且可选择是否通信及直接接收热偶、热阻等现场信号。
对YS1700编程可直接在PC机上完成。
SLPC内的控制模块有三种功能结构,可用来组成不同类型的控制回路:(1)基本控制模块BSC,内含1个调节单元CNT1,相当于模拟仪表中的l台PID调节器,可用来组成各种单回路调节系统。
(2)串级控制模块CSC,内含2个互相串联的调节单元CNTl、CNT2,可组成串级调节系统。
(3)选择控制模块SSC,内含2个并联的调节单元CNTl、CNT2和1个单刀三掷切换开关CNT3,可组成选择控制系统。
当YS1700处于不同类型的控制模式时,其内部模块连接关系可以表示如下:(1)、单回路控制模式单回路控制器具有丰富和灵活可变的运算控制功能;即具有连续控制功能,也具有一定的顺序控制及处理批量生产过程的能力。
过控实验指导书(USB-4711A)

实验一过程控制系统简介及过程控制演示一、组合式过程控制系统介绍结合过程计算机控制系统理论的学习,我们研制了一套组合式过程控制系统,这套系统可以通过灵活、方便的管路组合,实现过程控制中的五种典型控制方式—单回路控制,串级控制、前馈控制、均匀控制和比值控制。
二、主要仪器与设备1、计算机2、接口板卡USB-4711AUSB-4711A系列板卡是即插即用数据采集模块,它通过USB端口与计算机相连,为数据测量与系统控制提供了便利。
USB-4711A通过USB端口获得所需电源,在该板卡上包含了所有的数据采集功能,如:16路AI,2路AO,8路DI,8路DO,1路32位计数器,其中A/D数据采集为12位。
USB-4711A 板卡如图1-1所示。
图1-2为USB-4711A 上五个10针I/O 接口的针脚定义。
图1-1 USB-4711A板卡DO0DO1DO2DO3DGNDDO4DO5DO6DO7DGNDDI0DI1DI2DI3DGNDAI0GATE DGND EXTTRG DGND EVTINPOut AGND AO1AGNDDI4DI5DI6DI7 DGNDAI1AI2AI3AGNDAI4AI5AI6AI7AGNDAI8AI9AI10AI11AGNDAI12AI13AI14AI15AGNDAO0USBLED8-TTL DO Port8-TTL DI Port16-SE/8-Diff AIExternal Control2-AO Port图1-2I/O 接口针脚定义3、水箱:水箱如图1-3所示,技术参数见表1-1。
表1-1 水箱参数工作温度最大:+65CO外部尺寸宽度深度高度240 mm 190 mm 385 mm材质塑料图1-3 水箱4、流量传感器流量传感器如图1-4所示,主要技术参数见表1-2。
表1-2 流量传感器技术参数工作电压 5 to 12 V DC工作电流 6 to 33 mA输出信号方波信号,5…12 V频率范围13 to 1200 HZ测量范围0.5 to 15.0 l/min工作压力80°C max。
1-流程行业DCS仿真操作与控制系统设计实践课程-单回路控制实验指导书

CIMC 中国智能制造挑战赛
⑤ 点击左侧“功能组件→信号源”菜单栏里的“控制器输入”模块, 然后按住鼠标 左键将“控制器输入”模块拖入到右侧的控制器组态空白区域,此时“控制器输入”模块自 动命名为数据源,如下图所示:
⑥ 双击“数据源”模块,弹出“数据采集点配置”对话框,点击“数据点采集配置” 对话框里的“BROWSE”按钮,弹出“数据源”列表对话框,点击“数据源”列表对话框里 的“仪表”选项,找到 FI101,双击 FI101 向下弹出“仪表数据”,单击选择“仪表数据”, 点击“确定”按钮。如下图所示:
CIMC 中国智能制造挑战赛
击选择“阀门开度”,点击“确定”按钮,则“数据输出点配置”对话框里“位号”位置显 示出“FV101-阀门开度”,如下图所示,点击确定,完成。
⑨ 点击控制器组态工具栏“接线”按钮, 然后点击“数据源(FI101-仪表数据)”中 心的小黑点,再点击“PID 控制器”PV 旁的小圆圈,则控制器输入和 PID 控制器信号通讯连 接完成。点击控制器组态工具栏“接线”按钮, 然后点击“PID 控制器”PV 旁的小黑点, 再点击“控制输出点(FV101-阀门开度)”中心的小圆圈,则 PID 控制器和控制器输出信号 通讯连接完成。如下图所示:
CIMC 中国智能制造挑战赛
⑦ 点击左侧“功能组件→控制器”菜单栏里的“PID 控制器”模块, 然后按住鼠标 左键将“PID 控制器”模块拖入到右侧的控制器组态空白区域,并双击此模块,进行配置。
位号输入 LIC101;由于调节阀 FV101 为气开阀,则调节阀 FV101 为正作用,根据控制 回路的负反馈关系,由此判断控制器为反作用,手/自动状态选择“手动”。PID 参数设置, Kc(P-比例)输入 2.5,Ti(积分)输入 10000(Ti 值不能小于 0.1),Td(微分)输入 0,输 入的 PID 参数为参考值,可根据 PID 整定方法及 4:1 衰减曲线寻求最佳的 PID 参数。点击 “确定”按钮,则完成 PID 控制器配置。
过程控制系统实验、课程设计指导书

实验一 单回路温度控制系统的参数整定一、实验目的1、 掌握单回路控制系统的原理性组成;了解单回路温度控制系统实验装置的组成和原 理;掌握单回路温度控制系统的参数整定方法。
2、 掌握DCS 系统的监控和操作方法。
二、实验仪器及设备过程控制系统综合实验装置一套、SUPCON JX-300X DCS 系统一套 三、实验线路单回路温度控制系统流程示意图:温度调节器SP综合实验装置管路连接方式见图示(下页): DCS 控制站第一个机笼的I/O 卡件分布见下图:0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19各块I/O卡件的信号安排见下表:说明:J1/01——J1/08卡件通道为SP313的第1路即SP313(1)J1/09——J1/16卡件通道为SP313的第2路即SP313(2)J1/17——J1/20卡件通道为SP313的第3路即SP313(3)四、实验内容及实验方法(一)、实验内容1、熟悉单回路温度控制系统的管路连接方式及各输入/输出信号与DCS卡件的连接方式。
2、根据温度控制系统管路连接方式调节相关手动球阀至对应开关位置,进行单回路控制系统参数整定的方法整定PID参数。
3、观察和比较PID参数变化对系统性能的影响。
(二)、实验方法及步骤1、按照综合实验装置管路图正确开关各手动球阀。
2、综合实验装置上电,打开水泵,等高位水箱开始溢流(恒压状态下),锅炉水位到高度的2/3时,关闭锅炉的进水阀和出水阀。
3、SUPCON JX-300X DCS系统上电,工程师站上调出监控画面(组态设计已做好),手动操作给锅炉加热到设定温度。
4、小开度打开锅炉的进、出水阀,使锅炉水流动,手动调节加热功率大小,使锅炉水温基本稳定在设定值上,初置调节器PID参数值,将DCS切换到自动控制状态。
5、在锅炉里加少量冷水或加大锅炉进水阀的开度片刻,以模拟扰动,观察系统的调节过程、响应曲线。
过程控制实验指导书讲解

过程控制实验指导书授课学时:16课时授课专业:自动化授课教师:姜倩倩目录过程控制实验项目一览表 ............................................................................................ - 1 - 实验一:一阶系统数学模型的建立 ............................................................................ - 2 - 实验二:PID控制器参数自整定............................................................................... - 4 - 实验三水箱液位PID控制........................................................................................ - 8 - 实验四水箱压力的PID调节控制 .......................................................................... - 14 - 实验五串级水位控制系统设计 ............................................................................ - 17 - 实验六前馈-反馈控制系统仿真实验 .................................................................... - 19 - 实验七单片机液位控制系统 .................................................................................. - 22 - 实验八单容液位PLC控制 ...................................................................................... - 25 -过程控制实验项目一览表实验参考书:GK-1型操作说明书.实验指导书实验一:一阶系统数学模型的建立一、实验目的1.熟悉利用计算法建立系统一阶惯性环节加纯迟延的近似数学模型的方法;2.学会利用MATLAB/Simulink对系统建模的方法。
过程控制工程实验指导书

过程控制实验指导书(DCS篇)曾慧敏自动化教研室自动化与电子信息学院自动化教研室2015年12月5日前言本实验指导书是根据求是实验室设备-和利时DCS实验装置和A3000过程控制系统的相关内容编写的,可满足《DCS与现场总线》、《过程控制》、《过程控制与仪表》、《计算机控制》、《自动化仪表》等相关课程的实验教学要求。
过程控制通常是指石油、化工、电力、冶金、轻工、建材、核能等工业生产中连续的或按一定周期程序进行的生产过程自动控制,它是自动化技术的重要组成部分。
和利时DCS实验装置根据现行教材教学的要求,设置了压力、流量、液位、温度等单回路、串级、比值及前馈等实验。
实验指导书叙述了实验装置的各个仪表的原理、工作情况,实验项目及实验原理。
并讲述了系统的一些硬件的特点和技术指标。
本书试图通过对各实验原理的认识到对实验的实践,使学生对和利时DCS实验装置和系统原理有一个较为深刻的认识。
同时学生可自行设计实验方案,进行综合性、设计性过程控制系统实验的设计、调试、分析,培养学生的独立操作、独立分析问题和解决问题的能力。
若有疏漏,恳请批评指正!目录主要内容 (4)第一部分 A3000设备简介 (6)第二部分基础学习 (9)和利时DCS的应用系统设计内容及步骤 (9)第三部分实验内容 (43)实验一水箱液位控制系统 (43)实验二液位和进口流量串级控制系统 (55)主要内容1、实验总体目标通过实验,巩固掌握DCS课程的讲授内容,使学生对过程控制系统的基本理论及分析方法有一个感性认识和更好地理解,使学生在分析问题与解决问题的能力及实践技能方面有所提高。
2、适用专业自动化和电气自动化专业本科生、研究生3、先修课程控制装置、自动化仪表、计算机控制系统、过程控制系统及DCS与现场总线4、实验课时分配实验环境:和利时MACS和A3000过程控制系统6、实验总体要求(1)、掌握单回路控制系统原理和参数整定方法;(2)、掌握串级控制系统原理和参数整定方法。
过程控制系统实验指导书第二版

过程控制系统实验指导书
引言
浙江求是科教设备有限公司生产的 PCT 系列过程控制实验系统装置,可以非常好地满足过程控制 课程实验的要求。在这套设备由被控对象和控制台组成,通过手动或计算机控制,可以将被控对象 转变成不同特性的过控对象,因此,在此基础上可以进行简单的温度、压力、流量、液位的单回路 控制,而且也可以进行一系例复杂控制系统实验如:变比值控制、Simth 预估控制、解耦控制、三容 液位控制、换热器温度控制等。 一、PCT 系列过程控制实验装置特点:
过程控制实验指导书

第三章 对象特性测试实验第一节 测试对象特性的方法工业过程动态数学模型的表达方式很多,其复杂程度相差悬殊。
对于数学模型,应根据实际应用情况提出适当的要求。
一般说来,用于控制的数学模型并不要求十分准确。
闭环控制本身具有一定的鲁棒性,模型本身的误差可视为干扰,而闭环控制在某种程度上具有自动消除干扰的能力。
实际生产过程的动态特性非常复杂,往往需要作很多近似处理。
有些近似处理需要作线性化处理、降阶处理等,但却能满足控制的要求。
建立数学模型有两个基本方法,即机理法和测试法。
测试法一般只用于建立输入输出模型。
它的特点是把被研究的工业过程视为一个黑匣子,完全从外部特性上测试和描述它的动态性质,因此不需要深入掌握其内部机理。
一、测试法求取传递函数通过简单的测试获得被被控对象的阶跃响应,进一步把它拟合成近似的传递函数,是建立被控对象数学模型简单有效的方法。
用测试法建立被控对象的数学模型,首先要选定模型的结构。
典型的工业过程的传递函数可以取为各种形式,例如:1、 一阶惯性环节加纯延迟 一阶惯性环节的传递函数:1)(+=Ts Ks G 延迟环节的传递函数为:τs )(-=e s G一阶加纯滞后对象的传递函数1)(τs+=-Ts Ke s GtXΔx阶跃信号一阶惯性环节阶跃响应KΔxT图 3.1.1对于有纯滞后的一阶对象,滞后时间可直接由图中测量出纯滞后时间τ。
2、二阶或高阶惯性环节加纯延迟ns1)(Ts )(+=-τKe s G 在确定传递函数的形式后,要对函数中的各个参数与测试的响应曲线进行拟合。
如果阶跃响应是如图3.1.2所示的S 形单调曲线,就可以用一阶惯性加纯延迟对象的传递函数去拟合。
增益K 由输入输出的稳态值直接算出,而τ和T 则可以用作图法确定。
tABpCy y(∞)τT图 3.1.2在曲线的拐点p 作切线,它与时间轴交于A 点,与曲线的稳态渐进线交于B 点。
0A 段的值即为纯滞后时间τ,CB 段的值即为时间常数T ,这样就确定了τ和T 的数值。
单回路控制系统实验指导书10_1_.5

单回路控制系统PID参数整定实验指导书一、实验目的:本实验装置以管式电炉为被控对象,用Honeywell通用数字式控制器,依据所提出的技术要求,可以构成不同形式的温度控制系统。
通过实验可进一步了解和掌握控制系统的构成;各单元在控制系统中的作用、要求,调校方法;以及控制系统的参数整定。
通过控制系统实验,进一步加深和巩固过程控制系统课的学习,锻炼和提高分析问题,解决问题的能力。
二、实验中的工艺要求:1.炉中部给定温度200摄氏度。
2.主要干扰因素:①管式电炉加热丝的供电电压、频率的变化②电炉内外的热对流注:以上提出的工艺要求也可以在实验中依据具体条件而有所改变。
三、实验内容:1.设计单回路温度控制系统,并进行正确接线。
2.熟悉数字调节器的使用和参数设置的方法。
3.单回路闭环控制系统的参数整定和分析。
四、实验装置:整套实验装置由管式加热炉,交流调压器,测温元件,控制柜,计算机,台式记录仪组成。
通过控制柜上的接线端子,用导线连接,可构成单回路、串级等控制系统,并可完成对象特性的测定,调节器参数整定等实验。
实验装置仪表选型介绍:⑴主调节器:通用数字控制器Honeywell DC330E-K0-100-20⑵副调节器:通用数字控制器Honeywell DC230B-C0-0A-11⑶数字交流电压表WP-E812-00-N⑷数字交流电流表WP-E814-02-N⑸指针直流电流表2085,4~20mA⑹数字温度变送器WP-C903-02-03-HL⑺可控硅电压调整器ZK-1⑻接触式调压器TDGC2-3, 3KV A⑼热电偶K型,测量范围0~1300摄氏度⑽台式记录仪LM17-2A⑾管式加热炉1000W五、实验主要步骤:1.设计单回路温度控制系统,在实验装置上用导线连接,完成单回路控制系统的构成。
2.熟悉数字控制器(Honeywell DC3300)的使用,了解P、I、D、参数的设置方法,具体操作请参照仪表使用说明进行。
单回路控制系统实验(过程控制实验指导书)

单回路控制系统实验单回路控制系统概述实验三单容水箱液位定值控制实验实验四双容水箱液位定值控制实验实验五锅炉内胆静(动)态水温定值控制实验实验三实验项目名称:单容液位定值控制系统实验项目性质:综合型实验所属课程名称:过程控制系统实验计划学时:2学时一、实验目的1.了解单容液位定值控制系统的结构与组成。
2.掌握单容液位定值控制系统调节器参数的整定和投运方法。
3.研究调节器相关参数的变化对系统静、动态性能的影响。
4.了解P、PI、PD和PID四种调节器分别对液位控制的作用。
5.掌握同一控制系统采用不同控制方案的实现过程。
二、实验内容和(原理)要求本实验系统结构图和方框图如图3-4所示。
被控量为中水箱(也可采用上水箱或下水箱)的液位高度,实验要求中水箱的液位稳定在给定值。
将压力传感器LT2检测到的中水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制中水箱液位的目的。
为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。
三、实验主要仪器设备和材料1.实验对象及控制屏、SA-11挂件一个、计算机一台、万用表一个;2.SA-12挂件一个、RS485/232转换器一个、通讯线一根;3.SA-44挂件一个、CP5611专用网卡及网线、PC/PPI通讯电缆一根。
四、实验方法、步骤及结果测试本实验选择中水箱作为被控对象。
实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7、F1-11全开,将中水箱出水阀门F1-10开至适当开度,其余阀门均关闭。
具体实验内容与步骤按二种方案分别叙述。
(一)、智能仪表控制1.按照图3-5连接实验系统。
将“LT2中水箱液位”钮子开关拨到“ON”的位置。
图3-4 中水箱单容液位定值控制系统(a)结构图(b)方框图图3-5 智能仪表控制单容液位定值控制实验接线图2.接通总电源空气开关和钥匙开关,打开24V开关电源,给压力变送器上电,按下启动按钮,合上单相Ⅰ、Ⅲ空气开关,给智能仪表及电动调节阀上电。
实验3 单回路控制系统

控制器参数的工程整定
• 尽管有多种通过计算获得控制器最优参数的方法,现场使用较多的还
是一些工程参数整定法。为了在现场复杂的情况下,尽快找到控制器 合适的参数,需要简化搜索范围,变三维搜索为一维搜索 • 搜索即寻找。每改变一次控制器参数,都要加扰动测试该参数是否合 适,是否符合控制质量指标的要求 • 在多种现场工程参数整定法中,较为稳妥可靠的是4:1衰减曲线法 • 具体步骤如下: 1. 首先将控制器转变为单纯比例控制器,将积分和微分作用去掉,在 这里分别设置积分时间与微分时间为I=3600、D=0;
过程控制工程实验
实验三 单回路控制系统
实验目的与要求
• 实验目的:通过实际构建、运行一个液位单回路控制系统,更深入理
解一个工业自控系统的工作原理和投运步骤;掌握控制系统的参数调 整方法——工程参数整定法 • 实验设备: A3000 过程控制实验装置中的二级水箱系统, PC 机及工 业组态软件 • 控制系统的要求:被控参数(液位)能保持在期望值上,并抵御一定 的外部扰动,满足生产的质量与安全的要求(有报警、操作限制等) • 一个一般的工业控制系统,通常是一个包含基本控制回路、并附加其
连接的信号线
• 下图是方框图表示的单回路控 制系统及需要连线的部分
单回路控制实验信号连线
单回路控制实验信号连线
系统连线如下:
• 两控制器中,左侧控制器为单回路实验用 PID控制器,其输入端连接 到下液位变送器,输出端接到控制阀的输入端口; • 右侧控制器仅作为辅助监视操作器,一直置手动,输入连接到中液位 变送器,用于显示,输出连接在变频器的输入端口(本次实验暂不接 线)
下,将控制器切换到自动;
• 注意:为确保系统投运至自动时不至于产生剧烈变化,一定要让控制 器在比较稳妥状态下过渡。除了无偏差外,还要让控制作用比较“温 和”,即:控制作用弱一些,跟踪速率低一些(但过低会造成跟踪精 度低) • 特别提示:工业控制操作中一般是调整测量值等于设定值,实验中为 了缩短等候时间,才采用调整设定值等于测量值的
实验22 单回路控制系统实验

实验二单回路控制系统实验
一实验目的
⒈掌握单回路控制系统的组成、结构和设计方法。
⒉掌握单回路控制系统的投运步骤。
⒊掌握控制器参数的整定方法。
⒋掌握变送器和调节阀的概念、使用方法、信号标准和接线。
二实验要求
针对过程控制实验装置,设计单回路控制系统,被控参数为二阶水槽的液位,执行器为电动调节阀。
设计并实施控制方案,进行参数整定。
三实验设备
⒈被控对象:二阶水槽。
⒉控制器:PLC。
⒊仪表:液位变送器。
⒋执行器:电动调节阀。
⒌附属设施:变频器,水泵等。
四实验原理
⒈过程控制实验装置流程图
⒉控制方框图
五实验步骤
⒈根据实验装置工艺流程设计控制方案,确定测量点和控制点。
(课外完成)
⒉设计投运方案。
(课外完成)
⒊按设计方案连接线路,检查无误后,按投运方案投运。
⒋整定控制器参数,加干扰测试,使系统达到4:1衰减过渡过程。
六实验结果及分析要求
⒈控制方案说明,系统方框图和接线图。
⒉参数整定结果及相应过渡过程曲线。
⒊总结PID参数对控制效果的影响。
过程控制实验指导书(求是12.3.15)

过程控制系统实验指导书林宝全陈秀菊编电气学院实验中心一、实验目的1、了解调节器的功能和操作方法,学会使用调节器。
通过实验了解对象特性曲线的测量的思路和方法,掌握对象模型参数的求取方法。
2、通过实验掌握单回路控制系统的构成。
阶跃反应曲线法和整定单回路控制系统的PID参数,熟悉PID参数对控制系统质量指标的影响,用调节器仪表进行PID参数的自整定和自动控制的投运。
二、实验设备水泵、变频器、压力变送器、调节器(708型)、主回路调节阀、上水箱、液位变送器、调节器(818型)。
图1 液位单闭环实验接线图三、实验步骤1、液位系统建模1.1系统框图实验采用调节器手动输出控制调节阀,计算机采集并记录数据。
图2 上水箱特性测试(调节器控制)系统框图图3 恒压供水(调节器控制)系统框图1.2将上水箱特性测试(调节器控制)实验所用的设备,参照流程图和系统框图接线。
1.3 确认接线无误后,接通总电源、各仪表的电源,打开上水箱进水阀(V3)和下水箱排水阀。
1.4 变频器开关置”外控”,调节器Ⅲ设定”50”。
1.5 设置调节器Ⅰ参数(DIH为”400”),使用手动输出功能(run为”0”)。
(注意:更改调节器参数时,严禁用指甲按调节器面板,为防止损坏面板上的按钮,应用手指均匀用力)按调节器的增/减键改变输出值(如40),使上水箱的液位处于某一平衡位置,记下此时手动输出值。
1.6 按调节器的增/减键增加调节器手动输出(或用上位机调节手动输出),给系统输入幅值适宜的阶跃信号(阶跃信号约20%),使系统的输出产生变化,在液位较高处达到新的平衡状态。
1.7 观察计算机采集的上水箱液位的阶跃响应和历史曲线。
1.8 调节器的手动输出回到原来的输出值,记录液位下降的曲线。
1.9曲线的分析处理,对实验的记录曲线分别进行分析和处理,处理结果记录于表格1,根据实验结果求取P、I值(参照附录)。
2、测试分析扰动下液位控制系统的性能(闭环)计算所得的PID参数值置于控制器中。
过程控制实验指导书精简版

第三章对象特性测试实验第九节调节阀流量特性测试(调节器)实验调节阀是受输入电流(4~20mA)控制,并且有阀位反馈电流(4~20mA)。
实验步骤:1、实验装置的认识,了解调节阀的工作原理,作用、及所在的位置。
2、按附图调节阀特性测试实验接线图将实验导线接好。
3、接通总电源、各仪表电源。
4、设置调节器处于手动状态,改变手动给定10%、20%、30%…100%分别记录调节器的输出电流和流量计的流量(调节阀的进出口压力保持不变)。
5、由电流作为横坐标、流量作为纵坐标,画出特性曲线图。
6、根据画出的特性曲线,判断阀体是快开特性,等百分比特性还是慢开特性。
图3.10 调节阀流量特性测试(调节器)实验流程图同样参考主回路流量特性测试实验接线图和副回路流量特性测试实验接线图测出主副回路流量特性。
第四章 单回路控制系统实验第一节 压力单闭环实验(调节器控制)一、实验目的:通过实验掌握单回路控制系统的构成。
学生可自行设计,构成单回路流量、单容液位、双容液位和温度控制系统。
掌握用阶跃响应曲线法来实验辨识控制系统数学模型的特性参数τ、T 0、K 0,用临界比例度法整定单回路控制系统的PID 参数,熟悉PID 参数对控制系统质量指标的影响,用调节器仪表进行PID 参数的自整定和自动控制的投运。
熟悉掌握调节器的参数设置和手动自动的方法。
二、实验系统流程图图4.1 压力单闭环实验流程图调节器控制压力单闭环控制系统的框图四、实验步骤:1、按附图压力单闭环实验接线图接好实验导线,将阀门V19、V3打开,V16、V17、V18关闭。
2、.接通总电源,各仪表电源。
将PCT-2面板上的钮子开关掷到外控端。
3、.整定参数值的计算设定过度过程的衰减比为4:1,整定参数值可按下列“阶跃反应曲线整定参数表”进行计算。
表4.1 阶跃反应曲线整定参数表4、将计算所得的PID参数值置于控制器中,系统投入闭环运行。
加入扰动信号观察各被测量的变化,直至过渡过程曲线符合要求为止。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单回路控制系统实验单回路控制系统概述实验三单容水箱液位定值控制实验实验四双容水箱液位定值控制实验实验五锅炉内胆静(动)态水温定值控制实验实验三实验项目名称:单容液位定值控制系统实验项目性质:综合型实验所属课程名称:过程控制系统实验计划学时:2学时一、实验目的1.了解单容液位定值控制系统的结构与组成。
2.掌握单容液位定值控制系统调节器参数的整定和投运方法。
3.研究调节器相关参数的变化对系统静、动态性能的影响。
4.了解P、PI、PD和PID四种调节器分别对液位控制的作用。
5.掌握同一控制系统采用不同控制方案的实现过程。
二、实验内容和(原理)要求本实验系统结构图和方框图如图3-4所示。
被控量为中水箱(也可采用上水箱或下水箱)的液位高度,实验要求中水箱的液位稳定在给定值。
将压力传感器LT2检测到的中水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制中水箱液位的目的。
为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。
三、实验主要仪器设备和材料1.实验对象及控制屏、SA-11挂件一个、计算机一台、万用表一个;2.SA-12挂件一个、RS485/232转换器一个、通讯线一根;3.SA-44挂件一个、CP5611专用网卡及网线、PC/PPI通讯电缆一根。
四、实验方法、步骤及结果测试本实验选择中水箱作为被控对象。
实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7、F1-11全开,将中水箱出水阀门F1-10开至适当开度,其余阀门均关闭。
具体实验内容与步骤按二种方案分别叙述。
(一)、智能仪表控制1.按照图3-5连接实验系统。
将“LT2中水箱液位”钮子开关拨到“ON”的位置。
图3-4 中水箱单容液位定值控制系统(a)结构图(b)方框图图3-5 智能仪表控制单容液位定值控制实验接线图2.接通总电源空气开关和钥匙开关,打开24V开关电源,给压力变送器上电,按下启动按钮,合上单相Ⅰ、Ⅲ空气开关,给智能仪表及电动调节阀上电。
3.打开上位机MCGS组态环境,打开“智能仪表控制系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验三、单容液位定值控制系统”,进入实验三的监控界面。
4.①在上位机监控界面中把“设定值”设置为一个合适的值(从低位开始每次增加3-4cm,水箱最高水位为15cm)。
②将“P、I”值设置为一个合适的值(50P)。
,I③单击“启动仪表”系统进入运行状态。
5.合上三相电源空气开关,磁力驱动泵上电打水,使中水箱的液位平衡于设定值,观察记录响应曲线的变化。
6.按经验法或衰减曲线法整定调节器参数,选择P、I控制规律,并按整定后的PI参数进行调节器参数设置。
合适的PI值可做出4﹕1的响应曲线。
7.待液位平衡后,通过以下几种方式加干扰:(1)突增(或突减)仪表设定值的大小,使其有一个正(或负)阶跃增量的变化;(此法推荐,后面三种仅供参考)(2)将电动调节阀的旁路阀F1-3或F1-4(同电磁阀)开至适当开度;(3)将下水箱进水阀F1-8开至适当开度;(改变负载)(4)接上变频器电源,并将变频器输出接至磁力泵,然后打开阀门F2-1、F2-4,用变频器支路以较小频率给中水箱打水。
以上几种干扰均要求扰动量为控制量的5%~15%,干扰过大可能造成水箱中水溢出或系统不稳定。
加入干扰后,水箱的液位便离开原平衡状态,经过一段调节时间后,水箱液位稳定至新的设定值(采用后面三种干扰方法仍稳定在原设定值),记录此时的智能仪表的设定值、输出值和仪表参数,液位的响应过程曲线将如图3-6所示。
图3-6 单容水箱液位的阶跃响应曲线-8.分别适量改变调节仪的P及I参数,重复步骤7,用计算机记录不同参数时系统的阶跃响应曲线。
9.分别用P、PD、PID三种控制规律重复步骤4~8,用计算机记录不同控制规律下系统的阶跃响应曲线。
(二)、S7-200PLC控制1.将SA-42 S7-200PLC控制挂件挂到屏上,并用PC/PPI通讯电缆线将S7-200PLC连接到计算机串口2,并按照图3-7控制屏接线图连接实验系统。
将“LT2中水箱液位”钮子开关拨到“ON”的位置。
2.接通总电源空气开关和钥匙开关,打开24V开关电源,给压力变送器上电,按下启动按钮,合上单相Ⅰ、Ⅲ空气开关,给S7-200PLC及电动调节阀上电。
3.打开Step 7-Micro/WIN 32软件,并打开“S7-200PLC”程序进行下载,然后将S7-200PLC置于运行状态,然后运行MCGS组态环境,打开“S7-200PLC 控制系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验三、单容液位定值控制”,进入实验三的监控界面。
4.以下步骤请参考前面“(一)智能仪表控制”的步骤4~9。
五、实验报告要求1.画出单容水箱液位定值控制实验的结构框图。
2.用实验方法确定调节器的相关参数,写出整定过程。
3.根据实验数据和曲线,分析系统在阶跃扰动作用下的静、动态性能。
4.比较不同PID参数对系统的性能产生的影响。
5.分析P、PI、PD、PID四种控制规律对本实验系统的作用。
6.综合分析二种控制方案的实验效果。
六、思考题1.如果采用下水箱做实验,其响应曲线与中水箱的曲线有什么异同?并分析差异原因。
2.改变比例度δ和积分时间T I对系统的性能产生什么影响?图3-7 S7-200PLC控制单容液位定值控制实验接线图实验四实验项目名称:双容水箱液位定值控制系统实验项目性质:综合型实验所属课程名称:过程控制系统实验计划学时:2学时一、实验目的1.通过实验进一步了解双容水箱液位的特性。
2.掌握双容水箱液位控制系统调节器参数的整定与投运方法。
3.研究调节器相关参数的改变对系统动态性能的影响。
4.研究P、PI、PD和PID四种调节器分别对液位系统的控制作用。
5.掌握双容液位定值控制系统采用不同控制方案的实现过程。
二、实验内容(原理)和要求本实验以中水箱与下水箱串联作为被控对象,下水箱的液位高度为系统的被控制量。
要求下水箱液位稳定至给定量,将压力传感器LT2检测到的中水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制下水箱液位的目的。
为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。
调节器的参数整定可采用本章第一节控制规律的选择所述的整定方法。
本实验系统结构图和方框图如图3-8所示。
图3-8 双容液位定值控制系统(a)结构图(b)方框图三、实验主要仪器设备和材料(同前)四、实验方法、步骤及结果测试本实验选择中水箱和下水箱串联作为双容对象(也可选择上水箱和中水箱)。
实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7全开,将中水箱出水阀门F1-10、下水箱出水阀门F1-11开至适当开度(要求阀F1-10稍大于阀F1-11),其余阀门均关闭。
具体实验内容与步骤按二种方案分别叙述(一)、智能仪表控制1.按照图2-3连接实验系统。
将“LT2中水箱液位”钮子开关拨到“ON”的位置。
2.接通总电源空气开关和钥匙开关,打开24V开关电源,给压力变送器上电,按下启动按钮,合上单相Ⅰ、Ⅲ空气开关,给智能仪表及电动调节阀上电。
3.打开上位机MCGS组态环境,打开“智能仪表控制系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验四、双容液位定值控制系统”,进入实验四的监控界面。
4.①在上位机监控界面中把“设定值”设置为一个合适的值(从低位开始每次增加3-4cm,水箱最高水位为15cm)。
②将“P、I”值设置为一个合适的值(50P)。
,I③点击“启动仪表”,系统进入自动状态。
5.合上三相电源空气开关,磁力驱动泵上电打水,使中水箱的液位平衡于设定值,观察记录响应曲线的变化。
6.按经验法或衰减曲线法整定调节器参数,选择P、I控制规律,并按整定后的PI参数进行调节器参数设置。
合适的PI值可做出4﹕1的响应曲线。
7.待液位稳定于给定值后,将调节器切换到“自动”控制状态,待液位平衡后,通过以下几种方式加干扰:(1)突增(或突减)仪表设定值的大小,使其有一个正(或负)阶跃增量的变化;(此法推荐,后面三种仅供参考)(2)将电动调节阀的旁路阀F1-3或F1-4(同电磁阀)开至适当开度;(3)将下水箱进水阀F1-8开至适当开度;(改变负载)(4)接上变频器电源,并将变频器输出接至磁力泵,然后打开阀门F2-1、F2-4,用变频器支路以较小频率给中水箱打水。
以上几种干扰均要求扰动量为控制量的5%~15%,干扰过大可能造成水箱中水溢出或系统不稳定。
加入干扰后,水箱的液位便离开原平衡状态,经过一段调节时间后,水箱液位稳定至新的设定值(采用后面三种干扰方法仍稳定在原设定值),记录此时的智能仪表的设定值、输出值和仪表参数,液位的响应过程曲线将如图3-9所示。
图3-9 水箱液位的阶跃响应曲线8.分别适量改变调节仪的P及I参数,重复步骤7,用计算机记录不同参数时系统的阶跃响应曲线。
9.分别用P、PD、PID三种控制规律重复步骤4~8,用计算机记录不同控制规律下系统的阶跃响应曲线。
(二)、S7-200PLC控制1.将SA-42 S7-200PLC控制挂件挂到屏上,并用PC/PPI通讯电缆线将S7-200PLC连接到计算机串口2,并按照图3-11接线图连接实验系统。
将“LT2中水箱液位”钮子开关拨到“ON”的位置。
2.接通总电源空气开关和钥匙开关,打开24V开关电源,给压力变送器上电,按下启动按钮,合上单相Ⅰ、Ⅲ空气开关,给S7-200PLC及电动调节阀上电。
3.打开Step 7-Micro/WIN 32软件,并打开“S7-200PLC”程序进行下载,然后将S7-200PLC置于运行状态,然后运行MCGS组态环境,打开“S7-200PLC 控制系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验四、双容液位定值控制”,进入实验四的监控界面。
4.以下步骤请参考前面“(一)智能仪表控制”的步骤4~9。
- - -..五、实验报告要求1.画出双容水箱液位定值控制实验的结构框图。
2.用实验方法确定调节器的相关参数,写出整定过程。
3.根据实验数据和曲线,分析系统在阶跃扰动作用下的静、动态性能。
4.比较不同PI参数对系统的性能产生的影响。
5.分析P、PI、PD、PID四种控制方式对本实验系统的作用。
6.综合分析二种控制方案的实验效果。
六、思考题1.如果采用上水箱和中水箱做实验,其响应曲线与本实验的曲线有什么异同?并分析差异原因。
2.改变比例度δ和积分时间T I对系统的性能产生什么影响?3.为什么本实验比单容液位定值控制系统更容易引起振荡?要达到同样的动态性能指标,在本实验中调节器的比例度和积分时间常数要怎么设置?- - 总结资料。