2013中考数学50个知识点专练4答案 分式及其运算

合集下载

分式的运算练习题及答案

分式的运算练习题及答案

分式的运算练习题及答案分式的运算是数学中的基本内容之一,掌握好分式的运算方法对于提高数学水平具有重要的作用。

本文将为您提供一些分式的运算练习题及答案,帮助您巩固分式运算的知识。

一、基础练习题1. 计算:$\frac{1}{2} + \frac{3}{4}$答案:$\frac{5}{4}$2. 计算:$\frac{2}{3} \times \frac{3}{5}$答案:$\frac{2}{5}$3. 计算:$\frac{5}{6} \div \frac{1}{2}$答案:$\frac{5}{3}$4. 计算:$\frac{3}{4} + \frac{2}{9} - \frac{1}{3}$答案:$\frac{1}{36}$5. 计算:$(\frac{2}{3} + \frac{1}{4}) \times \frac{3}{5}$答案:$\frac{13}{30}$二、复杂练习题1. 计算:$\frac{3}{4} \div \frac{2}{5} \times \frac{1}{3}$答案:$\frac{15}{8}$2. 计算:$(\frac{7}{8} - \frac{3}{4}) \div (\frac{2}{3} \times\frac{5}{6})$答案:$\frac{7}{20}$3. 计算:$\frac{1}{2} + \frac{1}{3} - \frac{1}{4} \times \frac{1}{5}$答案:$\frac{2}{15}$4. 计算:$\frac{2}{3} \div \frac{3}{4} + \frac{4}{5} - \frac{5}{6}$答案:$\frac{7}{6}$5. 计算:$(\frac{3}{4} + \frac{1}{5}) \div \frac{2}{3} - \frac{5}{6}$答案:$-\frac{17}{36}$三、应用题1. 甲、乙两人一起做数学题,甲做的时间是乙的$\frac{2}{3}$,若乙做完题所需时间为1小时,问甲需要多长时间做完这些题?答案:$\frac{4}{3}$小时解析:设甲需要x小时做完这些题,则根据题意可得$\frac{x}{1}=\frac{2}{3}$,解得x=$\frac{4}{3}$。

2013年中考数学专题复习第5讲:分式(含详细参考答案)

2013年中考数学专题复习第5讲:分式(含详细参考答案)

2013年中考数学专题复习第五讲:分式【基础知识回顾】一、分式的概念若A,B表示两个整式,且B中含有那么式子就叫做公式【名师提醒:①:若则分式AB无意义②:若分式AB=0,则应且】二、分式的基本性质分式的分子分母都乘以(或除以)同一个的整式,分式的值不变。

1、a ma m⋅⋅=a mb m÷÷= (m≠0)2、分式的变号法则ba-=b3、约分:根据把一个分式分子和分母的约去叫做分式的约分。

约分的关键是确保分式的分子和分母中的约分的结果必须是分式4、通分:根据把几个异分母的分式化为分母分式的过程叫做分式的通分通分的关键是确定各分母的【名师提醒:①最简分式是指②约分时确定公因式的方法:当分子、分母是多项式时,公因式应取系数的应用字母的当分母、分母是多项式时应先再进行约分③通分时确定最简公分母的方法,取各分母系数的相同字母分母中有多项式时仍然要先通分中有整式的应将整式看成是分母为的式子④约分通分时一定注意“都”和“同时”避免漏乘和漏除项】三、分式的运算:1、分式的乘除①分式的乘法:ba.dc=②分式的除法:ba÷dc= =2、分式的加减①用分母分式相加减:ba±ca=②异分母分式相加减:ba±dc= =【名师提醒:①分式乘除运算时一般都化为法来做,其实质是的过程②异分母分式加减过程的关键是】3、分式的乘方:应把分子分母各自乘方:即(ba)m =1、分式的混合运算:应先算再算最后算有括号的先算括号里面的。

2、分式求值:①先化简,再求值。

②由值的形式直接化成所求整式的值③式中字母表示的数隐含在方程的题目条件中【名师提醒:①实数的各种运算律也符合公式②分式运算的结果,一定要化成③分式求值不管哪种情况必须先 此类题目解决过程中要注意整体代入 】【重点考点例析】考点一:分式有意义的条件例1 (2012•宜昌)若分式21a +有意义,则a 的取值范围是( ) A .a=0 B .a=1 C .a≠-1 D .a≠0点评:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.对应训练1.(2012•湖州)要使分式1x有意义,x 的取值范围满足( ) A .x=0 B .x≠0 C .x >0 D .x <0考点二:分式的基本性质运用例2 (2012•杭州)化简216312m m --得 ;当m=-1时,原式的值为 . 对应训练2.(2011•遂宁)下列分式是最简分式的( )A .223a a bB .23a a a -C .22 a b a b ++D .222a ab a b -- 考点三:分式的化简与求值例3 (2012•南昌)化简:2211a a a a a --÷+.点评:本题考查的是分式的乘除法,即分式乘除法的运算,归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分.例4 (2012•安徽)化简211x x x x+-- 的结果是( ) A .x+1 B .x-1 C .-x D .x点评:本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.例5 (2012•天门)化简221(1)11x x -÷+- 的结果是( ) A .21(1)x + B .21(1)x - C .2(1)x + D .2(1)x - 点评:此题考查了分式的化简混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,同时注意最后结果必须为最简分式.例6 (2012•遵义)化简分式222()1121x x x x x x x x --÷---+,并从-1≤x≤3中选一个你认为合适的整数x 代入求值.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时分式的分子分母出现多项式,应先将多项式分解因式后再约分.对应训练3.(2012•河北)化简22111x x ÷--的结果是( ) A .21x - B .321x - C .21x - D .2(x+1) 4.(2012•绍兴)化简111x x --可得( ) A .21x x - B .21x x -- C .221x x x +- D .221x x x-- 5.(2012•泰安)化简22()2-24m m m m m m -÷+-= . 6.(2012•资阳)先化简,再求值:2221(1)11a a a a a --÷---+,其中a 是方程x 2-x=6的根.考点四:分式创新型题目例7 (2012•凉山州)对于正数x ,规定1()1f x x =+,例如:11(4)145f ==+,114()14514f ==+,则 111(2012)(2011)(2)(1)()()()220112012f f f f f f f ++⋅⋅⋅++++⋅⋅⋅++= .对应训练7.(2012•临沂)读一读:式子“1+2+3+4+…+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为1001n n =∑,这里“∑”是求和符号,通过对以上材料的阅读,计算201211(1)n n n ==+∑ .【聚焦山东中考】一、选择题1.(2012•潍坊)计算:2-2=( )A .14B .2C .14- D .4 2.(2012•德州)下列运算正确的是( ) A .42= B .(-3)2=-9C .2-3=8D .20=0 3.(2012•临沂)化简4(1)22a a a +÷--的结果是( ) A .2a a + B .2a a + C .2a a - D .2a a - 4.(2012•威海)化简的结果是( )A .B .C .D .二、填空题 5.(2012•聊城)计算:24(1)42a a a +÷=-- . 6.(2011•泰安)化简:22()224x x x x x x -÷+--的结果为 . 三、解答题7.(2012·济南)化简:2121224a a a a a --+÷--.8.(2012•烟台)化简:222844(1)442a a a a a a+--÷+++.9.(2012•青岛)化简:2211(1)12a a a a -+++。

初三数学【分式方程应用题】精选50道答案,考试就会一分不扣

初三数学【分式方程应用题】精选50道答案,考试就会一分不扣

初三数学【分式方程应用题】精选50道答案,考试就会一分不扣临近中考,大家的复习任务变得越发的紧张,为了帮助同学们提升复习的效率,所以王老师今天特意为大家总结中考数学必考的内容——分式知识点,以及方式方程专题练习50题,只要能够掌握了,考试就会一分不扣。

分式知识点关键词:分式、分式的基本性质、分式的约分、分式的通分、分式的运算、整数指数幂、科学计数法、分式方程、最后结果一定时最简形式必须清晰知道的基本概念:分式:1,定义:一般地,如果A和B为两个整式,并且B中含有字母,那么式子A/B就叫做分式,A为分子,B为分母。

请联系前面讲的分数,基本是一样的2,与分式有关的一些知识点:1>分式有意义,要求分母不为0,隐含分母要有字母;2>分式无意义,分母为0;3>分式值为0,分子为0 ,且分母不为0;4>分式值为负或小于0,分子分母异号;5>分式值为正或大于0,分子分母同号;6>分式值为1,分子分母值相等;7>分式值为-1,分子分母值互为相反数;这些知识点看上去非常简单,甚至给人感觉都是废话。

那是因为没有放在具体的题目中,其实你那些没有拿到的分都是从这些很简单的知识里面来的。

比如,一个很复杂的分式,分子分母都很复杂,但是如果能够知道它的值为1,则表示分子和分母是相等的。

这些东西要有谦虚的心态在以后的学习中才能慢慢体会到的。

这里给大家强调三点!1.分母中一定要含有字母的式子才叫分式;也就是分式的分母要满足两个条件的,a>不为0,b>必须含有字母;2.分式与整式的和,也是分式。

3.判断分式有无意义时,一定要讨论原分式,而不能时化简后的分式!举例:问(x2-1)/x2-x-2何时有意义?答案是x≠2和x≠-1;而如果化简后只能得到x≠2这个答案了。

分式的基本知识:1.分式的基本性质,分式的分子分母同时乘以或除以一个不等于0的数,分式的值不变;2.分式的符号,分式的分子分母和分式本身的符号,改变其中任何两个,分式的值不变;3.分式的约分,就是把一个分式的分子和分母的公因式约去,约至它们再也没有公因式时就是最简分式了。

中考数学 第4讲 分式及其运算(解析版)

中考数学 第4讲 分式及其运算(解析版)

第4讲 分式及其运算一、考点知识梳理【考点1 分式的概念及性质】1.分式的定义:形如AB (A ,B 是整式,且B 中含有字母,B≠0)的式子叫分式,其中A 叫分子,B 叫分母.2.最简分式:分子与分母没有公因式的分式. 3.有理式:整式和分式统称为有理式. 4 分式基本性质 a×m b×m =a b ,a÷m b÷m =ab(m≠0). 5.通分的关键是确定几个分式的最简公分母,约分的关键是确定分式的分子、分母的最大公因式. 【考点2 分式的运算和化简】 1. 同分母分式加减b a ±c a =b±c a.2. 异分母分式加减通过通分转化为同分母分式加减,即b a ±d c =bc±adac .2.分式的乘除:b a ×d c =bd ac ,b a ÷d c =bc ad ,⎝⎛⎭⎫a b n =a nbn .3.分式的混合运算:在分式的混合运算中,应先算乘方,再算乘除,最后进行加减运算,遇到括号,先算括号里面的.分式运算的结果要化成整式或最简分式. 二、考点分析【考点1 分式的概念及性质】【解题技巧】与分式有关的“五个条件”的字母表示: (1)分式AB 无意义时,B =0;(2)分式AB有意义时,B≠0;(3)分式AB的值为零时,A =0且B≠0;(4)分式AB 的值为正时,A ,B 同号,即⎩⎪⎨⎪⎧A>0,B > 0或⎩⎪⎨⎪⎧A<0,B < 0;(5)分式AB 的值为负时,A ,B 异号,即⎩⎪⎨⎪⎧A>0,B < 0或⎩⎪⎨⎪⎧A<0,B > 0.【例1】(2019 河北沧州中考模拟)若分式122--x x 的值为0,则x 的值为( ) A. 1B. ﹣1C. ±1D.2【答案】D【分析】分式值为0的条件是分子为0而分母不为0. 【解答】∵x ﹣2=0且x 2≠1 ∴x=2. 故选D【一领三通1﹣1】(2019 湖北黄石中考)若式子在实数范围内有意义,则x 的取值范围是( )A .x ≥1且x ≠2B .x ≤1C .x >1且x ≠2D .x <1【答案】A .【分析】分式有意义,分母不等于零;二次根式的被开方数是非负数. 【解答】解:依题意,得 x ﹣1≥0且x ﹣200, 解得x ≥1且x ≠2. 故选:A .【一领三通1﹣2】(2019 河北石家庄中考模拟)要使分式21-+x x 有意义,则x 的取值应满足( ) A .x≠2 B .x≠﹣1 C .x=2 D .x=﹣1 【答案】A .【分析】分式有意义,分母不等于零 【解答】由题意得,x ﹣2≠0, 解得x≠2. 故选:A .【一领三通1﹣3】(2019 福建厦门中考模拟)分式33+-x x 的值为零,则x 的值为( )A .3B .﹣3C .±3D .任意实数 【答案】A .【分析】分式值为0的条件是分子为0而分母不为0. 【解析】:依题意,得 |x|﹣3=0且x+3≠0, 解得,x=3.故选:A.【一领三通1﹣4】(2019 河北唐山中考模拟)设x<0,x﹣=,则代数式的值是()A.1 B.C.D.【答案】B.【分析】根据完全平方公式以及立方和公式即可求出答案.【解答】解:∵x﹣=,∴(x)2=5,∴x2+=7,∴(x+)2=x2+2+=9,∵x<0,∴x+=﹣3,∴x2+1=﹣3x,∴x4+1=7x2,∵(x2+)2=x4+2+,∴x4+=47,∴x8+1=47x4,∵x3+=(x+)(x2﹣1+),∴x3+=﹣18,∴x6+1=﹣18x3,∴原式=====故选:B .【考点2 分式的运算和化简】【解题技巧】分式化简求值题的一般步骤:(1)若有括号的,先计算括号内的分式运算,括号内如果是异分母加减运算时,需将异分母分式通分化为同分母分式运算,然后将分子合并同类项,把括号去掉,简称:去括号;(2)若有除法运算的,将分式中除号(÷)后面的式子分子分母颠倒,并把这个式子前的“÷”变为“×”,保证几个分式之间除了“+”“-”就只有“×”或“· ”,简称:除法变乘法; (3)利用因式分解、约分进行分式乘法运算;(4)最后按照式子顺序,从左到右计算分式加减运算,直到化为最简形式;(5)将所给数值代入求值,代入数值时要注意使原分式有意义(即使原分式分母不为0). 【例2】(2019 河北中考)如图,若x 为正整数,则表示﹣的值的点落在( )之间.A .段①B .段②C .段③D .段④【答案】B .【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x 为正整数,从所给图中可得正确答案. 【解答】解∵﹣=﹣=1﹣=又∵x 为正整数, ∴≤x <1故表示﹣的值的点落在②故选:B .【一领三通2﹣1】(2019 山东济南中考模拟)化简12-x x +xx -1的结果是( )A .x+1B .x ﹣1C .﹣xD .x 【答案】D .【分析】根据同分母的分式加减的法则运算.【解答】:12-x x +x x -1=12-x x -1-x x=12--x x x =()11--x x x =x ,故选:D .【一领三通2﹣2】(2019 河北沧州中考模拟)先化简,再求值:(+x ﹣2)÷,其中|x |=2.【分析】先进行括号里面的加减运算,再进行分式的乘除运算. 【解答】解:原式=÷=•=,∵|x |=2时, ∴x =±2,由分式有意义的条件可知:x =2, ∴原式=3.【一领三通2﹣3】(2019 福建中考)先化简,再求值:(x ﹣1)÷(x ﹣),其中x =+1.【分析】先化简分式,然后将x 的值代入计算即可. 【解答】解:原式=(x ﹣1)÷=(x ﹣1)•=, 当x =+1,原式==1+. 三、【达标测试】 (一)选择题1.(2019 山东德州中考模拟)如果将分式中x,y都扩大到原来的2倍,则分式的值()A.扩大到原来的2倍B.不变C.扩大到原来的4倍D.缩小到原来的.【答案】A.【分析】x,y都扩大成原来的2倍就是变成2x和2y.用2x和2y代替式子中的x和y,看得到的式子与原来的式子的关系.【解答】解:用2x和2y代替式子中的x和y得:=,则分式的值扩大为原来的2倍.故选:A.2.(2019 山东济南中考模拟)计算(x﹣1)÷(1﹣)•x的结果是()A.﹣x2B.﹣1 C.x2D.1【答案】C.【分析】先计算括号内的减法,再将除法转化为乘法,最后约分即可得.【解答】解:原式=(x﹣1)÷•x=(x﹣1)••x=x2,故选:C.3.(2019•兰州中考)化简:﹣=()A.a﹣1 B.a+1 C.D.【答案】A.【分析】先根据法则计算,再因式分解、约分即可得.【解答】解:原式===a﹣1,故选:A.4.(2019 河南郑州中考模拟)已知x为整数,且分式的值为整数,满足条件的整数x的个数有()A.1个B.2个C.3个D.4个【答案】C.【分析】先化简得到原式=,然后利用整数的整除性得到2只能被﹣1,1,﹣2,2这几个整数整除,从而得到x的值.【解答】解:∵原式==,∴x+1为±1,±2时,的值为整数,∵x2﹣1≠0,∴x≠±1,∴x为﹣2,0,﹣3,个数有3个.故选:C.5.(2019 山东青岛中考模拟)若a+b=5,则代数式(﹣a)÷()的值为()A.5 B.﹣5 C.﹣D.【答案】B.【分析】根据a+b=5,可以求得题目中所求式子的值,本题得以解决.【解答】解:∵a+b=5,∴(﹣a)÷()===﹣(a+b)=﹣5,故选:B.6.(2019 河北衡水中考模拟)若(a+)2与|b﹣1|互为相反数,则的值为()A.B.+1 C.﹣1 D.1﹣【答案】C.有【分析】根据互为相反数的两个数等于0得出(a +)2+|b ﹣1|=0,推出a +=0,b ﹣1=0,求出a =﹣,b =1,代入求出即可. 【解答】解:∵(a +)2与|b ﹣1|互为相反数,∴(a +)2+|b ﹣1|=0, ∴a +=0,b ﹣1=0, ∴a =﹣,b =1,∴===﹣1,故选:C .7. (2019 山西太原中考模拟)化简222m n m mn-+的结果是( )A .2m nm- B .m nm- C .m nm+ D .m n m n -+【答案】B.【分析】化简时分子,分母是多项式的先分解,再约分. 【解答】原式=(m+n)(m-n)m(m+n)=m-nm ,故选B.8.(2019河北衡水中考模拟)下列运算正确的是( )A .a b a b 11+-=+- B .()2222b ab a b a ++=-- C .12316+=+a a D .()222-=-【答案】B.【分析】根据分式的性质、完全平方公式以及开方运算. 【解答】A 错﹣b-1a =-b-1a .B 正确.C 错,6a+13=2a+13. D 错,(-2)2=2. 故选择B. (二)填空题1.(2019•武汉中考)计算﹣的结果是.【答案】.【分析】异分母分式相加减,先通分变为同分母分式,然后再加减.【解答】解:原式====.故答案为:2.(2019山东淄博中考模拟)已知请计算y2019=.(用含x的代数式表示)【答案】【分析】首先把y1代入y2,利用x表示出y2,进而表示出y3,y4,得到循环关系【解答】解:y2===;y3===2﹣x;y4==,则y的值3个一次循环,则y2019=y1=.故答案是3.(2019 山东济南中考模拟)先化简23 1x x --÷222321x xx x--+++11x-,再在﹣1,0,1,3中选择一个合适的x值代入求值.【答案】当x=0时,原式=-2.【分析】根据分式的运算法则,先因式分解,再乘除运算,约分,最后加减运算,得出结果.【解答】原式=()()311x x x -+-·()()()2131x x x +-++11x -=11x -+11x - =21x -. 由题知,x≠±1和3.当x=0时, 原式=201-=-2. 4.(2019 辽宁葫芦岛中考模拟)若3x ﹣4y ﹣z =0,2x +y ﹣8z =0,则的值为 .【答案】2.【分析】先把z 当作已知条件表示出x 、y 的值,再代入原式进行计算即可. 【解答】解:∵解方程组,解得,∴原式===2.故答案为:2.5.(2019 河北沧州中考模拟)如果分式的值为正数,则x 的取值范围是 .【答案】x >2或x <1.【分析】由分式的值为正数得出分子、分母同为正数或同为负数,据此列出关于x 的不等式组,解之可得. 【解答】解:∵分式的值为正数,∴或,解得:x >2或x <1, 故答案为:x >2或x <1.6.(2019 河北唐山中考模拟)如果分式的值小于3,则x 的取值范围是 .【答案】x >﹣1或x <﹣3. 【分析】首先根据题意可得:<3,然后分别从若x +1>0与若x +1<0去分析,利用不等式的知识,即可求得答案.【解答】解:根据题意得:<3,若x+1>0,即x>﹣1时,则x﹣3<3(x+1),解得:x>﹣3,∴x>﹣1;若x+1<0,即x<﹣1时,则x﹣3>3(x+1),解得:x<﹣3,∴x<﹣3;∴x的取值范围是:x>﹣1或x<﹣3.7.(2019 山东威海中考模拟)实数a满足丨a丨+a=0,且a≠﹣1,那么=.【答案】当﹣1<a≤0时,原式=﹣1;当a<﹣1时,原式=1.【分析】根据实数a满足丨a丨+a=0,且a≠﹣1,可求出a=0或者a<0,然后代入即可求解.【解答】解:实数a满足丨a丨+a=0,且a≠﹣1,∴a=0或者a<0,且a≠﹣1,当a=0时,代入==﹣1.当﹣1<a<0且a≠﹣1时,代入=﹣1,当a<﹣1时,代入==1.综上所述:当﹣1<a≤0时,原式=﹣1;当a<﹣1时,原式=1.8.(2019 河北石家庄中考模拟)阅读以下材料:将分母中的根号化去,叫做分母有理化.分母有理化的方法,一般是把分子分母都乘以同一个适当的代数式,使分母不含根号.例如:,(1)将分母有理化可得;(2)关于x的方程3x﹣=+++…+的解是.【答案】(1)﹣1(2).【分析】(1)根据材料进行分母有理化即可;(2)先分母有理化,再根据式子的规律即可求解.【解答】解:(1)==﹣1故答案为:﹣1;(2)3x﹣=+++…+,3x﹣=+++…+,3x﹣=+++…+,3x﹣=(+),6x﹣1=﹣1+,6x=3,x=,故答案为:.(三)解答题1.(2019 广东中考)先化简,再求值:(﹣)÷,其中x=.【分析】先化简分式,然后将x的值代入计算即可.【解答】解:原式==当x=时,原式==2.(2019 陕西中考)化简:(+)÷【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.=•=a.3.(2019 浙江杭州中考)化简:﹣﹣1圆圆的解答如下:﹣﹣1=4x﹣2(x+2)﹣(x2﹣4)=﹣x2+2x圆圆的解答正确吗?如果不正确,写出正确的答案.【分析】直接将分式进行通分,进而化简得出答案.【解答】解:圆圆的解答错误,正确解法:﹣﹣1=﹣﹣===﹣.4.(2019•成都中考)先化简,再求值:(1﹣)÷,其中x=+1.【分析】可先对进行通分,可化为,再利用除法法则进行计算即可【解答】解:原式=×=×=将x=+1代入原式==5.(2019•青岛中考)化简:÷(﹣2n);【分析】按分式的运算顺序和运算法则计算求值;=×=;6.(2019•广州中考)已知P=﹣(a≠±b)(1)化简P;(2)若点(a,b)在一次函数y=x﹣的图象上,求P的值.【分析】(1)P=﹣===;(2)将点(a,b)代入y=x﹣得到a﹣b=,再将a﹣b=代入化简后的P,即可求解;【解答】解:(1)P=﹣===;(2)∵点(a,b)在一次函数y=x﹣的图象上,∴b=a﹣,∴a﹣b=,∴P=;7.(2019 河北衡水中考模拟)阅读下列分式的计算过程,请你观察和思考,并回答所提出的问题:计算:=(第一步)=﹣1﹣2x(第二步)=﹣x﹣1(第三步)①该同学在计算中,第一步用数学算理是;②上述计算过程是从第步开始出现错误;③请你直接写出该分式正确的结果是.【分析】①根据分式的基本性质即可判断;②根据分式的加减运算法则即可判断;③依据分式加减运算法则计算可得.【解答】解:①该同学在计算中,第一步用数学算理是分式的基本性质:分式的分子和分母乘(或除以)同一个不等于0的整式,分式值不变,故答案为:分式的基本性质:分式的分子和分母乘(或除以)同一个不等于0的整式,分式值不变;②上述计算过程是从第二步开始出现错误,故答案为:二;③====﹣,所以该分式正确的结果是﹣,故答案为:﹣.8.(2019 山东济南中考模拟)定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如:,则是“和谐分式”.(1)下列分式中,属于“和谐分式”的是(填序号);①;②;③;④(2)将“和谐分式”化成一个整式与一个分子为常数的分式的和的形式为:=(要写出变形过程);(3)应用:先化简,并求x取什么整数时,该式的值为整数.【分析】(1)由“和谐分式”的定义对①③④变形即可得;(2)由原式==+=a﹣1+可得;(3)将原式变形为==2+,据此得出x+1=±1或x+1=±2,即x=0或﹣2或1或﹣3,又x≠0、1、﹣1、﹣2,据此可得答案.【解答】解:(1)①=1+,是和谐分式;②=1+,不是和谐分式;③==1+,是和谐分式;④=1+,是和谐分式;故答案为:①③④.(2)==+=a﹣1+,故答案为:a﹣1+.(3)原式=﹣•=﹣===2+,∴当x+1=±1或x+1=±2时,分式的值为整数,此时x=0或﹣2或1或﹣3,又∵分式有意义时x≠0、1、﹣1、﹣2,∴x=﹣3.。

2013中考数学50个知识点专练1 实数及其运算

2013中考数学50个知识点专练1 实数及其运算

2013中考数学50个知识点专练1 实数及其运算一、选择题1.(2012·金华)下列各组数中,互为相反数的是( ) A .2和-2 B .-2和12 C .-2和-12 D.12和2 2.(2012·台州)在12、0、1、-2这四个数中,最小的数是( ) A.12B .0C .1D .-2 3.(2012·温州)计算:(-1)+2的结果是( )A .-1B .1C .-3D .34.(2012·日照)观察图中正方形四个顶点所标的数字规律,可知数2012应标在( )A .第502个正方形的左下角B .第502个正方形的右下角C .第503个正方形的左上角D .第503个正方形的右下角5.(2012·襄阳)下列说法正确的是( )A .(π2)0是无理数 B.33是有理数 C.4是无理数 D.3-8是有理数二、填空题6.(2012·杭州)写出一个比-4大的负无理数________.7.(2012·宁波)实数27的立方根是________.8.(2012·连云港)在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘-131,其浓度为0.0000963贝克/立方米.数据“0.0000963”用科学记数法可表示为________.9.(2012·乐山)数轴上点A 、B 的位置如图所示,若点B 关于点A 的对称点为C ,则点C 表示的数为_________.10.(2012·常德)先找规律,再填数:11+12-1=12,13+14-12=112,15+16-13=130,17+18-14=156,……则12011+12012-__________=12011×2012. 三、解答题11.(2012·衢州)计算:|-2|-(3-π)+2cos 45°12.(2012·东莞)计算:(2011-1)0+18sin45°-2-113.(2012·邵阳)为庆祝建党90周年,某学校欲按如下规则组建一个学生合唱团参加我市的唱红歌比赛.规则一:合唱队的总人数不得少于50人,且不得超过55人.规则二:合唱队的队员中,九年级学生占合唱团总人数的12,八年级学生占合唱团总人数的14,余下的为七年级学生. 请求出该合唱团中七年级学生的人数.14.(2012·广东)阅读下列材料:1×2=13×(1×2×3-0×1×2), 2×3=13×(2×3×4-1×2×3), 3×4=13×(3×4×5-2×3×4), 由以上三个等式相加,可得1×2+2×3+3×4=13×3×4×5=20. 读完以上材料,请你计算下列各题:(1) 1×2+2×3+3×4+…+10×11(写出过程);(2) 1×2+2×3+3×4+…+n ×(n +1)=_________;(3) 1×2×3+2×3×4+3×4×5+…+7×8×9=_________________.15.在数1,2,3,…,1998前添符号“+”和“-”,并依次运算,所得可能的最小非负数是多少?四、选做题16.已知数14的小数部分是b ,求b 4+12b 3+37b 2+6b -20的值.。

中考数学:分式知识点和习题(含答案)

中考数学:分式知识点和习题(含答案)
甲队每天修路的长度
(1)冰冰同学所列方程中的 x 表示
,庆庆同学所列方
程中的 y 表示 甲队修路400;米(乙队修路600米)所需的时间.
(2)两个方程中任选一个,并写出它的等量关系;
(3)解(2)中你所选择的方程,并回答老师提出的问题.
(2)冰冰用的等量关系是:甲队修路 400 米所用时间=乙队修路 600 米所用时间; 庆庆用的等量关系是:乙队每天修路的长度-甲队每天修路的长度=20 米.(选择一个即可
∴m-3=1,解得 m=4.
2−1
4.[2018·无锡] 方程x-3= x 的解是
.
x x+1
[解析] 方程两边同时乘以 x(x+1),得 (x-3)(x+1)=x2,
即-2x-3=0,
解得 x=-3.
2
检验:当 x=-3时,x(x+1)=-3× -3+1 =-3× -1 =3≠0,
2
2
2
2
24
∴x=-3是原方程的解.
综上所述:a=1/2或1
6.[2018·眉山] 已知关于 x 的分式方程xx-3-2=xk-3有一个正数 解,则 k 的取值范围为 k<6且k≠3 .
[解析] 去分母得:x-2(x-3)=k,
解得:x=6-k;
由题意得:x>0 且 x≠3, ∴6-k>0 且 6-k≠3,
即:k<6 且 k≠3.
7.[2017·永州] 某水果店搞促销活动,对某种水果打 8 折出
(3)选冰冰所列的方程:400= 600 ,
x x+20
去分母,得:400x+8000=600x, 移项,x 的系数化为 1,得:x=40, 检验:当 x=40 时,x,x+20 均不为零, ∴x=40 是分式方程的根. 答:甲队每天修路的长度为 40 米.

配套K12中考数学 专题04 分式及其运算试题(含解析)

配套K12中考数学 专题04 分式及其运算试题(含解析)

专题04 分式及其运算☞解读考点【2015年题组】1.(2015常州)要使分式23-x 有意义,则x 的取值范围是( ) A .2x > B .2x < C .2x ≠- D .2x ≠ 【答案】D . 【解析】试题分析:要使分式23-x 有意义,须有20x -≠,即2x ≠,故选D . 考点:分式有意义的条件.2.(2015济南)化简2933m m m ---的结果是( ) A .3m + B .3m - C .33m m -+ D .33m m +- 【答案】A .考点:分式的加减法.3.(2015百色)化简222624x x x x x --+-的结果为( ) A .214x - B .212x x + C .12x - D .62x x --【答案】C . 【解析】 试题分析:原式=262(2)(2)x x x x --++-=2(2)(6)(2)(2)x x x x ---+-=2(2)(2)x x x ++-=12x -.故选C . 考点:分式的加减法.4.(2015甘南州)在盒子里放有三张分别写有整式a +1,a +2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是( ) A .13 B .23 C .16 D .34【答案】B . 【解析】试题分析:分母含有字母的式子是分式,整式a +1,a +2,2中,抽到a +1,a +2做分母时组成的都是分式,共有3×2=6种情况,其中a +1,a +2为分母的情况有4种,所以能组成分式的概率=46=23.故选B . 考点:1.概率公式;2.分式的定义;3.综合题. 5.(2015龙岩)已知点P (a ,b )是反比例函数1y x =图象上异于点(﹣1,﹣1)的一个动点,则1111a b+++=( )A .2B .1C .32D .12【答案】B .考点:1.反比例函数图象上点的坐标特征;2.分式的化简求值;3.条件求值.6.(2015山西省)化简22222a ab b ba b a b++---的结果是( ) A .a ab - B .b a b - C .a a b + D .ba b+ 【答案】A . 【解析】试题分析:原式=2()()()a b b a b a b a b +-+--=a b b a b a b +---=a b b a b +--=aa b-,故选A . 考点:分式的加减法.7.(2015泰安)化简:341()(1)32a a a a -+---的结果等于( ) A .2a - B .2a + C .23a a -- D .32a a --【答案】B . 【解析】试题分析:原式=(3)342132a a a a a a -+---⋅--=24332a a a a --⋅--=(2)(2)332a a a a a +--⋅--=2a +.故选B . 考点:分式的混合运算.8.(2015莱芜)甲乙两人同时从A 地出发到B 地,如果甲的速度v 保持不变,而乙先用12v 的速度到达中点,再用2v 的速度到达B 地,则下列结论中正确的是( ) A .甲乙同时到达B 地 B .甲先到达B 地C .乙先到达B 地D .谁先到达B 地与速度v 有关 【答案】B .考点:1.列代数式(分式);2.行程问题. 9.(2015内江)已知实数a ,b 满足:211a a +=,211b b+=,则2015a b -|= . 【答案】1. 【解析】试题分析:∵2110a a +=>,2110b b+=>,∴0a >,0b >,∴()10ab a b ++>,∵211a a +=,211b b +=,两式相减可得2211a b a b -=-,()()b aa b a b ab-+-=,[()1]()0ab a b a b ++-=,∴0a b -=,即a b =,∴2015a b-=02015=1.故答案为:1.考点:1.因式分解的应用;2.零指数幂;3.条件求值;4.综合题;5.压轴题. 10.(2015黄冈)计算)1(22b a aba b +-÷-的结果是________. 【答案】1a b-. 【解析】 试题分析:原式=()()b a b a a b a b a b +-÷+-+=()()b a b a b a b b +⋅+-=1a b -.故答案为:1a b-.考点:分式的混合运算.11.(2015安徽省)已知实数a 、b 、c 满足a +b =ab =c ,有下列结论:①若c ≠0,则111a b+=;②若a =3,则b +c =9;③若a =b =c ,则abc =0;④若a 、b 、c 中只有两个数相等,则a +b +c =8. 其中正确的是 (把所有正确结论的序号都选上). 【答案】①③④.考点:1.分式的混合运算;2.解一元一次方程. 12.(2015梅州)若1212)12)(12(1++-=+-n bn a n n ,对任意自然数n 都成立,则=a ,=b ;计算:=⨯++⨯+⨯+⨯=21191751531311 m . 【答案】12;12-;1021. 【解析】 试题分析:1(21)(21)n n -+=2121a bn n +-+=(21)(21)(21)(21)a n b n n n ++-+-=(22)(21)(21)a b n a b n n ++-+-,可得(22)1a b n a b ++-=,即:01a b a b +=⎧⎨-=⎩,解得:a =12,b =12-; m =111111(1...)23351921-+-++-=11(1)221-=1021,故答案为:12;12-;1021.考点:1.分式的加减法;2.综合题. 13.(2015河北省)若02≠=b a ,则aba b a --222的值为 .【答案】32. 【解析】试题分析:∵2a b =,∴原式=2222442b b b b --=32,故答案为:32. 考点:分式的化简求值.14.(2015绥化)若代数式25626x x x -+-的值等于0,则x =_________.【答案】2. 【解析】试题分析:由分式的值为零的条件得2560x x -+=,2x ﹣6≠0,由2560x x -+=,得x =2或x =3,由2x ﹣6≠0,得x ≠3,∴x =2,故答案为:2. 考点:分式的值为零的条件.15.(2015崇左)化简:2221(1)2a a a a +--÷. 【答案】12-a .考点:分式的混合运算.16.(2015桂林)先化简,再求值:2269392x x x x -+-÷-,其中3x =.【答案】23x +. 【解析】试题分析:分解因式后,利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.试题解析:原式=2(3)2(3)(3)3x x x x -⨯+--=23x +,当3x =时,原式.考点:分式的化简求值. 17.(2015南京)计算:22221()aa b a ab a b-÷--+.【答案】21a . 【解析】试题分析:首先将括号里面通分运算,进而利用分式的性质化简求出即可.试题解析:原式=21[]()()()a b a b a b a a b a +-⨯+--=2[]()()()()a a b a ba ab a b a a b a b a++-⨯+-+-=2()()()a a b a b a a b a b a -++⨯+-=21a.考点:分式的混合运算.18.(2015苏州)先化简,再求值:2121122x x x x ++⎛⎫-÷⎪++⎝⎭,其中1x =.【答案】11x +.考点:分式的化简求值.19.(2015盐城)先化简,再求值:)()(131112+÷-+a aa ,其中a =4. 【答案】31aa -,4. 【解析】试题分析:根据分式混合运算的法则把原式进行化简,再求出x 的值代入进行计算即可.试题解析:原式=2113(1)(1)(1)a a a a a -++⋅+-=23(1)(1)(1)a a a a a +⋅+-=31aa -;当a =4时,原式=3441⨯-=4. 考点:分式的化简求值. 20.(2015成都)化简:211()242a a a a a -+÷+-+.【答案】12a a --. 【解析】试题分析:括号内先通分,同时把除法转化为乘法,再用分式乘法法则计算机即可.试题解析:原式=()()()22221212214412212a a a a a a a a a a a a a -⎛⎫-++-+⨯=⨯= ⎪---+---⎝⎭. 考点:分式的加减法.21.(2015资阳)先化简,再求值:2112()111x x x x +-÷-+-,其中x 满足260x -=. 【答案】22x +,25.考点:1.分式的混合运算;2.分式的化简求值. 22.(2015达州)化简2221432a a a a a a+⋅----,并求值,其中a 与2、3构成△ABC 的三边,且a 为整数. 【答案】13a -,1. 【解析】试题分析:原式第一项约分后,两项通分并利用同分母分式的减法法则计算得到结果,把a 的值代入计算即可求出值. 试题解析:原式=21(2)(2)(3)2a a a a a a a +⋅++---=11(2)(3)2a a a +---=13(2)(3)a a a +---=2(2)(3)a a a ---=13a -,∵a 与2、3构成△ABC 的三边,且a 为整数,∴1<a <5,即a =2,3,4,当a =2或a =3时,原式没有意义,则a =4时,原式=1. 考点:1.分式的化简求值;2.三角形三边关系.23.(2015广元)先化简:222222()1211x x x x xx x x x+--÷--++,然后解答下列问题:(1)当3x=时,求原代数式的值;(2)原代数式的值能等于1-吗?为什么?【答案】(1)2;(2)不能.考点:分式的化简求值.24.(2015凉山州)先化简:222122(1)1211x x x xx x x x++-+÷+--+-,然后从22x-≤≤的范围内选取一个合适的整数作为x的值代入求值.【答案】241xx-+;当x=2时,原式=0,当x=-2时,原式=8.【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时根据除法法则变形,约分得到最简结果,将x=0代入计算即可求出值.试题解析:原式=211(1)2(1)1(1)(1)(1)x x x xx x x x x++---⋅+-++-=22(1)21(1)1x xx x x x-⋅--++=2(1)211xx x--++=241xx-+,∵满足22x-≤≤的整数有±2,±1,0,而x=±1,0时,原式无意义,∴x=±2,当x=2时,原式=22421⨯-=+,当x=-2时,原式=2(2)4821⨯--=-+.考点:分式的化简求值.25.(2015广州)已知A =222111x x xx x ++---.(1)化简A ;(2)当x 满足不等式组1030x x -≥⎧⎨-<⎩,且x 为整数时,求A 的值.【答案】(1)11x -;(2)1.考点:1.分式的化简求值;2.一元一次不等式组的整数解.26.(2015白银)有三张卡片(形状、大小、颜色、质地都相等),正面分别下上整式21x +,22x --,3.将这三张卡片背面向上洗匀,从中任意抽取一张卡片,记卡片上的整式为A ,再从剩下的卡片中任意抽取一张,记卡片上的整式为B ,于是得到代数式AB. (1)请用画树状图或列表的方法,写出代数式AB所有可能的结果; (2)求代数式AB恰好是分式的概率. 【答案】(1)答案见试题解析;(2)23.【解析】试题分析:(1)画出树状图,由树状图即可求得所有等可能的结果;(2)由(1)中的树状图,可求得抽取的两张卡片结果能组成分式的情况,利用概率公式求解即可求得答案.试题解析:(1)画树状图:(2)代数式A B 所有可能的结果共有6种,其中代数式A B是分式的有4种,所以P (是分式)=46=23.考点:1.列表法与树状图法;2.分式的定义.【2014年题组】1.(2014年无锡中考) 分式22x-可变形为( ) A . 22x + B .22x -+ C . 2x 2- D .2x 2--【答案】D .考点:分式的基本性质. 2.(2014年杭州中考)若241()w 1a 42a+⋅=--,则w =( ) A .a 2(a 2)+≠- B . a 2(a 2)-+≠ C . a 2(a 2)-≠ D . a 2(a 2)--≠-【答案】D . 【解析】 试题分析:∵()()()()()2414a 22a 1a 42a a 2a 2a 2a 2a 2a 2a 2+-+=-==---+--++-+, ∴w =a 2(a 2)--≠-.故选D . 考点:分式的化简.3.(2014年温州中考)要使分式x 1x 2+-有意义,则x 的取值应满足( ) A . x 2≠ B . x 1≠- C . x 2= D . x 1=-【答案】A . 【解析】试题分析:根据分式分母不为0的条件,要使x 1x 2+-在实数范围内有意义,必须x 20x 2-≠⇒≠.故选A . 考点:分式有意义的条件.4.(2014年牡丹江中考)若x :y =1:3,2y =3z ,则的值是( )A .﹣5B . ﹣C .D . 5【答案】A . 【解析】试题分析:∵x :y =1:3,∴设x =k ,y =3k ,∵2y =3z ,∴z =2k ,∴532322-=-+=-+kk kk y z y x .故选A . 考点:比例的性质. 5.(2014年凉山中考)分式x 3x 3-+的值为零,则x 的值为( )A . 3B . ﹣3C . ±3D . 任意实数【答案】A .考点:分式的值为零的条件. 6.(2014年常德中考)计算:2111aa a -=-- 【答案】211a -. 【解析】 试题分析:原式=1(1)(1)(1)(1)a aa a a a +-+-+-=1(1)(1)a a +-=211a -.考点:分式的加减法. 7.(2014年河池中考)计算:m 1m 1m 1-=-- . 【答案】1.【解析】试题分析:根据分式加减法运算法则直接计算:m 1m 11m 1m 1m 1--==---. 考点:分式加减法.8.(2014年镇江中考)化简:1x 1x x 23x 6-⎛⎫+÷⎪--⎝⎭. 【答案】3x 3-.考点:分式的混合运算.9.(2014年苏州中考)先化简,再求值:22x 11x 1x 1⎛⎫÷+ ⎪--⎝⎭,其中x 1=.【解析】试题分析:先将括号里面的通分后,将除法转换成乘法,约分化简. 然后代x 的值,进行二次根式化简. 试题解析:原式=x x 11x x x x 11()(x 1)(x 1)x 1x 1(x 1)(x 1)x 1(x 1)(x 1)x x 1--÷+=÷=⋅=-+---+--++.当x 1=时,原式====.考点:1.分式的化简求值;2. 二次根式化简.10.(2014年抚顺中考)先化简,再求值:(1-11x +)÷221x x x ++,其中x =)0+(12)-1•tan 60°.【答案】. 【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用零指数幂、负指数幂法则以及特殊角的三角函数值求出x 的值,代入计算即可求出值.试题解析:原式=2211(1)(1)111x x x x x x x x x+-++==+++,∵x =)0+(12)-1•tan 60°∴当.考点:1.分式的化简求值;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值. ☞考点归纳归纳 1:分式的有关概念 基础知识归纳:分式有意义的条件是分母不为零;分式无意义的条件是分母等于零;分式值为零的条件是分子为零且分母不为零. 注意问题归纳:1.分式有意义的条件是分母不为0,无意义的条件是分母为0.2.分式值为0要满足两个条件,分子为0,分母不为0. 【例1】使分式21x -有意义,则x 的取值范围是( ) A .x ≠1 B .x =1 C .x ≤1 D .x ≥1 【答案】A .【解析】根据题意得:x -1≠0,解得:x ≠1.故选A . 考点:分式的有关概念. 【例2】分式x 3x 3-+的值为零,则x 的值为( )A . 3B . ﹣3C . ±3D . 任意实数【答案】A .考点:分式的有关概念. 归纳 2:分式的性质 基础知识归纳:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示为)0()0(≠÷÷=≠⋅⋅=C C B C A B A C CB C A B A注意问题归纳:1.分式的基本性质是分式变形的理论依据,所有分式变形都不得与此相违背,否则分式的值改变;2.将分式化简,即约分,要先找出分子、分母的公因式,如果分子、分母是多项式,要先将它们分别分解因式,然后再约分,约分应彻底;3.巧用分式的性质,可以解决某些较复杂的计算题,可应用逆向思维,把要求的算式和已知条件由两头向中间凑的方式来求代数式的值. 【例3】化简2244xy yx x --+的结果是( )A .2x x + B .2x x - C .2y x + D .2y x - 【答案】D .考点:分式的性质.【例4】已知x +y =xy ,求代数式11x y+-(1-x )(1-y )的值. 【答案】0. 【解析】∵x +y =xy ,∴11x y +-(1-x )(1-y )=x y xy +-(1-x -y +xy )=x y xy+-1+x +y -xy =1-1+0=0. 考点:分式的性质.归纳 3:分式的加减运算 基础知识归纳:加减法法则:① 同分母的分式相加减:分母不变,分子相加减 ② 异分母的分式相加减:先通分,变为同分母的分式,然后再加减 . 注意问题归纳:1.分式加减运算的运算法则:同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,变为同分母的分式,然后再加减.1.异分母分式通分的依据是分式的基本性质,通分时应确定几个分式的最简公分母.求最简公分母的方法是:①将各个分母分解因式;②找各分母系数的最小公倍数;③找出各分母中不同的因式,相同因式中取次数最高的,满足②③的因式之积即为各分式的最简公分母. 【例5】计算:1aa 11a+--的结果是 . 【答案】1-.【解析】1a 1a 1a 1a 11a a 1a 1a 1-+=-==------. 考点:分式的加减法. 【例6】化简21639x x ++-的结果是 【答案】13x -.考点:分式的加减法.归纳 4:分式的乘除运算 基础知识归纳:1.乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.乘方法则:分式的乘方,把分子、分母分别乘方.2.除法法则:分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘.注意问题归纳:分式乘除法的运算与因式分解密切相关,分式乘除法的本质是化成乘法后,约去分式的分子分母中的公因式,因此往往要对分子或分母进行因式分解(在分解因式时注意不要出现符号错误),然后找出其中的公因式,并把公因式约去.【例7】计算:222x 1x x.x 1x 2x 1--⋅+-+ 【答案】x . 【解析】原式()()()()2x 1x 1x x 1x x 1x 1+--=⋅=+-.考点:分式的乘除法.归纳5:分式的混合运算基础知识归纳:在分式的混合运算中,应先算乘方,再将除法化为乘法,进行约分化简,最后进行加减运算.若有括号,先算括号里面的.灵活运用运算律,运算结果必须是最简分式或整式. 注意问题归纳:注意运算顺序,计算准确. 【例8】化简:222x 2x 6x 3x 1x 1x 2x 1++-÷+--+【答案】2x 1+.考点:分式的混合运算.☞1年模拟1.(2015+x 应满足( ) A .12≤x ≤3 B .x ≤3且x ≠12 C .12<x <3 D .12<x ≤3 【答案】D . 【解析】试题分析:由题意得,32100x x --≥⎧⎨⎩①>②,解不等式①得,x ≤3,解不等式②的,x >12,所以,12<x ≤3.故选D .考点:1.二次根式有意义的条件;2.分式有意义的条件. 2.(2015届山东省威海市乳山市中考一模)计算(-12)-1=( ) A .-12 B .12C .-2D .2 【答案】C . 【解析】试题解析:11()22--=.故选C . 考点:负整数指数幂.3.(2015届山东省潍坊市昌乐县中考一模)分式211x x -+的值为0,则( )A .x =-1B .x =1C .x =±1D .x =0 【答案】B .考点:分式的值为零的条件.4.(2015届广东省深圳市龙华新区中考二模)化简111xx x+--的结果是( ) A .-1 B .1 C .1+x D .1-x 【答案】A . 【解析】 试题分析:原式=11111111x x x x x x x ---==-=-----.故选A . 考点:分式的加减法.5.(2015届江苏省南京市建邺区中考一模)计算a 3•(1a)2的结果是( ) A .a B .a 5C .a 6D .a 8【答案】A . 【解析】试题分析:原式=a 3•21a =a ,故选A . 考点:分式的乘除法.6.(2015届河北省中考模拟二)已知a 2,b 2,则(22a bab b ab a ---)÷22a b ab +的值为( )A .1B .14C .2D .10【答案】B .考点:分式的化简求值.7.(2015届北京市平谷区中考二模)分式2aa -有意义的条件是 . 【答案】a ≠2. 【解析】试题分析:根据分式有意义的条件可知分母a -2≠0,所以a ≠2.考点:分式有意义的条件.8.(2015x+1)0都有意义,则x的取值范围为.【答案】x>-1且x≠1.【解析】试题分析:根据题意得:101010 xxx+⎧≥-≠+≠⎪⎨⎪⎩解得:x>-1且x≠1.故答案为:x>-1且x≠1.考点:1.二次根式有意义的条件;2.分式有意义的条件;3.零指数幂.9.(2015届广东省佛山市初中毕业班综合测试)若分式||11xx--的值为零,则x的值为.【答案】x=-1.【解析】试题分析:根据题意,得|x|-1=0,且x-1≠0,解得x=-1.故答案为:x=-1.考点:分式的值为零的条件.10.(2015届江苏省南京市建邺区中考一模)在函数y=11x-中,自变量x的取值范围是.【答案】x≠1.【解析】试题分析:根据题意得1-x≠0,解得x≠1.故答案为:x≠1.考点:1.函数自变量的取值范围;2.分式有意义的条件.11.(2015届北京市门头沟区中考二模)已知1m,求222442111m m mm m m-+-+÷+--的值.【答案】.考点:分式的化简求值.12.(2015届四川省成都市外国语学校中考直升模拟)计算题(1)先化简,再求值:22222()2a ab a b a b a ab b b+---÷++,其中a =sin 45°,b =cos 30°; (2)若关于x 的方程311x a x x--=-无解,求a 的值. 【答案】(1)5;(2) a =1. 【解析】试题分析:(1)原式第二项利用除法法则变形,约分后利用同分母分式的减法法则计算,约分得到最简结果,把a 与b 的值代入计算即可求出值;(2)分式方程去分母转化为整式方程,由分式方程无解求出x 的值,代入计算即可求出a 的值. 试题解析:(1)原式=2()()a a b a b ++-(a -b )•()()b a b a b +-=a b a ba b a b a b--=+++,当a =si n45°=2,b =cos30°=2时,原式(55==--=; (2)去分母得:x 2-ax -3x +3=x 2-x ,解得:x =32a +,由分式方程无解,得到x (x -1)=0,即x =0或x =1,若x =0,a 无解;若x =1,解得:a =1.考点:1.分式的化简求值;2.分式方程的解;3.特殊角的三角函数值. 13.(2015届安徽省安庆市中考二模)先化简,再求值:(﹣)÷,其中x =.【答案】3+x x,1﹣3.考点:分式的化简求值.14.(2015届山东省威海市乳山市中考一模)化简代数式22112x x x x x--÷+,并判断当x 满足不等式组⎧⎨⎩x +2<12(x -1)>6时该代数式的符号. 【答案】负号.【解析】试题分析:做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分化简为12x x ++;再分别求出一元一次不等式组中两个不等式的解,从而得到一元一次不等式组的解集,依此分别确定x +1<0,x +2>0,从而求解.试题解析:原式=(1)(1)(2)1x x x x x x +-⨯+-=12x x ++; 不等式组⎧⎨⎩x +2<1①2(x -1)>6②,解不等式①,得x <-1.解不等式②,得x >-2,∴不等式组⎧⎨⎩x +2<12(x -1)>6的解集是-2<x <-1,∴当-2<x <-1时,x +1<0,x +2>0,∴12x x ++<0,即该代数式的符号为负号. 考点:1.分式的化简求值;2.解一元一次不等式组.15.(2015届山东省日照市中考模拟)先化简,再求值:2211()()x y x y x y x y x y+----+,其中2x =+2y =【答案】-4.考点:分式的化简求值.16.(2015届湖北省黄石市6月中考模拟)先化简再求值22213211143a a aa a a a+-+-⨯+-++,已知a2+2a﹣7=0.【答案】2221a a++,14.考点:分式的化简求值.。

2013年中考数学一轮复习 第4课 分式及其运算课件

2013年中考数学一轮复习 第4课 分式及其运算课件

x-2 2 (2)(2011·泉州) 当 x=________时,分式 的值为 0. x+2
解析
当 x-2=0,x=2 时,分母 x+2=4,分式的值为 0.
探究提高
(1)首先求出使分母等于0的字母的值,然后让未知数 不等于这些值,便可使分式有意义; (2)首先求出使分子为0的字母的值,再检验这个字母 的值是否使分母的值为0,当它使分母的值不为0时, 这就是所要求的字母的值.
要点梳理
(3)分式的乘除法: a c ac a c · = b d bd · =___________; b d b
a c ad ÷ = a c b d bc ÷ =___________.
d
(4)分式的乘方:
a a (n为正整数) n bn =__________________.
x-a 3 (2)(2012·荆门东宝区模拟) 若关于 x 的分式方程 - =1 x-1 x 1或-2 无解,则 a=________.
题型分类
题型四 分式方程的解法
4 x+2 知能迁移 4 (1)(2012·梅州) 解方程: 2 + =-1. x -1 1-x
解 方程两边都乘以(x+1)(x-1),得 2 4-(x+1)(x+2)=-(x -1), 1 整理得 3x=1,解得 x= . 3 1 经检验,x= 是原方程的解. 3 1 故原方程的解是 x= . 3
题型分类
题型一 分式的概念,求字母的取值范围
x 知能迁移 1 (1)使分式 有意义的 x 的取值范围是 2x-4 x≠2 ________. x 知能迁移 1 (1)使分式 有意义的 x 的取 2x-4 解析 当 2x-4≠0,x≠2 时,分式有意义,故 x 的取 值范围是________. 值范围是 x≠2. x -3 -3 (2)当 x=________时,分式 的值为 0. x-3

分式知识点总结及例题

分式知识点总结及例题

分式知识点总结及例题一、分式的概念分式是指以分数的形式表示的数,通常由分子和分母两部分组成,分子表示分数的一部分,分母表示分数的总份额。

分式通常用来表示比例、部分和整体的关系。

二、分式的基本性质1. 分式的分子和分母可以分别约分。

2. 分式的值与分子和分母的乘除有关。

3. 分式的运算可以转化为通分和通分的计算问题。

三、分式的化简分式的化简是指将分式表示的数化为最简形式的操作,主要包括分子分母约分、常数和分式的转化等。

四、分式的加减法分式的加减法是指对分式的分子和分母进行通分后,进行加减运算的操作。

五、分式的乘法和除法分式的乘法是指对分式的分子和分母分别进行乘法运算后,化简为最简形式的操作。

分式的除法是指对分式进行倒数运算,然后化简为最简形式的操作。

六、分式的应用分式在实际问题中有着广泛的应用,如物体的比例尺、物体的比重、长方形的面积和周长等问题都可以用分式进行表示和计算。

七、例题1. 化简分式$\frac{6}{8}$解:分子和分母可以同时除以2,得到$\frac{6}{8}=\frac{3}{4}$,所以$\frac{6}{8}$的最简形式为$\frac{3}{4}$。

2. 计算$\frac{3}{5}+\frac{2}{3}$解:先将两个分式通分,得到$\frac{3}{5}+\frac{2}{3}=\frac{9}{15}+\frac{10}{15}=\frac{19}{15}$,再化简得$\frac{19}{15}=1 \frac{4}{15}$。

3. 计算$\frac{5}{6} \times \frac{2}{3}$解:将两个分式分别相乘得到$\frac{5}{6} \times \frac{2}{3}=\frac{10}{18}$,再将$\frac{10}{18}$化简为最简形式,得$\frac{10}{18}=\frac{5}{9}$。

4. 计算$\frac{4}{5} \div \frac{2}{3}$解:将两个分式进行倒数运算,得到$\frac{4}{5} \div \frac{2}{3}=\frac{4}{5} \times\frac{3}{2}=\frac{12}{10}=1 \frac{2}{10}=1 \frac{1}{5}$。

初中数学一轮复习专题大纲

初中数学一轮复习专题大纲

50个知识点专题专练大全
1、实数及其运算
2、整式及其运算
3、因式分解
4、分式及其运算
5、二次根式及其运算
6、一次方程与方程组
7、一元二次方程
8、列方程组解应用题
9、不等式与不等式组
10、不等式
11、函数及其图象
12、一次函数及其图象
13、反比例函数及其图象
14、二次函数及其图象
15、函数的应用
16、数据的收集与整理
17、统计的应用
18、简单随机事件的概率
19、概率的应用
20、线段、角、相交线和平行线
21、三角形与全等三角形
22、特殊三角形
23、平行四边形
24、矩形
25、梯形26、圆的基本性质
27、直线与圆
28、圆的弧长和图形面积的计算
29、几何作图
30、视图与投影
31、图形的轴对称
32、图形的旋转
33、图形的平移
34、图形的相似
35、用坐标表示图形变换
36、锐角三角函数和解直角三角形
37、代数应用性问题
38、代数应用性问题
39、代数应用性问题
40、探索型问题
41、开放型问题
42、方案设计型问题
43、阅读理解型问题
44、分类讨论型问题
45、方程型综合问题
46、函数型综合问题
47、方程与函数相结合型综合问题
48、几何型综合问题
49、方程、函数与几何相结合型题
50、中考一模。

分式运算练习题及答案

分式运算练习题及答案

分式运算练习题及答案分式运算练习题及答案在数学学习过程中,分式运算是一个重要的内容。

它不仅涉及到分数的加减乘除,还包括分式的化简、分式方程的解法等等。

掌握好分式运算,对于解决实际问题以及进一步学习高等数学都具有重要意义。

下面给大家提供一些分式运算的练习题及答案,希望能够帮助大家巩固知识。

一、分式的加减乘除1. 计算:$\frac{3}{4} + \frac{2}{5}$解答:首先找到两个分数的公共分母,这里是20,然后分别乘以相应的倍数,得到$\frac{15}{20} + \frac{8}{20} = \frac{23}{20}$。

2. 计算:$\frac{5}{6} - \frac{1}{3}$解答:同样找到两个分数的公共分母,这里是6,然后分别乘以相应的倍数,得到$\frac{5}{6} - \frac{2}{6} = \frac{3}{6} = \frac{1}{2}$。

3. 计算:$\frac{2}{3} \times \frac{4}{5}$解答:将两个分数的分子相乘,分母相乘,得到$\frac{8}{15}$。

4. 计算:$\frac{3}{4} \div \frac{2}{5}$解答:将除法转化为乘法,即$\frac{3}{4} \times \frac{5}{2} = \frac{15}{8}$。

二、分式的化简1. 化简:$\frac{4x^2 - 9}{2x^2 - 3x - 2}$解答:将分子和分母进行因式分解,得到$\frac{(2x - 3)(2x + 3)}{(2x + 1)(x - 2)}$,然后约去相同的因子,得到$\frac{2x + 3}{2x + 1}$。

2. 化简:$\frac{2a^2 + 6a + 4}{a^2 + 5a + 6}$解答:同样进行因式分解,得到$\frac{2(a + 2)(a + 1)}{(a + 2)(a + 3)}$,然后约去相同的因子,得到$\frac{2(a + 1)}{a + 3}$。

分式及其运算(讲义及答案)

分式及其运算(讲义及答案)

分式及其运算(讲义)➢ 课前预习1. 小学阶段学习分数,主要从概念、运算两方面学习,请回顾相关知识,回答下列问题:(1)请举出几个分数的例子.(2)分数有哪些性质?(3)运用分数的性质计算:24________35⨯=; 54________815⨯=;24________35÷=; 54________33+=;11________23+=; 24________35-=.➢ 知识点睛1. 分式的定义:分母中含有字母的式子叫做分式.2.分式的基本性质:分式的分子与分母都乘以(或除以)同一个____________________,分式的值不变.3.分式的符号:y y yx x x--==-(符号调整时_____________________________________).4.把一个分式的分子和分母的公因式约去,这种变形称为分式的________________.对分式进行约分化简时,通常要使结果成为___________(即分子和分母已没有公因式)或者__________.5.分式的乘除运算乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母.除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.6.分式的加减运算同分母的分式相加减,分母__________,把________相加减;异分母的分式相加减,先_______,化成_________________,然后再加减.➢精讲精练1.下列各式是分式的有_________________.(填写序号)①1π;②2xx;③(3)(1)x x+÷-;④210xy-;⑤242xx--;⑥109xy+.2.当x取何值时,下列分式有意义?(1)axx;(2)239xx+-;(3(4)2x-.3. 若分式212x x x ---的值为0,则x =__________. 4. 已知当2x =-时,分式x b x a--无意义,当4x =时,该分式的值为0,则a b +=___________. 5. 下列变形正确的是( )A .1xy y x y +=+B .a y a b y b +=+C .21x y x xy y ++=D .2a b ab b a ab++= 6. 下列变形正确的是( )A .c c a b a b =--++ B .c c a b b a=--+- C .c c a b a b -=-++ D .c c a b a b=--+- 7. 下列变形正确的是________________.(填写序号) ①x y x y x x -+-=;②x y x y x x -++=-;③x y x y y x x y -++=--; ④y x x y x y x y--=-++. 8. 把下列分式化为最简分式. (1)232812a b ab c --;(2)2224+4x x x x --;(3)22233x x x x---; (4)2324x x x x +-;(5)22a b a b---; (6)232424xy y y x y--.9. 分式的乘除运算:(1)3523220163a b a b xy ⎛⎫÷- ⎪⎝⎭; (2)4222a b a a b a b ab a --⋅+-;(3)2222242442x y y x x y xy x xy-+÷+++;(4)22266924422x x x x x x x --+-÷⋅-+-.10. 下列说法错误的是( )A .2314a b 与2316a b c的最简公分母是2312a b c B .1m n +与1m n-的最简公分母是22m n - C .213x x -与229x -的最简公分母是(3)(3)x x x -+ D .1x y -与1y x -的最简公分母是()()x y y x -- 11. 分式的加减运算:(1)22+a b a b a b-+; (2)2933a a a+--;(3)a b a b a b ++-; (4)2222x x x x -+-+-;(5)21211m m ---; (6)22433x x x x x ---+-;(7)2111m --; (8)2b a b a b++-.【参考答案】➢ 课前预习1. (1)15152323--,,, (2)分数的分子和分母同时乘或者除以相同的数(0除外), 分数的大小不变(3)81156;;536;;52615-;➢ 知识点睛2. 不等于零的整式3. 把分子或分母当作一个整体4. 约分,最简分式,整式6. 不变,分子;通分,同分母分式➢ 精讲精练1. ②③④⑤⑥2. (1)0x ≠;(2)3x ≠±;(3)3x >;(4)12x x ≠≥且3.1 4.2 5.A 6.D 7. ④8. (1)23ab c ;(2)2x x -;(3)1x x +;(4)12x - (5)a b -+;(6)22x y-+ 9. (1)22125xy ab -;(2)2ab a -;(3)(2)2x x y x y-+ (4)13x -- 10. D11. (1)a b -;(2)3a +;(3)2222a b a b +-;(4)284x x -- (5)231m m +-;(6)1x x -;(7)221m m -;(8)2a a b -。

初三分式基本性质知识点、经典例题及练习题带答案

初三分式基本性质知识点、经典例题及练习题带答案

初三分式基本性质知识点、经典例题及练习题带答案【考纲说明】1、掌握分式的基本性质,并能应用性质进行分式的有关计算;2、能利用分式的基本性质进行分式的约分与通分运算。

【趣味链接】小李要打一份12000字的文件,第一天她打字2小时,打字速度为a字/分,第二天她打字速度比第一天快了10字/分,两天打完全部文件,第二天她打字用了多长时间呢?【知识梳理】一、分式的基本性质二、与分式有关的条件三、通分与约分1、①分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。

②分式的通分最主要的步骤是最简公分母的确定。

③最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

2、①分式的约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。

②步骤:把分式分子分母因式分解,然后约去分子与分母的公因。

③注意:分式的分子与分母为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂;分子分母若为多项式,约分时先对分子分母进行因式分解,再约分。

【经典例题】【例1】(2012青岛)在下列各式中,22a,1a b+,1ax-,2xx,2m-,x yx+,分式的个数是()A.3 B.4 C.5 D.2【例2】(2011徐州)已知分式2133xx-+的值等于零,x的值()A .1B .1±C . 1-D . 12【例3】(2010宿州)有理数a 、b 在数轴上的对应点如图:代数式a b a b -+的值( )A .大于0B .小于0C .等于0D .不能确定【例4】)(2010淮北)如果分式13x x +-有意义,那么x 的取值范围是 ( ) A .0x ≠ B .1x ≠- C .3x ≠± D .3x =±【例5】(2012毫州)下列式子正确的是( )A .22b b a a =B .0a b a b +=+C .1a b a b -+=--D .0.10.330.22a b a b a b a b--=++ 【例6】(2012商丘)下列等式:①()a b c --=-a b c -;②x y x -+-=x y x -;③a b c -+=-a b c +; ④m n m --=-m n m-中,成立的是( ) A .①② B .③④ C .①③ D .②④【例7】(2011菏泽)分式ab a b+中的a 和b 都扩大到10a 和10b ,则分式的值扩大__________倍. 【例8】(2012邯郸)分式1x ,224x x -,32y x -的最简公分母是___________. 【例9】(2011潍坊)约分:(1)22699x x x ++-; (2)2232m m m m-+-. 【例10】(2012德州)通分:(1)26x ab ,29y a bc ; (2)2121a a a -++,261a -. 【课堂练习】1、(2011滨州)下列各式中不是分式的是( )A .3xB .x xC . ab xyD . 11x- 2、(2012德州)下列各式中,正确的是( )A .x y x y -+--=x y x y -+;B .x y x y -+-=x y x y ---;C .x y x y -+--=x y x y +-;D .x y x y -+-=x y x y-+ 3、(2011重庆)若x 、y 为实数,使分式21x x y--有意义的是( ) A .x y = B .x y =但x 、y 不能都为0 C .x y ≠ D .0x =,y 为一切实数4、(2012东营)已知()()2420b k k a k =--≠,用含有b 、k 的代数式表示a ,则a =_________. 5、(2012济南)约分:(1)322423248c b a c b a (2)()()()()b a y x b a y x -+-+23(3)ab bc a 26、通分:(1)224,21x y xy - (2)mm 394,9122-- (3)52-x x 与53+x x【课后作业】1、分式434y xa +,2411x x --,22x xy y x y -++,2222a abab b +-中是最简分式的有( )A .1个B .2个C .3个D .4个2、根据分式的基本性质,分式aa b --可变形为( )A .aa b -- B .aa b + C .-aa b - D .aa b +3、下列各式中,正确的是( )A .a m a b m b +=+B .a ba b ++=0 C .1111ab b ac c --=-- D .221x yx y x y -=-+4、公式22(1)x x --,323(1)x x --,51x -的最简公分母为( )A .(x-1)2B .(x-1)3C .(x-1)D .(x-1)2(1-x )35、当0<x 时,1xx +的值等于( )A .正数B .2C .0D .负数6、61x +表示一个整数,则整数x 的可能取值的个数是( )A .8B .6C .5D .47、约分(1)d b a c b a 32232432- (2)()()b a b a +-+-25152 (3)xy xy y x 222+ (4)mm m -+-1122 (5)a x x a --8、通分 (1)232a b 与2a b ab c - (2)224,21x y xy - (3) 21442x x x --与 (4).4,3,22ab c b a a b (5)231,1122+--x x x【课后反馈】本次______________同学课堂状态:_________________________________________________________________ 本次课后作业:___________________________________________________________________________________ 需要家长协助:____________________________________________________________________________________ 家长意见:________________________________________________________________________________________【参考答案】【经典例题】1、B2、A3、A4、C5、C6、A7、108、()()22x x x +-9.(1)33x x +- (2)2m m - 10.(1)22318acx a b c ,22218by a b c(2)22(1)(1)(1)a a a -+-,26(1)(1)(1)a a a ++- 【课堂练习】1、A2、A3、C4、2248b k k +5、(1)3ac (2)2()a b x y -+(3)ac 6、(1)322222,44x y x y x y -(2)2236412,327327m m m ----(3)2222210315,2525x x x x x x +---【课后作业】1、C2、C3、D4、B5、B6、A7、(1)433(2)(3)(4)1(5)1 352ac a b x ym bd++---8、232222222232(1),(2),2244bc a ab x ya b c a b c x y x y--(3)22222,2828x xx x+---(4)32222212,,444b a bcab ab ab(5)21,(1)(1)(2)(1)(1)(2)x xx x x x x x-++--+--。

分式的运算(含答案)

分式的运算(含答案)

分式的运算【知识精读】1. 分式的乘除法法则;当分子、分母是多项式时,先进行因式分解再约分。

2. 分式的加减法(1)通分的根据是分式的基本性质,且取各分式分母的最简公分母。

求最简公分母是通分的关键,它的法则是:①取各分母系数的最小公倍数;②凡出现的字母(或含有字母的式子)为底的幂的因式都要取;③相同字母(或含有字母的式子)的幂的因式取指数最高的。

(2)同分母的分式加减法法则(3)异分母的分式加减法法则是先通分,变为同分母的分式,然后再加减。

3. 分式乘方的法则(n为正整数)4. 分式的运算是初中数学的重要内容之一,在分式方程,求代数式的值,函数等方面有重要应用。

学习时应注意以下几个问题:(1)注意运算顺序及解题步骤,把好符号关;(2)整式与分式的运算,根据题目特点,可将整式化为分母为“1”的分式;(3)运算中及时约分、化简;(4)注意运算律的正确使用;(5)结果应为最简分式或整式。

下面我们一起来学习分式的四则运算。

【分类解析】例1:计算的结果是()A. B. C. D.分析:原式故选C说明:先将分子、分母分解因式,再约分。

例2:已知,求的值。

分析:若先通分,计算就复杂了,我们可以用替换待求式中的“1”,将三个分式化成同分母,运算就简单了。

解:原式例3:已知:,求下式的值:分析:本题先化简,然后代入求值。

化简时在每个括号内通分,除号改乘号,除式的分子、分母颠倒过来,再约分、整理。

最后将条件等式变形,用一个字母的代数式来表示另一个字母,带入化简后的式子求值。

这是解决条件求值问题的一般方法。

解:故原式例4:已知a、b、c为实数,且,那么的值是多少?分析:已知条件是一个复杂的三元二次方程组,不容易求解,可取倒数,进行简化。

解:由已知条件得:所以即又因为所以例5:化简:解一:原式解二:原式说明:解法一是一般方法,但遇到的问题是通分后分式加法的结果中分子是一个四次多项式,而它的分解需要拆、添项,比较麻烦;解法二则运用了乘法分配律,避免了上述问题。

2013中考数学第一轮复习讲义考点跟踪训练4 分式及其运算

2013中考数学第一轮复习讲义考点跟踪训练4 分式及其运算

考点跟踪训练4 分式及其运算一、选择题(每小题6分,共30分)1.(2012·金华)下列计算错误的是( )A.0.2a +b0.7a -b =2a +b7a -b B.x 3y 2x 2y 3=x yC.a -bb -a =-1 D.1c +2c =3c2.(2012·嘉兴)若分式x -1x +2的值为0,则( )A .x =-2B .x =0C .x =1或2D .x =13.(2011·苏州)已知1a -1b =12,则aba -b 的值是( )A.12 B .-12C .2D .-24.(2011·南通)设m >n >0,m 2+n 2=4mn ,则m 2-n 2mn =( )A .2 3 B. 3C. 3 D .35.(2012·丽水)把分式方程2x +4=1x 转化为一元一次方程时,方程两边需同乘以() A .x B .2xC .x +4D .x(x +4)二、填空题(每小题6分,共30分)6.(2011·嘉兴)当x______时,分式13-x 有意义.7.(2012·聊城)计算:⎝⎛⎭⎫1+4a 2-4÷aa -2=________.8.(2012·无锡)方程4x -3x -2=0的解为________.9.(2011·呼和浩特)若x 2-3x +1=0,则x 2x 4+x 2+1的值为________.10.(2011·乐山)若m 为正实数,且m -1m =3,则m 2-1m 2=________.三、解答题(每小题10分,共40分)11.计算:(1)(2012·连云港)⎝⎛⎫1+1m ÷m 2-1m 2-2m +1(2)(2012·常德)⎝⎛⎭⎫x +x x 2-1÷⎝⎛⎭⎫2+1x -1-1x +112.解分式方程:(1)(2012·广安)23+x 3x -1=19x -3(2)(2012·上海)x x +3+6x 2-9=1x -313.(2012·广州)已知1a +1b =5(a ≠b),求a b (a -b )=b a (a -b )的值.14.(2012·资阳)先化简,再求值:a -2a 2-1÷⎝⎛⎭⎪⎫a -1-2a -1a +1,其中a 是方程x 2-x =6的根.四、附加题(共20分)15.若abc =1,求a ab +a +1+b bc +b +1+c ca +c +1的值.。

(完整版)分式专题讲解(知识点+例题+练习+中考经典题)

(完整版)分式专题讲解(知识点+例题+练习+中考经典题)

分式专题讲解 知识点一、分式的概念: 一般地,如果A 、B 表示两个整式,并且除式B 中含有字母,那么式子叫分式。

解读:(1)分母中含有字母是分式的一个重要标志,它是分式与分数、整式的根本区别;分式A/B 有意义,则B =0(2)分式的分母的值不能等于零.若分母的值为零,则分式无意义;反之,若分式A/B 无意义,则B =0(3)当分子等于零而分母不等于零时,分式的值才是零.反之,若分式A/B=0,则A =0,且B ≠0例题1、下列各式中,哪些是整式?哪些是分式?a ab 2,x 1,3s ,b a a --,πy x +,)(21b a -,)(1z x y -,a-31练习:这些代数式中x -,π4,x a ,y x y x -+2,a 5-,71,2ba -,x -3中,是分式的有( )。

A.3个B.4个C.5个D.6个练习:已知的值。

,求x x x 011=--练习:的值是的值为零,则b 32122---b b b ( ) A.1 B.-1 C.1± D.2练习:写出一个含字母x 的分式,使得不论x 取何值,分式都有意义。

练习:若0y 3y 21,322是)为负数()为正数;()(为何值时,y x xx y -=探索题型:观察下列各等式:323112=+,434122=+,545132=+,656142=+,......,设n 为正整数,试用含n 的等式表示这个规律。

1、分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示是:MB MA MB M A B A ÷÷=⨯⨯=(其中M 是不等于0的整式).特别提示:(1)在解题过程中,分母不为0是作为隐含条件给出的.若是分式,则说明分母中的字母一定能满足使分母不为0;(2)在运用分式的基本性质时,一定要重点强调分母不为0这个条件,没有给出的,要讨论是否等于0.例题1:下列运算中,错误的是( ).A.2b ab b a =B.b ab ab =2 C.b a b a b a b a 321053.02.05.0-+=-+ D .bc acb a =2、分式的约分根据分式的基本性质,把一个分式的分子和分母分别除以它们的公因式叫做分式的约分。

最新初中数学—分式的知识点训练附答案(4)

最新初中数学—分式的知识点训练附答案(4)

一、选择题1.老师设计了一个接力游戏,用小组合作的方式完成分式的运算,规则是:每人只能看见前一个人给的式子,并进行一步计算,再将结果传递给下一个人,最后完成计算.其中一个组的过程是:老师给甲,甲一步计算后写出结果给乙,乙一步计算后写出结果给丙,丙一步计算后写出结果给丁,丁最后算出结果.接力中,自己负责的一步出现错误的是( )A .甲B .乙C .丙D .丁2.如果把5xy x y+中的x 和y 都扩大为原来的10倍,那么这个分式的值( )A .不变B .扩大为原来的50倍C .扩大为原来的10倍D .缩小为原来的1103.0.000002019用科学记数法可表示为( ) A .0.2019×10﹣5 B .2.019×10﹣6 C .20.19×10﹣7 D .2019×10﹣9 4.若(x 2﹣ax ﹣b )(x +2)的积不含x 的一次项和二次项,则a b =( ) A .116B .-116C .16D .﹣165.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物。

2.5微米等于0.0000025米,把0.0000025用科学记数法表示为( ) A .0.25×10–5米 B .2.5×10–7米 C .2.5×10–6米 D .25×10–7米 6.下列运算正确的是( )A 393=B .0(2)1-=C .2234a a a +=D .2325a a a ⋅=7.若02018a =,2201720192018b =⨯- , 2017201845()()54c =-⨯ ,则a ,b ,c 的大小关系式( ) A .a b c << B .b c a <<C .c b a <<D .a c b <<8.如果把分式2x y zxyz-+中的正数x ,y ,z 都扩大2倍,则分式的值( ) A .不变 B .扩大为原来的两倍 C .缩小为原来的14D .缩小为原来的189.如果把分式2++a ba b中的a 和b 都扩大为原来的10倍,那么分式的值( ) A .不变B .缩小10倍C .是原来的20倍D .扩大10倍10.下列各分式的值可能为零的是( ).A .2211m m +-B .11m +C .211m m +-D .211m m -+11.下列分式运算中,正确的是( )A .111x y x y+=+ B .x a ax b b+=+ C .22x y x y x y -=+- D ..a c adb d bc= 12.若a =﹣0.22,b =﹣2-2,c =(﹣12)-2,d =(﹣12)0,则它们的大小关系是( ) A .a <b <c <d B .b <a <d <c C .a <d <c <bD .c <a <d <b13.如图是数学老师给玲玲留的习题,玲玲经过计算得出的正确结果为( )A .1B .2C .3D .414.若式子01(1)k k -+-有意义,则一次函数()11y k x k =-+-的图象可能是( )A .B .C .D .15.在某次数学小测中,老师给出了5个判断题.如图为张晓亮的答卷,每个小题判断正确得20分,他的得分应是( )A .100分B .80分C .60分D .40分 16.用小数表示45.610-⨯为( )A .5.6000B .0.00056C .0.0056D .0.05617.若23a b =≠0,则代数式(2244b aba-+1)2b a a -÷的值为( ) A .2B .1C .﹣1D .﹣218.下列结论正确的是( )A .当23x ≠时,分式132x x +-有意义 B .当x y ≠时,分式222xyx y -有意义C .当0x =时,分式22+xx x的值为0D .当1x =-时,分式211x x --没有意义19.小明家到学校m 千米,若步行从家到学校,需要t 小时;若骑自行车,所用时间比步行少用20分钟,则骑自行车的比步行的速度快了( )A .3(1)m t t -千米/时B .(31)m t t - 千米/时 C .(31)mt t-+ 千米/时 D .13mt - 千米/时 20.世界上最小的开花结果植物的果实像一个微小的无花果,质量只有0.000000076克,将0.000000076用科学记数法表示为( )A .87.610⨯B .77.610-⨯C .87.610-⨯D .97.610-⨯21.下列运算正确的是( ) A .(﹣x 3)4=x 12 B .x 8÷x 4=x 2 C .x 2+x 4=x 6D .(﹣x )﹣1=1x22.已知1112a b -=,则ab a b-的值是( ) A .12B .12-C .2D .-223.下列运算正确的是( )A .()32622x x -=-B .22133xx -=C .()2x x y x xy --=-+ D .()2222x y x xy y --=-+24.下列各式中,正确的是( )A .22x y x y -++=-B .()222x y x y x y x y --=++ C .1a b b ab b++= D .23193x x x -=-- 25.若a +b =0, 则ba的值为( ) A .-1B .0C .1D .-1或无意义【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【分析】找出题中出错的地方即可. 【详解】乙同学的过程有误,应为()()22a ab ab b a b a b +-++-,故选B . 【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.2.C解析:C 【解析】 【分析】首先分别判断出x 与y 都扩大为原来的10倍后,分式的分子、分母的变化情况,然后判断出这个代数式的值和原来代数式的值的关系即可. 【详解】解:∵x 与y 都扩大为原来的10倍,∴5xy 扩大为原来的100倍,x+y 扩大为原来的10倍, ∴5xyx y+的值扩大为原来的10倍, 即这个代数式的值扩大为原来的10倍. 故选:C . 【点睛】本题考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,要熟练掌握,解答此题的关键是分别判断出分式的分子、分母的变化情况.3.B解析:B 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】0.000002019=2.019×10﹣6, 故选B . 【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.A解析:A 【解析】 【分析】先把原式展开,再根据题意2()(2)x ax b x --+的积不含x 的一次项和二次项,得知20a -=,20a b +=,然后求解即可. 【详解】2322()(2)222x ax b x x x ax ax bx b --+=+---- 32(2)(2)2x a x a b x b =+--+-,2()(2)x ax b x --+的积不含x 的一次项和二次项,∴2020a a b -=⎧⎨+=⎩,2a ∴=,4b =-,41216b a -∴==. 故选A . 【点睛】本题考查了多项式乘多项式,解题的关键是明确积不含x 的一次项和二次项,即它们的系数为零.5.C解析:C 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.由此即可解答. 【详解】0.0000025=2.5×10﹣6, 故选C . 【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.6.B解析:B 【分析】直接利用立方根,零指数幂,合并同类项法则同底数幂的乘法法则化简得出答案.3≠,无法计算,故此选项错误; B. 0(2)1-=,故此选项正确; C. 22234a a a +=,故此选项错误; D. 2326a a a ⋅=,故此选项错误; 故选:B. 【点睛】此题考查合并同类项,零指数幂,立方根,解题关键在于掌握运算法则.7.C解析:C 【分析】根据零次幂的性质,平方差公式以及积的乘方法则求出a ,b ,c ,再根据有理数的比较法则判断即可. 【详解】解:020118a ==,2222201720192018(20181)(20181)20182018120181b =⨯-=-+-=--=-,201720182017454555()()()545444c =-⨯=-⨯⨯=-,∵54-<-1<1, ∴c <b <a . 故选:C . 【点睛】本题主要考查了零次幂的性质,平方差公式以及积的乘方,熟练掌握相关运算法则是解题关键.8.C解析:C 【分析】用2x 、2y ,2z 去替换原分式中的x 、y 和z ,利用分式的基本性质化简,再与原分式进行比较即可得到答案. 【详解】 ∵把分式2x y zxyz-+中的正数x ,y ,z 都扩大2倍, ∴222221222244x y z x y z x y zx y z xyz xyz-⨯+-+-+==⨯⋅⋅.∴分式的值缩小为原来的14. 故选:C.考查了分式的基本性质,解题关键把字母变化后的值代入式子中,然后化简,再与原式比较,得出结论.9.A解析:A 【分析】根据分式的基本性质代入化简即可. 【详解】 扩大后为:102022=1010)a b a b a ba b a b a b+++=+++10()10(分式的值还是不变 故选:A. 【点睛】本题考查分式的基本性质,熟练掌握性质是关键.10.D解析:D 【分析】根据分式为零的条件进行计算即可. 【详解】解:∵分式有意义且它的值为零, ∴分子为0,分母不为0A. 2m +10≠,分式的值不可能为零,不符合题意;B. 10≠,分式的值不可能为零,不符合题意;C. 2m+1=0m -10⎧⎨≠⎩无解,分式的值不可能为零,不符合题意;D.当 2m -1=0m+10⎧⎨≠⎩,即m=1时,分式的值为零,符合题意;故选:D 【点睛】本题主要考查分式为零的条件,(1)分子的值为零;(2)分母的值不为零;两个条件必须同时具备,缺一不可.11.C解析:C 【分析】根据分式的运算法则计算各个选项中的式子,从而可以解答本题. 【详解】解:∵11,x yx y xy++=故A 错误;(0)x a ax x b b+≠≠+,故B 错误;. 22()()x y x y x y x y x y x y -+-==+--,故C 正确; ∵.a c ac b d bd =,故D 错误. 故选:C 【点睛】本题考查分式的混合运算,解答本题的关键是明确分式的混合运算的计算方法.12.B解析:B 【解析】 【分析】根据负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1,可得答案. 【详解】∵a =﹣0.22=﹣0.04;b =﹣2﹣2=﹣14=﹣0.25,c =(﹣12)﹣2=4,d =(﹣12)0=1, ∴﹣0.25<﹣0.04<1<4, ∴b <a <d <c , 故选B . 【点睛】本题考查了负整数指数幂,熟练掌握负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1是解题关键.13.C解析:C 【分析】先将原式通分,可以得到222b a ab ab++,再将分子用完全平方公式进行变形,即可得到()222a b abab +-+,最后代入数值计算即可.【详解】因为2b aa b++()2222222222323233b a ab ab b a ab a b abab =+++=++-=+-⨯=+=所以选C. 【点睛】本题考查的是分式的通分和完全平方公式的变形,能够熟练掌握完全平方公式的变形是解题的关键.14.C解析:C 【分析】先求出k 的取值范围,再判断出1k -及1k -的符号,进而可得出结论. 【详解】0(1)k -有意义,则1k >. ∴10k -<,10k ->,∴一次函数()11y k x k =-+-的图象经过第一、二、四象限. 故选:C . 【点睛】本题考查的是一次函数的图象,熟知一次函数的图象与系数的关系是解答此题的关键.15.B解析:B 【分析】依据分式的化简,无理数定义,平方根定义,实数的大小比较方法依次判断各小题正确与否即可确定他的得分. 【详解】 因为c ac b++是最简分式不能在进行化简,故第1小题错误,他判断正确得20分; 因为227是分数属于有理数,不是无理数,所以第2小题错误,他判断正确得20分;因为0.6=-,所以第3小题错误,他判断错误不得分;因为23<<,所以112<<,所以第4小题正确,他判断正确得20分;数轴上的点可以表示无理数,故第5小题错误,他判断正确得20分. 故他应得80分,选择B【点睛】此题考察分式的化简,无理数定义,平方根定义,实数的大小比较方法,熟练掌握才能正确判断.16.B解析:B 【分析】把数据45.610-⨯中5.6的小数点向左移动4位就可以得到. 【详解】解:441=5.6=5.60.0001=0.0005615.6100-⨯⨯⨯. 故选B. 【点睛】本题考查写出用科学记数法表示的原数.(1)科学记数法a ×10n 表示的数,“还原”成通常表示的数,就是把a 的小数点向右移动n 位所得到的数.若科学记数法表示较小的数a ×10-n ,还原为原来的数,需要把a 的小数点向左移动n 位得到原数.(2)把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.17.A解析:A 【分析】由23a b=≠0,得2b =3a ,把根据分式运算法则进行化简,再代入已知值计算即可. 【详解】解:(2244b ab a -+1)2b a a -÷ 222442b ab a a a b a -+=•- 22(2)2a b aa b a -=•- 2b a a-=, ∵23a b=≠0, ∴2b =3a ,∴原式32a a aa a-===2, 故选:A . 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.18.A解析:A【分析】根据分式有意义,分母不等于0;分式的值等于0,分子等于0,分母不等于0对各选项分析判断后利用排除法求解.【详解】A、分式有意义,3x-2≠0,解得23x≠,故本选项正确;B、分式有意义,x2-y2≠0,解得x≠±y,故本选项错误;C、分式的值等于0,x=0且x2+2x≠0,解得x=0且x≠0或-2,所以,x=0时分式无意义,故本选项错误;D、分式没有意义,x-1=0,x=1,故本选项错误.故选:A.【点睛】此题考查分式有意义以及分式的值为零的条件,解题关键在于掌握(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.19.B解析:B【分析】利用速度=路程÷时间分别求得步行的速度和骑自行车的速度,从而利用分式的运算法则求得两者的速度差.【详解】解:步行的速度是:mt(km/h),骑自行车的速度是:31313m mtt=--(km/h),则骑自行车的速度与步行的速度差为:331(31)m m mt t t t-=--.故选:B.【点睛】本题考查了列代数式及分式的加减运用,正确表示出步行和骑自行车的速度是解题的关键.20.C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000000076用科学记数法表示为7.6×10-8.故选:C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.21.A解析:A【分析】A 、根据积的乘方法则进行计算;B 、根据同底数幂的除法法则进行计算;C 、不是同类项,不能合并;D 、根据负整数指数幂的法则进行计算.【详解】解:A 、(﹣x 3)4=x 12,所以此选项正确;B 、x 8÷x 4=x 4,所以此选项不正确;C 、x 2与x 4不是同类顶,不能合并,所以此选项不正确;D 、(﹣x )﹣1=111()x x-=-,所以此选项不正确; 故选:A .【点睛】本题考查了幂的乘方和积的乘方等知识点,能求出每个式子的值是解题的关键. 22.D解析:D【分析】先把已知的式子变形为()2ab b a =-,然后整体代入所求式子约分即得答案.【详解】 解:∵1112a b -=, ∴()2ab b a =-, ∴()22b a ab a b a b-==---. 故选:D .【点睛】本题考查了分式的通分与约分,属于常考题目,掌握解答的方法是关键.23.C解析:C【分析】根据积的乘方、负整数指数幂、整式的乘法、完全平方公式逐项判断即可得.A 、()32628x x -=-,此项错误; B 、2233x x -=,此项错误; C 、()2x x y x xy --=-+,此项正确; D 、()()22222x y x y x xy y --=+=++,此项错误;故选:C .【点睛】本题考查了积的乘方、负整数指数幂、整式的乘法、完全平方公式,熟练掌握各运算法则和公式是解题关键.24.B解析:B【分析】根据分式的性质,对每个选项的式子一一判断正误即可.【详解】22x y x y -+-=-,故A 选项错误; ()222()()()()x y x y x y x y x y x y x y x y --+-==++++,故B 选项正确; 1b a b a ab b++=,故C 选项错误;23319(3)(3)3x x x x x x --==-+-+,故D 选项错误. 故选:B .【点睛】本题主要考查分式的化简,熟记分式的性质是解题关键. 25.D解析:D【分析】互为相反数两个数的和为0,同时要考虑到0+0=0,从而进行判断.【详解】解:∵a +b =0∴a=-b 或a=0,b=0 ∴b a的值为-1或无意义, 故选:D.掌握互为相反数的两个数的和为0和0+0=0,是本题的解题关键.。

中考数学—分式的知识点训练及答案

中考数学—分式的知识点训练及答案

一、选择题1.函数122y x x =+--的自变量x 的取值范围是( ) A .2x ≥B .2x >C .2x ≠D .2x ≤ 2.如图,设k=甲图中阴影部分面积乙图中阴影部分面积(a >b >0),则有 ( )甲 乙甲(A )k >2 (B )1<k <2 (C )121<<k (D )210<<k 3.下列分式约分正确的是( )A .236a a a =B .1-=-+y x y xC .316222=b a abD .m mn m n m 12=++ 4.当012=-+a a 时,分式2222-21a a a a a ++++的结果是( ) A .25-1- B .251-+ C .1 D .0 5.若分式12+-x x 的值为0,则x 的值为( ) A .2或-1 B .0 C .-1 D . 26.在分式ab a b +(a ,b 为正数)中,字母a ,b 值分别扩大为原来的2倍,则分式的值( )A .扩大为原来的2倍B .缩小为原来的12C .不变D .不确定7.化简:(a-2)·22444a a a --+的结果是( ) A .a-2 B .a +2 C .22-+a a D .22+-a a 8.已知+=3,则分式的值为( )乙甲A .B .9C .1D .不能确定9.若分式的值为0,则x 的值为( ) A .0B .2C .﹣2D .2或﹣2 10.若分式211x x -+的值为零,则x 的值为( ) A .0 B .1 C .1- D .±1 11.下列代数式y 2、x 、13π、11a -中,是分式的是 A .y 2 B .11a - C .x D .13π12.计算23x 11x +--的结果是 A .1x 1- B .11x- C .5x 1- D .51x - 13.下列计算正确的是( ).A .32b b b x x x += B .0a a a b b a -=-- C .2222bc a a b c ab ⋅= D .22()1a a a a a -÷=- 14.用科学记数方法表示0.00000601,得( )A .0.601×10-6B .6.01×10-6C .60.1×10-7D .60.1×10-615.若分式的值为0,则x 的值是( )A .3B -3C .4D .-416.化简﹣的结果是( )m+3 B .m-3 C .D . 17.已知115ab a b =+,117bc b c =+,116ca c a =+,则abc ab bc ca ++的值是( ) A .121 B .122 C .123 D .12418.已知实数a ,b ,c 均不为零,且满足a +b +c=0,则222222222111b c a c a b a b c+++-+-+-的值是( ) A .为正 B .为负 C .为0 D .与a ,b ,c 的取值有关19.(2015秋•郴州校级期中)当x=3,y=2时,代数式的值是( )A .﹣8B .8C .D . 20.要使分式有意义,则x 的取值应满足( )A .x=﹣2B .x ≠C .x >﹣2D .x ≠﹣221.下列分式中是最简分式的是( )A .B .C .D .22.在标准大气压下氢气的密度为0.00009g/cm 3 ,用科学记数法表示0.00009正确的是( )A .5910⨯B .5910-⨯C .4910-⨯D .40.910⨯23.已知一粒大米的质量约为0.0000021千克,这个数用科学记数法表示为( ) A .0.21×10-5 B .2.1×10-5C .2.1×10-6D .21×10-624.在函数中,自变量的取值范围是( ) A .>3 B .≥3且≠4 C .>4 D .≥325.无论x 取何值,总是有意义的分式是( )A .21x x +B .221x x +C .331x x +D .21x x +【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【详解】解:根据题意得:x ﹣2≥0且x ﹣2≠0,解得:x >2.故选B .【点睛】本题考查函数自变量的取值范围.2.C解析:C【解析】试题分析:甲图中阴影部分的面积=22a b -,乙图中阴影部分的面积= ()a a b -,22()1a a b a b k a b a b a b -===--++,∵a >b >0∴0<b a b +<12,∴ 121<<k . 考点:分式的约分. 3.D解析:D【解析】试题分析:A.约分的结果为a3;B.不能进行约分;C.约分的结果为ab 3。

中考数学—分式的知识点训练含答案

中考数学—分式的知识点训练含答案

一、选择题1.计算正确的是( )A .(﹣5)0=0B .x 3+x 4=x 7C .(﹣a 2b 3)2=﹣a 4b 6D .2a 2•a ﹣1=2a 2.若分式||11x x -+的值为0,则x 的值为( ) A .1B .﹣1C .±1 D .无解3.把分式2210x y xy+中的x y 、都扩大为原来的5倍,分式的值( )A .不变B .扩大5倍C .缩小为15D .扩大25倍4.下列判断错误..的是( ) A .当23x ≠时,分式132x x +-有意义 B .当a b 时,分式22aba b -有意义 C .当12x =-时,分式214x x+值为0D .当x y ≠时,分式22x yy x--有意义5.计算: ()332xy ?-一 的结果是A .398x y --B .398x y ---C .391x y 2---D .361x y 2---6.下列运算,正确的是 A .0a 0=B .11a a-=C .22a a b b=D .()222a b a b -=-7.下列关于分式的判断,正确的是( ) A .当x =2时,12x x +-的值为零 B .无论x 为何值,231x +的值总为正数 C .无论x 为何值,31x +不可能得整数值 D .当x ≠3时,3x x-有意义 8.下列变形正确的是( ). A .11a ab b+=+ B .11a ab b--=-- C .221a b a b a b-=-- D .22()1()a b a b --=-+ 9.下列计算,正确的是( )A .2(2)4--=B 2=-C .664(2)64÷-=D =10.下列变形正确的是( ).A .1a b bab b++= B .22x y x y-++=- C .222()x y x y x y x y --=++ D .23193x x x -=-- 11.已知有理式:4x 、4a 、1x y -、34x 、12x 2、1a +4,其中分式有 ( )A .2个B .3个C .4个D .5个12.在实数范围内有意义,则x 的取值范围为( ) A .x<-3B .x ≥-3C .x>2D .x ≥-3,且x ≠213.将分式()0,0xyx y x y≠≠-中的x .y 扩大为原来的3倍,则分式的值为:( ) A .不变;B .扩大为原来的3倍C .扩大为原来的9倍;D .减小为原来的1314.下列各式变形正确的是() A .x y x yx y x y -++=---B .22a b a bc d c d --=++ C .0.20.03230.40.0545a b a bc d c d--=++D .a b b ab c c b--=-- 15.若 ()1311xx --=,则 x 的取值有 ()A .0 个B .1 个C .2 个D .3 个16.2018年3月3日,新浪综合网报道:“中科院发明首个抗癌DNA 纳米机器人,可精准阻断肿瘤血管饿死肿瘤!”.中国科学家团队研发出的这种可编程、基于 DNA 折纸技术的纳米机器人大小只有90×60×2nm ,nm 是长度计量单位,1nm=0.000000001米,则2nm 用科学记数法表示为( )A .2×109米 B .20×10-8米 C .2×10-9米 D .2×10-8米 17.下列各式:2116,,4,,235x y x x y x π++-中,分式有( ) A .1个B .2个C .3个D .4个18.()()2323x y z x y z +++-的结果为( ) A .1B .33-+m m C .33m m +- D .33mm + 19.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000105m ,该数值用科学记数法表示为( ) A .51.0510⨯ B .51.0510-⨯C .50.10510-⨯D .410.510-⨯20.下列运算正确的是( )A .a ﹣3÷a ﹣5=a 2 B .(3a 2)3=9a 5 C .(x ﹣1)(1﹣x)=x 2﹣1D .(a+b)2=a 2+b 221.纳米是一种长度单位,1米=109纳米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示这种花粉的直径为( ) A .3.5×10﹣6米 B .3.5×10﹣5米 C .35×1013米 D .3.5×1013米 22.下列分式中,最简分式是( )A .211x x +-B .2211x x -+C .236212x x -+D .()2--y x x y23.下列计算正确的有①()011-=;②21333-⨯=;③()()33m m x x -=-;④2211224x x x ⎛⎫-=-+ ⎪⎝⎭;⑤()()22339a b b a a b ---=-.A .4个B .3个C .2个D .1个24.计算21424m m ++-的结果是( ) A .2m +B .2m -C .12m + D .12m - 25.使分式293x x -+的值为0,那么x ( ).A .3x ≠-B .3x =C .3x =±D .3x ≠【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D【解析】解:A .原式=1,故A 错误;B .x 3与x 4不是同类项,不能进行合并,故B 错误;C .原式=a 4b 6,故C 错误;D .正确. 故选D .2.A解析:A 【解析】试题解析:∵分式||11x x -+的值为0, ∴|x|﹣1=0,且x+1≠0, 解得:x=1.故选A .3.A解析:A 【详解】∵要把分式2210x y xy+中的x y 、都扩大5倍,∴扩大后的分式为:()()()22222225551055251010x y x y xy x yxyxy+++==⨯⨯⨯,∴把分式2210x y xy+中的x y 、都扩大5倍,分式的值不变.故选A.点睛:解这类把分式中的所有字母都扩大n 倍后,判断分式的值的变化情况的题,通常是用分式中每个字母的n 倍去代替原来的字母,然后对新分式进行化简,再把化简结果和原来的分式进行对比就可判断新分式和原分式相比值发生了怎样的变化.4.B解析:B 【解析】A 、当分母3x-2≠0,即当x≠23时,分式x 13x 2+-有意义.故本选项正确; B 、当分母a 2-b 2≠0,即a≠±b 时,分式22aba b-有意义.故本选项错误; C 、当分子2x+1=0,即x =−12时,分式2x 14x+值为0.故本选项正确; D 、当分母y-x≠0,即x≠y 时,分式22x y y x--有意义.故本选项正确;故选:B .5.B解析:B 【解析】3333939(2)=(-2)8xy x y x y -------=-.故选B.6.B解析:B 【解析】A 选项中,因为只有当0a ≠时,01a =,所以A 错误;B 选项中,11=a a-,所以B 正确;C 选项中,22a b的分子与分母没有公因式,不能约分,所以C 错误;D 选项中,222()2a b a ab b -=-+,所以D 错误; 故选B.7.B解析:B 【解析】A 选项中,因为当2x =时,分式12x x +-无意义,所以本选项错误; B 选项中,因为无论x 取何值,21x +的值始终为正数,则分式231x +的值总为正数,所以本选项正确;C 选项中,因为当2x =时,分式311x =+,所以本选项说法错误; D 选项中,因为0x ≠时,分式3x x-才有意义,所以本选项说法错误; 故选B.8.B解析:B 【解析】 A 选项中,11a b ++不能再化简,所以A 中变形错误; B 选项中,11a ab b--=--,所以B 中变形正确; C 选项中,221()()a b a b a b a b a b a b--==-+-+,所以C 中变形错误;D 选项中,2222()()1()()a b a b a b a b --+==++,所以D 中变形错误; 故选B.9.C解析:C 【解析】 【详解】 解:A .()2124--=,所以A 错误;B 2=,所以B 错误;C .()666664242264÷-=÷==,所以C 正确;D ==D 错误,故选C .10.C解析:C 【解析】 选项A.a bab+ 不能化简,错误. 选项B.22x y x y-+-=-,错误. 选项C.()222x y x y x y x y --=++ ,正确. 选项D. 23193x x x -=-+,错误. 故选C.11.B解析:B 【解析】4a 、、34x 、12x 2的分母中均不含有字母,因此它们是整式,而不是分式. 4x、、1x y -、1a +4的分母中含有字母,因此是分式.所以B 选项是正确的.点睛:本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.12.D解析:D 【分析】根据二次根式有意义的条件和分式有意义的条件得到x+3≥0且x-2≠0,然后求出两个不等式的公共部分即可. 【详解】根据题意得x+3≥0且x−2≠0, 所以x 的取值范围为x ≥−3且x≠2. 故答案选D. 【点睛】本题考查的知识点是二次根式有意义的条件,分式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件,分式有意义的条件.13.B解析:B 【解析】解:把分式xy x y +中的x 、y 扩大为原来的3倍后为3333x y x y ⋅+=3xyx y+,即将分式00xyx y x y≠≠-(,)中的x 、y 扩大为原来的3倍后分式的值为原来的分式的值的3倍.故选B .14.D解析:D 【解析】 【分析】根据分式的分子分母都乘以或除以同一个不为零的数或者同一个不为零的整式,分式的值不变,可得答案. 【详解】 A 、原式x yx y-=+,所以A 选项错误; B 、原式=2a b c d-+(),所以B 选项错误; C 、原式=203405a bc d-+,所以C 选项错误;D 、a b b ab c c b --=--,所以D 选项正确. 故选D . 【点睛】本题考查了分式基本性质,分式的分子分母都乘以或除以同一个不为零的数或者同一个不为零的整式,分式的值不变.15.C解析:C 【分析】直接利用零指数幂的性质以及有理数的乘方运算法则得出答案. 【详解】解:∵(1-x )1-3x =1, ∴当1-3x=0时,原式=1, 当x=0时,原式=1, 故x 的取值有2个. 故选C . 【点睛】此题主要考查了零指数幂的性质以及有理数的乘方运算,正确掌握运算法则是解题关键.16.C解析:C【解析】分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.详解:0.000000001×2=2×10﹣9.故选C .点睛:本题考查了用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17.A解析:A 【解析】分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式. 详解:216,,4,,23x y xx y π++的分母中均不含有字母,因此它们是整式,而不是分式.15x -的分母中含有字母,因此是分式. 故选A .点睛:本题主要考查分式的定义,注意π不是字母,6xπ是常数,所以不是分式,是整式.18.A解析:A 【分析】先计算除法运算,然后进行减法运算即可得出答案. 【详解】原式=3m m +-6(3)(33)m -+× 32m -= 3m m ++ 33m += 33m m ++=1 故答案选A. 【点睛】本题考查的知识点是分式的混合运算,解题的关键是熟练的掌握分式的混合运算.19.B解析:B 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】0.0000105=1.05×10-5, 故选B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.20.A解析:A 【解析】 【分析】直接利用同底数幂的除法运算法则、积的乘方运算法则、完全平方公式分别化简得出答案. 【详解】A .a ﹣3÷a ﹣5=a 2,故此选项正确;B .(3a 2)3=27a 6,故此选项错误;C .(x ﹣1)(1﹣x )=﹣x 2+2x ﹣1,故此选项错误;D .(a +b )2=a 2+2ab +b 2,故此选项错误. 故选A . 【点睛】本题考查了同底数幂的除法运算法则、积的乘方运算法则、完全平方公式等知识,正确掌握相关运算法则是解题的关键.21.B解析:B 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】∵1米=109纳米,某种植物花粉的直径约为35000纳米,∴35000纳米=35000×10﹣9m =3.5×10﹣5m .故选B . 【点睛】本题考查了用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.22.B解析:B 【分析】利用最简分式的定义判断即可. 【详解】A 、原式=()()11111x x x x +=+--,不合题意;B 、原式为最简分式,符合题意;C 、原式=()()()666262x x x x +--=+,不合题意,D 、原式=()()2x y x y x x y x--=-,不合题意;故选B . 【点睛】此题考查了最简分式,最简分式为分式的分子分母没有公因式,即不能约分的分式.23.C解析:C 【解析】 【分析】根据零指数幂、同底数幂的乘法、负整数指数幂的意义、积的乘方、完全平方公式、平方差公式计算后判断各个选项即可. 【详解】①()011-=,正确; ②2113333--⨯==,正确;③当m 为偶数时,()()33mm x x -≠-,错误;④221124x x x ⎛⎫-=-+ ⎪⎝⎭,错误; ⑤(a -3b )(-3b -a )=2222(3)9b a b a --=-,错误. 故选C . 【点睛】本题考查了零指数幂、同底数幂的乘法、负整数指数幂的意义、积的乘方、完全平方公式、平方差公式.熟练掌握运算法则是解题的关键.24.D解析:D 【解析】 【分析】先通分,再加减.注意化简. 【详解】21424124(2)(2)2m m m m m m -++==+-+-- 故选:D 【点睛】考核知识点:异分母分式加减法.通分是关键.25.B解析:B【解析】 ∵由题意可得:2903x x -=+,∴29030x x ⎧-=⎨+≠⎩,∴3x =±且3x ≠-,∴3x =.故选B .点睛:分式中字母的取值使分式的值为0,需同时满足两个条件:(1)字母的取值使分子的值为0;(2)字母的取值使分母的值不为0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013中考数学50个知识点专练4 分式及其运算
一、选择题
1.(2010·孝感)化简⎝⎛⎭⎫x y -y x ÷x -y x 的结果是( )
A. 1y
B. x +y y
C.x -y y
D .y 答案 B
解析 原式=x 2-y 2xy ·x x -y =(x +y )(x -y )xy ·x x -y
=x +y y . 2.(2011·宿迁)方程2x x +1-1=1x +1
的解是( ) A .-1 B .2 C .1 D .0
答案 B
解析 把x =2代入方程,可知方程左边=43-1=13,右边=13
.∴x =2是方程的解. 3.(2011·苏州)已知1a -1b =12,则ab a -b
的值是( ) A.12 B .-12
C .2
D .-2 答案 D
解析 1a -1b =12,2b -2a =ab ,-2(a -b )=ab ,所以ab a -b
=-2. 4.(2011·威海)计算1÷1+m 1-m
·()m 2-1的结果( ) A .-m 2-2m -1 B .-m 2+2m -1
C .m 2-2m -1
D .m 2-1
答案 B
解析 原式=1×1-m 1+m
×(m +1)(m -1)=-(m -1)2=-m 2+2m -1. 5.(2011·鸡西)分式方程x x -1-1=m (x -1)(x +2)
有增根,则m 的值为( ) A .0和3 B .1 C .1和-2 D .3
答案 D
解析 去分母,得x (x +2)-(x -1)(x +2)=m ,当增根x =1时,m =3;当增根x =-2
时,m =0,经检验,当m =0时,x x -1
-1=0.x =x -1,方程无解,不存在增根,故舍去m =0.所以m =3.
二、填空题
6.(2011·嘉兴)当x ______时,分式13-x
有意义. 答案 ≠3
解析 因为分式有意义,所以3-x ≠0,即x ≠3.
7.(2011·内江)如果分式3x 2-27x -3
的值为0,那么x 的值应为________. 答案 -3
解析 分母x -3≠0,x ≠3;分子3x 2-27=0,x 2=9,x =±3,综上,x =-3.
8.(2011·杭州)已知分式x -3x 2-5x +a
,当x =2时,分式无意义,则a =________;当x <6时,使分式无意义的x 的值共有________个.
答案 6,2
解析 当x =2时,分母x 2-5x +a =0,22-5×2+a =0,a =6;在x 2-5x +a =0时,分
式无意义,x =5±25-4a 2×1
,当x <6时,25-4a >0,方程有两个不相等的实数根,所以x 的值有2个.
9.(2011·呼和浩特)若x 2-3x +1=0,则x 2x 4+x 2+1
的值为________. 答案 18
解析 因为x 2-3x +1=0,所以x +1x =3,而x 4+x 2+1x 2=x 2+1+1x 2=⎝⎛⎭⎫x +1x 2-1=32-1=8.故x 2x 4+x 2+1=18
. 10.(2011·乐山)若m 为正实数,且m -1m =3,则m 2-1m
2=________. 答案 3 13
解析 因为m >0,所以⎝⎛⎭⎫m +1m 2=⎝⎛⎭⎫m -1m 2+4=32+4=13,m +1m =13.故m 2-1m 2=⎝
⎛⎭⎫m +1m ⎝⎛⎭⎫m -1m =3×13=3 13. 三、解答题
11.(2011·衢州)化简:a -3b a -b +a +b a -b
. 解 原式=a -3b +a +b a -b =2a -2b a -b =2(a -b )a -b =2. 12.(2010·镇江)描述证明 海宝在研究数学问题时发现了一个有趣的现象:
将上图横线处补充完整,并加以证明.
解 如果a b +b a
+2=ab ,那么a +b =ab . 证明:∵a b +b a +2=ab ,∴a 2+b 2+2ab ab
=ab , ∴a 2+b 2+2ab =(ab )2,∴(a +b )2=(ab )2,
∵a >0,b >0,a +b >0,ab >0,
∴a +b =ab . 13.(2011·广安)先化简(x x -5-x 5-x )÷2x x 2-25,然后从不等式组⎩⎪⎨⎪⎧
-x -2≤3,2x <12的解集中,选取一个你认为符合题意....
的x 的值代入求值. 解 原式=2x x -5
×(x +5)(x -5)2x =x +5.
解不等式组得:-5≤x <6.
选取的数字在-5≤x <6的范围内不为5,-5,0即可(答案不唯一),代入求值略.
14.(2011·重庆)先化简,再求值:
(x -1x -x -2x +1)÷2x 2-x x 2+2x +1
,其中x 满足x 2-x -1=0. 解 原式=(x -1x -x -2x +1)÷x (2x -1)x 2+2x +1
=(x -1)(x +1)-x (x -2)x (x +1)÷x (2x -1)x 2+2x +1
=2x -1x (x +1)×(x +1)2x (2x -1)
=x +1x 2. 当x 2-x -1=0时,x 2=x +1,原式=x +1x +1
=1. 15.(1)(2011·盐城)解方程:x x -1-31-x
=2. 解 去分母,得x +3=2(x -1) .
解之,得x =5.
经检验,x =5是原方程的解.∴x =5.
(2)(2011·菏泽)解方程:x +12x =x +13
. 解 原方程两边同乘以6x ,得3(x +1)=2x ·(x +1),
整理得2x 2-x -3=0,
解得x =-1或x =32
, 经检验:x 1=-1,x 2=32都是原方程的解,故原方程的解是x 1=-1,x 2=32
. 四、选做题
16.若abc =1,求a ab +a +1+b bc +b +1+c ca +c +1
的值. 分析 本题可将分式通分后,再进行化简求值,但较复杂.下面介绍两种简单的解法. 解法一 因为abc =1,所以a ,b ,c 都不为零.
原式=a ab +a +1+a a ·b bc +b +1+ab ab ·c ca +c +1
=a ab +a +1+ab abc +ab +a +abc abca +abc +ab
=a ab +a +1+ab 1+ab +a +1a +1+ab
=a +ab +1ab +a +1
=1. 解法二 由abc =1,得a =1bc
,将之代入原式. 原式=1bc 1bc ·b +1bc +1+b bc +b +1+c c ·1bc
+c +1 =1b +1+bc +b bc +b +1+bc 1+bc +b
=1+b +bc 1+b +bc
=1.。

相关文档
最新文档