几何体与展开图(讲义) (含答案)
2020年中考数学必考考点专题27三视图与展开图(含解析)
专题13 三视图与展开图1.视图:当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。
2.物体的三视图特指主视图、俯视图、左视图。
(1)主视图:从物体的前面向后面投射所得的视图称主视图,能反映物体的前面形状。
(2)俯视图:从物体的上面向下面投射所得的视图称俯视图,能反映物体的上面形状。
(3)左视图:从物体的左面向右面投射所得的视图称左视图,能反映物体的左面形状,有时也叫做侧视图。
物体的三视图实际上是物体在三个不同方向的正投影.正投影面上的正投影就是主视图,水平投影面上的正投影就是俯视图,侧投影面上的正投影就是左视图在画三视图时,三个三视图不要随意乱放,应做到俯视图在主视图的下方,左视图在主视图的右边,三个视图之间保持:长对正,高平齐,宽相等。
3.展开图:平面图形有三角形、四边形、圆等.立体图形有棱柱、棱锥、圆柱、圆锥、球等.把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形。
【例题1】(2019•四川省达州市)如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.【答案】B【解析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可作出判断.从左面看可得到从左到右分别是3,1个正方形.专题知识回顾专题典型题考法及解析【例题2】(2019•甘肃)已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为.【答案】(18+2)cm2.【解析】由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.该几何体是一个三棱柱,底面等边三角形边长为2cm,高为cm,三棱柱的高为3,所以,其表面积为3×2×3+2×=18+2(cm2).【例题3】(2019•江苏连云港)一个几何体的侧面展开图如图所示,则该几何体的底面是()A. B. C. D.【答案】B【解析】根据几何体的侧面展开图可知该几何体为四棱锥,所以它的底面是四边形.由题意可知,该几何体为四棱锥,所以它的底面是四边形.专题典型训练题一、选择题1.(2019广东深圳)下列哪个图形是正方体的展开图()A.B. C.D.【答案】B【解析】立体图形的展开图B中图形符合“一四一”模型,是正方体的展开图.故选B.2.(2019•山东省济宁市)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是()A.B.C.D.【答案】B.【解析】考点是几何体的展开图。
2020年中考数学必考34个考点专题27:三视图与展开图(含解析)
专题13 三视图与展开图1.视图:当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。
2.物体的三视图特指主视图、俯视图、左视图。
(1)主视图:从物体的前面向后面投射所得的视图称主视图,能反映物体的前面形状。
(2)俯视图:从物体的上面向下面投射所得的视图称俯视图,能反映物体的上面形状。
(3)左视图:从物体的左面向右面投射所得的视图称左视图,能反映物体的左面形状,有时也叫做侧视图。
物体的三视图实际上是物体在三个不同方向的正投影.正投影面上的正投影就是主视图,水平投影面上的正投影就是俯视图,侧投影面上的正投影就是左视图在画三视图时,三个三视图不要随意乱放,应做到俯视图在主视图的下方,左视图在主视图的右边,三个视图之间保持:长对正,高平齐,宽相等。
3.展开图:平面图形有三角形、四边形、圆等.立体图形有棱柱、棱锥、圆柱、圆锥、球等.把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形。
【例题1】(2019•四川省达州市)如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.【答案】B【解析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可作出判断.从左面看可得到从左到右分别是3,1个正方形.【例题2】(2019•甘肃)已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积专题知识回顾专题典型题考法及解析为.【答案】(18+2)cm2.【解析】由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.该几何体是一个三棱柱,底面等边三角形边长为2cm,高为cm,三棱柱的高为3,所以,其表面积为3×2×3+2×=18+2(cm2).【例题3】(2019•江苏连云港)一个几何体的侧面展开图如图所示,则该几何体的底面是()A.B.C.D.【答案】B【解析】根据几何体的侧面展开图可知该几何体为四棱锥,所以它的底面是四边形.由题意可知,该几何体为四棱锥,所以它的底面是四边形.专题典型训练题一、选择题1.(2019广东深圳)下列哪个图形是正方体的展开图()A.B.C.D.【答案】B【解析】立体图形的展开图B中图形符合“一四一”模型,是正方体的展开图.故选B.2.(2019•山东省济宁市)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是()A.B.C.D.【答案】B.【解析】考点是几何体的展开图。
六年级数学上册知识讲义-1.几何体的平面展开图-鲁教版(五四学制)
课标定位一、考点突破认识几何体的平面展开图,会画圆柱和圆锥、常见棱柱的平面展开图,能够形象地理解几何体与它的平面展开图的关系,并能根据所给几何体的表面展开图判定几何体的形状。
二、重难点提示重点:了解基本几何体与其展开图的关系,体会一个立体图形可以有多种展开图。
难点:把立体图形展成平面图形所蕴藏的数学思想。
考点精讲1. 几何体的平面展开图立体图形都是由平面图形围成的,将它们沿着适当的位置剪开,展开成一个整体的平面图形,我们称其为立体图形的平面展开图。
2. 常见几何体的平面展开图(1)棱柱的平面展开图:沿棱柱表面不同的棱剪开,可能得到组合方式不同的平面展开图;(2)圆柱的平面展开图:由两个相同的圆和一个长方形构成,其中长方形的长等于底面圆周长,宽为圆柱体的高;(3)圆锥的平面展开图:由一个圆和一个扇形组成,扇形的弧长等于底面圆周长。
典例精析例题1 如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色。
下列图形中,是该几何体的表面展开图的是()ADBC思路分析:根据几何体的展开图解题,注意带图案的一个面不是底面。
答案:选项A和C带图案的面是底面,不能折叠成原几何体的形式;选项B能折叠成原几何体的形式;选项D折叠后下面带三角形的面与原几何体中的位置不同。
故选B。
点评:本题主要考查了几何体的展开图。
解题时勿忘记正四棱柱的特征及正方体展开图的各种情形。
注意做题时可动手操作一下,增强空间想象能力。
例题2 已知:如图所示无盖纸盒的长宽高都是10cm。
(1)画出纸盒的平面展开图;(2)计算纸盒所用材料的面积。
思路分析:(1)展开时注意此纸盒没有盖子,展开后只有5个面;(2)用一个小正方形的面积乘5,即可得出纸盒所用材料的面积。
答案:(1)展开方法不唯一,如图所示:或或等(2)S=5×102=5×100=500cm2。
答:纸盒所用材料的面积为500cm2。
点评:本题考查了几何体的展开图和几何体的表面积,无盖正方体有8种表面展开图。
1.19几何展开图(含解析,机构)-2021届九年级数学(苏科版)知识点一轮复习每日一练(1月)
几何展开图每日一练1.如图是某个几何体的展开图,该几何体是()A.三棱锥B.三棱柱C.圆柱D.圆锥2.观察下列图形,其中不是正方体的表面展开图的是()A.B.C.D.3.已知某多面体的平面展开图如图所示,其中是棱锥的有()A.1个B.2个C.3个D.4个4.一个几何体的表面展开图如图所示,这个几何体是()A.圆柱B.圆锥C.长方体D.球5.如图,正方体的展开图中对面数字之和相等,则﹣x y=()A.9B.﹣9C.﹣6D.﹣86.下列各图是正方体展开图的是()A.B.C.D.7.将正方体展开需要剪开的棱数为()A.5条B.6条C.7条D.8条8.将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是()A.B.C.D.9.三个立体图形的展开图如图①②③所示,则相应的立体图形是()A.①圆柱,②圆锥,③三棱柱B.①圆柱,②球,③三棱柱C.①圆柱,②圆锥,③四棱柱D.①圆柱,②球,③四棱柱10.下列图形中,()是正方体的展开图.A.B.C.D.11.按如图所示图形中的虚线折叠可以围成一个棱柱的是()A.B.C.D.12.在课题学习中,老师要求用长为12厘米,宽为8厘米的长方形纸片制作一个无盖的长方体纸盒.三位同学分别以下列方式在长方形纸片上截去两角(图中阴影部分),然后沿虚线折成一个无盖的长方体纸盒.甲:如图1,盒子底面的四边形ABCD是正方形;乙:如图2,盒子底面的四边形ABCD是正方形;丙:如图3,盒子底面的四边形ABCD是长方形,AB=2AD.将这三位同学所折成的无盖长方体的容积按从大到小的顺序排列,正确的是()A.甲>乙>丙B.甲>丙>乙C.丙>甲>乙D.丙>乙>甲13.下列四组图中,每组左边的平面图形能够折叠成右边的立体图形的是()A.①②B.①④C.②D.③14.如图,把一张边长为15cm的正方形硬纸板的四个角各剪去一个同样大小的正方形,再折成一个无盖的长方体盒子(纸板的厚度忽略不计),当剪去的正方形边长从4cm变为6cm后,长方体的纸盒容积变小(填大或小)了cm3.15.下面四个图形中不能围成下边三棱锥的是()A.B.C.D.16.下列平面图形中不能围成正方体的是()A.B.C.D.17.下图中哪个图形经过折叠后可以围成一个棱柱()A.B.C.D.18.将图中的阴影部分剪下来,围成一个几何体的侧面,使AB和DC重合,所围成的几何体是()A.B.C.D.几何展开图每日一练1.如图是某个几何体的展开图,该几何体是()A.三棱锥B.三棱柱C.圆柱D.圆锥【分析】通过展开图的面数,展开图的各个面的形状进行判断即可.【解答】解:从展开图可知,该几何体有五个面,两个三角形的底面,三个长方形的侧面,因此该几何体是三棱柱,故选:B.【点评】本题考查棱柱的展开与折叠,掌握棱柱展开图的特征是正确判断的前提.2.观察下列图形,其中不是正方体的表面展开图的是()A.B.C.D.【分析】利用正方体及其表面展开图的特点解题.【解答】解:A、C、D均是正方体表面展开图;B、是凹字格,故不是正方体表面展开图.故选:B.【点评】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.3.已知某多面体的平面展开图如图所示,其中是棱锥的有()A.1个B.2个C.3个D.4个【分析】根据三棱柱是各个侧面的高相等,底面是三角形,上表面和下表面平行且全等,所有的侧棱相等且相互平行且垂直于两底面的棱柱.并且上下两个三角形是全等三角形,可得答案.【解答】解:第1个图是三棱锥;第2个图是三棱柱;第3个图是四棱锥;第4个图是三棱柱.∴是棱锥的有2个.故选:B.【点评】考查了几何体的展开图,熟记常见立体图形的展开图的特征,是解决此类问题的关键.4.一个几何体的表面展开图如图所示,这个几何体是()A.圆柱B.圆锥C.长方体D.球【分析】根据圆锥的侧面展开图得出答案.【解答】解:由几何体的表面展开图可知,这个几何体是圆锥.故选:B.【点评】此题主要考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决此类问题的关键.5.如图,正方体的展开图中对面数字之和相等,则﹣x y=()A.9B.﹣9C.﹣6D.﹣8【分析】根据正方体的展开图的特点,找到向对面,再由相对面上的数字之和相等,可得出x、y的值,再代入计算即可求解.【解答】解:1与6相对,4与x相对,5与y相对,∵1+6=4+x=5+y,∴x=3,y=2,∴﹣x y=﹣32=﹣9.故选:B.【点评】本题考查了正方体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.6.下列各图是正方体展开图的是()A.B.C.D.【分析】正方体的展开图有“1+4+1”型,“2+3+1”型、“3+3”型三种类型,其中“1”可以左右移动.注意“一”、“7”、“田”、“凹”字型的都不是正方体的展开图.【解答】解:A、“田”字型,不是正方体的展开图,故选项错误;B、是正方体的展开图,故选项正确;C、不是正方体的展开图,故选项错误;D、不是正方体的展开图,故选项错误.故选:B.【点评】考查了几何体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.7.将正方体展开需要剪开的棱数为()A.5条B.6条C.7条D.8条【分析】根据正方体的棱的条数以及展开后平面之间应有棱连着,即可得出答案.【解答】解:∵正方体有6个表面,12条棱,要展成一个平面图形必须5条棱连接,∴要剪12﹣5=7条棱,故选:C.【点评】此题主要考查了正方体的展开图的性质,根据展开图的性质得出一个平面图形必须5条棱连接是解题关键.8.将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是()A.B.C.D.【分析】由平面图形的折叠及无盖正方体的展开图就可以求出结论.【解答】解:由四棱柱的四个侧面及底面可知,A、B、C都可以拼成无盖的正方体,但C拼成的有一个面重合,有两面没有的图形.所以将一个无盖正方体形状盒子的表面沿某些棱展开后不能得到的平面图形是D.故选:D.【点评】本题考查了正方体的平面展开图,解答时熟悉四棱柱的特征及无盖正方体展开图的各种情形是关键.9.三个立体图形的展开图如图①②③所示,则相应的立体图形是()A.①圆柱,②圆锥,③三棱柱B.①圆柱,②球,③三棱柱C.①圆柱,②圆锥,③四棱柱D.①圆柱,②球,③四棱柱【分析】根据圆柱、圆锥、三棱柱表面展开图的特点解题.【解答】解:观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是圆柱、圆锥、三棱柱.故选:A.【点评】本题考查圆锥、三棱柱、圆柱表面展开图,记住这些立体图形的表面展开图是解题的关键.10.下列图形中,()是正方体的展开图.A.B.C.D.【分析】根据正方体展开图的11种形式对各小题分析判断即可得解.【解答】解:A、中间4个正方形是“田字形”,不是正方体展开图;B、折叠不是正方体展开图;C、符合正方体展开图;D、不符合正方体展开图;故选:C.【点评】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况,)判断也可.11.按如图所示图形中的虚线折叠可以围成一个棱柱的是()A.B.C.D.【分析】利用棱柱的展开图中两底面的位置对A、D进行判断;根据侧面的个数与底面多边形的边数相同对B、C进行判断.【解答】解:棱柱的两个底面展开后在侧面展开图相对的两边上,所以A、D选项错误;当底面为三角形时,则棱柱有三个侧面,所以B选项错误,C选项正确.故选:C.【点评】本题考查了展开图折叠成几何体:通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.12.在课题学习中,老师要求用长为12厘米,宽为8厘米的长方形纸片制作一个无盖的长方体纸盒.三位同学分别以下列方式在长方形纸片上截去两角(图中阴影部分),然后沿虚线折成一个无盖的长方体纸盒.甲:如图1,盒子底面的四边形ABCD是正方形;乙:如图2,盒子底面的四边形ABCD是正方形;丙:如图3,盒子底面的四边形ABCD是长方形,AB=2AD.将这三位同学所折成的无盖长方体的容积按从大到小的顺序排列,正确的是()A.甲>乙>丙B.甲>丙>乙C.丙>甲>乙D.丙>乙>甲【分析】根据展开图分别求出每个同学的无盖长方体的容积,再比较大小即可.【解答】解:甲所折成的无盖长方体的容积为:5×3×3=45(cm3),乙所折成的无盖长方体的容积为:10×2×2=40(cm3),丙所折成的无盖长方体的容积为:6×4×2=48(cm3),∴丙>甲>乙.故选:C.【点评】此题主要考查了展开图折叠成几何体,解题的关键是正确题意,然后根据题目的数量关系列出代数式解决问题.13.下列四组图中,每组左边的平面图形能够折叠成右边的立体图形的是()A.①②B.①④C.②D.③【分析】根据几何体的展开图,可得答案.【解答】解:①不能折叠成正方体,②能折叠成长方体,③不能折成圆锥,④不能折成四棱锥,故选:C.【点评】本题考查了展开图折叠成几何体,熟记常见几何体的展开图是解题关键.14.如图,把一张边长为15cm的正方形硬纸板的四个角各剪去一个同样大小的正方形,再折成一个无盖的长方体盒子(纸板的厚度忽略不计),当剪去的正方形边长从4cm变为6cm后,长方体的纸盒容积变小(填大或小)了142cm3.【分析】分别求得剪去的正方形边长从4cm变为6cm后,长方体的纸盒容积即可得到结论.【解答】解:当剪去的正方形边长从4cm变为6cm后,长方体的纸盒容积从(15﹣4×2)2×4=196cm3变为(15﹣6×2)2×6=54cm3.故长方体的纸盒容积变小了196﹣54=142cm3.故答案为:小,142.【点评】本题考查了展开图折叠成几何体,长方体的体积,熟记长方体的体积公式是解题的关键.15.下面四个图形中不能围成下边三棱锥的是()A.B.C.D.【分析】对于能构成三棱锥的图形,将各面折起,不能重叠,也不能有空缺,据此进行判断.【解答】解:B、C、D都能构成三棱锥,但A将各面折起,出现重叠,不能构成三棱锥,故选:A.【点评】本题考查了三棱锥的展开图,熟记三棱锥展开图是解决问题的根本.16.下列平面图形中不能围成正方体的是()A.B.C.D.【分析】根据常见的正方体展开图的11种形式以及不能围成正方体的展开图解答即可.【解答】解:根据常见的不能围成正方体的展开图的形式是“一线不过四,田、凹应弃之”,只有A选项不能围成正方体.故选:A.【点评】本题考查了正方体展开图,熟记展开图常见的11种形式与不能围成正方体的常见形式“一线不过四,田凹应弃之”是解题的关键.17.下图中哪个图形经过折叠后可以围成一个棱柱()A.B.C.D.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:选项A、D缺少一个面,不能围成棱柱;选项C中折叠后底面重合,不能折成棱柱;只有B能围成三棱柱.故选:B.【点评】考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.18.将图中的阴影部分剪下来,围成一个几何体的侧面,使AB和DC重合,所围成的几何体是()A.B.C.D.【分析】根据已知图形的特点和四个选项的特点进行判断.【解答】解:阴影部分剪下来,围成一个几何体的侧面,且是光滑的曲面,上下两个底面不相等,所以是圆台的侧面,故选:B.【点评】本题主要考查了展开图折成几何体,解题时注意发挥想象力,根据常见的几何体的特征进行解答.。
5.3 展开与折叠-【帮课堂】2022-2023学年七年级数学上册同步精品讲义(苏科版) (解析版)
展开与折叠知识点一、几何体的表面展开图有些几何体是由一些平面图形围成的,将它们的表面积适当剪开,可以展开成平面图形,这样的平面图形称为相应几何体的表面展开图.同一个立体图形,按照不同的方式展开,得到的表面展开图可能是不一样的.立体图形中相对的两个面在展开图中既没有公共边,也没有公共顶点.1.常见的几何体的表面展开图(1)圆柱的侧面展开图(2)圆锥的侧面展开图(3)棱柱的侧面展开图2.正方体的11种不同的展开图“一四一”型“一三二”型“阶梯”型PS:球没有表面展开图.例:右下图是一个正方体的表面展开图,则这个正方体是( )【解答】D【解析】最直接的方法是做一个如图所示的正方体的表面展开图,然后再折叠后进行对照即可.也可用排除法,观察正方体的表面展开图,可发现分成4块的面中的4个小正方形中有3块的颜色是阴影,这就可排除A,再想象折叠的图形,可知正方体被分成4块的面的对面应是阴影,这就可排除B、C,所以选D.知识点二、平面图形的折叠1.将平面图形折叠还原成几何体,叫做平面展开图形的折叠,平面展开图形的折叠是将平面图形立体化;2.由平面展开图形判断立体图形的方法有两种:一是制作模型,动手操作;二是发挥空间想象能力,根据平面展开图形的特征进行判断;3.一些常见的平面展开图形与折叠后形成的几何体的对应关系如下表:平面展开图形折叠后形成的几何体一个圆和一个扇形圆锥两个圆和一个长方形圆柱两个多边形和若干个长方形(正方形)棱柱一个多边形和若干个三角形棱锥4.判断一个平面图形能否折叠成立体图形的方法:(1)看面数够不够;(2)看各面的位置是否合适,尤其是底面的位置;(3)看对应边的长度是否相等.例:如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色.下列图形中,是该几何体的表面展开图的是( )A B C D【解答】B【解析】观察图形可知,这个几何体对应的展开图是B选项.巩固练习一.选择题1.如图是一个正方体的平面展开图,把展开图折叠成一个正方体后,有“考”字一面的相对面上的字是( )A.祝B.试C.顺D.利【分析】根据正方体的表面展开图找相对面的方法:一线隔一个,即可解答.【解答】解:有“考”字一面的相对面上的字是顺,故选:C.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.2.如图,已知骰子相对两面的点数之和为7,下列图形为该骰子表面展开图的是( )A.B.C.D.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.【解答】解:根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A、1点6点是相对面,3点与5点是相对面,2点与4点是相对面,所以不可以折成符合规则的骰子,故本选项不符合题意;B、4点与3点是相对面,2点与6点是相对面,1点与5点是相对面,所以不可以折成符合规则的骰子,故本选项不符合题意;C、3点与4点是相对面,2点与6点是相对面,1点与5点是相对面,所以不可以折成符合规则的骰子,故本选项不符合题意;D、2点与5点是相对面,3点与4点是相对面,1点与6点是相对面,所以可以折成符合规则的骰子,故本选项符合题意.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.3.下列各图形经过折叠不能围成一个正方体的是( )A.B.C.D.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:A、B、C选项经过折叠均能围成正方体,D选项折叠后有两个面重合,不能折成正方体.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.如图是一个正方体的展开图,折成正方体后,x,y与其相对面上的数字相等,则x y的值为( )A.8B.﹣8C.9D.1 9【分析】根据正方体的表面展开图找相对面的方法:一线隔一个,可得x=﹣2,y=3,然后代入式子中进行计算即可解答.【解答】解:由题意得:x与﹣2相对,y与3相对,∴x=﹣2,y=3,∴x y=(﹣2)3=﹣8,故选:B.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.5.如图的图形是( )正方体的展开图.A.B.C.D.【分析】此图形为正方体展开图的“1﹣4﹣1”型,折成正方体,有空白圆与涂色圆的面相对,有两个涂色三角形的面相邻,且一个公共锐角顶点,有涂色圆的面与有两个涂色三角形的非涂色点为公共顶点,有空白圆的面与涂色三角形的两涂色点为公共顶点.据此即可作出判断.【解答】解:如图:是的正方体展开图.故选:B.【点评】本题考查展开与折叠,解答此题的关键弄清该正方体展开图折成正方体后,各图案的位置关系.6.经过折叠可以围成正方体,且在正方体侧面上的字恰好环绕组成一个四字成语的图形是( )A.B.C.D.【分析】根据正方体的表面展开图找相对面的方法,一线隔一个,“Z”字两端是对面,即可解答.【解答】解:A、因为图中两个空白面不是相对面,所以图中的四个字不能恰好环绕组成一个四字成语,故A不符合题意;B、因为图中两个空白面不是相对面,所以图中的四个字不能恰好环绕组成一个四字成语,故B不符合题意;C、因为金与题是相对面,榜与名是相对面,所以正方体侧面上的字恰好环绕组成一个四字成语金榜题名,故C符合题意;D、因为图中两个空白面不是相对面,所以图中的四个字不能恰好环绕组成一个四字成语,故D不符合题意;故选:C.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.7.如图所示为几何体的平面展开图,其对应的几何体名称为( )A.正方体B.圆锥C.四棱柱D.三棱柱【分析】根据圆锥的展开图的特征解答即可.【解答】解:因为展开图是扇形和圆,所以这个几何体是圆锥.故选B.【点评】本题考查几何体的展开图,圆锥等知识,解题的关键是掌握圆锥的展开图的特征,属于中考常考题型.8.如图1,是由五个边长都是1的正方形纸片拼接而成的,现将图1沿虚线折成一个无盖的正方体纸盒(图2)后,与线段FC2重合的线段是( )A.NB2B.MN C.B1B2D.MA2【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:将图1沿虚线折成一个无盖的正方体纸盒,则A2D2和A2M重合,MN和C2D2重合,NB2和FC2重合.故选:A.【点评】本题考查的是学生的立体思维能力.9.如图形状的四张纸板,按图中线经过折叠可以围成一个直三棱柱的是( )A.B.C.D.【分析】根据直三棱柱的特点作答.【解答】解:A、围成三棱柱时,两个三角形重合为同一底面,而另一底面没有,故不能围成直三棱柱;B、D的两底面不是三角形,故也不能围成直三棱柱;只有C经过折叠可以围成一个直三棱柱.故选:C.【点评】考查了展开图折叠成几何体,棱柱表面展开图中,上、下两底面应在侧面展开图长方形的两侧.10.如图所示的正方体,如果把它展开,可以是下列图形中的( )A.B.C.D.【分析】根据正方体的展开图的特征,“对面”“邻面”之间的关系进行判断即可.【解答】解:由“相间Z端是对面”可知A、D不符合题意,而C折叠后,圆形在前面,正方形在上面,则三角形的面在右面,与原图不符,只有B折叠后符合,故选:B.【点评】考查正方体的展开与折叠,掌握展开图的特征以及“正面、邻面”之间的关系是正确判断的前提.二.填空题11.如图,把一个高6分米的圆柱的底面分成许多相等的扇形,然后把圆柱切开,拼成一个与它等底等高的近似长方体,它的表面积比圆柱体的表面积增加了36平方分米.原来这个圆柱的体积是 54π 立方分米(结果保留π).【分析】根据近似长方体的表面积比圆柱体的表面积增加了36平方分米可求出圆柱体的半径,再根据圆柱体的体积公式即可求得结果.【解答】解:∵近似长方体的表面积比圆柱体的表面积增加了36平方分米,∴圆柱体的半径为:36÷2÷6=3(分米),∴圆柱的体积为:π×32×6=54π(立方分米),故答案为:54π.【点评】本题考查了圆柱体体积公式的推导及公式的应用,理解推导过程正确求得圆柱体的半径是解决问题的关键.12.如图是一个正方体的展开图,在a、b、c处填上一个适当的数,使得正方体相对的面上的两数互为相反数,则a的值为 5 .【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“a”与“﹣5”是相对面,∵正方体相对的面上的两数互为相反数,∴a=5.故答案为:5.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.13.如图,要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之积为24,则x﹣y= 6 .【分析】根据正方体表面展开图的特征,判断相对的面,求出x、y的值,最后代入计算即可.【解答】解:由正方体表面展开图的“相间、Z端是对面”可知,“x”与“2”是对面,“y”与“4”是对面,又因为相对面上两个数之积为24,所以x=12,y=6,所以x﹣y=12﹣6=6,故答案为:6.【点评】本题考查正方体的展开与折叠,有理数的加减运算,掌握正方体表面展开图的特征是正确解答的关键.14.如图所示的是一个正方体的表面展开图,若把展开图折叠成正方体后,相对面上的数互为相反数,则x+y= ﹣2 .【分析】根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点,再根据相对面上的数互为相反数的,求得x、y的值,然后再代值计算即可.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“﹣2”与面“y”相对,面“4”与面“x”相对.∵相对面上的数互为相反数,∴x=﹣4,y=2,∴x+y=﹣4+2=﹣2.故答案为:﹣2.【点评】本题考查了正方体相对两个面上的文字,解答本题的关键在于注意正方体的空间图形,从相对面入手,分析及解答问题.15.如图①是一个小正方体的侧面展开图,小正方体从如图②所示的位置依次翻到第1格、第2格、第3格、第4格、第5格,这时小正方体朝上面的字是 路 .【分析】根据正方体的表面展开图找出相对面,然后动手操作即可解答.【解答】解:根据正方体表面展开图的“相间、Z端是对面”可知,“中”与“梦”的面是相对的,“复”与“路”的面是相对的,“国”与“兴”的面是相对的,根据题意可知第1格是“兴”,所以第4格是“国”;第2格是梦”,第3格是“路”,所以第5格是“复”.所以这时小正方体朝上面的字是“路”,故答案为:路.【点评】本题考查正方体的展开与折叠,掌握正方体表面展开图的特征是正确判断的前提.16.两个同样大小的正方体积木,每个正方体上相对两个面上写的数之和都等于2,现将两个这样的正方体重叠放置(如图),且看得见的五个面上的数如图所示,问看不见的七个面上所写的数之和是 ﹣3 .【分析】根据相对面上的数字的和等于3分别求出看不见的七个数字,然后相加即可得解.【解答】解:∵每个正方体上相对两个面上写的数字之和都等于2,∴左边的正方体的下底面数字是﹣3,后面的数字是1,左右两面的数字的和是2,右面的正方体下底面数字是﹣2,左面的数字是﹣1,后面的数字是0,∴它们的和是﹣3+1+2﹣2+0﹣1=﹣3.故答案为:﹣3.【点评】本题考查灵活运用正方体的相对面解答问题,立意新颖,需要注意左边正方体的左右两面都看不见,所以不需要知道具体数字,只要利用它们的和等于3即可.17.一个由125个同样的小正方体组成的大正方体,从这个大正方体中抽出若干个正方体,把大正方体中相对的两面打通,结果如图,则图中剩下的小正方有 73 个.【分析】根据题,我们把相对面打通需要去掉的小正方体分三种情况按一定的顺序数去掉的小正方体数量,如先前后面,两上下面,后左右面分别去数数,然后用总数125减掉数出来的三部分即可,注意:前面数过的后面的一定去掉,否则会重复的.【解答】解:前后面少(3+2)×5=25(个),上下面少的(去掉与前后面重复的)(5﹣3)+2×3+1×5=13(个),左右面少的(去掉与前后,上下复的)(5﹣3)+(5﹣1)+(5﹣2)+(5﹣2﹣1)+(5﹣2)=14(个),125﹣(25+13+14)=73(个),答:图中剩下的小正方体有73个.故答案为:73.【点评】本题考查了正方体的对面上的数字,要注意不能重复和遗漏.18.如图,在边长为20的大正方形中,剪去四个小正方形,可以折成一个无盖的长方体盒子.如果剪去的小正方形边长按整数值依次变化,即分别取1、2、3、…、9、10时,则小正方形边长为 3 时,所得到的无盖的长方体盒子容积最大.【分析】利用长方体的体积计算方法列出代数式,把数值代入代数式得出答案,利用表格数据求得最大值即可.【解答】解:四个角都剪去一个边长为acm的小正方形,则V=a(20﹣2a)2;填表如下:a(cm)12345678910V(cm3)324512588576500384252128360由表格可知,当a=3时,即小正方形边长为3时,所得到的无盖的长方体盒子容积最大.故答案为:3.【点评】此题考查展开图折叠成几何体,掌握长方体的体积计算公式是解决问题的关键.三.解答题19.一个直棱柱有18个面,且所有的侧棱长的和为64,底面边长都是3.(1)这是几棱柱;(2)求此棱柱的侧面展开图的面积.【分析】(1)用18﹣2即可得出有几个侧面,即可得出答案;(2)求出侧棱长,根据长方形的面积公式求出即可.【解答】解:(1)∵18﹣2=16,∴棱柱有16个侧面,为十六棱柱.(2)侧棱长为64÷16=4(cm),=4×3×16=192(cm2),∴S侧即此棱柱的侧面积是192cm2.【点评】本题考查了几何体的表面积,认识立体图形的应用,关键是能根据题意列出算式.20.如图是正方体的平面展开图,若将图中的平面展开图折叠成正方体后,相对面上的两个数之和为7,求x﹣y+z的值.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面判断即可.【解答】解:由图可知:z与4相对,y与﹣2相对,x与12相对,由题意得:z+4=7,y+(﹣2)=7,x+12=7,∴z=3,y=9,x=﹣5,∴x﹣y+z=﹣5﹣9+3=﹣11,∴x﹣y+z的值为﹣11.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.21.如图所示是一个正方体的表面展开图,请回答下列问题:(1)与面A 相对的面是 D ,与面B 相对的面是 F ,与面C 相对的面是 E ;(2)若A 表示的代数式为12x ﹣2,B 表示的代数式为x +3,C 表示的代数式为13x ﹣1,D 表示的代数式为x +1,F 表示的代数式为﹣x +2,且相对两个面所表示的代数式的和都相等.①求x 的值;②E 表示的数为 143 .【分析】(1)根据正方体的表面展开图找相对面的方法,“Z ”字两端是对面,同层隔一面,判断即可;(2)①根据题意可得:A +D =B +F ,然后进行计算即可解答,②根据题意得:E =A +D ﹣C ,然后进行计算即可解答.【解答】解:(1)由图可知:A 与D 相对,B 与F 相对,C 与E 相对,∴与面A 相对的面是D ,与面B 相对的面是F ,与面C 相对的面是E ,故答案为:D ,F ,E ;(2)①由题意可得:12x ―2+x +1=x +3―x +2,解得x =4,所以x 的值为4,②由题意得:E =A +D ﹣C=12x ﹣2+x +1﹣(13x ﹣1)=12x ﹣2+x +1―13x +1=76x =76×4=143,∴E 表示的数为143,故答案为:143.【点评】本题考查了正方体相对两个面上文字,整式的加减,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.22.如图所示的是一个正方体的展开图,它的每一个面上都写有一个自然数,并且相对的两个面的两个数字之和相等,求a +b ﹣2c 的值.【分析】根据正方体的表面展开图找相对面的方法,同层隔一面,“Z ”字两端是对面,求出a ,b ,c 的值,然后代入式子中进行计算即可解答.【解答】解:由图可知:a 与8相对,c 与5相对,b 与4相对,∴a +8=c +5=b +4,∴a ﹣c =5﹣8=﹣3,b ﹣c =5﹣4=1,∴a +b ﹣2c =a ﹣c +b ﹣c =﹣3+1=﹣2.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.23.如图几何体是由若干棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),观察该图,探究其中的规律.(1)第1个几何体中只有2个面涂色的小立方体共有 4 个;第2个几何体中只有2个面涂色的小立方体共有 12 个;第3个几何体中只有2个面涂色的小立方体共有 20 个.(2)求出第10个几何体中只有2个面涂色的小立方体的块数.(3)求出前100个几何体中只有2个面涂色的小立方体的块数的和.【分析】(1)第1个几何体中最底层的4个角的小立方体只有2个面涂色;第2个几何体中只有2个面涂色的小立方体共有3×4=12(个);第3个几何体中只有2个面涂色的小立方体共有5×4=20(个);(2)根据所给图形中只有2个面涂色的小立方体的块数得到第n个几何体中只有2个面涂色的小立方体的块数与4的倍数的关系即可;(3)根据(2)得到的规律,进行计算即可.【解答】解:(1)观察图形可得第1个几何体中最底层的4个角的小立方体只有2个面涂色;第2个几何体中只有2个面涂色的小立方体共有3×4=12(个);第3个几何体中只有2个面涂色的小立方体共有5×4=20(个).故答案为:4,12,20;(2)观察图形可知:图①中,只有2个面涂色的小立方体共有4个;图②中,只有2个面涂色的小立方体共有12个;图③中,只有2个面涂色的小立方体共有20个.4,12,20都是4的倍数,可分别写成4×1,4×3,4×5的形式,因此,第n个图中两面涂色的小立方体的块数共有:4(2n﹣1)=8n﹣4,则第10个几何体中只有2个面涂色的小立方体的块数共有8×10﹣4=76(个);(3)(8×1﹣4)+(8×2﹣4)+(8×3﹣4)+(8×4﹣4)+(8×5﹣4)+…+(8×100﹣4)=8(1+2+3+4+…+100)﹣100×4=40000(个).故前100个几何体中只有2个面涂色的小立方体的个数的和为40000个.【点评】本题考查了认识立体图形,图形的变化规律.得到所求块数与4的倍数的关系是解决本题的关键.24.如图是一个长方体纸盒的平面展开图,已知纸盒中相对两个面上的数互为相反数.(1)填空:a= 1 ,b= ﹣2 ,c= ﹣3 ;(2)先化简,再求值:5a2b﹣[2a2b﹣3(2abc﹣a2b)+4abc].【分析】(1)长方体的表面展开图,相对的面之间一定相隔一个长方形,根据这一特点作答;(2)先去括号,然后再合并同类项,最后代入计算即可.【解答】解:(1)3与c是对面;a与b是对面;a与﹣1是对面.∵纸盒中相对两个面上的数互为相反数,∴a=1,b=﹣2,c=﹣3.(2)原式=5a2b﹣[2a2b﹣6abc+3a2b+4abc]=5a2b﹣2a2b+6abc﹣3a2b﹣4abc=5a2b﹣2a2b﹣3a2b+6abc﹣4abc=2abc.当a=1,b=﹣2,c=﹣3时,原式=2×1×(﹣2)×(﹣3)=12.【点评】本题主要考查的是正方体向对面的文字,整式的加减,依据长方体对面的特点确定出a、b、c的值是解题的关键.25.如图①所示,从大正方体中截去一个小正方体之后,可以得到图②的几何体.(1)设原大正方体的表面积为a,图②中几何体的表面积为b,那么a与b的大小关系是 C ;A.a>b;B.a<b;C.a=b;D.无法判断.(2)小明说“设图①中大正方体的棱长之和为m,图②中几何体的各棱长之和为n,那么n比m正好多出大正方体的3条棱的长度.”你认为小明的说法正确吗?为什么?(3)如果截去的小正方体的棱长为大正方体的棱长的一半,那么图③是图②几何体的表面展开图吗?如有错误,请予修正.【分析】(1)根据“切去三个面”但又“新增三个面”,因此与原来的表面积相等;(2)根据多出来的棱的条数及长度得出答案;(3)根据展开图判断即可.【解答】解:(1)根据“切去三个小面”但又“新增三个小面”,因此与原来的表面积相等,即a=b,故答案为:C;(2)如图②红颜色的棱是多出来的,共6条,如果截去的小正方体的棱长为大正方体的棱长的一半时,n比m正好多出大正方体的3条棱的长度,如果截去的小正方体的棱长不是大正方体的棱长的一半,n比m就不是多出大正方体的3条棱的长度,故小明的说法是不正确的;(3)图③不是图②几何体的表面展开图,改后的图形,如图所示.【点评】本题考查正方体的展开与折叠,理解前后的棱、面积的变化情况是解决问题的前提.26.顾琪在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是她在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)顾琪总共剪开了 8 条棱.(2)现在顾琪想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为她应该将剪断的纸条粘贴到①中的什么位置?请你帮助她在①上补全.(3)已知顾琪剪下的长方体的长、宽、高分别是6cm、6cm、2cm,求这个长方体纸盒的体积.【分析】(1)根据平面图形得出剪开棱的条数,(2)根据长方体的展开图的情况可知有两种情况,(3)根据长方体的体积公式,可得答案.【解答】解(1)小明共剪了8条棱,故答案为:8.(2)如图,四种情况.(3)6×6×2=72cm3,这个长方体纸盒的体积是72cm3.【点评】本题主要考查了几何展开图,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.。
七年级数学几何体的展开图(专题)(含答案)
几何体的展开图(专题)一、单选题(共10道,每道10分)1.如图是一个正方体纸盒的表面展开图,下列选项中的正方体能由它折叠而成的是( )A. B.C. D.答案:D解题思路:根据正方体纸盒的表面展开图可得折起来之后面“○”与面“□”是相对的,因此不能相邻,也就是说折成正方体后,面“○”与面“□”两个面能且只能看到一个面,排除选项A,B,C.故选D.试题难度:三颗星知识点:找相对面相邻面2.下列各图都是正方体的表面展开图,若将它们折成正方体,则其中两个正方体各面图案完全一样的是( )A.(1)(2)B.(2)(3)C.(3)(4)D.(2)(4)答案:D解题思路:因为其中有两个正方体折叠之后各面图案完全一样,因此它们对应的平面展开图的相对面必须完全一样.先分析面“△”的相对面:(1)面“△”与面“#”相对;(2)面“△”与面“+”相对;(3)面“△”与面“+”相对;(4)面“△”与面“+”相对;因此可排除含有(1)的选项,故排除A;第二步分析面“☆”的相对面:(2)面“☆”与面“”相对;(3)面“☆”与面“○”相对;(4)面“☆”与面“”相对;因此排除含有(3)的选项,故排除B,C.经验证(2)和(4)折成的两个正方体各面图案完全一样,故选D.试题难度:三颗星知识点:找相对面相邻面3.一个正方体的表面展开图如图所示,每一个面上都写有一个数,并且相对两个面上所写的两个数之和都相等,那么( )A.a=7,b=5B.a=6,b=9C.a=1,b=5D.a=5,b=7答案:D解题思路:这是一个(2,3,1)型的正方体表面展开图,其相对面如图所示,又因为相对两个面上所写的两个数之和都相等,则4+b=8+3=6+a,所以a=5,b=7.故选D.试题难度:三颗星知识点:找相对面相邻面4.明明用如图所示的硬纸片折成了一个正方体的盒子,里面装了一瓶墨水,只凭观察,墨水可能在哪个盒子中?思路分析判断正方体的展开与折叠问题时,我们按照面、棱、顶点的顺序分析.如图,首先观察面,展开图中上下两个空白面为相对面,因此排除______和______.其次研究棱的对应,面ABCD与面“○”有一条公共棱DC,即相邻的部分是空白三角形,故排除_________,应选___________.以上横线处依次所填正确的是( )A.①④②③B.①④③②C.①③②④D.①②④③答案:B解题思路:参考题目中的思路分析,横线处依次所填正确的是①④③②,故选B.试题难度:三颗星知识点:找相对面相邻面5.如图所示的正方体的表面展开图可能是( )思路分析首先根据“相邻面不可能相对”,排除_______和_______.其次研究棱和顶点的对应,排除_________,应选___________.以上横线处依次所填正确的是( )A.①④②③B.①④③②C.②④①③D.④②③①答案:C解题思路:先从面开始分析,,,三个面是相邻面,可以排除②,④;观察发现①,③的区别在于,是面中的阴影小正方形跟和有公共顶点,还是面中的空白小正方形跟和有公共顶点,根据题中所给的正方体可以看出阴影小正方形跟和有公共顶点,排除①,应选③.因此横线处依次所填正确的是②④①③,故选C.试题难度:三颗星知识点:找相对面相邻面6.如图是一个正方体的表面展开图,则这个正方体是( )A. B.C. D.答案:C解题思路:如图,先从面开始分析,a,b,“○”所在的面为相邻面,因此从面上无法排除;然后从棱开始分析,分析的时候从拐角处出发(有两条棱连着的),再分析有一条棱连着的.由图分析可得在折叠之后的正方体中a所在的面与“○”所在的面有一条公共棱BC,a与棱BC 垂直;b所在的面与“○”所在的面有一条公共棱AB,b与棱AB平行,故选C.试题难度:三颗星知识点:找相对面相邻面7.如图,点M,N,P分别是正方体三条相邻棱的中点,沿着M,N,P三点所在的平面将该正方体的一个角切掉,然后将其展开,其表面展开图可能是( )A. B.C. D.答案:D解题思路:根据正方体的十一种表面展开图可知,没有(3,1,2)型,故排除A;分析该正方体,缺角的三个面是相邻面,根据相邻面不可能相对排除B;还可以知道展开之后缺的地方有公共顶点,接着从棱和点开始分析,分析的时候先找出一组相对面标上字母,然后根据边的重合与点的重合标出其他点.C选项中,标出各点的字母如下:缺的地方没有公共顶点,故C错误;D选项中,标出各点的字母如下:缺的地方有公共顶点,故选D.试题难度:三颗星知识点:找相对面相邻面8.一个小立方块的六面分别标有字母A,B,C,D,E,F,如图是从三个不同方向看到的情形,则A,B,E的相对面分别是( )A.E,D,FB.E,F,DC.F,E,BD.F,D,C答案:D解题思路:正方体6个面中,每一个面和四个面相邻,和一个面相对.首先找图中出现次数最多的,分别是“A”,“C”,“D”;①不妨先看“A”:从图中的三个正方体可以看到“A”和“B”,“C”,“D”,“E”相邻,所以“A”的相对面是“F”.②接下来看“C”,在剩下的四个面中,“C”和“B”,“D”相邻,所以“C”的相对面是“E”;③所以剩余的“B”和“D”是相对面.综上所述:“A”,“B”,“E”的相对面分别是“F”,“D”,“C”.故选D.试题难度:三颗星知识点:找相对面相邻面9.一个正方体,六个面上分别写着六个连续的整数,且每个相对面上的两个数之和相等,如图所示,你能看到的数为3,6,7,则六个整数的和为( )A.27B.28C.33D.34答案:C解题思路:能看到的三个整数是3,6,7,由于是六个连续的整数,由题意分析可知其中的五个数字3,4,5,6,7,所以剩余的一个数字可能是2或者8,如果是2的话,根据每个相对面上的两个数之和相等,那么3与6相对,而图中3和6是相邻面,因此第六个数字只能是8,此时3与8相对,4与7相对,5与6相对,满足题中的条件,所以六个整数的和是3+4+5+6+7+8=33.故选C.试题难度:三颗星知识点:找相对面相邻面10.在正方体的六个面上分别涂上红、黄、蓝、白、黑、绿六种颜色,现有涂色方式完全相同的四个正方体,按照如图所示拼成一个长方体,那么涂黄、白两种颜色的面的对面分别涂有( )颜色.A.蓝、红B.蓝、黑C.蓝、绿D.绿、白答案:B解题思路:本题通过相邻面确定相对面,正方体的每一个面与4个面相邻,1个面相对.首先找图中出现次数较多的,先从“红”开始,从第二个正方体看出“红”与“蓝”相邻,从第三个正方体看出“红”与“白”相邻,从第四个正方体看出“红”与“黄”,“黑”相邻,所以“红”与“蓝”,“白”,“黄”,“黑”相邻,那么与“绿”相对;同样的方法可以判断“黄”与“蓝”相对,“白”与“黑”相对,所以涂黄、白两种颜色的面的对面分别涂有蓝、黑两种颜色.故选B.试题难度:三颗星知识点:找相对面相邻面。
初一数学立体图形的展开图含答案
初一数学立体图形的展开图中考要求例题精讲正方形展开图的知识要点:第一类:有6种。
特点:是4个连成一排的正方形,其两侧各有一个正方形简称“141型〃第二类:有3种。
特点:是有3个连成一排的正方形,其两侧分别有1个和两个相连的正方形;简称“132第四类:仅有1种,三个连成一排的正方形的一侧,还有3个连成一排的正方形,可简称“33型〃正方形展开图的识别方法:1.排除法:(1)由少于或多于6个的正方形组成的图形不是正方形的平面展开图(2)有“凹〃字型或“田〃字型部分的平面图形不是正方体的展开图2.对比法:对照上面的四种规则进行对照;从展开图可以看出,在正方形的展开图中不会出现如下图所示的“凹〃字型和“田〃字型结构。
模块一长方体的展开图长方体展开图【例1】下列图形中,不能表示长方体平面展开图的是()A. L B . I—C C. ---------- D. '— '—【解析】由平面图形的折叠及正方体的展开图解题.选项A, B, C经过折叠均能围成长方体,D两个底面在侧面的同一侧,缺少一定底面,所以不能表示长方体平面展开图.故选D.【答案】D【巩固】如图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为()A. 4 【解析】B. 6【答案】 由图可知,无盖长方体盒子的长是3,宽是2 盒子的容积为3x2x1=6.故选B . B【巩固】 下图是一个长方体纸盒的展开图,请把5, 3,成长方体后,相对面上的两数互为相反数.li1 TI LTD . 15 高是1,所以盒子的容积为3x2x1=6. 5, -1, -3, 1分别填入六个长方形,使得按虚线折 【解析】根据题意,找到相对的面,把互为相反数的数字分别填入即可.正方体展开图【答案】C展开图;5可以拼成一个正方体.故选C.【答案】C【答案】C【巩固】将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是()【解析】由平面图形的折叠及立体图形的表面展开图的特点解题.注意带图案的三个面相交于一点.而通过折叠后A、B都不符合,且D折叠后图案的位置正好相反,所以能得到的图形是C.【答案】C.【例4】将如图正方体的相邻两面上各画分成九个全等的小正方形,并分别标上0、x两符号.若下列有一图形为此正方体的展开图,则此图为()【解析】此题主要根据0、x两符号的上下和左右位置判断,可用排除法.由已知图可得,0、x两符号的上下位置不同,故可排除A、B;又注意到0、x两符号之间的空行有3列.【答案】C.【解析】本题考查正方体的表面展开图及空间想象能力.在验证立方体的展开图式,要细心观察每一个标志的位置是否一致,然后进行判断.根据有图案的表面之间的位置关系,正确的展开图是D.【答案】故选D.【点评】学生对相关图的位置想象不准确,从而错选,解决这类问题时,不妨动手实际操作一下,即可解决问题.A、B、C、D、【巩固】如图,哪一个是左边正方体的展开图(【答案】D.成不相符,所以不是无盖的正方体盒子的平面展开图.【答案】D.【巩固】如图,是一个正方体盒子(6个面)的侧面展开图的一部分,请将它补充完整.模块二圆柱、圆锥的侧面展开图圆柱体【例6】圆柱的侧面展开图形是()A.圆B.矩形C.梯形D .扇形【解析】略【答案】B【巩固】如图,已知MN是圆柱底面的直径,NP是圆柱的高,在高柱的侧面上,过点M, P嵌有一幅路径最短的金属丝,现将圆柱侧面沿NP剪开,所得的侧面展开图是()A.产 F & p p c.尹尸D .尸尸【解析】由平面图形的折叠及立体图形的表面展开图的特点解题.因圆柱的展开面为长方形,MP展开应该是两直线,且有公共点M.故选A.【答案】A【例7】如图,MN是圆柱底面的直径,NO是圆柱的高,在圆柱的侧面上,过点M, P.有一条绕了四周的路径最短的金属丝,现将圆柱侧面沿NO剪开,所得的侧面展开图可以是:【解析】根据两点之间线段最短,剪开后所得的侧面展开图中的金属丝是线段,即可选择.注意P点在展开图中长边的中点处,圆柱侧面沿NO剪开,根据两点之间线段最短,剪开后所得的侧面是长方形,P点在展开图中长边的中点处,金属丝是线段,且从P点开始到M点为止.故选②.【答案】②圆锥体【例8】下列立体图形中,侧面展开图是扇形的是()A. LB.C. ^—■D D , L——U【解析】根据圆锥的特征可知,侧面展开图是扇形的是圆锥. 【答案】B【巩固】我国运用长征火箭发射了百余颗人造卫星和5次神州飞船.如图是我国航天科技人员自主研究开发的长征系列火箭的立体图形.(火箭圆柱底面圆的周长不等于圆柱的高)(1)请你画出火箭的平面展开图,并标上字母.(2)写出平面图形中所有相等的量.【解析】结合圆柱和圆锥的侧面展开图的特征解题.(1)如右图.(2)OA=OB , CB = ED = AB , BE=CD , Z B = Z C = Z D = Z E = 90 .【答案】同解析.模块二其他立体图形的展开图【例9】若下列只有一个图形不是右图的展开图,则此图为何?()【解析】选项D的四个三角形面不能折叠成原图形的四棱锥,而是有一个三角形面与正方形面重合,故不能组合成原题目的立体图形. 【答案】故选D.【巩固】图1是由白色纸板拼成的立体图形,将此立体图形中的两面涂上颜色,如图2所示.下列四个图形中哪一个是图2的展开图()排除B、D,又阴影部分正方形在左,三角形在右.【答案】故选A.形,故可得答案.【答案】B.【巩固】下面四个图形中,是三棱柱的平面展开图的是()A. B. C.【解析】根据三棱柱的展开图的特点作答.八、是三棱柱的平面展开图;3、是三棱锥的展开图,故不是;C、是四棱锥的展开图,故不是;D、两底在同一侧,也不符合题意.故选A.【答案】A【解析】利用棱柱及其表面展开图的特点解题.A、B、C中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.D 围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故D不能围成三棱柱.【答案】故选D.【例12]如图是一个正四面体,它的四个面都是正三角形,现沿它的三条棱AC、BC、CD剪开展成平面图形,则所得的展开图是()【答案】B.【例13】哪种几何体的表面能展成如图所示的平面图形?需剪几条棱才能得到如此形状的平面图?你是怎样数出来的?请总结其规律.【解析】侧面为五个长方形,底边为五边形,故原几何体为五棱柱.五棱柱能展成如图所示的平面图形.由五棱柱展开成平面图形,需要剪9条棱.因为五棱柱共有15条棱,7个面,展成平面图形时,7个面需有6条棱相连,共需留下6条棱不剪,所以需剪15-6=9 (条)棱.总结规律:n棱柱有n+2个面,3n条棱,展成平面图形时,n+2个面需有n+1条棱相连,故应留下n+1条棱不剪,所以要把n棱柱展成平面图形,共需剪3n- (n+1) =(2n-1)条棱.(n +1)= 2 n -1.【答案】五棱柱;9; 3 n-【例14】下列图形是某些立体图形的平面展开图,说出这些立体图形的名称.【解析】由平面图形的折叠及常见立体图形的展开图解题.根据图示可知:①五棱锥;②圆柱;③三棱柱.【答案】①五棱锥②圆柱③三棱柱由平面图形的折叠及立体图形的表面展开图的特点解题.6个正方形能围成一个正方体,个长方形和两个三角形能围成一个三棱柱,一个四边形和四个三角形能围成四棱锥,6个长方形可以围成长方体.课后作业【解析】圆锥的侧面展开图是扇形,故选C .【答案】C【巩固】图中四个图形是多面体的展开图,你能说出这些多面体的名称吗?【解析】 【答案】 正方体;三棱柱;四棱锥;长方体.【答案】故选D ..【答案】B4.如图,四种图形各是哪种立体图形的表面展开所形成的?画出相应的四种立体图形.【解析】根据四棱锥、三棱柱、圆柱、圆锥及其表面展开图的特点解答并作图.观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是四棱锥、三棱柱、圆柱、圆锥.作图如下:【答案】同解析.【点评】本题考查了几何体的展开图,可根据所给图形判断具体形状,也可根据所给几何体的面数进行判断.。
人教版七年级上第四章从不同的方向看物体及立体图形的展开与折叠(含答案)
7.某数学兴趣小组的同学探究用相同的小立方块搭成几何体的三视图及其变化规律,下面是他们画出的左视图与俯视图.由此可知,搭这个几何体时,最多需要的小立方块的个数是().
A.8B.9C.10D.11
二、解答题
8.图1是由7个小正方体(每个小正方体的棱长都是1)所堆成的几何体.请画出这个儿何体从正面、左面、上面三个方向看到的形状图;
14.24.
【详解】试题分析:长方体的左视图是一个矩形,因为它的面积为6,一边长为2,所以另一边长为3,从而得出长方体的高为3,因此长方体的体积等于2×4×3=24.故答案为24.
考点:由三视图判断几何体.
15.有
【分析】根据正方体展开图的性质即可求解.
【详解】解:由正方体的展开图可知,“☆”与“有”相对,“几”与“真”相对,“何”与“趣”相对.
10.如图是由10个大小相同的小立方体搭建的几何体,其中每个小立方体的棱长为1厘米.
(1)请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图;
(2)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加个小正方体(直接填空).
11.如图,在 中, , , ,点 是 的中点,动点 从点 出发,以每秒 个单位长度的速度沿 运动.到点 停止.若设点 运动的时间是 秒( ).
人教版七年级上第四章
从不同的方向看物体及立体图形的展开与折叠
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.如图,根据三视图,这个立体图形的名称是()
A.长方体B.球体C.圆柱D.圆锥
2.如图是由5个小立方块搭成的几何体,则该几何体从左面看到的形状图是()
2023中考九年级数学分类讲解 第十三讲 图形的变换、立体图形的展开与折叠(含答案)(全国通用版)
第十三讲图形的变换、立体图形的展开与折叠专项一轴对称与中心对称知识清单1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形,那么就说这两个图形关于这条直线,这条直线叫做,折叠后重合的点是对应点,叫做对称点.2.轴对称图形:如果一个平面图形沿一条直线,直线两旁的部分能够互相,这个图形就叫做轴对称图形,这条直线就是它的.3.轴对称的性质:(1)关于某条直线对称的两个图形;(2)在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴,对应线段,对应角.4.中心对称:把一个图形绕着某一点旋转,如果它能够与另一个图形,那么就说这两个图形关于这个点对称或中心对称,这个点叫做.5.中心对称图形:把一个图形绕某一个点旋转,如果旋转后的图形能够与原来的图形,那么这个图形叫做中心对称图形,这个点就是它的.6.中心对称的性质:(1)成中心对称的两个图形;(2)成中心对称的两个图形,对应线段,对应角,对应点的连线都经过,且被对称中心.考点例析例1以下是我国部分博物馆的标志图案,其中既是轴对称图形又是中心对称图形的是()A B C D分析:根据轴对称图形及中心对称图形的定义逐项判断即可.例2如图1,在Rt△ABC中,∠A=30°,∠C=90°,AB=6,P是线段AC上一动点,点M在线段AB上.当AM=13AB时,PB+PM的最小值为()A.B.C.2D.3图1 图2分析:如图2,作点B关于AC的对称点B',连接B'M交AC于点P,此时PB+PM的值最小,为B'M 的长.在Rt△ABC中,由∠A=30°,AB=6,可求得BC,进而求得B'B,过点B'作B'H⊥AB于点H,解Rt△B'HB,得B'H,BH的长,结合AM=13AB,可求得MH,最后在Rt△B'HM中,利用勾股定理求出B'M,即可得解.归纳:在一条直线同侧有两点,则直线上存在到两点的距离之和最短的点,可以通过轴对称来确定,即作出其中一点关于直线的对称点,对称点与另一点的连线与直线的交点即为所求点.跟踪训练1.下列图形中,是轴对称图形但不是中心对称图形的是()A B C D2.在平面直角坐标系中,点M(﹣2,4)关于原点对称的点的坐标是.3.如图,在△ABC中,AC=BC,∠B=38°,D是AB边上一点,点B关于直线CD的对称点为B′.若B′D∥AC,则∠BCD的度数为.第3题图第4题图4.如图,在菱形ABCD中,BC=2,∠C=120°,Q为AB的中点,P为对角线BD上任意一点,则AP+PQ 的最小值为.专项二图形的平移知识清单1.平移:在平面内,把一个图形由一个位置整体沿某一直线方向移动到另一个位置,这样的图形运动叫做平移.2.平移两要素:平移的和平移的.3.平移的性质:(1)平移不改变图形的形状和大小,即平移前后的两个图形;(2)平移前后,对应线段(或在同一条直线上)且,对应角;(3)平移前后,连接对应点的线段(或在同一条直线上)且.考点例析例如图,△ABC沿BC所在直线向右平移得到△DEF,已知EC=2,BF=8,则平移的距离为.分析:由平移的性质可知BE=CF,结合题中给出的数据计算即可.跟踪训练1.四盏灯笼的位置如图所示,已知点A,B,C,D的坐标分别是(﹣1,b),(1,b),(2,b),(3.5,b).若平移y轴右侧的一盏灯笼,使得y轴两侧的灯笼对称,则平移的方法可以是()A.将B向左平移4.5个单位长度B.将C向左平移4个单位长度C.将D向左平移5.5个单位长度D.将C向左平移3.5个单位长度第2题图2.在平面直角坐标系中,点A(3,2)关于x轴的对称点为A1,将点A1向左平移3个单位长度得到点A2,则点A2的坐标为.3.在平面直角坐标系中,平行四边形ABCD的对称中心是坐标原点,顶点A,B的坐标分别是(﹣1,1)和(2,1),将平行四边形ABCD沿x轴向右平移3个单位长度,则顶点C的对应点C1的坐标是.专项三图形的旋转知识清单1.旋转:在平面内,把一个图形绕着平面内某一点O转动一个角度,这样的图形运动叫做旋转,点O 叫做,转动的角叫做.2.旋转三要素:、和.3.旋转的性质:(1)旋转不改变图形的形状和大小,即旋转前后的两个图形;(2)对应点到的距离相等;(3)对应点与旋转中心所连线段的夹角等于.考点例析例如图,将△ABC绕点A逆时针旋转55°得到△ADE.若∠E=70°,AD⊥BC于点F,则∠BAC的度数为( )A .65°B .70°C .75°D .80°分析:由旋转的性质,得∠BAD =55°,∠C =∠E =70°,再由直角三角形的性质,得∠DAC 的度数,进而得解.归纳:图形的旋转为全等变换,解题时可充分利用其性质,得出线段的长或角的度数.另外,注意旋转角为60°时考虑运用等边三角形的性质,旋转角为90°时考虑运用等腰直角三角形的性质.跟踪训练1.如图,在△AOB 中,AO =1,BO =AB =32.将△AOB 绕点O 逆时针方向旋转90°,得到△A ′OB ′,连接AA ′,则线段AA ′的长为( )A .1BC .32 D第1题图 第2题图2.如图,在△ABC 中,∠ACB =90°,∠BAC =α,将△ABC 绕点C 顺时针旋转90°得到△A 'B 'C ,点B 的对应点B '在AC 边上(不与点A ,C 重合),则∠AA 'B '的度数为( )A .αB .α﹣45°C .45°﹣αD .90°﹣α3.如图,在平面直角坐标系中,线段OA 与x 轴正方向的夹角为45°,且OA =2.若将线段OA 绕点O 沿逆时针方向旋转105°得到线段OA ′,则点A ′的坐标为( )A .)1-B .(-C .()D .(1,第3题图 第4题图 4.如图,在平面直角坐标系中,点C 的坐标为(﹣1,0),点A 的坐标为(﹣3,3),将点A 绕点C 顺时针旋转90°得到点B ,则点B 的坐标为 .专项四立体图形的展开与折叠知识清单正方体的表面展开图考点例析例1 下列图形是正方体展开图的个数为()A.1个B.2个C.3个D.4个分析:根据正方体的表面展开图的特征解答即可.归纳:判断正方体表面展开图的方法:(12)若展开图有三行,3布在该图形上下两侧.借助这些方法可采用排除法快速判断正方体的表面展开图.例2 如图是一个正方体的表面展开图,把它折叠成正方体后,有“学”字一面的相对面上的字是()A.雷B.锋C.精D.神分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点解答即可.归纳:判断正方体表面展开图的相对面的方法:(1)在一条直线上的三个正方形,首尾两个正方形一定是正方体的相对面;(2)由几个小正方形组成的“Z”字型两端的小正方形是相对面.正方体的每个面都有且只有一个相对面,所以在展开图中分析每个小正方形相对面的个数也可用来判断其是否能围成正方体.跟踪训练1.下列四个图形中,不能作为正方体的展开图的是()A B C D2.把图中的纸片沿虚线折叠,可以围成一个几何体,这个几何体的名称是()A.五棱锥B.五棱柱C.六棱锥D.六棱柱第2题图第3题图3.一个骰子相对两面的点数之和为7,它的展开图如图所示,则下列判断正确的是()A.A代表B.B代表C.C代表D.B代表专项五投影知识清单1.一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.2.投影分为投影(由平行光线形成的投影,如太阳光线)和投影(由点光源发出的光线形成的投影).3.在平行投影中,当投影线与投影面时,物体在投影面上的投影叫做正投影.平面图形的正投影的规律:平行形不变,倾斜形改变,垂直成线段.考点例析例在同一时刻,物体的高度与它在阳光下的影长成正比.在某一时刻,有人测得一高为1.8 m的竹竿的影长为3 m,某一高楼的影长为60 m,那么这幢高楼的高度是()A.18 m B.20 m C.30 m D.36 m分析:设此高楼的高度为x m,根据同一时刻物高与影长成正比例列出关于x的比例式,求解即可.归纳:投影中蕴含着相似三角形,借助相似三角形的性质进行相关计算可使问题迎刃而解.跟踪训练1.如图,正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板.在灯光照射下,正方形纸板在地面上形成的影子的形状可以是()A B C D2.学习投影后,小华利用灯光下自己的影子长度来测量一路灯的高度.如图,身高1.7 m的小明从路灯灯泡A的正下方点B处,沿着平直的道路走8 m到达点D处,测得影子DE长为2 m,则路灯灯泡A 离地面的高度AB为m.第2题图专项六三视图知识清单1.对一个物体在三个投影面内进行正投影,在正面内得到的由前向后观察物体的视图,叫做;在水平面内得到的由上向下观察物体的视图,叫做;在侧面内得到的由左向右观察物体的视图,叫做.2.画三视图时,三个视图都要放在正确的位置,并且注意视图与视图的长对正,视图与视图的高平齐,视图与视图的宽相等.考点例析例1一个几何体如图1所示,它的左视图是()A B C D 图1分析:左视图是由左向右观察物体的视图.归纳:画三视图时一定要将物体的边缘、棱、顶点都体现出来,并规定:看得见部分的轮廓线画成实线,因被其他部分遮挡而看不见部分的轮廓线画成虚线,不能漏掉.例2 由若干个完全相同的小立方块搭成的几何体的左视图和俯视图如图2所示,则搭成该几何体所用的小立方块的个数可能是()A.4个B.5个C.7个D.8个图2分析:由左视图第一行有1个正方形,结合俯视图可知几何体上面一层有1或2个小立方块,由左视图第二行有2个正方形,结合俯视图可知几何体下面一层有4个小立方块,所以该几何体有5或6个小立方块.例3 如图是一个几何体的三视图,根据图中所标数据计算这个几何体的体积为()A.12πB.18πC.24πD.30π图3分析:观察三视图可知该几何体是空心圆柱,根据圆柱体积公式结合图中数据计算即可.归纳:根据三视图计算几何体的表面积或体积时,首先要确定几何体的形状,若是常见几何体,根据几何体的表面积公式或体积公式直接计算即可;若是较复杂的组合体,可拆分成常见几何体再进行计算.注意要准确判断三视图中的已知数据在实物图中对应的含义.跟踪训练1.如图是一个几何体的三视图,则这个几何体是()A.圆锥B.长方体C.球D.圆柱第1题图第2题图2.如图所示的几何体是由5个大小相同的小正方体搭成的,其左视图是()A B C D3.如图,该几何体的左视图是()A B C D第3题图第4题图4.如图是由若干个相同的小立方体搭成的几何体的主视图和左视图,则搭成这个几何体的小立方体的个数不可能是( )A .3B .4C .5D .65.我国某型号运载火箭的整流罩的三视图如图所示,根据图中数据(单位:米)计算该整流罩的侧面积(单位:平方米)是( )A .7.2πB .11.52πC .12πD .13.44π第5题图 第6题图 6.已知某几何体的三视图如图所示,则该几何体的侧面展开图中圆心角的度数为( )A .214°B .215°C .216°D .217°专项七 图形变换中的分类讨论思想知识清单在解决图形变换的有关问题时,由于经过变换的图形位置或形状不确定常导致问题的结果有多种可能,这时就需要把待求解的问题根据图形变换的可能性结合题目要求进行分类讨论,分类讨论时要选择恰当的分类标准,做到不重复、不遗漏.考点例析例 如图1,已知AD ∥BC ,AB ⊥BC ,AB =3,E 为射线BC 上一动点,连接AE ,将△ABE 沿AE 折叠,点B 落在点B ′处,过点B ′作AD 的垂线,分别交AD ,BC 于M ,N 两点.当B ′为线段MN 的三等分点时,BE 的长为( )A .32BC .32D图1分析:当MB '=13MN 时,如图2所示;当NB '=13MN 时,如图3所示.可设BE =x ,由折叠的性质表示出相关线段,再在Rt△B'EN中,利用勾股定理列方程即可求得BE的长.图2 图3跟踪训练1.如图,在△AOB中,OA=4,OB=6,AB=△AOB绕原点O旋转90°,则旋转后点A的对应点A′的坐标是()A.(4,2)或(﹣4,2)B.()4-或()-C.()-或()2-D.(2,-或(-第1题图第3题图2.)在矩形ABCD中,AB=2 cm,将矩形ABCD沿某直线折叠,使点B与点D重合,折痕与直线AD 交于点E,且DE=3 cm,则矩形ABCD的面积为cm2.3.如图,腰长为2的等腰三角形ABC中,顶角∠A=45°,D为腰AB上的一个动点,将△ACD沿CD折叠,点A落在点E处.当CE与△ABC的某一条腰垂直时,BD的长为.参考答案专项一轴对称与中心对称例1 A 例2 B1.D 2.(2,﹣4)3.33°4专项二图形的平移例 31.C 2.(0,﹣2) 3.(4,﹣1)专项三图形的旋转例 C1.B 2.C 3.C 4.(2,2)专项四立体图形的展开与折叠例1 C 例2 D1.D 2.A 3.A专项五投影例 D1.D 2.8.5专项六三视图例1 B 例2 B 例3 B1.D 2.A 3.D 4.D 5.C 6.C专项七图形变换中的分类讨论思想例 D1.C 2.(或(6-3或- 11 -。
第一讲 立体图形的展开与折叠(学生版)
第一讲 立体图形的展开与折叠知识清单1. 棱柱棱柱分为直棱柱和斜棱柱,初中阶段只讨论直棱柱.n 棱柱的定点有n 2个,棱有n 3条,面有(2 n )个,因此任意一个棱柱的顶点数、棱数和面数之间存在着这样的关系:顶点数+面数-棱数=2.2. 点、线、面、体从运动的角度看:点动成线,线动成面,面动成体. 3. 展开图与折叠图(1)几种常见的立体图形的展开图:(2)将正方体表面沿着某些棱剪开展成一个平面图形,需要剪开7条棱,由于剪开的方法不同,会得到11种不同形状的展开图.①“一四一”型:如下图,四个一行中排列,上下各一任意放,共6种;①“二三一”型:如下图,二在三上露一端,一在三下任意放,共3种;①“二二二”型:如下图,两两三行排有序,恰是登天上云梯,仅1种;①“三三”型:如下图,三个三排两行,中间一“日”放光芒,仅1中.题型突破题型1 识别几何体1.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥2.下列几何体中,是圆柱的为()A.B.C.D.3.下列图形中,属于立体图形的是()A.B.C.D.4.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有4个面是三角形;乙同学,它有6条棱,则该模型对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥5.一个棱柱共有9条棱,这个棱柱是()A.三棱柱B.四棱柱C.五棱柱D.六棱柱题型2 立体题图像的表面积1.已知正方体的边长为a.(1)一个正方体的表面积是多少?体积是多少?(2)2个正方体(如图②)叠放在一起,它的表面积是多少?体积是多少?(3)n个正方体按照图②的方式叠放在一起,它的表面积是多少?体积是多少?2.一个六棱柱模型如图所示,底面边长都是5cm,侧棱长为4cm,这个六棱柱的所有侧面的面积之和是()A.20cm2B.60cm2C.120cm2D.240cm23.小华自己动手做了一个铁皮圆柱形笔筒,它的底面直径为6cm,高为10cm,则其表面积为()A.156πcm2B.120πcm2C.69πcm2D.60πcm24.棱长是1cm的小立方体组成如图所示的几何体,那么这个几何体的表面积为()A.36cm2B.33cm2C.30cm2D.27cm25.如图所示的五棱柱的底面边长都是5cm,侧棱长12cm,它有多少个面?它的所有侧面的面积之和是多少?6.棱长为a的正方体,摆成如图所示的形状.(1)如果这一物体摆放三层,试求该物体的表面积;(2)依图中摆放方法类推,如果该物体摆放了上下20层,求该物体的表面积.(3)依图中摆放方法类推,如果该物体摆放了上下n层,求该物体的表面积.题型3 点、线、面、体1.将第一行的图形绕轴旋转一周,便得到第二行的几何体,用线连一连.2.将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A.B.C.D.3.天上一颗颗闪烁的星星给我们以“”的形象;中国武术中有“枪扎一条线,棍扫一大片”的说法,这句话给我们以“”的形象;宾馆里旋转的大门给我们以“”的形象.4.流星划过天空时留下一道明亮的光线,用数学知识解释为.5.如图,上面的平面图形绕轴旋转一周,可以得出下面的立体图形,请你把有对应关系的平面图形与立体图形连接起来.题型4 几何体的展开图1.下列图形中,可以是正方体表面展开图的是()A.B.C.D.2.下列图形中,不可以作为一个正方体的展开图的是()A.B.C.D.3.有一种正方体如图所示,下列图形是该方体的展开图的是()A.B.C.D.4.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为()A.圆锥,正方体,三棱锥,圆柱B.圆锥,正方体,四棱锥,圆柱C.圆锥,正方体,四棱柱,圆柱D.正方体,圆锥,圆柱,三棱柱5.将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与“创”字所在的面相对的面上标的字是()A.庆B.力C.大D.魅6.如图所示的正方体的展开图是()A.B.C.D.7.如图,在无阴影的方格中选出两个画出阴影,使它们与图中4个有阴影的正方形一起可以构成一个正方体的表面展开图.(在图1和图2中任选一个进行解答,只填出一种答案即可)题型5 展开图折叠成几何体1.如图给定的是纸盒的外表面,下面能由它折叠而成的是()A.B.C.D.2.把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为()A.富B.强C.文D.民3.下列图形通过折叠能围成一个三棱柱的是()A.B.C.D.4.如图1,观察一个正方体骰子,其中点数1与6相对,点数2与5相对,点数3与4相对,现在图2中②、②、②、②中的某一处画○,然后去掉其余3处后,能围成正方体骰子的是()A.②B.②C.②D.②题组A基础过关一.选择题(共4小题)1.毕业前夕,同学们准备了一份礼物送给自己的母校.现用一个正方体盒子进行包装,六个面上分别写上“祝、母、校、更、美、丽”,其中“祝”与“更”,“母”与“美”在相对的面上.则此包装盒的展开图(不考虑文字方向)不可能是()A.B.C.D.2.小明同学中考前为了给自己加油,课余时间制作了一个六个面分别写有“17”“中”“考”“必”“胜”“!”的正方体模型,这个模型的表面展开图如图所示,与“胜”相对的一面写的()A.17B.!C.中D.考3.将一个棱长为3的正方体的表面涂上颜色,分割成棱长为1的小正方体(如图).设其中一面、两面、三面涂色的小正方体的个数分别为为x1、x2、x3,则x1、x2、x3之间的关系为()A.x1﹣x2+x3=1B.x1+x2﹣x3=1C.x1﹣x2+x3=2D.x1+x2﹣x3=2 4.如图,模块②由15个棱长为1的小正方体构成,模块②﹣②均由4个棱长为1的小正方体构成.现在从模块②﹣②中选出三个模块放到模块②上,与模块②组成一个棱长为3的大正方体.下列四个方案中,符合上述要求的是()A.模块②,②,②B.模块②,②,②C.模块②,②,②D.模块②,②,②二.填空题(共3小题)5.墙角处有若千大小相同的小正方体堆成如图所示实体的立体图形,如果打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后的实体的三种视围分别保持不变,那么最多可以搬走个小正方体.6.“齐天大圣”孙悟空有一个宝贝﹣﹣金箍棒,当他快速旋转金箍棒时,展现在我们眼前的是一个圆的形象,这说明.7.用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色面的面积之和是cm2.三.解答题(共3小题)8.如图所示为8个立体图形.其中,柱体的序号为,锥体的序号为,有曲面的序号为.9.如图,在平整的地面上,有若干个完全相同的棱长为10cm的小正方体堆成一个几何体.(1)这个几何体由个小正方体组成.(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有个正方体只有一个面是黄色,有个正方体只有两个面是黄色,有个正方体只有三个面是黄色.(3)这个几何体喷漆的面积为cm2.10.值得探究的“叠放”!问题提出:把八个一样大小的正方体(棱长为1)叠放在一起,形成一个长方体(或正方体),这样的长方体(或正方体)表面积最小是多少?方法探究:第一步,取两个正方体叠放成一个长方体(如图②),由此可知,新长方体的长、宽、高分别为1,1,2.第二步,将新长方体看成一个整体,六个面中面积最大的是2,取相同的长方体,紧挨最大面积的面进行“叠放”,可形成一个较大的长方体(如图②),该长方体的长、宽、高分别为2,1,2.第三步,将较大的长方体看成一个整体,六个面中面积最大的是4,取相同的长方体,紧挨最大面积的面进行“叠放”,可形成一个大的正方体(如图②),该正方体的长、宽、高分别为2,2,2.这样,八个大小一样的正方体所叠放成的大正方体的最小表面积为6×2×2=24.仔细阅读上述文字,利用其中思想方法解决下列问题:(1)如图②,长方体的长、宽、高分别为2,3,1,请计算这个长方体的表面积.提示:长方体的表面积=2×(长×宽+宽×高+长×高)(2)取如图②的长方体四个进行叠放,形成一个新的长方体,那么,新的长方体的表面积最小是多少?(3)取四个长、宽、高分别为2,3,c的长方体进行叠放如图②,此时,形成一个新的长方体表面积最小,求c的取值范围.题组B提优过关一.选择题(共3小题)1.如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?()A.B.C.D.2.把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图),那么长方体下底面有()朵花.颜色红黄蓝白紫绿花的朵数123456A.15B.16C.21D.173.10个棱长为1的正方体木块堆成如图所示的形状,则它的表面积是()A.30B.34C.36D.48二.填空题(共2小题)4.如图,是由8个相同的小立方块达成的几何体,它的三个方向看到的都是2×2的正方形,拿掉若干个小立方块后,其三个方向观察到图形仍都为2×2的正方形.若已知该几何体不论拿掉哪一块小立方块,剩余立方块在几何体中的位置不变即几何体不会倒掉,则最多能拿掉小立方块的个数为5.墙角处有若千大小相同的小正方体堆成如图所示实体的立体图形,如果打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后的实体的三种视围分别保持不变,那么最多可以搬走个小正方体.三.解答题(共2小题)6.如图所示,左边是小颖的圆柱形的笔筒,右边是小彬的六棱柱形的笔筒.仔细观察两个笔筒,并回答下面问题.(1)圆柱、六棱柱各由几个面组成?它们都是平的吗?(2)圆柱的侧面与底面相交成几条线?它们是直的吗?(3)六棱柱有几个顶点?经过每个顶点有几条棱?(4)试写出圆柱与棱柱的相同点与不同点.7.一个正方体木块粘合成如图所示的模型,它们的棱长分别为1米、2米、4米,要在模型表面涂油漆,如果除去粘合部分不涂外,求模型的涂漆面积(可列式计算).。
六年级数学上册知识讲义-1.正方体的表面展开图-鲁教版(五四学制)
课标定位一、考点突破正方体的表面展开图,是考查学生对平面图形与空间几何体的相互转换的探索能力,以及空间想象能力,可为高中学习立体几何打下良好的基础,因此,这方面的试题成为中考的命题热点。
二、重难点提示重点:熟练掌握正方体的各种展开图。
难点:在正方体的展开与折叠过程中,建立空间观念,发展几何直觉。
考点精讲正方体的展开图(1)正方体展开后有四个面在同一层因为正方体有两个面必须作为底面,所以平面展开图中,最多有四个面展开后处在同一层,作为底面的两个面只能处在四个面这一层的两侧,有以下六种情形:①②③⑤④⑥(2)正方体展开后有三个面在同一层有三个面在同一层,剩下的三个面在两侧,有如下三种情形:⑦⑨⑧(3)二面三行,像楼梯;三面二行,两台阶。
⑩11典例精析例题1 如图,QQ软件里的“礼盒”图标是一个表面印有黑色实线,顶端有图示箭头的正方体,下列图形中,是该几何体的表面展开图的是()A B C D思路分析:正方体的侧面展开图共11种,本题要掌握正方体侧面展开图中相邻的面和相对的面。
答案:根据题意可得出:正方体对面上的线段应该平行或在一条直线上。
故符合题意的只有A。
点评:此题主要考查了几何体的展开图,由平面图形的折叠及正方体的展开图解题。
解题时勿忘记四棱柱的特征及正方体展开图的各种情形。
例题2 国外流行一种叫做“潘多米诺”的玩具,意即“五连块”,它由5个1×1的正方形纸板相连而成,且相连的纸板都有公共边。
五连块共有12种不同的形状(纸板是可以任意翻动或旋转的),下图中给出了其中的八种形状。
(1)请你画出其余的四种形状的图形。
(2)正方体的平面展开图是六个相同的小正方形,本题中的12个“五连块”图形中,有的通过恰当添加一个相同的小正方形能够成为正方体的平面展开图。
请你找出所有能添加成为正方体的平面展开图的“五连块”图形,在原图上画出需添加的一个小正方形并将其涂上阴影。
(1)(2)(3)(4)(5)(6)(7)(8)思路分析:(1)根据“五连块”的组成,分别分析即可得出所有图案;(2)利用立方体的组成特点,分别画出即可。
走进重高培优讲义专题集训 初中综合教练 第24讲 三视图与展开图
第24讲 三视图与展开图1.能识别常见的空间图形,理解图形三视图的概念.2.会画基本几何体的三视图,能判断简单物体(基本几何体的简单组合)的三视图.3.能根据三视图描述几何体和简单物体的实物原型.4.掌握立方体、长方体等常见棱柱的展开图,理解棱柱展开图的特征,并能进行相关计算.5.掌握圆柱、圆锥的展开图,理解常见旋转体的展开图的特征,并能进行相关计算.6.能进行立方体、长方体、圆柱、圆锥的侧面积或全面积的计算,能利用展开图将空间图形转化为平面图形.1.常见几何体的三视图要熟练掌握,对于几种几何体组成的组合体要注意各个部分的位置,通过认真观察实物,想象图形的三视图,或通过三视图想象实物.2.与三视图有关的综合题,关键在于正确判断图形的三视图,并掌握常见图形的面积、体积等计算方法.3.正方体和长方体都由六个面组成,展开图虽然有很多种情况,但都含有六个面,注意各个面之间的相互关系.4.圆柱的侧面展开图是一个矩形,其中矩形的一条边是底面周长,另一条边是母线,侧面积公式为2s rh π=;圆锥的侧面展开图是一个扇形,扇形的弧长是底面周长,半径是母线,侧面积公式为s =πrl .5.解决与空间图形有关的面积计算、最近距离等问题,一般都利用平面展开图将问题转化为平面图形,再利用三角形、四边形、圆等相关性质解决问题.例1 如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是( ).A .主视图B .俯视图C .左视图D .一样大【参考答案】C【方法归纳】本题考查三视图的知识以及学生对该知识点的巩固.解题的关键是找到三种视图的正方形的个数.【误区提醒】理解三视图的概念,要清楚各个视图分别是怎样得到的,具备一定的空间想象能力是解决这类题的关键.例2 如图是一个包装纸盒的三视图(单位:cm),则制作一个纸盒所需纸板的面积是( ).2)31(75.cm A + 2)231(75.cm B + 2)32(75.cm C + 2)232(75.cm D +【参考答案】C【方法归纳】三视图问题一直是中考的高频考点,一般题目难度中等偏下,本题是由两种视图来推测整个几何体的特征,这种类型的问题在中考试卷中经常出现,本题所用的知识是:主视图主要反映物体的长和高,左视图主要反映物体的宽和高,俯视图主要反映物体的长和宽,【误区提醒】主视图是正面看到物体的形状,反映了物体左右、上下位置关系,俯视图是从上而下看到的物体形状,反映了物体的左右、前后位置关系,左视图是从左侧看到的物体形状,反映了物体前后、上下的位置关系,通过各个视图综合起来考虑整个图形可以判断原几何体的形状,例3 小明在学习了“展开与折叠”的知识后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②,根据你所学的知识,回答下列问题:(1)小明总共剪开了_________条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①中补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880 cm ,求这个长方体纸盒的体积.【方法归纳】本题主要考查几何体的展开图,结合具体的问题,辨析几何体的展开图,通过立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键,【误区提醒】长方体展开图有6个面,即有6个小矩形,注意相对两个面是全等图形.例4 如图是一个几何体的三视图.(1)写出这个几何体的名称.(2)根据数据计算这个几何体的表面积.(3)如果一只蚂蚁要从这个几何体表面的点B出发,沿表面爬到AC的中点D,请你求出这个线路的最短路程.【方法归纳】注意根据三视图描述立体图形及把立体图形转化为平面图形的思想方法,同时要掌握圆锥表面积的计算公式.【误区提醒】注意圆锥全面积与表面积的区别,母线与高的区别与联系,解题时不要混淆.例葛藤是一种刁钻的植物,它的腰杆不硬,为了争夺雨露阳光,常常绕着树干盘旋而上,它还有一手绝招,就是它绕树盘升的路线总是沿最短路线——螺旋前进的,难道植物也懂数学?通过阅读以上信息,解决下列问题:(1)如果树干的周长(即图中圆柱体的底面周长)为30 cm,绕一圈升高(即圆柱的高)40 cm,则它爬行一圈的路程是多少?(2)如果树干的周长为80 cm,绕一圈爬行100 cm,它爬行10圈到达树顶,则树干高多少?【方法归纳】本题考查平面展开图问题,解题的关键是正确理解圆柱的侧面展开图,将问题转化为求矩形对角线的长.1.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)中有两个相同,而另一个不同的几何体是( ).①正方体②圆柱③圆锥④球①②.A②③.B②④.C③④.D2.沿圆柱体上底面直径截去一部分的物体如图所示,它的俯视图是( ).3.【济宁】一个几何体的三视图如图所示,则该几何体的表面积是( ).π224.+Aπ416.+Bπ816.+Cπ1216.+D4.长方体的主视图、俯视图如图(单位:m),则其左视图的面积是( ).24.mA212.mB21.mC23.mD5.如图,将4×3的网格图剪去5个小正方形后,图中还剩下7个小正方形,为了使余下的部分(小正方形之间至少要有一条边相连)恰好能折成一个正方体,需要再剪去1个小正方形,则应剪去的小正方形的编号是( ).7.A6.B5.C4.D6.如图的正方体的展开图是( ).(第6题)(第7题)7.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分.从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是_______.8.【日照】如图是一个几何体的三视图(图中尺寸单位:cm),根据图中数据计算该几何体的表面积是_______.(第8题)(第9题)9.【黄冈】如图,圆柱形玻璃杯高为14 cm,底面周长为32 cm,在杯内壁离杯底5 cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3 cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为______cm (杯壁厚度不计).10.如图是一个正方体的展开图,若此正方体的相对面上的数互为相反数,则a- (b-c)=________.11.如图是一个直四棱柱及其主视图和俯视图(等腰梯形).(1)根据图中所给数据,可得俯视图(等腰梯形)的高为(2)在虚线框内画出其左视图,并标出各边的长.(尺规作图,不写作法,保留作图痕迹)第10题 第11题12.有一块边长为a 的正方形铁皮,计划制成一个有盖的长方体铁盒,使得盒盖与相对的盒底都是正方形,如图1、图2给出了两种不同的裁剪方案(其中实线是剪开的线迹,虚线是折叠的线迹,阴影部分是余料),问哪一种方案制成的铁盒体积更大些?请说明理由.(接缝处忽略不计)图1 图213.在△ABC 中,.3,30,90==∠=∠BC A C(1)将△ABC 绕AB 所在的直线旋转一周,求所得几何体的侧面积.(2)折叠△ABC,使BC 边与CA 边重合,求折痕长和重叠部分的面积.14.问题探究:(1)如图1是一个半径为、π23高为4的圆柱体和它的侧面展开图,AB 是圆柱的一条母线,一只蚂蚁从点A 出发沿圆柱的侧面爬行一周到达点B ,求蚂蚁爬行的最短路程.(探究思路:将圆柱的侧面沿母线AB 剪开,它的侧面展开图如图1中的矩形//,ABB A 则蚂蚁爬行的最短路程即为线段/AB 的长.) (2)如图2是一个底面半径为、32母线长为4的圆锥和它的侧面展开图,PA 是它的一条母线,一只蚂蚁从点A 出发沿圆锥的侧面爬行一周后回到点A ,求蚂蚁爬行的最短路程.(3)如图3,在(2)的条件下,一只蚂蚁从点A 出发沿圆锥的侧面爬行一周到达母线PA 上的一点,求蚂蚁爬行的最短路程.图1 图2 图31.【青海】由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有( ).A .3块B .4块C .6块D .9块(第1题) (第2题)2.【宁波】如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是( ).A .主视图B .左视图C .俯视图D .主视图和左视图3.【常州】下列图形中,属于圆锥的侧面展开图的是( ).4.【巴彦淖尔】如图是一个几何体的三视图,则这个几何体的表面积是( ).4860.+πA 4868.+πB 4848.+πC 4836.+πD(第4题) (第5题)5.【东营】如图,圆柱的高AB-3,底面直径BC=3.现在有一只蚂蚁想要从A 处沿圆柱表面爬到对角C 处捕食,则它爬行的最短距离是( ). π+13.A 23.B 243.2π+C 213.π+D6.【常建】把图1中的正方体的一角切下后摆在图2的位置,则图2中的几何体的主视图为( ).7.【呼和浩特】如图是某几何体的三视图,根据图中数据,求得该几何体的表面积为________.(第7题) (第8题)8.【齐齐哈尔】三棱柱的三视图如图所示,已知△EFG 中,,45,12,8=∠==FFG cm EG cm EF 则AB 的长为 __________.cm9.【青岛】一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有________种,主视图 左视图10.【东营】我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A 处缠绕而上,绕五周后其末端恰好到达点B 处,则问题中葛藤的最短长度是______尺.11.由一些大小相同、棱长为1的小正方体搭成的几何体的俯视图如图所示,数字表示该位置的正方体个数.(1)请画出它的主视图和左视图.(2)给这个几何体喷上颜色(底面不喷色),需要喷色的面积为_________.(3)在不改变主视图和俯视图的情况下,最多可添加_________块小正方体.12.一个几何体的三视图如图所示,则这个几何体的名称是_______.请根据三视图画出它的平面展开图,并求出其表面积S.13.如图,长方体底面是长为2 cm 、宽为lcm 的长方形,其高为8 cm.(1)如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,请利用侧面展开图计算,所用细线最短需要多长?(2)如果从点A 开始经过4个侧面缠绕2圈到达点B ,那么所用细线最短需要多少?14.如图,在△ABC 中,⋅===31sin ,61sin ,18C A AB (1)此三角形绕着AC 旋转一周,请你描述所得的几何体,并求出上述几何体的表面积.(2)-只蚂蚁要从点B 出发绕上述几何体爬一圈回到原地,求蚂蚁爬过的最短路线长.1.如图是由27个相同的小立方块搭成的几何体,它的三个视图是3×3的正方形,若拿掉若干个小立方块(几何体不倒掉),其三个视图仍都为3×3的正方形,则最多能拿掉小立方块的个数为( ).A.10 B.12 C.15 D.182.如图,将一张边长为6 cm的正方形纸片按虚线裁剪后,恰好围成底面是正六边形的棱柱,则这个六棱柱cm的侧面积为________.23.如图是“口子窖”酒的一个由铁皮制成的包装底盒,它是一个无盖的六棱柱形状的盒子(如图1),侧面是矩形120 该六棱柱的高为或正方形.经测量,底面六边形有三条边的长是9 cm,有三条边的长是3cm,每个内角都是,3 cm.现沿它的侧棱剪开展平,得到如图3所示的平面展开图.(1)制作这种底盒时,可以按图3中虚线裁剪出如图2所示的模片.现有一块长为17.5 cm、宽为16.5 cm的长方形铁皮,请问能否按图3的裁剪方法制作这样的无盖底盒?请你说明理由.(2)如果用一块正三角形铁皮按图4中虚线裁剪出如图2所示的模片,那么这个正三角形的边长至少应为_______cm.图1 图2图3 图4。
初一数学立体图形的展开图含答案
初一数学立体图形的展开图中考要求例题精讲正方形展开图的知识要点:第一类:有6种。
特点:是4个连成一排的正方形,其两侧各有一个正方形.简称“141型”第二类:有3种。
特点:是有3个连成一排的正方形,其两侧分别有1个和两个相连的正方形;简称“132型”第三类:仅有一种。
特点:是两个连成一排的正方形的两侧又各有两个连成一排的正方形;简称“222型”第四类:仅有1种,三个连成一排的正方形的一侧,还有3个连成一排的正方形,可简称“33型”正方形展开图的识别方法:1.排除法:(1)由少于或多于6个的正方形组成的图形不是正方形的平面展开图(2)有“凹”字型或“田”字型部分的平面图形不是正方体的展开图2.对比法:对照上面的四种规则进行对照;从展开图可以看出,在正方形的展开图中不会出现如下图所示的“凹”字型和“田”字型结构。
模块一长方体的展开图长方体展开图【例1】下列图形中,不能表示长方体平面展开图的是()A.B.C.D.【解析】由平面图形的折叠及正方体的展开图解题.选项A,B,C经过折叠均能围成长方体,D两个底面在侧面的同一侧,缺少一定底面,所以不能表示长方体平面展开图.故选D.【答案】D【巩固】如图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为()A.4 B.6 C.12 D.15【解析】由图可知,无盖长方体盒子的长是3,宽是2,高是1,所以盒子的容积为3×2×1=6.盒子的容积为3×2×1=6.故选B.【答案】B【巩固】下图是一个长方体纸盒的展开图,请把-5,3,5,-1,-3,1分别填入六个长方形,使得按虚线折成长方体后,相对面上的两数互为相反数.【解析】根据题意,找到相对的面,把互为相反数的数字分别填入即可.【答案】如下图:正方体展开图【例2】下列图形中为正方体的平面展开图的是()A.B.C.D.【解析】由四棱柱四个侧面和上下两个底面的特征可知,A,B,D上底面不可能有两个,故不是正方体的展开图.选项C可以拼成一个正方体.【答案】C【巩固】将一个正方体沿某些棱展开后,能够得到的平面图形是()A.B.C.D.【解析】本题考查图形的展开与折叠中,正方体的常见的十余种展开图有关内容.可将这四个图折叠后,看能否组成正方形.A、出现了田字格,故不能;B、D、上底面不可能有两个,故不是正方体的展开图;C、可以拼成一个正方体.故选C.【答案】C【例3】一个正方体的表面展开图可以是下列图形中的()A.B.C.D.【解析】A,B,D折叠后有一行两个面无法折起来,从而缺少面,不能折成正方体,只有C是一个正方体的表面展开图.故选C.【答案】C【巩固】下列图形中,不是正方体表面展开图的是()A.B.C.D.【解析】A、B、C经过折叠均能围成正方体,D、折叠后第一行两个面无法折起来,不能折成正方体.【答案】D【巩固】将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是()A.B.C.D.【解析】由平面图形的折叠及立体图形的表面展开图的特点解题.注意带图案的三个面相交于一点.而通过折叠后A、B都不符合,且D折叠后图案的位置正好相反,所以能得到的图形是C.【答案】C.【例4】将如图正方体的相邻两面上各画分成九个全等的小正方形,并分别标上O、×两符号.若下列有一图形为此正方体的展开图,则此图为()A、B、C、D、【解析】此题主要根据O、×两符号的上下和左右位置判断,可用排除法.由已知图可得,O、×两符号的上下位置不同,故可排除A、B;又注意到O、×两符号之间的空行有3列.【答案】C.【巩固】如图,哪一个是左边正方体的展开图()A.B.C.D.【解析】本题考查正方体的表面展开图及空间想象能力.在验证立方体的展开图式,要细心观察每一个标志的位置是否一致,然后进行判断.根据有图案的表面之间的位置关系,正确的展开图是D.【答案】故选D.【点评】学生对相关图的位置想象不准确,从而错选,解决这类问题时,不妨动手实际操作一下,即可解决问题.【例5】下面哪个图形不是正方体的展开图()A.B.C.D.【解析】选项A,B,C折叠后都可以围成正方体,而D折叠后折叠后第一行两个面无法折起来,而且下边没有面,不能折成正方体.【答案】D.【巩固】一个无盖的正方体盒子的平面展开图可以是下列图形中的()A.只有图①B.图①、图②C.图②、图③D.图①、图③【解析】图②,经过折叠后,没有上下底面,侧面是由5个正方形组成,与正方体的侧面是4个正方形围成不相符,所以不是无盖的正方体盒子的平面展开图.【答案】D.【巩固】如图,是一个正方体盒子(6个面)的侧面展开图的一部分,请将它补充完整.【解析】根据正方体的展开图特点补全即可,答案不唯一.正方体的展开图如下:(答案不唯一),最后一个图形不符合.【答案】略模块二圆柱、圆锥的侧面展开图圆柱体【例6】圆柱的侧面展开图形是()A.圆B.矩形C.梯形D.扇形【解析】略【答案】B【巩固】如图,已知MN是圆柱底面的直径,NP是圆柱的高,在高柱的侧面上,过点M,P嵌有一幅路径最短的金属丝,现将圆柱侧面沿NP剪开,所得的侧面展开图是()A.B.C.D.【解析】由平面图形的折叠及立体图形的表面展开图的特点解题.因圆柱的展开面为长方形,MP展开应该是两直线,且有公共点M.故选A.【答案】A【例7】如图,MN是圆柱底面的直径,NO是圆柱的高,在圆柱的侧面上,过点M,P.有一条绕了四周的路径最短的金属丝,现将圆柱侧面沿NO剪开,所得的侧面展开图可以是:【解析】根据两点之间线段最短,剪开后所得的侧面展开图中的金属丝是线段,即可选择.注意P 点在展开图中长边的中点处,圆柱侧面沿NO 剪开,根据两点之间线段最短,剪开后所得的侧面是长方形,P 点在展开图中长边的中点处,金属丝是线段,且从P 点开始到M 点为止.故选②.【答案】②【巩固】底面直径为m 的圆柱体(如图),沿它的一条母线AB (也就是圆柱的高,且AB=h )剪开展平,则圆柱侧面展开后的面积为 .【解析】根据圆柱侧面积=底面周长×高计算即可.圆柱的侧面积=mh π. 【答案】mh π圆锥体【例8】 下列立体图形中,侧面展开图是扇形的是( )A .B.C. D .【解析】根据圆锥的特征可知,侧面展开图是扇形的是圆锥. 【答案】B【巩固】我国运用长征火箭发射了百余颗人造卫星和5次神州飞船.如图是我国航天科技人员自主研究开发的长征系列火箭的立体图形.(火箭圆柱底面圆的周长不等于圆柱的高) (1)请你画出火箭的平面展开图,并标上字母. (2)写出平面图形中所有相等的量.【解析】结合圆柱和圆锥的侧面展开图的特征解题.(1)如右图.(2)OA OB =,CB ED AB ==,BE CD =,90B C D E ∠=∠=∠=∠=.【答案】同解析.模块二其他立体图形的展开图【例9】若下列只有一个图形不是右图的展开图,则此图为何?()A.B.C.D.【解析】选项D的四个三角形面不能折叠成原图形的四棱锥,而是有一个三角形面与正方形面重合,故不能组合成原题目的立体图形.【答案】故选D.【巩固】图1是由白色纸板拼成的立体图形,将此立体图形中的两面涂上颜色,如图2所示.下列四个图形中哪一个是图2的展开图()A、B、C、D、【解析】由平面图形的折叠及立体图形的表面展开图的特点解题.由图中阴影部分的位置,首先可以排除B、D,又阴影部分正方形在左,三角形在右.【答案】故选A.【例10】下列四个图中,是三棱锥的表面展开图的是()A.B.C.D.【解析】三棱锥的四个面都是三角形,还要能围成一个立体图形,可排除C,D,而A不能围成立体图形,故可得答案.【答案】B.【巩固】下面四个图形中,是三棱柱的平面展开图的是()A.B.C.D.【解析】根据三棱柱的展开图的特点作答.A、是三棱柱的平面展开图;B、是三棱锥的展开图,故不是;C、是四棱锥的展开图,故不是;D、两底在同一侧,也不符合题意.故选A.【答案】A【例11】下列图形中,不是三棱柱的表面展开图是()A.B.C.D.【解析】利用棱柱及其表面展开图的特点解题.A、B、C中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.D围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故D不能围成三棱柱.【答案】故选D.【例12】如图是一个正四面体,它的四个面都是正三角形,现沿它的三条棱AC、BC、CD剪开展成平面图形,则所得的展开图是()A 、B 、C 、D 、【解析】亲自动手具体操作,或根据三棱锥的图形特点作答.根据三棱锥的图形特点,可得展开图为B .【答案】B .【例13】 哪种几何体的表面能展成如图所示的平面图形?需剪几条棱才能得到如此形状的平面图?你是怎样数出来的?请总结其规律.【解析】侧面为五个长方形,底边为五边形,故原几何体为五棱柱.五棱柱能展成如图所示的平面图形.由五棱柱展开成平面图形,需要剪9条棱.因为五棱柱共有15条棱,7个面,展成平面图形时,7个面需有6条棱相连,共需留下6条棱不剪,所以需剪15-6=9(条)棱. 总结规律:n 棱柱有n+2个面,3n 条棱,展成平面图形时,n+2个面需有n+1条棱相连,故应留下n+1条棱不剪,所以要把n 棱柱展成平面图形,共需剪3n-(n+1)=(2n-1)条棱.【答案】五棱柱;9;()3121n n n -+=-.【例14】 下列图形是某些立体图形的平面展开图,说出这些立体图形的名称.【解析】由平面图形的折叠及常见立体图形的展开图解题.根据图示可知:①五棱锥;②圆柱;③三棱柱.【答案】①五棱锥②圆柱③三棱柱【巩固】图中四个图形是多面体的展开图,你能说出这些多面体的名称吗?【解析】由平面图形的折叠及立体图形的表面展开图的特点解题.6个正方形能围成一个正方体,三个长方形和两个三角形能围成一个三棱柱,一个四边形和四个三角形能围成四棱锥,6个长方形可以围成长方体.【答案】正方体;三棱柱;四棱锥;长方体.课后作业1. 下列各图形中,可以是一个正方体的平面展开图的是()A.B.C.D.【解析】选项A,C折叠后缺少一个底面,而B折叠后缺少一个侧面,所以可以是一个正方体的平面展开图的是D.【答案】故选D.2.把圆锥的侧面展开,会得到的图形是()A.B.C.D.【解析】圆锥的侧面展开图是扇形,故选C.【答案】C3.如图,圆柱体的表面展开后得到的平面图形是()A、B、C、D、【解析】根据圆柱的侧面展开图作答.圆柱体的侧面展开后得到的平面图形是矩形,上下两底是两个圆,故选B.【答案】B4.如图,四种图形各是哪种立体图形的表面展开所形成的?画出相应的四种立体图形.【解析】根据四棱锥、三棱柱、圆柱、圆锥及其表面展开图的特点解答并作图.观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是四棱锥、三棱柱、圆柱、圆锥.作图如下:【答案】同解析.【点评】本题考查了几何体的展开图,可根据所给图形判断具体形状,也可根据所给几何体的面数进行判断.初中数学.图形初步A级.第01讲.教师版Page 11 of 11。
几何体与展开图(含答案)
几何体与展开图(通用版)一、单选题(共16道,每道6分)1.如下图,下列图形全部属于柱体的是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:认识几何体2.关于棱柱和圆柱的区别,下列说法错误的是( )A.棱柱和圆柱的底面不同B.棱柱有棱,圆柱没有棱C.棱柱有顶点,圆柱没有顶点D.棱柱和圆柱的侧面都是平面答案:D解题思路:试题难度:三颗星知识点:棱柱和圆柱的区别3.四棱柱的顶点、棱、面的个数分别是( )A.8,8,4B.8,12,6C.4,8,6D.4,5,5答案:B解题思路:试题难度:三颗星知识点:棱柱的顶点、面、棱的个数4.六棱锥的顶点、棱、面的个数分别是( )A.12,6,7B.12,18,8C.6,12,7D.7,12,7答案:D解题思路:试题难度:三颗星知识点:棱锥的顶点、面、棱的个数5.一个棱柱有30条棱,那么它的底面是( )A.十五边形B.十四边形C.三十边形D.十边形答案:D解题思路:试题难度:三颗星知识点:棱柱的顶点、面、棱的个数6.一个棱锥有18个面,那么它有( )条棱.A.32B.51C.34D.48答案:C解题思路:试题难度:三颗星知识点:棱锥的顶点、面、棱的个数7.将如图所示的直角梯形绕直线l旋转一周,得到的几何体是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:面动成体8.下列四个图形中,是三棱柱的平面展开图的是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:柱、锥表面展开图9.下面6个图形是正方体的表面展开图的有( )A.2个B.3个C.4个D.5个答案:B解题思路:试题难度:三颗星知识点:正方体的表面展开图10.从如图的纸板上11个无阴影的正方形中选1个(将其余10个都剪去),与图中5个有阴影的正方形折成一个正方体,不同的选法有( )A.6种B.5种C.4种D.3种答案:C解题思路:试题难度:三颗星知识点:正方体的表面展开图11.如图,下列四个选项的图形折叠后,能得到如图正方体的是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:正方体的表面展开图12.将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的表面展开图如图所示,那么在这个正方体中,和“创”相对的字是( )A.文B.明C.城D.市答案:B解题思路:试题难度:三颗星知识点:正方体的表面展开图——相对面13.如图,是一个正方体的表面展开图,在正方体中写有“心”字的那一面的相对面的字是( )A.祝B.你C.事D.成答案:D解题思路:试题难度:三颗星知识点:正方体的表面展开图——相对面14.小明为了鼓励芦山地震灾区的学生早日走出阴影,好好学习,制作了一个正方体礼盒(如图).礼盒每个面上各有一个字,连起来组成“芦山学子加油”,其中“芦”的对面是“学”,“加”的对面是“油”,则它的表面展开图可能是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:正方体的表面展开图——相对面、相邻面15.六个面分别标有“我”、“是”、“初”、“一”、“学”、“生”的正方体有三种不同放置方式,则“是”和“学”的相对面分别是( )A.“生”和“一”B.“初”和“生”C.“初”和“一”D.“生”和“初”答案:A解题思路:试题难度:三颗星知识点:正方体的表面展开图——相对面、相邻面16.一个小立方块的六面分别标有字母A,B,C,D,E,F,如图是从三个不同方向看到的情形,则A,B,E的相对面分别是( )A.E,D,FB.E,F,DC.F,D,ED.F,D,C答案:D解题思路:试题难度:三颗星知识点:正方体的表面展开图——相邻面、相对面。
专题27 三视图与展开图(解析版)
专题13 三视图与展开图1.视图:当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。
2.物体的三视图特指主视图、俯视图、左视图。
(1)主视图:从物体的前面向后面投射所得的视图称主视图,能反映物体的前面形状。
(2)俯视图:从物体的上面向下面投射所得的视图称俯视图,能反映物体的上面形状。
(3)左视图:从物体的左面向右面投射所得的视图称左视图,能反映物体的左面形状,有时也叫做侧视图。
物体的三视图实际上是物体在三个不同方向的正投影.正投影面上的正投影就是主视图,水平投影面上的正投影就是俯视图,侧投影面上的正投影就是左视图在画三视图时,三个三视图不要随意乱放,应做到俯视图在主视图的下方,左视图在主视图的右边,三个视图之间保持:长对正,高平齐,宽相等。
3.展开图:平面图形有三角形、四边形、圆等.立体图形有棱柱、棱锥、圆柱、圆锥、球等.把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形。
【例题1】(2019•四川省达州市)如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.【答案】B【解析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可作出判断.从左面看可得到从左到右分别是3,1个正方形.专题知识回顾专题典型题考法及解析【例题2】(2019•甘肃)已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为.【答案】(18+2)cm2.【解析】由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.该几何体是一个三棱柱,底面等边三角形边长为2cm,高为cm,三棱柱的高为3,所以,其表面积为3×2×3+2×=18+2(cm2).【例题3】(2019•江苏连云港)一个几何体的侧面展开图如图所示,则该几何体的底面是()A.B.C.D.【答案】B【解析】根据几何体的侧面展开图可知该几何体为四棱锥,所以它的底面是四边形.由题意可知,该几何体为四棱锥,所以它的底面是四边形.专题典型训练题一、选择题1.(2019广东深圳)下列哪个图形是正方体的展开图()A. B.C.D.【答案】B【解析】立体图形的展开图B中图形符合“一四一”模型,是正方体的展开图.故选B.2.(2019•山东省济宁市)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是()A.B.C.D.【答案】B.【解析】考点是几何体的展开图。
初一数学展开图及点线面体讲解
练一练:围成下面这些几何体的各个面中,哪些 面是平的?哪些面是曲的?
观察我们的教室和周围环境,举出一些实际生活中“面” 的例子,并指出哪些面是平的,那些面是曲的?
观察几何体模型,回答下列问题: (1)面与面相交的地方形成了什么图形?它们有什么不同? (2)线与线相交的地方形成了什么图形?它们有什么不同?
点 动 成 线
物体的运动会留下运动轨迹,这些运动轨迹往往也 能抽象成几何图形.如果把笔尖看成一个点,这个点在 纸上运动时,形成的图形是什么?动手试一试.
归纳结论: 点动成线.
汽车的雨刷在挡风玻璃上画出一个扇面,从几何 的角度观察这种现象,你可以得出什么结论?
概括结论: 线动成面.
线 动 成 面
线 动 成 面
线 动 成 面
三角形 绕一边 旋转成 圆锥体
长方形 绕一边 旋转成 圆柱体
既然“点动成线,线动成面”,那么请同学 们想一想:当面运动时又会形成什么图形?如何 验证你的猜想?
概括结论:面动成体.
点动成—— 线 线动成—— 面 面动成—— 体
体是由面组成 面与面相交成线 线与线相交成点
观察可知:长方体有__6__个面,面与面相交的地方形成了 _1_2_条线,线与线相交成__8__个点;三棱柱有__5__个面,面与面 相交的地方形成了__9_条线,线与线相交成__6__个点.
归纳:图形的构成元素包括__点__、 _线___、 __面__、 __体__.
我们先来认识“体”.观察一本书、圆罐、篮球,从它们 外形中分别可以抽象出什么立体图形?
常见几何体展开图及点、线、面、体的关系 执教:小密初中 钟岩锋
从上面看
从左面看 主视图
从正面看
左视图
俯视图
专题4.2几何体的展开图(举一反三)(人教版)(原卷版)
专题4.2 几何体的展开图【九大题型】【人教版】【题型1 判断正方体展开图的相对面或相邻面】 (1)【题型2 展开图折叠成正方体】 (2)【题型3 正方体的平面展开图】 (4)【题型4 视图与小正方体的个数问题】 (5)【题型5 根据视图确定组成几何体的正方体的个数】 (6)【题型6 根据视图确定正方体最多或最少的个数】 (7)【题型7 棱柱的展开与折叠】 (8)【题型8 圆柱的展开与折叠】 (9)【题型9 圆锥、棱锥的展开与折叠】 (10)【题型1 判断正方体展开图的相对面或相邻面】【例1】(2022•盐城)正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是()A.强B.富C.美D.高【变式11】(2022•佛山校级三模)如图为正方体的展开图,将标在①②③④的任意一面上,使得还原后的正方体中与是相邻面,则不能标在()A.①B.②C.③D.④【变式12】(2022•南京期末)如图,在一个正方形盒子的六面上写有“祝、母、校、更、美、丽”六个汉字,其中“祝”与“更”,“母”与“美”在相对的面上,则这个盒子的展开图(不考虑文字方向)不可能的是()A.B.C.D.【变式13】(2022•揭阳月考)李明同学设计了某个产品的正方体包装盒如图所示,由于粗心少设计了其中一个顶盖,请你把它补上,使其成为一个两面均有盖的正方体盒子.(1)共有种弥补方法;(2)任意画出一种成功的设计图(在图中补充);(3)在你帮忙设计成功的图中,要把﹣6,8,10,﹣10,﹣8,6这些数字分别填入六个小正方形,使得折成的正方体相对面上的两个数相加得0.(直接在图中填上)【题型2 展开图折叠成正方体】【例2】(2022•简阳市期末)正方体是由六个平面图形围成的立体图形,设想沿着正方体的一些棱将它剪开,就可以把正方体剪成一个平面图形,但同一个正方体,按不同的方式展开所得的平面展开图是不一样的,下面的图形是由6个大小一样的正方形,拼接而成的,请问这些图形中哪些可以折成正方体?试试看.【变式21】(2022•秦都区期中)如图所示,用标有数字1、2、3、4的四块正方形,以及标有字母A、B、C、D、E、F、H的七块正方形中任意一块,用这5块连在一起的正方形折叠成一个无盖的正方体盒子,一共有几种不同的方法?写出这些方法所用到正方形所标有的数字和字母.【变式22】(2022•张家口一模)如图,是一个正方体的展开图,这个正方体可能是()A.B.C.D.【变式23】(2022•宁波模拟)请你插上想象的翅膀:如图是下列六个正方体中哪个的侧面展开图?你的选择是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何体与展开图(讲义)
➢课前预习
1.在生活中,我们经常见到正方体的盒子.请你找到一个正方体盒子,尝试进行下列
操作:
①将正方体盒子相对的面上画上相同的图案并沿某些棱剪开,展成一个平面图
形.请画出你展开后的图形,并在小正方形上画上相应的图案.
②观察展开图中画有相同图案的小正方形,发现画有相同图案的小正方形都
_________(填“相邻”或“不相邻”).
2.生活中我们经常见到圆柱或圆锥形的盒子,请你找到一个圆柱或圆锥形的盒子,并
把它们进行表面展开,请分别画出你展开后的图形.
➢知识点睛
1.几何体可分为四类:_______、_______、_______、_______.棱柱与圆柱的异同:
相同点:都有_____个底面.
不同点:
①底面不同:棱柱的底面是_______,圆柱的底面是________
②侧面不同:棱柱的侧面是_______,圆柱的侧面是_______;
③棱不同:棱柱有棱,圆柱无棱;
④顶点不同:棱柱有顶点,圆柱无顶点.
棱柱与棱锥的区别:
①底面不同:棱柱有_____个底面,棱锥有______个底面;
②侧面不同:棱柱的侧面都是______,棱锥的侧面都是_____.
2.n棱柱有_______个面________条棱_______个顶点.
n棱锥有_______个面________条棱_______个顶点.
3.图形是由_______、_______、_______构成的,面与面相交得到_______,线与线
相交得到_______.点动成_______,线动成_______,面动成_______.
4.正方体的十一种表面展开图.
➢精讲精练
1.将下列几何体分类.
①正方体②圆柱③长方体
④球⑤圆锥⑥三棱锥
(1)柱体是_________________;
(2)锥体是_________________;
(3)只有曲面围成的几何体是__________________.
2.在乒乓球、篮球、足球、羽毛球、排球、保龄球、橄榄球、冰球中,是球体的有
________________________________.
3.圆锥是由_____个面围成,其中_____个平面,_____个曲面.
4.图中的几何体有_____个面,面面相交成_____线.
5.六棱柱有______个顶点,______个面;七棱锥有_____个顶点,
_____个面.
6.______棱锥有20条棱;______棱柱有48条棱;______棱柱有8个面;______棱
锥有10个面.
7.流星划过天空,形成了一道美丽的弧线,这说明了________
_____________;汽车的雨刷刷过玻璃时,形成了一个扇形,这说明了
______________;薄薄的硬币在桌面上转动时,看上去像球,这说明了
___________________.
8.把一块学生用的三角板以一条直角边为轴旋转一周形成的几何体是
_______________.
冰球
保龄球
橄榄球
9.如图,上排的平面图形绕轴旋转一周,可以得到下排的几何体,那么与甲、乙、
丙、丁各平面图形顺序对应的几何体的编号应为()
甲
丁
丙
乙
①②③④
A.③④①②B.①②③④C.③②④①D.④③②①
10.圆柱的侧面是___________,侧面展开图是_____________.
11.圆锥的侧面是___________,侧面展开图是_____________.
12.直棱柱的侧面展开图是__________.
13.指出下列平面图形是什么几何体的表面展开图.
①______________;②_____________;③_____________;
④______________;⑤_____________.
14.下列图形是正方体的表面展开图的是()
A. B. C. D.
15.下列各图经过折叠后不能围成正方体的是()
A.B.C.D.
16.从如图的纸板上11个无阴影的正方形中选1个(将其余10个都剪去),与图中5
个有阴影的正方形折成一个正方体,不同的选法有()
A.3种B.4种C.5种D.6种
17.图中表面展开图折叠成正方体后,相对面上两个数之和为6,则
x=____________,y=____________.
1
23
x y
18.图中表面展开图折叠成正方体后,相对面上两个数之和相同,则“众”代表的数
字是______,“享”代表的数字是______.
享
众
2
2
19. 如图,一个正方体纸盒的六个面上分别印有1,2,3,4,5,6,并且相对面上的
两数之和为7,它的表面展开图可能是( )
6
5
3
6
543
21
6
52
1
34
6512
34 6541
32
A .
B .
C .
D .
20. 下面四个图形中,经过折叠能围成如图只有三个面上印有图案的正方体纸盒的是
( )
A .
B .
C .
D .
21. 将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是( )
A .
B .
C .
D .
22. 一个小立方块的六个面分别标有字母A ,B ,C ,D ,E ,F ,如图是从三个不同方
向看到的情形,请说出A ,B ,E 对面分别是_________,_________,_________.
A
D E
C E
B
B A
F
23. 已知一不透明的正方体的六个面上分别写着1至6六个数字,如图是我们能看到
的三种情况,那么1和5的对面数字分别是_________和_________.
1
4
61
2
45
2
1
24. 如果正方体的六个面上分别标有:团、结、就、是、力、量.从三个不同的方向
看到的情形如下,那么团、结、力对面的字分别是( ) A .量,就,是 B .就,是,量 C .量,是,就 D .就,量,是
力
是团
力
就结
结团
量
【参考答案】
➢课前预习
1.①略;
②不相邻.
2.略
➢知识点睛
1.柱体;锥体;球体;台体.
2;
①多边形;圆;
②平面;曲面.
①2;1;
②长方形;三角形.
2.(n+2);3n;2n.
(n+1);2n;(n+1).
3.点;线;面;线;点;线;面;体.
4.略
➢精讲精练
1.(1)①②③;(2)⑤⑥;(3)④
2.乒乓球、篮球、足球、排球、保龄球
3.2;1;1
4.3;曲
5.12;8;8;8
6.4;十六;六;九
7.点动成线;线动成面;面动成体
8.圆锥
9. A
10.曲面;长方形
11.曲面;扇形
12.长方形
13.四棱柱;圆锥;圆柱;四棱锥;三棱锥
14.B
15.D
16.B
17.5;3
18.2;0
19.D
20.B
21.C
22.C;D;F
23.3;4
24.B。