数学物理方程讲解
数学物理方程讲义全.
古典解:如果将某个函数 u 代入偏微分方程中,能使方程成 为恒等式,则这个函数就是该偏微分方程的解。
通解:解中含有相互独立的和偏微分方程阶数相同的任意常 数的解。
特解:满足方程及定解条件的解,也称为定解问题的解。
光滑解:可无穷次可微的解。
解析解:可展开成收敛幂级数形式的解。 形式解:未经过验证的解为形式解。
2u 2u 0 x2 y 2
u a 2 2u
t
x 2
02 11 0 02 1 0 0
椭圆型方程 抛物型方程
数学物理方程
第一章 绪论
§4、线性叠加原理
线性方程的解具有叠加特性
对n个自变量的二阶线性偏微分方程
L u
m i, j 1
根据判别式 (x, y) a122 a11a22 的符号可将二阶线性偏微分方程化为3类
1)(x, y) a122 a11a22 >0 原方程为双曲型偏微分方程 u Au Bu Cu F 双曲型方程的第一标准型形式
u u Au Bu Cu F 双曲型方程的第二标准型形式
数学物理方程
第一章 绪论
§3、二阶线性偏微分方程的分类
二阶线性偏微分方程的一般形式
m
2u
i, j1 aij (x) xix j
m i
u bi (x) xi
c(x)u
f (x)
特别对有两个自变量(x,y)函数的二阶线性偏微 分方程可写为:
a11
2u x2
2a12
数学物理方程
第一章 绪论
数学物理方程
-----用数学方程来描述一定的物理现象。 ☆ 课程的内容
数学物理方程知识点
数学物理方程知识点
Chapter 1:绪论
1.偏微分方程的基本概念名词
2.三大类方程的典型物理模型:弦振动、热传导、
3.二阶方程的标准简化:用坐标变换化简二阶项、用v=ue!"!!"化简一次项
Chapter 2:波动方程
1.D’Alembert公式——Cauchy 初值问题:
半区域用延拓法或特征线法、非齐次方程右端用叠加原理、
2.分离变量法——矩形区域混合初边值问题:
方程分离、特征值与特征函数求解、初值用特征函数展开确定系数
非齐次方程右端用叠加原理、叠加原理一般公式
非齐次边界先化成齐次边界、边界条件最先考虑
3.三维波动方程球平均法——Cauchy 初值问题
三维积分公式的一般表达、极坐标表达
4.二维波动方程降维法——Cauchy 初值问题
二维积分公式的一般表达、极坐标表达
5.能量积分——解的唯一性和稳定性
6.解的无穷远渐进形态
Chapter 3:热传导方程
1.Fourier 变换法——Cauchy 初值问题:1 维或n 维公式
2.分离变量法——矩形混合初边值问题:
place 变换法
4.圆域上的热传导方程、极坐标、Bessel 函数
5.能量积分——解的唯一性和稳定性
6.极值原理——解的唯一性和稳定性
Chapter 4:调和方程
1.分离变量法——Drichlet 问题
圆域内外(内外Poisson 公式)、扇形区域、环形区域、矩形区域、球形区域
非齐次问题先齐次化,或用特征函数法
2.Green 公式、能量积分、变分原理、基本解、基本积分公式、平均值公式、极值原理、唯
一性和稳定性。
3.Green 函数:上班平面、球形区域。
数学物理方程的重点
一.无界问题的特征线法求解求解1.一维无界弦振动方程的达朗贝尔公式(特征线法在弦振动方程的应用)求解法 1.1齐次方程两端无界弦振动方程的求解 齐次弦振动方程及初始条件:⎩⎨⎧==+∞<<-∞>=-)()0,(),()0,(,0,02x x u x x u x t u a u t xx tt ψϕ其方程为+∞<<-∞>=-x t u a u xx tt ,0,02,其特征方程为022=-⎪⎭⎫⎝⎛a dt dx ,2,1c at x =±所以at x +=ξ,at x -=ηηξu u u x +=,ηξu a u a u t ⨯-⨯=,ηηξηξξu u u u xx ++=2,ηηξηξξu a u a u a u tt 2222+-=)()()()(),(0042at x G at x F G F t x u u u u a u xx tt -++=+=⇒=⇒=-=-ηξξηξη由初始条件)()(')(')0,(),()()()0,(x x aG x aF x u x x G x F x u t ψϕ=-==+=来确定⎰=---xx dbb x G x G a x F x F a 0)()]0()([)]0()([ψ)0()0()(1)()(0x G x F db b a x G x F xx -+=-⎰ψ)()()(x x G x F ϕ=+)(2)0()0()(21)(0x x G x F db b a x F xx ϕψ+-+=⎰)(212)0()0()(21)(0at x x G x F db b aat x F at x x ++-+=+⎰+ϕψ)(2)0()0()(21)(0x x G x F db b a x G xx ϕψ+---=⎰ )(2)()()(21)(0at x at x G at x F db b a at x G atx x -+-----=-⎰-ϕψ)()(),(at x G at x F t x u -++=⎰+-+-++=atx atx db b a at x at x t x u )(21)]()([21),(ψϕϕ(1)此公式为达朗贝尔公式 1.2单侧无界弦振动齐次方程的求解⎪⎩⎪⎨⎧>=>==>>=-0,0),0(),()0,(),()0,(0,0,02t t u t t x x u x x u x t u a u t xx tt ψϕ先求出对应双侧无界弦振动方程⎩⎨⎧ψ=Φ=+∞<<-∞>=-)()0,(),()0,(,0,02x x u x x u x t u a u t xx tt 其中要求)(),(x x ψΦ为奇函数又已知其右侧函数表达式可以求出求出左侧表达式⎩⎨⎧<--≥=Φ0),(0),()(x x x x x ϕϕ,⎩⎨⎧<--≥=ψ0),(0),()(x x x x x ψψ 将其带入达朗贝尔公式可求出对应双侧无界弦振动方程的解⎰+-ψ+-Φ++Φ=atx atx db b a at x at x t x u )(21)]()([21),( 只要令0)(21)]()([210),(,0=Φ+Φ-Φ⇒==⎰-db b a at at t x u x atat又令0>x ,⎪⎪⎩⎪⎪⎨⎧<+---+>+-++=⎰⎰+--+-atx at x atx at x at x db b a at x at a a at x db b a at x at x t x u )(,)(21))](()([21,)(21)]()([21),(ϕϕϕϕϕϕ 此),(t x u 即为单侧无界弦振动齐次方程的解 1.3零初始条件的非齐次弦振动方程的求解⎩⎨⎧==>=-0)0,(,0)0,(0),,(2x u x u t t x f u a u t xx tt 设);,(τt x w 为下面齐次方程的解⎩⎨⎧==>=-),(),(,0),(,02ττττx f x u x u t u a u t xx tt 则⎰=td t x w t x u 0);,(),(ττ为零初始条件的非齐次弦振动方程的解(将),(t x f 作用延时效果累积为将齐次化思想)转换计时器的初始时刻将齐次方程初始时刻换为0需要τ-=t t '可得0','>⇒>=t t dt dt τ 齐次方程可以化简为⎩⎨⎧===>=-0'),,()0,(,0)0,(0',0'2''t x f x w x w t w a w t xx t t τ 使用达朗贝尔公式可以求得⎰+-+-++='')(21)]'()'([21)',(at x at x db b a at x at x t x w ψϕϕ其中),()(,0)(τψϕx f x x ==则⎰-+--=)()(),(21),(τττt a x t a x db b f a t x w ⎰⎰⎰++--==t t a x t a x td db b f a d t x w t x u 0)()(0),(21),(),(τττττ 1.4有初始条件的非齐次无界弦波动方程的求解⎩⎨⎧==+∞<<-∞>=-)()0,(),()0,(,0),,(2x x u x x u x t t x f u a u t xx tt ψϕ 此方程要使用叠加原理进行求解设),(),(),(t x z t x v t x u +=其中分别满足以下方程⎩⎨⎧==+∞<<-∞>=-)()0,(),()0,(,0,02x x v x x v x t v a v t xx tt ψϕ(1)和⎩⎨⎧==+∞<<-∞>=-0)0,(,0)0,(,0),,(2x y x y x t t x f y a y t xx tt (2) 对于方程(1),使用达朗贝尔公式可以求得:其特征方程为022=+⎪⎭⎫⎝⎛a dt dx ,2,1c at x =±所以at x +=ξ,at x -=ηηξv v v x +=,ηξv a v a v t ⨯-⨯=,ηηξηξξv v v v xx ++=2,ηηξηξξv a v a v a v tt 2222+-=)()()()(),(0042at x G at x F G F t x v v v v a v xx tt -++=+=⇒=⇒=-=-ηξξηξη由初始条件)()(')(')0,(),()()()0,(x x aG x aF x v x x G x F x v t ψϕ=-==+=来确定⎰=---xx dbb x G x G a x F x F a 0)()]0()([)]0()([ψ)0()0()(1)()(0x G x F db b a x G x F xx -+=-⎰ψ)()()(x x G x F ϕ=+)(2)0()0()(21)(0x x G x F db b a x F xx ϕψ+-+=⎰)(212)0()0()(21)(0at x x G x F db b aat x F at x x ++-+=+⎰+ϕψ)(2)0()0()(21)(0x x G x F db b a x G xx ϕψ+---=⎰)(2)()()(21)(0at x at x G at x F db b a at x G atx x -+-----=-⎰-ϕψ)()(),(at x G at x F t x v -++=⎰+-+-++=atx atx db b a at x at x t x v )(21)]()([21),(ψϕϕ对于方程2,使用齐次化原理可以求得⎩⎨⎧==>=-0)0,(,0)0,(0),,(2x y x y t t x f y a y t xx tt 设);,(τt x w 为下面齐次方程的解⎩⎨⎧==>=-),(),(,0),(,02ττττx f x y x y t y a y t xx tt 则⎰=td t x w t x y 0);,(),(ττ为零初始条件的非齐次弦振动方程的解(将),(t x f 作用延时效果累积为将齐次化思想)转换计时器的初始时刻将齐次方程初始时刻换为0需要τ-=t t '可得0','>⇒>=t t dt dt τ 齐次方程可以化简为⎩⎨⎧===>=-0'),,()0,(,0)0,(0',0'2''t x f x w x w t w a w t xx t t τ 使用达朗贝尔公式可以求得⎰+-+-++='')(21)]'()'([21)',(at x at x db b a at x at x t x w ψϕϕ其中),()(,0)(τψϕx f x x ==则⎰-+--=)()(),(21),(τττt a x t a x db b f a t x w ⎰⎰⎰++--==t t a x t a x td db b f a d t x w t x y 0)()(0),(21),(),(τττττ最后,根据叠加原理求得⎰⎰⎰++--+-++-++=+=t t a x t a x at x at x d db b f a db b a at x at x t x y t x v t x u 0)()(),(21)(21)]()([21),(),(),(ττψϕϕττ1.5.无界弦振动方程的决定区域与影响区域 决定区域:对于特定u(x,t)依赖的(x,t)的取值范围对于(x,t )的取值能影响u(x,t)的取值范围为影响区域2.只含二阶导的2阶偏微分方程的特征线法求解 2.1只含二阶导的二阶偏微分方程的初步化简⎩⎨⎧===++)(),0(),(),0(0y y u y y u Cu Bu Au x yy xy xx ψϕ其特征方程为00,0222=+-⎪⎭⎫ ⎝⎛⇒-=⇒=+==++C dx dy B dx dy A dx dy dy dx d C B A y x y x y y x x ϕϕϕϕϕϕϕϕϕ根据特征方程解的三种不同情况将其进行进一步的化简 2.2特征方程存在两个不同实根时的化简 先用公式法求出特征方程两个不同的实根A ACB B dx dy 242-±=,g A AC B B dx dy =-+=⎪⎭⎫ ⎝⎛2421,e A AC B B dx dy =--=⎪⎭⎫⎝⎛24221c gx y +=2c ex y +=可以用换元法对此偏微分方程进行化简x A AC B B y 242-+-=ξxAACB B y 242---=η将其带入=++yy xy xx Cu Bu Au=ξηu例1.化简下列方程并求解⎩⎨⎧===-+σφ)0,(,)0,(032t u t u u u u x xx tx tt3/2)/(032032222=-+⇒=-+⇒=-+x t x t x x t t xx tx tt u u u ϕϕϕϕϕϕϕϕdtdx dx dt d x t x t //0-=⇒=+=ϕϕϕϕϕ03/2)/(03)/(2)/(22=--⇒=--+dt dx dt dx dt dx dt dx,0,0,3,10,0,0,1,13)2(,)2(22121242===-=======-=+-=+=--=+±=⇒±=+±=tt xt xx t x tt tx xx t x tx t t x t x t t x c t t x dt dx ηηηηηξξξξξηξηηξηξξηξηηηξξηξξηηξηξξηξηηηξξηξξηηξηξξηξηηξηξηξξηξηξηξηξηξηξηξηξηξηξηξu u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u xt xt x x tx xx xx x x xx tt tt tt tt x x x t t t 32)3()3(2)()(96)3(3)3(1,3--=++-+-=++=+++++=+-=++---=+=+=-=+=)()(),(00)369()646()321(32ηξξηηηξηξξg f t x u u u u u u u u xx tx tt +==⇒=--+---+-+=-+2.3当特征方程存在2个相等实根A B dx dy 2)(2,1=12c x AB y =-),0(,2≠=-=B y x A By ηξ 0,0·,0,00====⇒=xx yy u C u A B 或如例1化简下列方程44=++xx tx tt u u u4/4)/(044044222=++⇒=++⇒=++x t x t x x t t xx tx tt u u u ϕϕϕϕϕϕϕϕdtdx dx dt d x t x t //0-=⇒=+=ϕϕϕϕϕ2/,04/4)/(04)/(4)/(22==+-⇒=+-+dt dx dt dx dt dx dt dx dt dx,0,10,2,1,,2========-===-=xt xx tt t x tt xt xx t x x t x ηηηηηξξξξξηξηηξηξξηξηηξηξξηηξηξξηξηηξηξξξξηξηηξηξξηξηηηξηξξξηξηηξξηξηηξξu u u u u u u u u u u u u u u u u u u u u u u u u tx tx x t t x x t x t tx xx xx x x x x xx tt tt t t t t tt 222)(22422222---=+++++=++=++++==++++=0)480()880()4244(=⇒=+-++-+⨯-+ηηηηξηξξu u u u)2()2()()()(t x g t x xf g f u f u -+-=+=⇒=ξξηξη2.4当特征方程存在一对共轭复根时二.积分变换法求解无界一维波动方程、1维热传导方程和二维Laplace 方程 1.傅立叶变换的定义与性质 1.1傅立叶变换的定义)()())((w F dx e x f x f F iwx ==⎰+∞∞-1.2傅立叶变换的位移性质)()()()]([)(c x d ee c xf dx e c x f c x f F iwcRRc x iw iwx --=-=-----⎰⎰)()]([)()()]([)(w F e x f F e c x d e c x f e c x f F iwc Riwc c x iw iwc -----==--=-⎰1.3.傅立叶变换的相似性质dcx e cx f c dcx c ecx f dx ecx f cx f F Rcx c wi Rcx cw i Riwx⎰⎰⎰---===)(11)()()]([)(1)(1)]([1c wF c du e u f c cx f F u c wR ==-⎰1.3傅立叶变换的微分性质⎰⎰⎰-+∞∞-----===RiwxRiwx iwx Riwx dex f e x f x df e dx e x f x f F )(|)()()('))('( )())(()())((0))('(w iwF x f iwF dx e x f iw dx e iw x f x f F Riwx iwx R===--=⎰⎰--⎰⎰⎰-+∞∞-----===Riwx iwx Riwx Riwx dex f e x f x df e dx e x f x f F )('|)(')(')(''))(''( )()())(()())('())(''(22w F iw x f F iw x f iwF x f F ===dx e x f iw e x f x df e dx e x f x f F iwx Rn iwx n n Riwx Riwx n n -------⎰⎰⎰+===)()()()())(()1()1()1()()()()())(()())(())((1)(w F iw x f F iw x f iwF x f F n n n n ===-1.3.傅立叶变换的乘多项式性质⎰⎰⎰---=-==R Riwx iwx iwx Rdx e x f dw di dx e x f dw d i dx e x xf x xf F ))(())((1)())(( ))(())((())(())((w F dwdi x f F dw d i dx e x f dw d ix xf F R iwx ===⎰- ⎰⎰⎰---===R Riwx iwx Riwxdx e x f dw d i dx e x xf dw d i dx ex xxf x f x F ))(())(()())((2222)())(())(())((2222222222w F dw d i dx e x f dw d i dx e x f dw d i x f x F R iwx iwx R===⎰⎰-- dx e x f x dwd idx e x f xx dx e x f x x f x F iwx n RRiwx n Riwx n n ))(()()())((11-----⎰⎰⎰=== ⎰⎰====--Rn nn n n n R iwx n n n iwx n n nnw F dw d i x f F dw d i dx e x f dw d i dx e x f dw d i x f x F ))(()))((())(())(())((1.4傅立叶变换积分性质由傅立叶变换的微分性质)())((x f dt t f dx dx=⎰∞- ⎰∞-=xdt t f iw x f F )())(()(1))((1))((w F iwx f F iw dt t f F x==⎰∞- 1.5傅立叶变换的卷积性质卷积定义式⎰-=*Rdt t x g t f x g f )()()(卷积公式1)()()(w G w F g f F =*先做卷积再变换系数不变 证明:⎰⎰⎰⎰-----=-=*R iwt t x iw Riwx R Rdx e e dt t x g t f dx dte t x g t f x g f F )()()()()())((⎰⎰⎰⎰-----=-=*RRiwu iwt Rt x iw Riwt dt du e u g e t f dt dx e t x g e t f x g f F )()()()())(()()()())(())(())(()()(w G w F t f F u g F dt u g F e t f g f F Riwt ===*⎰-卷积公式2))()((2)()(x g x f F w G w F π=*先傅立叶变换再做卷积系数要乘系数2π 1.6 主要函数的傅立叶变换)(0,00,)(指数信号⎩⎨⎧<>=-x x e x f x β iw e iw dx e dx eex f F iw x iw x iwxx +=+-===∞++-+∞+-+∞--⎰⎰βββββ1|1))((0)(0)(02)(x ex f -=2.傅立叶变换法求解一维波动方程 2.1无界齐次波动方程的求解⎪⎩⎪⎨⎧==>∈=-)3)(()0,()2)(()0,()1(0,,02x x u x x u t R x u a u txx tt ψϕ 分别对(1)、(2)、(3)式进行傅立叶变换)4(0),()()),((0),()()),((22=+⇒=-t w F aw t w u F t w F iaw t w u F tt tt)5))((())0,((x F w u F ϕ=)6))((())0,((x F w u F t ψ=)7()()()),((21iawt iawt e w C e w C t w u F -+=将(5)、(6)代入(7)式⎩⎨⎧-=+=--iawtawt t iawtiawt e awiC e w awiC t w u F e w C e w C t w u F 2121)()),(()()()),(( ⎩⎨⎧=-=+))(()()())(()()(2121x F w awiC w awiC x F w C w C ψϕ ⎪⎩⎪⎨⎧-=+=)))((1))(((21)()))((1))(((21)(21x F iaw x F w C x F iaw x F w C ψϕψϕ iawt iawt e x F iawx F e x F iaw x F t w u F --++=)))((1))(((21)))((1))(((21)),((ψϕψϕ又由傅立叶变换的位移性质))(()())((x f F e dx e c x f c x f F iwc Riwx --=-=-⎰左边的项的位移系数可以求出at c iwat iwc -=⇒=-)8))(((21))((21at x F e x F iawt +=ϕϕ iwaw F w G at x G e w G e w G F e x F iwaiawt iawt iawt 2))(()()()())(())((21ψψ=+===用傅立叶变换的积分性质进一步化简))((1))(()())((x f F iw dy y f F x f dy x f dx d xx =⇒=⎰⎰∞-∞- ))((21))((1212))(()()(⎰+∞-===+=atx dy y F a w F iw a iwa w F at x G w G ψψψ右边第一项的系数也可以用位移性质求出at c iwat iwc =⇒-=-))((21))((21at x F e x F iwt -=-ϕϕ iwaw F w H at x H e w H e x F iwaiwat iwat 2))(()()()())((21ψψ=-==--继续用傅立叶变换积分性质来化简))((1))(()())((x f F iw dy y f F x f dy x f dx d xx =⇒=⎰⎰∞-∞-))((21))((1212))(()()(⎰-∞-===-=atx dy y F a w F iw a iwa w F at x H w H ψψψ 四项全部求和 )))((21))(((21)))((21))(((21)),((⎰⎰-∞-+∞---+++=atx at x dy y F a at x F dy y F a at x F t w u F ψϕψϕ ))((21))(()(((21)),((⎰+-+-++=atx atx dy y F a at x F at x F t w u F ψϕϕ 对此式施加傅立叶逆变换 ⎰+-+-++=at a at x dy y a at x at x t x u )(21))()((21),(ψϕϕ 2.2非齐次方程的无界波动方程(不用齐次化原理)2.3半无界波动方程的求解3.傅立叶变换法求解一维热传导方程4.傅立叶变换法求解2维Laplace 方程place 变换的定义与性质place 变换求解一维波动方程place 变换求解一维热传导方程place 变换求解2维Laplace 方程二.有限边界的分离变量法求解(正弦初始条件以及二次初始条件)1.第一类边界条件和第二类边界条件第三类边界条件的特征值问题2.齐次化方程(可以用傅里叶级数展开或用齐次化原理)3.齐次化边界条件4.齐次方程,齐次边界条件第一类边界条件和第二类边界条件的波动方程和热传导方程推导与例子5.齐次方程,非齐次边界条件第一类边界条件和第二类边界条件的波动方程和热传导方程推导与例子6.非齐次方程,非齐次边界条件第一类边界条件和第二类边界条件的波动方程和热传导方程推导与例子7.非齐次方程,非齐次边界条件第一类边界条件和第二类边界条件的波动方程和热传导方程推导与例子8.圆域LAPLACE 问题求解9.矩形域Laplace 方程。
数学物理方程归纳总结
数学物理方程归纳总结数学和物理方程是科学研究中的重要工具,广泛应用于各个领域。
本文将对一些常见的数学物理方程进行归纳总结,分析其数学意义和物理应用,并探讨其背后的原理和推导过程。
1. 一维运动方程一维运动是物理学中最简单的情形之一,其运动状态只涉及一个方向的变化。
常见的一维运动方程有:- 位移公式:$S = V_0t + \frac{1}{2}at^2$- 速度公式:$V = V_0 + at$- 速度与位移的关系:$V^2 = V_0^2 + 2aS$这些方程描述了质点在匀加速度下的运动规律,其中$S$ 表示位移,$V_0$ 表示初始速度,$a$ 表示加速度,$t$ 表示时间,$V$ 表示末速度。
这些方程在解决一维运动问题时具有重要的应用价值,可以帮助我们计算物体的位移、速度和加速度等物理量。
2. 牛顿力学方程牛顿力学是经典力学的基础理论,在描述宏观物体运动和相互作用时非常重要。
牛顿三定律是牛顿力学的核心,其表述为:- 第一定律(惯性定律):物体在不受外力作用时保持静止或匀速直线运动。
- 第二定律(运动定律):物体受到的合力等于质量乘以加速度,即 $F = ma$。
- 第三定律(作用与反作用定律):任何两个物体之间的相互作用力大小相等、方向相反。
根据牛顿第二定律,我们可以推导出一些重要的等式,用于解决各种力学问题。
例如,结合万有引力定律,我们可以得到开普勒第三定律 $T^2 = \frac{4\pi^2}{GM}r^3$,其中 $T$ 是行星公转周期,$G$ 是引力常数,$M$ 是太阳的质量,$r$ 是行星与太阳的平均距离。
3. 麦克斯韦方程组麦克斯韦方程组是电磁学的基础方程,描述了电磁场的产生和传播规律。
麦克斯韦方程组包括四个方程:- 高斯定律:$\nabla \cdot E = \frac{\rho}{\varepsilon_0}$- 安培定律:$\nabla \cdot B = 0$- 法拉第电磁感应定律:$\nabla \times E = -\frac{\partial B}{\partial t}$- 完整的麦克斯韦方程:$\nabla \times B =\mu_0J+\mu_0\varepsilon_0\frac{\partial E}{\partial t}$其中,$E$ 和 $B$ 分别表示电场和磁场,$\rho$ 表示电荷密度,$J$ 表示电流密度,$\varepsilon_0$ 是真空中的介电常数,$\mu_0$ 是真空中的磁导率。
数学物理方程
三、方程的化简
步骤:第一步:写出判别式 断方程的类型;
a122 a11a22 ,根据判别式判
第二步:根据方程(1)写如下方程
a11 ( dy 2 dy ) 2a12 a22 0 dx dx (2)
称为方程(1)的特征方
程。方程(2)可分解为两个一次方程
dy a12 dx a11 (3)
二阶常微分方程含有两个任意常数。
第二章 行波法
第一节 定解问题
一、定义
1.我们把描述一个物理过程的偏微分方程称为泛定方 程。 2.一个过程中发生的具体条件称为定解条件。 3.泛定方程带上适当的定解条件,就构成一个定解问 题。 4.用来表示初始状态的条件称为初始条件; 用来描述边界上的约束情况的条件称为边界条件。 注意:初始条件的个数与方程中出现的未知函数u对时 间变量t的导数的阶数有关。
三、其他cauchy问题
例1. uxx 2uxy 3u yy 0,
解:
2
u ( x,0) sin x, u y ( x,0) x.
y 3x c1 , du du 2 3 0 y x c dx dx 2
y 3x, yx
称为特征方程,其解为特征线。
( x, y) c1 , ( x, y) c2 .
设这两个特征线方程的特征线为 令 ( x, y), ( x, y).
第三步(1)当 0 时,令 ( x, y), ( x, y). 以 , 为
新变量方程(1)化为标准形 u Au Bu Cu D,
注意:在偏微分方程中可以不含未知函数u,但必须含有 未知函数u的偏导数。
数学物理方程知识点归纳
数学物理方程知识点归纳数学物理方程是数学和物理学两门学科的交叉领域,其涉及到许多重要的知识点。
本文将从微积分、向量、力学、热力学和波动等方面,总结归纳数学物理方程的主要知识点。
一、微积分微积分是数学和物理学中非常重要的一个分支。
其中,微分和积分是微积分的两个基本概念。
微分是研究函数在某一点的变化率,积分则是求解函数的面积、体积或长度等量的方法。
微积分的一些重要公式包括:牛顿-莱布尼茨公式、柯西-黎曼方程、拉普拉斯公式等。
二、向量向量是几何学和物理学中非常重要的概念。
向量具有大小和方向两个属性,可以表示物理量的大小和方向。
向量的一些重要知识点包括:向量的加法和减法、向量的数量积和向量积、向量的投影、向量的夹角等。
三、力学力学是物理学中研究物体运动和相互作用的学科。
其中,牛顿三大定律是力学的基础。
牛顿第一定律指出物体在外力作用下保持静止或匀速直线运动;牛顿第二定律则确定了物体受力的大小和方向与其加速度成正比;牛顿第三定律则描述了力的相互作用。
四、热力学热力学是物理学中研究热量和能量转化的学科。
其中,热力学的一些重要概念包括:热力学系统、热力学过程、热力学态函数、热力学循环等。
热力学中的一些重要公式包括:热力学第一定律、热力学第二定律、热力学方程等。
五、波动波动是物理学中研究波的传播和相互作用的学科。
其中,波动的一些重要概念包括:波长、频率、波速、干涉、衍射、折射等。
波动的一些重要公式包括:波动方程、费马原理、赫兹实验等。
数学物理方程中的知识点非常丰富,包括微积分、向量、力学、热力学和波动等方面。
这些知识点是理解和应用物理学中的方程和定律的基础,对于物理学的学习和科学研究都具有重要的意义。
数学物理方程问题详解谷超豪
第一章. 波动方程§1 方程的导出。
定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的力服从虎克定律,试证明),(t x u 满足方程()⎪⎭⎫⎝⎛∂∂∂∂=⎪⎭⎫ ⎝⎛∂∂∂∂x u E x t u x t ρ 其中ρ为杆的密度,E 为氏模量。
证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ∆。
现在计算这段杆在时刻t 的相对伸长。
在时刻t 这段杆两端的坐标分别为:),();,(t x x u x x t x u x ∆++∆++其相对伸长等于 ),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆-+-∆++∆+θ令0→∆x ,取极限得在点x 的相对伸长为x u ),(t x 。
由虎克定律,力),(t x T 等于),()(),(t x u x E t x T x =其中)(x E 是在点x 的氏模量。
设杆的横截面面积为),(x S 则作用在杆段),(x x x ∆+两端的力分别为x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程 tt u x x s x ⋅∆⋅)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-∆+∆+ 利用微分中值定理,消去x ∆,再令0→∆x 得tt u x s x )()(ρx∂∂=x ESu () 若=)(x s 常量,则得22)(t u x ∂∂ρ=))((xu x E x ∂∂∂∂即得所证。
2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件为 .0),(,0),0(==t l u t u(2)若l x =为自由端,则杆在l x =的力xux E t l T ∂∂=)(),(|l x =等于零,因此相应的边界条件为xu∂∂|l x ==0 同理,若0=x 为自由端,则相应的边界条件为xu∂∂∣00==x (3)若l x =端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移由函数)(t v 给出,则在l x =端支承的伸长为)(),(t v t l u -。
数学物理方程举例和基本概念讲解
① 弦振动方程和定解条件
物理模型(弦的微小横振动问题)
设有一根拉紧的均匀柔软细弦,其长为l,线密度为,且在单位长度上受到
垂直于弦向上的力F初始小扰动后,在平衡位置附近作微小横振动.
试确定该弦上各点的运动规律.
分析. 如图选择坐标系,设u x,t 表示弦上各点在时刻t沿垂直于x方向的位移.
利用微元法建立方程.
目录 上页 下页 返回 结束
定解问题的适定性
1923年,阿达马(J.S. Hadamard,法国)提出
定解问题是否能够反映实际, 或者,定解问题的提法是否适合? 从数学的 角度看主要从下面三个方面来验证:
解的存在性: 即在给定的定解条件下,定解问题是否有解存在?
解的唯一性: 即在给定的定解条件下,定解问题的解若存在,是否唯一?若 能确定问题解的存在唯一性,就能采用合适的方法去寻找它。
超星数字图书馆(注: 网络图书馆)
目录 上页 下页 返回 结束
㈡ 方程的几个基本概念 ⑴ 数学物理方程:
① 定义:
主要指从物理学以及其他自然科学、工程技术中所产生的偏微分方程,有 时也包括与此有关的一些常微分方程、积分方程、微分积分方程等。 例如:
1 描绘振动和波振动波,电磁波动特征的波动方程:
utt a2uxx f .
数学物理问题的研究繁荣起来是在十九世纪,许多数学家都对数学物理问题的 解决做出了贡献。如:Fourier( 1811年) ,在研究热的传播中,提出了三维 空间的热传导方程。他的研究对偏微分方程的发展产生了重大影响。Cauchy 给出了第一个关于解的存在定理,开创了PDE的现代理论。到19世纪末,二阶 线性PDE的一般理论已基本建立,PDE这门学科开始形成。
线性偏微分方 程可分为
数学物理方程
数学物理方程数学物理方程是科学研究中至关重要的一部分。
它们描述了自然界中发生的现象和规律,为我们解决实际问题提供了数学工具和理论基础。
本文将介绍数学物理方程的基本概念、应用领域和重要性。
一、基本概念数学物理方程是由数学符号和物理量组成的等式或方程组。
它们包含了数量关系和物理规律,可以用来描述自然界中各种现象,如运动、力学、电磁学等。
数学物理方程的推导和解析是物理学中理论发展和实验验证的重要一环。
数学物理方程通常由字母和数学符号组成,代表了各种物理量和运算符。
例如,牛顿第二定律可以用以下方程表示:F = ma其中 F 代表物体所受的力,m 代表物体的质量,a 代表加速度。
这个方程表达了物体受力与加速度之间的关系。
二、应用领域数学物理方程被广泛应用于科学研究和工程技术领域。
在物理学中,数学物理方程被用来推导和解释各种物理现象,如牛顿力学、量子力学和电磁学等。
在工程技术领域,数学物理方程被用来建立模型和进行仿真,比如流体力学、结构力学和电路设计等。
数学物理方程还在天文学、地球科学和生物学等学科中得到广泛应用。
例如,它们可以用来研究星际运动、地球的气候变化以及生物体的生长和发展等。
三、重要性数学物理方程对科学研究的重要性不言而喻。
它们提供了描述和预测自然现象的工具,为科学家和工程师解决问题提供了基础。
数学物理方程的推导和解析也推动了科学理论的发展,有助于我们更深入地理解自然界的运作规律。
此外,数学物理方程还在技术和工程领域发挥着至关重要的作用。
通过建立数学模型,研究人员可以预测和优化各种系统的行为,从而提高生产效率和产品质量。
例如,在航空航天工程中,数学物理方程被用来计算飞行器的轨迹和受力情况,以保证飞行器的安全性和性能。
总之,数学物理方程在科学研究、工程技术和应用领域中都扮演着重要角色。
它们不仅是数学和物理学交叉的产物,也是人类认识和探索自然的有力工具。
通过不断研究和应用数学物理方程,我们可以更好地理解和改善我们的世界。
数学物理方程知识点总结
数学物理方程知识点总结一、牛顿运动定律牛顿的运动定律是经典物理力学的基础,它描述了物体在力的作用下的运动规律。
牛顿的三大运动定律分别是:1. 第一定律:一个物体如果受力作用,将保持静止或匀速直线运动,直到受到外力的作用而改变其状态。
2. 第二定律:物体的加速度与作用力成正比,与质量成反比。
即F=ma。
3. 第三定律:作用力与反作用力大小相等,方向相反,且在同一直线上。
这三个定律描述了物体在受力作用下的运动规律,它们被广泛应用于物体的运动研究和工程设计中。
二、电磁场方程电磁场方程描述了电荷和电磁场之间的相互作用。
其中,麦克斯韦方程组是最基本的电磁场方程,它包括了电荷产生的电场和电流产生的磁场,并描述了它们随时间和空间的变化规律。
麦克斯韦方程组包括了4个方程,分别是:1. 静电场高斯定律:描述电荷产生的静电场。
2. 静磁场高斯定律:描述磁场的产生和分布。
3. 安培定律:描述电流产生的磁场。
4. 法拉第电磁感应定律:描述磁场的变化产生感应电场。
这些方程组成了电磁场的基本描述,它们被广泛应用于电磁场的研究和工程技术中。
三、热传导方程热传导方程描述了物体内部的热传导过程。
热传导方程可以描述物体内部温度分布和热量的传导规律。
通常情况下,热传导方程是一个偏微分方程,它描述了温度场随时间和空间的变化规律。
热传导方程一般形式为:δT/δt = αΔT其中,T表示温度场,t表示时间,α为热传导系数,ΔT为温度梯度。
这个方程被广泛应用于热传导问题的研究和工程设计中。
四、波动方程波动方程描述了机械波和电磁波在空间中的传播规律。
波动方程是一个偏微分方程,它描述了波动场随时间和空间的变化规律。
波动方程的一般形式为:∂^2ψ/∂t^2 = v^2∇^2ψ其中,ψ表示波动场,t表示时间,v为波速,∇^2为拉普拉斯算符。
波动方程描述了波动在空间中的传播和幅度变化规律,它被广泛应用于波动现象的研究和工程设计中。
总之,数学与物理方程是自然科学研究和工程技术发展的基础。
数学物理方程
数学物理方程数学物理方程是描述自然界各种现象的数学公式,是自然科学研究中不可或缺的工具。
数学物理方程是由数学和物理两个学科相互融合而成的,不仅可以描述物理现象,还可以预测未来的发展趋势。
在科学研究中,数学物理方程是一个重要的研究对象,其研究成果对于推动科学技术的发展具有重要的意义。
一、数学物理方程的概念数学物理方程是指用数学语言描述物理现象的公式。
它是物理学和数学学科的交叉领域,通过对物理现象的观察和实验,运用数学方法建立数学模型,从而得到数学物理方程。
数学物理方程可以描述物理现象的规律性,理解物理现象的本质,并为科学家提供了研究新现象和预测未来趋势的工具。
二、数学物理方程的种类数学物理方程可以分为线性方程和非线性方程两种。
1、线性方程线性方程是指方程中未知量的次数都是一次的方程。
线性方程的特点是简单,易于求解。
它可以描述物理现象的基本规律,如牛顿第二定律、欧姆定律等。
2、非线性方程非线性方程是指方程中未知量的次数不是一次的方程。
非线性方程的特点是复杂,难以求解。
它可以描述一些复杂的物理现象,如非线性振动、非线性光学等。
三、数学物理方程的应用数学物理方程广泛应用于各个领域,如力学、电学、热学、光学、天文学、地球物理学等。
1、力学力学是研究物体运动和力的学科,数学物理方程在力学中有着广泛的应用。
如牛顿第二定律F=ma,可以用来描述物体的运动状态和受力情况;弹性力学中的胡克定律F=kx,可以用来描述弹性体的变形性质。
2、电学电学是研究电荷和电场、电流和电磁波等现象的学科,数学物理方程在电学中也有着广泛的应用。
如欧姆定律I=U/R,可以用来描述电路中电流与电压的关系;麦克斯韦方程组可以用来描述电磁波的传播规律。
3、热学热学是研究热与温度的学科,数学物理方程在热学中也有着广泛的应用。
如热力学第一定律ΔU=Q-W,可以用来描述热量的转化和能量的守恒;斯特藩-玻尔兹曼定律可以用来描述热力学系统的熵增加规律。
定解问题讲解
Mathematical Methods for Physics第二篇数学物理方程Mathematical Equations for Physics要想探索自然界的奥秘就得解微分方程。
-牛顿中心:将物理问题翻译成数学语言 目的:1、如何用数理方程研究物理问题2、如何导出方程3、能正确写出定解问题§ 6.1 引言Introduction第六章 定解问题Mathematical Problem1、数学物理方程概念:数学物理方程是指从物理、工程问题中,导出的反映客观物理量在各个地点、时刻之间相互制约关系的一些偏微分方程。
数学物理方程 ♣ 线性方程♦♥ 非线性方程一、数理方程简介:§ 6.1 引言一、数理方程简介§ 6.1 引言ttu =a2⊗u +fut=D⊗u +f2、数理方程的产生和发展:(1)十八世纪初期(2)十九世纪中期三类数学物理方程:波动方程u -波动,a-波速,f-与源有关的函数输运方程u -浓度,D-系数,f -与源有关的已知量泊松方程h-与源有关的已知量,u-表示稳定物理量+fxx2Taylor :utt=a u⊗u =-h一、数理方程简介:§ 6.1 引言a u2、数理方程的产生和发展:(3)十九世纪末到二十世纪初高阶方程(梁的横振动):utt= 2xxxxf ( x, t )非线性方程KdV:ut+σuux+uxxx= 0∂ψh2schro&-dinger:i h∂t=-Δψ2μ+U(r)ψ+1、写出定解问题♣ 泛定方程:数理方程(一般规律)♦♥ 定解条件:初始、边界、衔接条件(个性)如:y '(t) - 4 y = 0♣y ' -4y = 0 -泛定方程♠y(0) = 0 ↔ y = C e 2t+ C e -2t♦ ← -定解条件 12-通解♠♥y '( 0) = 4↑♦1、写出定解问题2、求解:求解方法: 行波法、分离变量法、积分变换法、格林函数法、保角变换法、复变函数法、变分法 ♣ 物理意义3、分析解答:♠♠ ♣存在 ♠♥ 适定性 ♦唯一♠♥稳定数学物理方法物理(内容)桥梁数学(成果)、数理方法的特点三 § 6.1 引言。
第7讲数学物理方程PPT课件
X n (x)
Bn
sin
n
10
x
Tn 100n2 2Tn 0 Tn Cn cos10nt Dn sin10nt
(4)求通解
un X nTn
(C ncos10nt
Dn
sin10nt) sin
n
10
x
u
un
n 1
(C n
n 1
cos10nt
Dn
sin10nt) sin
n
10
x
(5)确定常量
X 0
2) 0 X (x) Ax B
AB0
X 0
3) 0 令 2 , 为非零实数 X (x) Acos x B sin x
(8)
A0
B sin l 0
n (n 1, 2,3, )
l
n2
l2
2
n
n2
l2
2
(n 1, 2,3, )
XXnn( x)
sinBnnslin
xn
l
x
u( x, t ) t
t0
Dn
n1
n a sin
l
n
l
x
(x)
l sin2 n xdx
l
1 cos 2n
/l
dx
l
0
l
0
2
2
l n
sin
0
l
x sin m
l
xdx 1 2
l 0
cos
n
l
m
x
cos
n
l
m
x
dx
0
l(x)sin m
0
l
xdx
l 0
数学物理方程第一章 基础概念
ds = 1 + (
弧段 M ′ M 在 t 时刻,沿 u 方向运动的加速度近似为 以
∂ 2 u ( x, t ) , x 为弧段 M ′ M 的质心。所 ∂t 2
− T sin α + T ′ sin α ′ − ρgdx = ρdx
即
∂ 2 u ( x, t ) ∂t 2
Q2 = ∫∫∫ cρ [u ( x, y, z , t1 ) − u ( x, y, z , t 2 )]dV
式中, c 为物体的比热, ρ 为物体的密度。 如果物体内部没有热源,则由热量守恒可得 Q1 = Q2 ,则
Ω
(1.2.3)
∫
t2 t1
⎡ ∂u ⎤ ⎢ ∫∫ k dS ⎥dt = ∫∫∫ cρ [u ( x, y, z , t1 ) − u ( x, y, z , t 2 )]dV ⎢∑ ∂n ⎥ Ω ⎦ ⎣
(1.2.4)
假设函数 u 关于 x, y, z 具有二阶连续导数,关于 t 具有一阶连续导数,则利用 Gauss 公 式有
t2 ⎡ ⎡ ∂ ⎛ ∂u ⎞ ∂ ⎛ ∂u ⎞ ∂ ⎛ ∂u ⎞⎤ ⎤ Q1 = ∫ ⎢ ∫∫∫ ⎢ ⎜ k ⎟ + ⎜ ⎟ + ∂z ⎜ k ∂z ⎟⎥dV ⎥dt ⎜ k ∂y ⎟ t1 x x y ∂ ∂ ∂ ⎝ ⎠ ⎝ ⎠⎦ ⎥ ⎢ ⎠ ⎝ ⎣Ω ⎣ ⎦
次方程,若 f ( x, t ) = 0 ,则称为齐次方程。式(1.1.3)称为非齐次一维波动方程。
1.1.2 定解条件 一般弦线的特定振动状态还依赖于初始时刻弦的状态和通过弦线两端所受外界的影响。 为了确定一个具体的弦振动的规律, 除了列出方程外, 还需要写出它满足的初始条件和边界 条件,我们称之为定解条件。 初始条件,即初始时刻 t = 0 时,弦上各点的位移和速度。
三大数学物理方程
三大数学物理方程嘿,朋友!咱们来聊聊那大名鼎鼎的三大数学物理方程。
首先就是拉普拉斯方程啦。
这拉普拉斯方程就像是一个超级严格的管家,在它的地盘里,一切都得规规矩矩的。
它掌管着静电场、引力场这些地方,就像一个拿着放大镜检查每个角落的检查员,不容许有丝毫的混乱。
它的方程形式就像一个神秘的咒语,∇²u = 0,只要一出现这个咒语,那些场就得乖乖听话,就好像孙悟空听到唐僧的紧箍咒一样。
然后是热传导方程。
这个方程啊,就像一个热心的传话筒。
想象一下,热量就像一群调皮的小精灵活跃在物体里,热传导方程就负责把热量从热的地方传到冷的地方,就像一个勤劳的快递员,一刻不停地把包裹(热量)送到该去的地方。
它的方程∂u/∂t = a∇²u,就像是快递员的路线图,明确地告诉热量要怎么跑。
再来说说波动方程。
波动方程可不得了,它就像一个超级指挥家。
声波、光波这些波动就像是一群听话的乐手,波动方程挥舞着指挥棒,告诉它们什么时候该高,什么时候该低,什么时候该快,什么时候该慢。
它那看起来有点复杂的方程∂²u/∂t² = c²∇²u,就像是指挥家手里的乐谱,每个符号都有着特殊的意义,决定着波动的旋律。
拉普拉斯方程像是一个冷静的法官,它评判着空间里的秩序,只要有一点不和谐的因素,就会被它发现。
就好比在一个安静的图书馆里,它不允许有任何吵闹(电势或者引力势的异常)。
热传导方程呢,又像是一个小火炉旁边的老妈妈,慢慢悠悠地把温暖传递到整个屋子。
那些热量分子就像一群小娃子,在老妈妈的安排下,有序地从暖和的地方挪到凉快点的地方。
波动方程更像是一个疯狂的鼓手,敲打出有节奏的鼓点,那些波就随着鼓点跳动起来。
它的能量就像鼓槌的力量,决定着波动的幅度和速度。
拉普拉斯方程有时候又像一个固执的老学究,坚守着自己的规则,∇²u = 0这个规则就像他的信条,不容置疑。
热传导方程像是一个爱心满满的厨师,把热量均匀地分给每个“食客”(物体的各个部分),让大家都能享受到合适的温度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注:热第一定律是自然界的一条普适定律,适用于任何系统的 任何过程,只要求初态和末态是平衡态。
自然界中,只有满足热第一定律的热力学过程才可能实现。 第一类永动机(能够不断循环往复、无需外界能量供给而对外 作功的机器)违背热一定律,是不可能的。
M mol
CP 与 CV 的比值称为比热比,用 表示,即
CP 1 R i 2
CV
CV i
可见,理想气体的热容量与温度无关,这是由经典统计理
论得出的结论。实验测得,气体的热容量随温度变化。量子统
计理论能较好地解决热容问题。
第六章 热力学基础
§6-3 热一定律对理想气体准静态过程的应用
dE i R M dT 2
M mol
M mol
第六章 热力学基础
定压过程, dP = 0。对理想气体状态方程微分,有
PdV M RdT M mol
再利用热一定律微分形式, dQ = dE+PdV,可得
CP
(d Q) P M dT
dE PdV M dT
CV
R
i2R 2
M mol
应用热一定律计算理想气体系统典型过程中的功、热量以 及过程所联系的初、末态的内能变化。
一. 等体过程
dV = 0,V = 常数,在 PV 图上对应于平行于 P 轴的直线。
体积功:
A P dV 0
吸热: 内能增量:
Q
M M mol
CV
(T2
T1)
E
Q
M M mol
CV
(T2
T1)
n = 0 P = 常数 n = 1 PV = 常数
n = PV = 常数
n = V = 常数 (P1/nV = 常数)
C0 = CV +R = CP C1 = C = 0 C = CV
等压过程 等温过程 绝热过程 等体过程
第六章 热力学基础
例. P216 例题 6-2 解:从状态 1 绝热膨胀到状态 2,根据绝热过程方程,有
4) 泵对水作功 A2,将其压回锅炉。 经过这一系列过程,工质吸热、对外作功、又回到原来的
状态。上述过程循环往复,汽轮机就不停地工作。
第六章 热力学基础
为了从能量角度研究热机,引入循环过程及其效率。
二. 循环过程
循环过程: 物质系统经历一系列的状态变化又回到初始状态 的过程。
准静态循环:循环过程中的各个阶段都是准静态的。 准静态循环可表示为 pV 图 (或 pT 图 、 VT 图) 上的闭合
由此可以得到结论:
如果两个系统都与处于确定状态的第三个系统处于热平衡,
则这两个系统彼此也处于热平衡。
—— 热力学第零定律
该定律表明,处于同一热平衡态的系统具有共同的宏观性质,
定义这个决定系统热平衡的宏观性质为温度。一切处于热平衡
的系统具有相同的温度。
二. 热力学过程
第六章 热力学基础
热力学过程:系统从一个状态变化到另一个状态所经历的过 程。简称过程。
准静态过程:在过程中的任意时刻,系统都无地接近平衡态, 亦即,由一系列依次接替的平衡态组成的过程。
准静态过程是一个理想的过程。如果实际过程进行地很慢 (过程所用的时间远短于弛豫时间),则可当作准静态过程处理。
准静态过程可以用状态参量来描述,在状态图 ( PV 图、 PT 图或 VT 图 ) 上,准静态过程表示为一条曲线
第六章 热力学基础
内能增量:
E 0
根据热一定律,该过程中所吸的热等于对外所作的功,即
V2
Q A P dV
M
V2 dV RT
M
RT ln V2
M
RT ln P1
V1
M mol V1 V M mol
V1 M mol
P2
四. 绝热过程
dQ = 0。所以
E
M M mol
对一个系统,如果外界向其传热 Q,它对外作功 A,系统 从内能为 E1 的平衡态改变为内能为 E2 的平衡态。则无论过程 如何,总有
Q E2 E1 A
—— 热力学第一定律
第六章 热力学基础
热力学第一定律说明,外界对系统所传递的热量,一部分 使系统的内能增加,另一部分用于对外作功。显然,热第一定 律就是包括热量在内的能量转换和守恒定律。
§6-2 气体的摩尔热容
第六章 热力学基础
一. 热容
很多情况下,系统与外界之间的热传递会引起系统本身温 度变化。温度的变化与所传递的热量的关系用热容量来表示。 热容量:在一定的过程中,系统温度升高一度所吸收的热量
称为该物体在给定过程中的热容量。
c dQ dT
比热: 当系统的质量为单位质量时,其热容量称为比热, 用小写 c 表示,单位 Jkg-1k-1。
汽轮机的工作原理和过程:
第六章 热力学基础
工作物质:水
1) 水从锅炉吸热 Q1 ,变成高 压蒸汽。这是一个吸热、系
统内能增加的过程;
2) 高压蒸汽进入汽缸,膨胀推
动汽轮机的叶轮对外作功 A1。在这个过程中,系统将其内 能转变为机械能;
3) 作功后的低压、低温废汽,进入冷凝器,凝结成水,放出 热量 Q2;
T V 1 常数 P 1T 常数
利用绝热过程方程计算绝热过程的功:
V2
A P dV
V1
V2
V1
P1V1 V
dV
P1V1
1
V 1
V2 V1
P1V1 P2V2
1
五. 多方过程
过程方程为
PVn 常数
的过程称为多方过程,n 称为多方指数。
第六章 热力学基础
2. 热力学第零定律
第六章 热力学基础
有三个系统 A, B 和 C。将 B 和 C 互相 隔绝开,并使它们同时与 A 热接触。经过 一段时间后,A 和 B 以及 A 和 C 都将达到 热平衡。这时,再让 B 和 C 相互热接触,实验表明,B 和 C 的状态不会发生变化,亦即,B 和 C 也是处于热平衡的。
一. 热力学第零定律
1. 热平衡
设两个系统原来各自处于一定的平衡态,现在让这两个系 统相互接触,使它们之间可以发生热传递 (热接触)。一般来 说,热接触后两个系统的状态都将发生变化,最后达到共同 的平衡态。这种经历热接触后达到的平衡称为热平衡。
一种特殊情况是,热接触后两系统的状态都不发生变化, 这说明两系统在刚接触时就已经达到了热平衡。据此,可将 热平衡概念用于两个互不发生热接触的系统,这指,如果使 这两个系统热接触,则它们在原来的状态都不发生变化的情 况下就可以达到热平衡。
三. 功 热量 内能
第六章 热力学基础
作功和热传递是热力学系统与外界或系统之间相互作用的 方式,通过作功和热传递可以改变系统的状态。
1. 功
体积功:准静态过程中与系统体积变化相联系的功。
以气体膨胀为例:
设气缸中气体的压强为 P,活塞面积 为 S,活塞缓慢移动微小距离 dl。在这 一元过程中,可认为压强处处均匀而且 不变,则该过程中气体所的作功
第六章 热力学基础
第六章 热力学基础
热力学的出发点和方法与上一章的分子动理论很不相同。 在热力学中,不涉及物质的微观结构和过程,以观察和实 验事实为依据主要从能量的观点出发分析、研究系统在状 态变化过程中有关热、功转换的关系和条件。主要内容为 热力学第一、第二定律。
第六章 热力学基础
§6-1 热力学第零定律和第一定律
可得
T1 V1 1 T2 V2 1
T2
T1
( V1 V2
)
1
绝热过程 Q=0,由热一定律
A E
M M mol
CV (T1 T2 )
M M mol
5 2
RT1
(1
V1 V2
1 1
)
941
J
等温膨胀,气体作功为
A
M M mol
RT1
ln
V2 V1
1440
PdV M dT
M mol
M mol
M mol
多方过程方程两边求导,可得 气态方程两边求导,可得
nP dV V dP 0
P dV V dP M R dT M mol
联立两微分方程,得
所以
P dV M M mol R dT n 1
Cn
CV
R n 1
n
n 1
CV
第六章 热力学基础
实验证明,系统状态变化时,只要初态、末态给定,则不 论所经历的过程有何不同,外界对系统所作的功与向系统所 传递的热量的总和总是恒定不变的。
这表明,系统内能的改变量只取决于初、末两个状态,与 过程无关。亦即内能是状态的单值函数。
从微观角度来说,系统的内能是所有分子热运动能量与分 子间相互作用势能的总和。
第六章 热力学基础
二. 等压过程
dP = 0,P = 常数,在 PV 图上对应于平行于 V 轴的直线。
体积功: 吸热:
V2
A P dV P(V2 V1)
V1
Q
M M mol
CP (T2
T1)
内能增量:
E
M M mol
CV
(T2
T1)
三. 等温过程
dT = 0,T = 常数,在 PV 图上对应 于一条双曲线。
CV
(T2
T1)
A
绝热过程方程:
根据热一定律,有 dE+dA=0,即