[初中数学]代数式教学设计 北师大版
3.1 代数式(教案)北师大版(2024)数学七年级上册
第三章整式及其加减3.1代数式第1课时用字母表示数1.能用字母表示数量关系.体会字母表示数的意义,形成初步的符号感,提高应用数学的意识;2.理解代数式的概念,能用代数式表示简单实际问题中的数量关系.重点理解代数式的概念,能用代数式表示简单实际问题中的数量关系.难点学会求出代数式的值,并解释它的实际含义.一、导入新课课件出示教材第77页图3-1,提出问题:(1)按图3-1的方式,搭2个正方形需要________根火柴棒,搭3个正方形需要________根火柴棒.(2)搭10个这样的正方形需要多少根火柴棒?(3)搭100个这样的正方形需要多少根火柴棒?你是怎样得到的?(4)如果用x表示所搭正方形的个数,那么搭x个这样的正方形需要多少根火柴棒?与同伴进行交流.学生小组交流后回答,教师讲评,并进一步讲解第(4)题的两种思考方法:第一个正方形用4根,每增加一个正方形增加3根,那么搭x个正方形就需要火柴棒[4+3(x-1)]根.上面的一排和下面的一排各用了x根火柴棒,竖直方向用了(x+1)根火柴棒,共用了[x+x+(x+1)]根火柴棒.教师:今天这节课,我们就来学习用字母表示数.二、探究新知1.用含字母的式子表示数量关系教师:通过探究,我们发现字母可以表示任何一个数.(1)在上面的活动中,我们借助字母表示正方形的个数与小棒的根数之间的关系,这样做有什么好处?(2)在以前的学习中还有哪些地方用到了字母?这些字母都表示什么?与同伴进行交流.学生汇报答案后,教师讲评:列代数式时,先找出题目中表示运算关系的词,然后理清关系,分清运算顺序,最后按代数式的书写格式规范地列出代数式.2.代数式的概念(1)今年李华m岁,去年李华________岁,5年后李华________岁.(2)a个人n天完成一项工作,那么平均每人每天的工作量为________.(3)某商店上月的收人为a元,本月收人比上月收入的2倍还多10元,本月收人是________元.(4)如果正方体的棱长是a-1,那么正方体的体积是________,表面积是________.学生独立完成后汇报答案.教师点评、分析:像这样用运算符号把数和字母连接而成的式子叫作代数式.课件出示练习:指出下列各式中哪些是代数式,哪些不是代数式.(1)x-1;(2)-2x=1;(3)π;(4)5<7;(5)m.学生思考后举手回答.教师:通过以上练习,同学们进一步了解了代数式的概念,那么它与等式、不等式的区别是什么?学生讨论交流,教师指导、评价.3.代数式的书写要求(1)数字与字母、字母与字母相乘,“×”通常用“·”表示或省略不写,并把数字写在字母的前面.带分数与字母相乘时,应把带分数化为假分数;注:数字与数字相乘,“×”不能用“·”表示,也不可省略.(2)除法运算应写成分数的形式;(3)代数式中相同字母或因式的积用乘方形式表示;(4)代数式为和或差的形式,且后面有单位时,要把代数式用括号括起来.三、课堂练习1.教材第78页“随堂练习”.2.填空.(1)一个三角形的三条边的长分别是a,b,c,则这个三角形的周长为a+b+c;(2)张强比王华大3岁,当张强a岁时,王华的年龄是(a-3)岁;(3)圆的半径是R厘米,它的面积是πR2.四、课堂小结通过本节课的学习,你有什么收获?先让学生举手分享自己的收获,教师再简单归纳:用字母表示数可以简明地表达问题中的数量关系,也可以简明地表达数和公式,这样给我们研究问题带来了很大的方便.五、课后作业教材第82页习题3.1第1,2,3题.本节课的内容是今后进一步学习代数知识的基础.用字母表示数对学生来说比较抽象,在教学过程中,用实物或生活事例讲解,让学生体会、认识到用字母表示数在实际生活和学习中的广泛应用,感受到数学就在身边,体现了数学与生活的联系.同时,重视引导学生经历用字母表示数的过程,初步感受代数的思想,在解决问题的过程中深化了对数学知识的认识.本节课讲练相结合,鼓励学生参与其中,调动他们的学习积极性.第2课时列代数式1.理解代数式的概念,能用代数式表示简单实际问题中的数量关系;2.在具体情境中,能求出代数式的值,并解释它的实际意义.重点理解代数式的概念,能用代数式表示简单实际问题中的数量关系.难点学会求出代数式的值,并解释它的实际含义.一、导入新课课件出示问题:如图为一阶梯的纵截面,一只老鼠沿阶梯的两边A -B -C 的路线逃跑,一只猫同时沿阶梯(折线)A -C -B 的路线去追,结果在距离C 点0.6 m 的D 处猫捉住老鼠,已知老鼠的速度是猫的89 ,你能求出阶梯A -C 的长度吗?教师:要想解决这个问题,让我们先来学习本节课的内容.二、探究新知1.列代数式课件出示问题:列代数式,并求值.某景点的门票价格:成人票每张10元,学生票每张5元.(1)一个旅游团有成人x 人、学生y 人,那么该旅游团应付多少门票费?(2)如果该旅游团有37名成人、15名学生,那么他们应付多少门票费?解:(1)该旅游团应付门票费(10x +5y )元.(2)把x=37,y=15代入代数式10x+5y,得10×37+5×15=445.因此,他们应付门票费445元.学生思考后汇报答案,教师追问:代数式10x+5y还可以表示什么?.教师:通过上面的练习,同学们思考一下,实际问题中该怎样列代数式呢?关键是什么?学生分小组讨论后汇报答案,教师点评并进一步指出:(1)列代数式,要以不改变原题叙述的数量关系为原则(代数式的形式不唯一);(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;(3)把用日常生活语言叙述的数量关系列成代数式,是为今后学习列方程解应用题做准备,一定要牢固掌握.课件出示问题:营养学家通常用身体质量指数(简称BMI)衡量人体胖瘦程度,这个指数等于人体体重(单位:kg)与人体身高(单位:m)平方的商.对于成年人来说,BMI在18.5与24之间,体重适中;BMI低于18.5,体重过轻;BMI高于24,体重超重.(1)设一个人的体重为w kg,身高为h m,请用含w,h的代数式表示这个人的BMI.(2)张老师的身高为1.75 m,体重为65 kg,他的体重是否适中?(3)BMI对未成年人的胖瘦程度也有一定参考意义,请计算你的BMI.2.求代数式的值填写下表,并观察5n+6和n2这两个代数式的值的变化情况.(1)随着n的值逐渐变大,5n+6和n2这两个代数式的值如何变化?(2)估计一下,哪个代数式的值先超过100?学生举手回答,教师进一步讲解:我们知道,表示数的字母具有任意性和确定性,如5n+6中n可取任何有理数,当给出未知数(字母)的值时,如n=5,则5n+6就是一个确定的值.一般地,用具体数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果,叫作代数式的值.课件出示练习:当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值.学生解答并写出解答过程,教师点评并提出问题:求代数式的值应分哪几步?学生:求代数式的值的步骤:(1)代入;(2)计算.教师点评,并指出求代数式的值时需注意:(1)格式规范;(2)适当添加括号;(3)灵活运用整体代入.三、课堂练习1.教材第79页“随堂练习”第1~3题.四、课堂小结1.怎样列代数式?2.怎样求代数式的值?3.列代数式时应该注意哪些事项?五、课后作业1.教材第82页习题3.1第2,3,4题.代数式是以后数学学习的基础.本节课通过生动的实例,导入新课.在教学过程中,讲练相结合,使学生深刻了解列代数及求代数式的值的意义.在课堂上,让学生充分观察、思考、分析和讨论,帮助学生在不断地纠错、归纳、创新中学习新知识.利用实际例子,引出代数式在实际背景下所表示的意义,激发了学生的学习兴趣,让学生感受到现实生活离不开数学,从而进一步调动了学生学习数学的积极性.在解题的过程中,注意规范学生的书写格式,对于发现的问题及时处理.第3课时整式1.理解单项式及单项式的系数、次数的概念,会确定一个单项式的系数和次数;2.掌握多项式及其项、次数的概念,会确定一个多项式的项和次数;3.理解整式的概念,会判断一个代数式是否为整式.重点掌握单项式、多项式及其相关概念和整式的概念.难点单项式的系数和次数,多项式的次数与项数.一、导入新课课件出示问题:请用含字母的式子表示:一个组合柜如图3-2所示,内部用隔板纵向分隔成5个独立的小柜子(如图3-3),柜门由5个完全相同的长方形组成.(1)若要在5个柜门的周边都贴上装饰条,则所需装饰条的总长度是多少?(2)若要给柜门外表面喷漆,则需要喷漆的面积是多少(边框缝隙忽略不计)?(3)设柜子的进深为c(如图3-2),则整个柜子的容积是多少(柜门、隔板及背板的厚度忽略不计)?二、探究新知1.单项式教师:观察上面所列代数式,它们包含哪些运算?有何共同运算特征?学生小组讨论后,派代表回答,教师适当点拨.并讲解单项式的概念:即由数与字母的乘积组成的代数式称为单项式,单独一个数或一个字母也是单项式,如5ab,5abc,3v,6p.课件出示问题:下列代数式中哪些是单项式?(1)abc;(2)b2;(3)-5ab2;(4)y;(5)-xy2;(6)-5.学生完成后举手回答.教师直接引导学生进一步观察单项式的结构,总结出单项式是由数字因数和字母因数两部分组成的.以四个单项式a2h,2πr,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式的系数的概念并板书:单项式中的数字因数叫作这个单项式的系数.接着让学生说出以上几个单项式的字母因数是什么,各字母的指数分别是多少,从而引入单项式的次数的概念并板书:单项式中所有字母的指数和叫作单项式的次数.课件出示练习:判断下列说法是否正确.(1)-7xy2的系数是7;(2)-x 2y 3和x 3都没有系数;(3)-ab 3c 2的次数是0+3+2;(4)-a 3的系数是-1;(5)-32x 2y 3的次数是7;(6)πr 2h 的系数是π.学生完成后汇报答案,教师点评并强调:(1)圆周率π是常数;(2)当一个单项式的系数是1或-1时,“1”通常省略不写,如x 2,-a 2b 等;(3)单项式的次数只与字母的指数有关.指数是1,省略不写,但求和时不能省略.2.多项式课件出示问题:(1)一个数比x 的2倍小3,则这个数是________;(2)x 的13 与y 的12 的差是________.教师:观察以上两小题所得出的代数式,它们与单项式有何区别与联系?学生思考后举手回答,教师补充完善.教师引导学生自己归纳出多项式的概念,并补充完善:像这样,几个单项式的和叫作多项式.在多项式中,每个单项式叫作多项式的项.其中,不含字母的项,叫作常数项.例如,多项式x 2-2x +5有三项,它们是x 2,-2x ,5,其中5是常数项.一个多项式含有几项,就叫作几项式.多项式中次数最高的项的次数,叫作这个多项式的次数.例如,多项式2x2+3x-1是一个二次三项式.单项式和多项式统称为整式.课件出示练习:判断下列说法是否正确.(1)多项式a3-a2b+ab2-b3的项为a3,a2b,ab2,b3,次数为12;(2)多项式3n4-2n2+1的次数为4,常数项为1.学生完成后汇报答案,教师点评并强调:多项式的次数不是所有项的次数之和,而是最高次项的次数.三、课堂练习1.请列出下列问题中的代数式,并指出其中:①哪些是单项式?单项式的系数和次数分别是多少?②哪些是多项式?多项式的次数是多少?(1)如图3-4,一个十字形花坛铺满了草皮,这个花坛草地面积是多少?(2)当水结冰时,其体积大约会比原来增加1/9,x m3的水结成冰后体积是多少?(3)如图3-5,一个长方体的箱子紧靠墙角,它的长、宽、高分别是a ,b ,c .这个箱子露在外面的表面积是多少?(4)某件商品的成本价为a 元,按成本价提高15%标价,后又以八折(即按标价的80%)销售,这件商品的售价为多少元?2.教材第82页“随堂练习”.3.填空.(1)若正方形的边长为a ,则正方形的面积是a 2;(2)若三角形的一边长为a ,且这边上的高为h ,则这个三角形的面积为12 ah ;(3)若正方体的棱长为x ,则正方体的表面积是6x 2;(4)若m 为有理数,则它的相反数是-m ;(5)小明每个月从零花钱中储存x 元钱用来捐款,一年下来小明捐款12x 元.【答案】1.(1)ab -4c 2,多项式,次数是2 (2)109 x ,单项式,次数是1 (3)ab +ac +bc ,多项式,次数是2 (4)0.92a ,单项式,次数是1四、课堂小结1.单项式及单项式的系数、次数分别是什么?2.多项式及其次数、项数、常数项分别是什么?3.什么是整式?五、课后作业教材第82页习题3.1第5,6,8,9题.“整式”属于“代数式”的领域,是在学习了用字母表示数,用代数式表示实际问题中的数量关系的基础上,进一步研究用含字母的式子表示实际问题的数量关系.整式是代数式中最基本的式子,是实际的需要,也是今后学习分式、一元二次方程等知识的基础,起到承前启后的作用.整式中有些概念,学生刚学时不易理解,比如单项式的系数和次数、多项式的项与次数等,教学时可通过简单生动的事例,帮助学生区分、理解和掌握这些概念.对概念和纯文字的叙述,不要仅追求精确的形式,而是更加去注重其实质的理解与领悟.。
北师大版(2024新版)七年级数学上册教案:3.1 课时3 代数式的值
3.1 课时3 代数式的值一、教学目标1.在代数式的求值过程中,初步感受函数的对应思想。
2.感受字母取值的变化与代数式的值的变化之间的联系,能利用代数式的值推断一些代数式所反映的规律。
二、教学重点难点重点:当字母取具体数时,对应的代数式的值的求法及规范书写格式。
难点:会正确地求出代数式的值.感受这种对应关系。
三、课堂结构设计回顾旧知---创设情境,探求新知---即时训练,巩固新知-------练习交流,巩固提高-------总结反思,感悟收获。
四、教学过程(一)回顾旧知回顾上节课所学习代数式和代数式值的概念,以及代数式在具体情境中的意义。
(二)创设情境,探求新知在计算机上可以设置运算程序,输入一组数据,计算机就会呈现运算结果,就好像一个“数值转换机”,通过“数值转换机”直观形象的体现字母取值的变化与代数式的值的变化之间的对应关系,从而初步渗透函数的思想。
讲解教材中的议一议,填表并看谁算的又快有准。
注意规范书写格式。
(三)即时训练,巩固新知内容:课后习题第2题。
目的:根据老师们平时的教学经验,课后的这个第2题是学生做的最差的一道题。
作为初学者,学生刚刚知道了代数式和代数式值的意义,会求代数式的值,而这题中涉及到合并同类项的内容,在课堂上老师适当引导,可以给以后的合并同类项埋下伏笔,制造悬念,提高学生的学习兴趣。
(四)练习交流, 巩固提高解决教材中的随堂练习等.思考题:已知ab>0,且a、b的绝对值分别为6、8,求a+b的值。
(五)总结反思,感悟收获同学之间交流本节课的学习收获和体会.教师帮助学生归纳必要的内容。
五、教学反思《代数式》是义务教育课程标准实验教科书(北师大版)七年级上学期的内容。
本节课一开始就直奔主题,提出数值转换机,并要求学生根据两个不同的数值转换机列出不同的代数式,并求相同字母下代数式的值。
进而引出议一议,让学生通过表格中大量的计算,熟练掌握求代数式值的方法,升华学生对概念的理解,并锻炼学生的计算能力。
3.1代数式课时2教学设计2024—-2025学年北师大版数学七年级上册
四、教学方法与策略
1. 针对本章节内容,采用讲授与讨论相结合的教学方法,通过案例研究激发学生兴趣,引导他们探索代数式的性质和化简方法。结合项目导向学习,设计实际问题,让学生在实践中运用所学知识。
作用与目的:
- 巩固代数式的性质和化简方法,提升解题技能。
- 拓宽学生的知识视野,激发学习兴趣。
- 通过反思,帮助学生形成良好的学习习惯,促进个人成长。
六、拓展与延伸
1. 拓展阅读材料:
- 《数学之美》:介绍数学在日常生活和科技发展中的重要作用,特别是代数式在解决问题中的应用。
- 《趣味代数》:通过丰富的实例和趣味问题,展示代数式的灵活运用和化简技巧。
- 解答疑问:及时解答学生在活动中产生的疑问。
学生活动:
- 听讲并思考:认真听讲,对老师提出的问题进行思考。
- 参与课堂活动:在小组竞赛中积极参与,尝试解决实际问题。
- 提问与讨论:对不懂的问题提出疑问,与同学和老师讨论。
教学方法/手段/资源:
- 讲授法:确保学生掌握代数式的性质和化简方法。
- 实践活动法:通过竞赛,增强学生对知识点的应用。
- 数学写作:鼓励学生撰写数学小论文或研究报告,分享他们在代数式学习中的发现和心得。
七、内容逻辑关系
① 重点知识点:
- 代数式的概念及其性质
- 代数式的化简方法与技巧
- 代数式在实际问题中的应用
② 逻辑关系词句:
- 代数式的定义:用字母表示数的式子,它是数学表达的基本形式。
代数式北师大版数学初一上册教案
代数式北师大版数学初一上册教案代数式是由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子或含有字母的数学表达式。
在复数范围内,代数式分为有理式和无理式。
以下是整理的代数式北师大版数学初一上册教案,欢迎大家借鉴与参考!《代数式》学案一、学习目标(1)在具体情境中进一步理解字母表示数的意义,通过判断,并理解代数式的意义。
(2) 初步掌握列代数式的方法,能根据要求正确列出相应的代数式。
(3)通过学习,培养学生正确规范的数学语言表达能力。
二、学习重点难点代数式的意义以及正确地列出代数式。
三、学习过程1.(1)我们知道用字母可以表示数,请你填空。
①七年级一班有男生20人,女生n人,那么共有学生_________人。
②买苹果s千克用了4元钱,买1千克苹果需要________元。
③长方形的长和宽分别是a厘米和b厘米,正方形的边长是c厘米,长方形与正方形面积的和是_______。
(2) 上述各问题中出现的如20+n、、4n、(ab+c2)以及以前学习的n-m、2(a+b)、ab+ac等式子,都称为代数式。
(3)指出下列哪些是代数式:_______________________ (填序号)(1) m+5 (2)2x-y+1 (3) 2+3+5 (4) 3lt;xlt; p=(5) (m-5n)2 (6) abc (7)a (8) 2+x=32.(1)例1 填空:①甲数用a表示,乙数比甲数大3,那么乙数是______________.②甲数用a表示,甲、乙两数的和为10,那么乙数是______________.③甲数用a表示,甲数是乙数的5倍,那么乙数是______________.④甲数用a表示,乙数比甲数的平方少2,那么乙数是______________.⑤长方形的长和宽分别为 a cm、b cm .则该长方形的周长为________cm(1)自主归纳。
结合上面所有练习中出现的问题,能否总结出代数式的书写格式?(2)下列代数式中符合书写要求的是________ ,并说明理由。
北师大版七年级上册数学3.2第1课时代数式优秀教案
3.2代数式第 1课时代数式1.在详细情境中,进一步理解字母表示数的意义.2.能解说一些简单代数式的实质背景或几何意义.一、情境导入青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段的行驶速度是 100 千米 / 时,在非冻土地段的行驶速度能够达到120 千米 /时,请依据这些数据回答下列问题:列车在冻土地段行驶时, 2 小时能行驶多少千米? 3 小时呢? t 小时呢?1.思虑:( 1)若正方形的边长为a,则正方形的面积是,体积是W .( 2)设 n 表示一个数,则它的相反数是;( 3)铅笔的单价是 x 元,钢笔的单价是铅笔单价的 2.5 倍,则钢笔的单价是元 .( 4)一辆汽车的速度是 v 千米 /时,行驶 t 小时所走过的行程为千米 .2.察看所列代数式包含哪些运算,有何共同的运算特点.二、合作研究研究点一:代数式的辨别212)有以下式子: x , m- n>1, p+ q, ab, s=πR , 2016,代数式有(2A.3 个B.4 个C.5 个D.6个分析:代数式是用运算符号把数和字母连结而成的式子,m-n>1 是用不等号“ >”连结而成的式子、 s=πR2是用等号“=”连结而成的式子,它们都不是代数式.而 x2,p+ q,12ab, 2016 都是代数式 .应选 B.方法总结:明确代数式的意义是正确辨别代数式的前提.式子中相关系符号(如等号或不等号)的都不是代数式 .研究点二:列代数式用代数式表示:(1) x 与 2 的平方和;( 2) x 与 2 的和的平方;( 3) x 的平方与 2 的和;( 4)x 与 2 的平方的和 .分析:这四个小题,都相重点词“平方” 和“ 和” ,但这两个词在四个小题中的语序不同样 .( 1)中是先平方再乞降,即x2+ 22;( 2)中是先乞降再平方,即(x+ 2)2;(3)中是先 x 的平方再乞降,即22 x + 2;( 4)中是先 2 的平方再乞降,即x+ 2 .解:(1) x2+ 4;(2)( x+ 2)2;(3) x2+ 2;(4) x+ 4.方法总结:用代数式表示数目关系时,一般要将句子分层,逐层剖析,一步步列出代数式 .研究点三:代数式的意义以下代数式能够表示什么?(1)2a- b;(2) 2( a-b) .分析:解说代数式的意义,能够从两个方面下手,一是从字母表示数的角度考虑;二是能够联系生活实质来举例说明.不论采纳哪一种方式,必定要注意运算形式和运算次序.解:(1) 2a 与 b 的差;或 a 的 2 倍与 b 的差;或用 a 表示一本作业本的价钱,用 b 表示一只铅笔的价钱,则2a-b 表示买两本作业本比买一支铅笔多的钱数;(2)2与a-b的积;或 a 与 b 的差的 2 倍 .方法总结:描绘一个代数式的意义,能够从字母自己出发来描绘字母之间的数目关系,也能够联系生活实质或几何背景给予此中字母必定的实质意义加以描绘.研究点四:依据实质问题列代数式用代数式表示以下各式:(1)王明同学买 2 本练习册花了 n 元,那么买 m 本练习册要花多少元?(2)正方体的棱长为 a,那么它的表面积是多少?体积呢?分析:( 1)依据买 2 本练习册花了n 元,得出买 1 本练习册花n元,再依据买了 m 本练习册,即可列出算式 .(2)依据正方体的棱长为 a 和2表面积公式、体积公式列出式子.解:(1)∵买 2 本练习册花了 n 元,∴买 1 本练习册花n元,∴买 m 本练习册要花1 22mn元;( 2)∵正方体的棱长为 a,∴它的表面积是6a2;它的体积是 a3.方法总结:本题考察了列代数式,用到的知识点包含正方体的表面积公式和体积公式,依据题意列出式子是解本题的重点.三、板书设计教课过程中,应拓展学生的思想,培育他们察看、剖析及抽象思想能力、语言能力、创建能力和类比联想能力 .。
北师大版数学七年级上册3.2《代数式》教案
北师大版数学七年级上册3.2《代数式》教案一. 教材分析《北师大版数学七年级上册 3.2《代数式》》一课是在学生已经掌握了有理数、整式等知识的基础上进行学习的。
本节课的主要内容是让学生了解代数式的概念,学会用代数式表示简单的几何图形和物理量,同时让学生掌握代数式的运算方法。
二. 学情分析面对刚从小学升入初中的学生,他们对数学知识的掌握程度参差不齐。
有的学生已经具备了一定的代数基础,但也有部分学生对代数知识比较陌生。
因此,在教学过程中,教师需要关注全体学生,既要照顾到基础较好的学生,也要帮助基础薄弱的学生。
三. 教学目标1.知识与技能目标:让学生了解代数式的概念,学会用代数式表示简单的几何图形和物理量,掌握代数式的运算方法。
2.过程与方法目标:通过自主学习、合作交流等环节,培养学生的数学思维能力和问题解决能力。
3.情感态度与价值观目标:让学生体验数学在实际生活中的运用,提高学生对数学的兴趣和自信心。
四. 教学重难点1.重点:代数式的概念及其表示方法。
2.难点:代数式的运算方法。
五. 教学方法1.情境教学法:通过生活实例引入代数式概念,让学生在实际情境中感受数学的魅力。
2.自主学习法:引导学生独立思考,自主探究,培养学生的学习能力。
3.合作交流法:学生进行小组讨论,分享学习心得,提高学生的团队协作能力。
六. 教学准备1.准备相关的生活实例和图片,用于导入新课。
2.准备代数式的相关练习题,用于巩固和拓展环节。
3.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)利用生活实例和图片,引导学生思考:如何用数学语言表示这些实例中的几何图形和物理量?从而引出代数式的概念。
2.呈现(10分钟)讲解代数式的定义,让学生了解代数式的组成和表示方法。
通过PPT 展示代数式的相关例子,让学生初步感知代数式的运用。
3.操练(10分钟)让学生独立完成一些代数式的基本运算题目,巩固所学的知识。
教师在这个过程中要注意引导学生思考,解答学生的疑问。
七年级初一数学上册代数式代数式教案北师大
代数式教学目标1.进一步理解字母表示数的意义,能结合具体情景给字母赋于实际意义;理解代数式和代数式的值的意义,能解释一些简单代数式的实际背景或几何意义,在具体情景中能求出代数式的值.2.通过创设实际背景和引用符号,经历观察、体验、验算、猜想、归纳等数学过程,体会数学与现实世界的联系,增强符号感,发展运用符号解决问题和数学探究意识.3.在解决问题的过程中体验类比、联想等思维,体验数学美,增强学习自信心。
重点列代数式。
难点正确列出代数式表示现实问题中的数量关系;从不同的角度给代数式赋予实际意义。
教学用具多媒体、PPT教学环节说明二次备课课程讲授一、旧知归纳,直奔主题学生在通过上一节知识的回顾,知道像4+3(x-1),x+x+(x-1),a+b,ab,2(m+n),ts,a3 ……这样一些式子都具有一定的实际意义,而探求当x=200时4+3(x-1)的代数式的值,不仅理解了代数式和代数式的值的意义,而且了解到学习这些知识的重要性,极大地调动了学生学习数学的积极性.同时滲透了把实际问题抽象成数学问题的一般思想方法.讲解教材中的例1 列代数式,并求值.二、创设背景,理解概念承接上面的例子,继续提出问题:前面10x+5y表示的是x个成人、y个学生进公园的门票费,那么它还可以表示什么呢?请大家想一想后,写出一种或两种表示的内容.根据讨论结果,共同归纳:字母可以表示任何数,或者任何一个量,“10x+5y”可以赋于很多的实际的意义。
三、反设探究,意义升华展示出学生生活中非常熟悉的小动物――蟋蟀的图片,从而提出蟋蟀每分钟叫的次数与当时温度的关系的问题,目的是刺激学生的感官,引发学生的求知欲望.对第(1)中的蟋蟀1分所叫的次数探求或变式,目的在于帮助学生自设字母来表示有关的量,为学生列代数式铺平道路,同时让学生体会数学建模的思想加深对蟋蟀1分叫的次数与当时温度的关系的体会.四、趣题滋润,建模感悟解决教材中的随堂练习等。
最新北师大版七年级数学上册《代数式》名师教学设计
3.2代数式第1课时代数式教学目标【知识与技能】进一步理解字母表示数的意义,能结合具体情景给字母赋于实际意义;理解代数式的意义,能解释一些简单代数式的实际背景或几何意义.【过程与方法】通过创设实际背景和引用符号,经历观察、体验、验算、猜想、归纳等数学过程,发展运用符号解决问题和数学探究意识.【情感态度价值观】在解决问题的过程中体验类比、联想等思维,体验数学美,增强学习自信心,发展学生创新精神.教学重难点【教学重点】列代数式【教学难点】解释代数式的实际背景或几何意义.课前准备课件教学过程一、情境导入,初步认识青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答下列问题:列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?1.思考:(1)若正方形的边长为a,则正方形的面积是,体积是.(2)设n表示一个数,则它的相反数是;(3)铅笔的单价是x元,钢笔的单价是铅笔单价的2.5倍,则钢笔的单价是元.(4)一辆汽车的速度是v千米/时,行驶t小时所走过的路程为千米.2.观察所列代数式包含哪些运算,有何共同的运算特征.像4a,3a,-n,2.5x,vt,3v, 2a+10,1an,st,6(a-1)2等式子,有什么共同的特征?二、思考探究,获取新知1.代数式的概念(1)问题:什么样的式子是代数式? 定义:用运算符号把数和字母连接而成的式子叫作代数式.单独一个数或一个字母也是代数式.注意:运算符号指加、减、乘、除、乘方等.(2)代数式的判断判断一个式子是不是代数式:①看它是否符合代数式的定义;②代数式中不能含有“=”,“≠”,“<”,“>”,“≤”,“≥”等关系符号.【例1】 下列各式中,哪些是代数式,哪些不是代数式:(1)a +b =5;(2)5a -3y ;(3)2;(4)n ;(5)2(a +b )+7;(6)4a b +c;(7)2+7-6;(8)23;(9)x +5>3. 分析:代数式是用运算符号(加、减、乘、除、乘方等)把数和字母连接而成的式子;而用“=”,“≠”,“<”,“>”,“≤”,“≥”等关系符号连接而成的式子都不是代数式.解:(2),(3),(4),(5),(6),(7),(8)是代数式,而(1),(9)不是代数式.2.代数式的书写规则(1)含有乘法运算的代数式的书写规则①字母与字母相乘,乘号一般省略不写,字母的排列顺序一般按字母表的顺序.如a ×b 写成ab .②数与字母相乘,乘号一般也省略不写,但数一定要写在字母的前面,而且当数是带分数时一定要化为假分数.如a ×8要写成8a ,不要写为a 8;513×m 要写为163m ,不要写成513m . 切记,数字与数字相乘,不能省略乘号,如6×5不能写成65.③带括号的式子与字母的地位相同.如a ×(b -3)可以写为a (b -3),也可以写成(b -3)a ;(m -1)×2可写为2(m -1),但不要写成(m -1)2.(2)含有除法运算的代数式的书写规则当代数式中含有除法运算时,一般不用“÷”号,而改用分数线.如x 与y 的商一般写为x y,而不写成x ÷y ;因为分数线具有括号的作用,所以分数线又称括线.如m 与n 的和除以2的商可以列为m +n 2,而不要列为(m +n )2. (3)含有单位名称的代数式的书写规则①若代数式是和或差的形式,如需注明单位,则必须用括号把整个式子括起来后再写单位,如甲的身高为x cm ,乙比甲矮6 cm ,那么乙的身高应写成(x -6)cm ,而不能写成x -6 cm.②若代数式是积或商的形式,则无需加括号,直接在代数式后面写出单位即可.如10p 千米,a -2b 5千克等. 【例2】 下列各式中符合代数式书写要求的个数为( ).①514x 2y ②y ×3 ③ab ÷2 ④a 2-b 6A .4B .3C .2D .1解析:根据代数式的书写要求,不能出现带分数,故①不符合;数字与字母相乘时,乘号省略或用“·”表示,并且数字在前,故②不符合;代数式中不能出现除号,故③不符合.答案:D3.列代数式和代数式表示的意义问题:列代数式,并求值.(1)某公园的门票价格是:成人票每张10元,学生票每张5元.一个旅游团有成人x 人、学生y 人,那么该旅游团应付多少门票费?(2)如果该旅游团有37个成人、15个学生,那么他们应付多少门票费?问题3 代数式10x+5y 还可以表示什么?式子意义:x 的10倍与y 的5倍的和.实际意义:(1)如果用x 表示小明跑步的速度,用y 表示小明走路的速度,则10x+5y 表示他跑步10秒和走路5秒所经历的路程;(2)如果用x 和y 分别表示1元和5角硬币的枚数,则10x+5y 就表示x 枚1元硬币和y 枚5角硬币共是多少角钱?【归纳结论】列代数式就是把实际问题中的数量关系用代数式表示出来.用具体数值代替数式中的字母,就可以求出代数式的值.同一个代数式可以表示不同的意义.例3:用代数式表示:(1)x 与2的平方和;(2)x 与2的和的平方;(3)x 的平方与2的和;(4)x 与2的平方的和.解析:这四个小题,都有关键词“平方”和“和”,但这两个词在四个小题中的语序不一样.(1)中是先平方再求和,即x 2+22;(2)中是先求和再平方,即(x +2)2;(3)中是先x 的平方再求和,即x 2+2;(4)中是先2的平方再求和,即x +22.解:(1)x 2+4;(2)(x +2)2;(3)x 2+2;(4)x +4.方法总结:用代数式表示数量关系时,一般要将句子分层,逐层分析,一步步列出代数式.例4:下列代数式可以表示什么?(1)2a -b ;(2)2(a -b ).解析:解释代数式的意义,可以从两个方面入手,一是从字母表示数的角度考虑;二是可以联系生活实际来举例说明.不管采用哪种方式,一定要注意运算形式和运算顺序.解:(1)2a 与b 的差;或a 的2倍与b 的差;或用a 表示一本作业本的价格,用b 表示一只铅笔的价格,则2a -b 表示买两本作业本比买一支铅笔多的钱数;(2)2与a -b 的积;或a 与b 的差的2倍.方法总结:描述一个代数式的意义,可以从字母本身出发来描述字母之间的数量关系,也可以联系生活实际或几何背景赋予其中字母一定的实际意义加以描述.例5:用代数式表示下列各式:(1)王明同学买2本练习册花了n 元,那么买m 本练习册要花多少元?(2)正方体的棱长为a ,那么它的表面积是多少?体积呢?解析:(1)根据买2本练习册花了n 元,得出买1本练习册花n 2元,再根据买了m 本练习册,即可列出算式.(2)根据正方体的棱长为a 和表面积公式、体积公式列出式子.解:(1)∵买2本练习册花了n 元,∴买1本练习册花n 2元,∴买m 本练习册要花12mn 元;(2)∵正方体的棱长为a ,∴它的表面积是6a 2;它的体积是a 3.方法总结:此题考查了列代数式,用到的知识点包括正方体的表面积公式和体积公式,根据题意列出式子是解本题的关键.三、运用新知,深化理解1.下列各式中哪些是代数式?哪些不是?(1)m +5 (2)a +b =b +a (3)0 (4)x 2+3x +4 (5)x +y >1(6)2.用代数式表示(1)f 的11倍再加上2可以表示为______________.(2)数a 与它的18的和可以表示为_________. (3)一个教室有2扇门和4扇窗户,n 个这样的教室共有_____扇门和_____扇窗户.(4)小华、小明的速度分别为x 米/秒,y 米/秒,6分钟后它们一共走了 米.3.说出下列代数式的意义:(1)6m 表示 .(2)3a 2-b 表示 .(3)22b a -表示 .(4)2)(b a -表示 .(5)22b a +表示 .(6)2)(b a +表示 .(7)yx 1-表示 . (8)))((b a b a -+表示 . (9)(1+8%)x 表示 .四、师生互动,课堂小结1.数与字母,字母与字母相乘,乘号可以省略,也可写成“.”;数字与数字相乘,乘号不能省略;数字要写在字母前面;2.在含有字母的除法中,一般不用“÷”号,而写成分数的形式;3.式子后面有单位时,和差形式的代数式要在单位前把代数式括起来;4.带分数一定要写成假分数.五、板书设计六、课后作业:1.判断下列式子哪些是代数式,哪些不是.(1)、a 2+b 2 (2)ts (3)13 (4)x=2 (5)3×4-5 (6)3×4-5=7 (7)x -1≤0 (8)x+2>3 (9)x+2>3 (10)c2.判断下列各式哪是代数式:mn 31,4x+(x -1),5,2x+1=3,31+-x y ,0,b,2510=,x -1>4. 3.(1)一个两位数的个位数字是a ,十位数字是2,请用代数式表示这个两位数;(2)一个两位数的个位数字是a ,十位数字是b ,请用代数式表示这个两位数.如何用代数式表示一个三位数?4.练习册课时作业.课后练习和课后习题.八、教学反思:本节课从学生了解代数式的概念,到列代数式,求代数式的值,培养学生爱思考,爱学习的习惯,让学生学会运用所学知识解决实际问题,提高解决问题的能力.教学过程中,也应拓展学生的思维,培养他们观察、分析及抽象思维能力、语言能力、创造能力和类比联想能力.学习名言警句:1.在科学上面没有平坦的大道,只有不畏劳苦沿着陡峭山路攀登的人,才有希望到达光辉的顶点。
(北师大版)初中数学《代数式》教案5
代数式求值教学目的1、会求代数式的值,感受代数式求值可以理解为一个转换过程或某种算法。
2、会利用代数式求值推断代数式所反映的规律。
3、能解释代数式值的实际意义。
教学重点与难点重点:求代数式的值。
难点:利用代数式求值推断代数式所反映的规律。
教学过程一、复习引入1、鸡兔同笼,鸡a 只,兔b 只,则共有头(a +b ) 个,脚 (2a +4b ) 只;若有14只鸡,8只兔子,则共有头 22 个,脚 60 只。
2、2a -b 可以解释为 。
二、新课的进行1、数值转换机教师:课本图3—2,3—3是一组数值转换机,图3—2的输出结果是什么,图3—3的转换步骤是什么?学生:36-x ;-3,×6。
教师:你能解释这两个数值的作用吗?学生:图3—2将输入转换机的数按照先乘再减3的顺序计算结果,图3—3将输入转换机的数按照先减3再乘以6的顺序计算结果。
是先乘以6后减3,图3—3是先减3再乘6,所以输出结果不同。
我们要注意在求代数式三、举例例1 列代数式,并求值。
(1)某公园的门票价格是:成人10元,学生5元。
一个旅游团有成人x 人,学生y 人,那么该团应付多少门票费?(2)如果该旅游团有37个成人、15个学生,那么他们应付多少门票费? 解:(1)该旅游团应付的门票费是)510(y x +元。
(2)把37=x ,15=y 代入代数式y x 510+,得4451553710=⨯+⨯ 因此,他们应付445元门票费。
想一想:代数式y x 510+还可以表示什么?(给学生时间让他们充分想象,并且表达自己的想法)例2 在某地,人们发现一种蟋蟀叫的次数与温度之间有如下的近似关系:用蟋蟀1 分叫的次数除以7,然后再加上3,就近似地得到该地当时的温度(℃)。
(1)用代数式表示该地当时的温度;(2)当蟋蟀1分叫的次数分别是80,100和120时,该地当时的温度约是多少? (按课本讲解)本题(1)中课本用C 表示1分钟蟋蟀叫的次数,也可以换用其他字母。
3.2《代数式第1课时》 北师大版七年级数学上册教案
第三章整式及其加减2 代数式第1课时一、教学目标1.了解代数式的概念,能用代数式表示简单问题中的数量关系.2.能够在具体情境中求出代数式的值,并能结合具体情境解释代数式的意义.3.在代数式求值过程中,初步感受函数的对应思想.4.在具体情境中列代数式,发展学生的符号意识.二、教学重难点重点:了解代数式的概念,能用代数式表示简单问题中的数量关系.难点:能够在具体情境中求出代数式的值,并能结合具体情境解释代数式的意义.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计教学环节教师活动学生活动设计意图环节一创设情境【情境导入】教师活动:通过复习用字母表示数,引导学生思考,初步感受代数式.师:还记得吗?拼摆x个这样的正方形需要多少根火柴棒?预设答案:4+3(x-1)1+3xx+x+x+14x-(x-1)师讲解:这些都是代数式!用字母表示出下列数量关系.学生回忆上节课的知识并回答.通过复习用字母表示数或数量关系的知识,初步让学生感知代数式,为接下来学习代数式的知识奠定基础.(1) a与b的和可以表示为______.(2)苹果每千克a元,买5千克需要_____元.(3) 汽车上有a名乘客,中途下去b名,又上来c名,现在汽车上有_________名乘客.预设答案:a+b5a(a-b+c)师讲解:a+b,5a,(a-b+c)也是代数式.这节课我们一起来研究一下代数式的相关知识吧!学生思考并反馈.环节二探究新知【归纳】4+3(x-1),1+3x,x+x+x+14x-(x-1),a+b,5a,(a-b+c)它们都是用运算符号把数和字母连接而成的. 像这样的式子叫做代数式.注意:①单独一个数或一个字母也是代数式.②代数式不含“=”、“>”、“<”、“≤”、“≥”,“≠”.③代数式中可以含有括号.代数式的书写格式:①数与字母,字母与字母相乘时,可以用“·”来代替,或者省略不写,但是数与数之间不可以省略“×”;②1或-1与字母相乘时,1通常省略不写;③数字要写在字母的前面;④除法通常写成分数的形式,如1÷a通常写成.⑤代数式后面有单位时,和、差形式的代数式要在单位前把代数式括起来.认真听讲.通过归纳代数式的基本概念及其注意事项,加深学生对代数式的认识与理解,为接下来用代数式解决具体问题做铺垫.【做一做】列代数式,并求值.(1)某公园的门票价格是:成人票每张10元,学生票每张5元,一个旅游团有成人x人,学生y 人,那么该旅游团应付多少门票费?预设答案:解:(1)该旅游团应付的门票费是(10x+5y)元.注意:和、差形式的代数式要在单位前把代数式括起来.(2)如果该旅游团有37个成人,15个学生,那么他们应付多少门票费?提示:用具体数值代替代数式中的字母,就可以求出代数式的值.预设答案:解:(2)将x=37,y=15代入代数式10x+5y 中,得:10×37+5×15=445答:他们应付445元门票费.【想一想】师:代数式10x+5y还可以表示什么?预设答案:x表示小明跑步的速度,y表示小明走路的速度,10x+5y表示他跑步10s和走路5s所经过的路程;用x和y分别表示1元硬币和5角硬币的枚数,10x+5y就表示x枚1元硬币和y枚5角硬币共多少钱.提问:你还能举出其他的例子吗?【做一做】学生认真思考,列出代数式并交流反馈.代入数值进行计算.让学生结合具体情境列代数式并求值,体会求值是解决实际问题的需要.通过类比,不仅拓宽学生的思维,锻炼了学生联想、类比的能力,同时进一步帮助学生体会字母可以表示任何数,感受一个代数式在不同的情境中可以表示不同的意义.现代营养学家用身体质量指数衡量人体胖瘦程度,这个指数等于人体体重(kg)与人体身高(m)平方的商.对于成年人来说,身体质量指数在18.5~24之间,体重适中;身体质量指数低于18.5,体重过轻;身体质量指数高于24,体重超重.(1)设一个人的体重为w (kg ),身高为h (m),求他的身体质量指数.(2)张老师的身高是1.75m ,体重是65kg ,他的体重是否适中?(3)你的身体质量指数是多少?预设答案:解:(1)他的身体质量指数是:.(2)将w =65,h =1.75代入,得:他的体重适中.(3)根据自己的身高和体重算一下你自己的身体健康指数吧!学生认真思考并作答,然后交流反馈.让学生从比较贴近生活的例子中经历列代数式并求值的过程,使学生进一步理解列代数式和求值的意义,同时让学生感受数学与生活及其他学科之间的紧密联系.环节三应用新知【典型例题】例1 (1)一个两位数的个位数字是a ,十位数字是b (b ≠0),请用代数式表示这个两位数.(2)如何用代数式表示一个三位数?分析:个位上的数字是a ,表示a 个一,十位上的数字是b (b ≠0)表示b 个十.解:(1)这个两位数是10b +a :(2)个位上的数字用a 表示,十位上的数字通过例题,让学生进一步掌握用b表示,百位上的数字用c (c≠0)表示,这个三位数是100c+10b+a:例2 (1)代数式(1+8%)x可以表示什么?(2)用具体数值代替(1+8%)x中的x,并解释所得代数式值的意义.解:(1)若x表示某件物品的原价,那么(1+8%)x表示价格提高8%后的价格.(2)如果x是100元,将x=100代入代数式(1+8%)x,得:(1+8%)×100=108(元)表示原价为100元的衣服,价格提高8%的价格为108元.追问:这个代数式还可以表示什么?学生认真思考并作答.列代数式并求值的知识,让学生进一步熟悉具体情境中各代数式所表示的意义,加强学生的应用意识.环节四巩固新知【随堂练习】教师活动:教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.用代数式表示:(1) f 的11倍再加上2可以表示为__________;(2)一个数a的与这个数的和可以表示为________;(3)一个教室有2扇门和4扇窗户,n个这样的教室有______扇门和_______扇窗户;(4)产量由m kg增长15%后,达到________kg.答案:(1)11f+2(2)自主完成练习,再集体交流评价.通过课堂练习及时巩固本节课所学内容,并考查学生的知识应用能力,培养学生独立完成练习的习惯.(3)2n,4n(4)(1+15%)m2.代数式6a可以表示什么?答案:答案不唯一,合理即可.①如果a表示正六边形的边长,那么代数式6a可以表示正六边形的周长;②如果a表示一本书的价格,那么6a可以表示买6本这种书的价格;③如果1条长凳可以坐6个小朋友,那么6a可以表示a条长凳可以坐6a个小朋友.3.在某地,人们发现在一定温度下某种蟋蟀叫的次数与温度之间有如下的近似关系:用蟋蟀1min叫的次数除以7,然后再加上3,就近似地得到该地当时的温度(℃)(1)用代数式表示该地当时的温度;(2)当蟋蟀1min叫的次数分别是80,100和120时,该地当时的温度约是多少?答案:(1)用x表示蟋蜂1min叫的次数,则该地当时的温度为℃;(2)将x=80,100,120分别代入,求得当地当时的温度大约分别是14℃,17℃和20℃.环节五课堂小结思维导图的形式呈现本节课的主要内容:回顾本节课所讲的内容通过小结总结回顾本节课学习内容,帮助学生归纳、巩固所学知识.环节六布置作业教科书第83页习题3.2第2、3题课后完成练习通过课后作业,教师能及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.。
北师大初中七年级数学上册《代数式》教案
北师大,初中,七年级,数学,上册,《,代数式,》,代数式教学目标1、使学生认识用字母表示数的意义,并能说出一个代数式所表示的数量关系;2、初步培养学生观察、分析及抽象思维的能力;3、通过本节课的教学,教育学生为建设有中国特色社会主义而刻苦学习教学重点和难点重点:用字母表示数的意义难点:正确地说出代数式所表示的数量关系教学过程一、设疑自探1、什么是代数式单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式学习代数,首先要学习用代数式表示数量关系,明确代数上的意义2、举例说明例1 填空:(1)每包书有12册,n包书有__________册;(2)温度由t℃下降到2℃后是_________℃;(3)棱长是a厘米的正方体的体积是_____立方厘米;(4)产量由m千克增长10%,就达到_______千克(此例题用投影给出,学生口答完成)解:(1)12n; (2)(t-2); (3)a3; (4)(1+10%)m例2 、说出下列代数式的意义:(1) 2a+3 (2)2(a+3); (3) (4)a- (5)a2+b2 (6)(a+b) 2说明:(1)本题应由教师示范来完成;(2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等二.解疑合探例3 、用代数式表示:(1)m与n的和除以10的商;(2)m与5n的差的平方;(3)x的2倍与y的和;(4)ν的立方与t的3倍的积分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面三.质疑再探:1、填空:(投影)(1)n箱苹果重p千克,每箱重_____千克;(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米;(3)底为a,高为h的三角形面积是______;(4)全校学生人数是x,其中女生占48%,则女生人数是____,男生人数是____2、说出下列代数式的意义:(投影)(1)2a-3c; (2) ; (3)ab+1; (4)a2-b23、用代数式表示:(投影)(1)x与y的和; (2)x的平方与y的立方的差;(3)a的60%与b的2倍的和; (4)a除以2的商与b除3的商的和新课标第一网四.运用拓展小结:1、本节课学习了哪些内容? 2 用字母表示数的意义是什么? 3、什么叫代数式?教师在学生回答上述问题的基础上,指出:①代数式实际上就是算式,字母像数字一样也可以进行运算;②在代数式和运算结果中,如有单位时,要正确地使用括号作业:1、一个三角形的三条边的长分别的a,b,c,求这个三角形的周长2、张强比王华大3岁,当张强a岁时,王华的年龄是多少?3、飞机的速度是汽车的40倍,自行车的速度是汽车的,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?4、a千克大米的售价是6元,1千克大米售多少元?5、圆的半径是R厘米,它的面积是多少?6、用代数式表示:(1)长为a,宽为b米的长方形的周长;(2)宽为b米,长是宽的2倍的长方形的周长;(3)长是a米,宽是长的的长方形的周长;(4)宽为b米,长比宽多2米的长方形的周长。
3.2代数式教学设计2023-2024学年北师大版数学七年级上册
课题:
科目:
班级:
课时:计划1课时
教师:
单位:
一、教学内容分析
本节课的主要教学内容是北师大版数学七年级上册的3.2节“代数式”。内容包括代数式的概念、代数式的性质、代数式的运算及简单应用。这些内容与学生在小学阶段学习的算术运算和初步的代数知识紧密相关。
- 应用:将代数式应用于实际问题,锻炼数学建模和解决问题的能力。
③ 重点句:
- "代数式是表示数量关系的符号组合。"
- "同类项可以相加(减),合并后的结果是简化后的代数式。"
- "使用分配律可以将乘法运算应用于括号内的每一项。"
- "通过代数式,我们可以将现实问题转化为数学问题,更方便地分析和解决。"
5. 题目五:代数式的实际意义
- 原题:一辆汽车以 v km/h 的速度行驶,行驶了 t 小时后,行驶的距离是多少?
- 解答:距离 = 速度 * 时间 = v * t。
九.课堂
1. 课堂评价
- 通过课堂提问,了解学生对代数式定义、性质、运算规则的理解程度,及时解答学生的疑问。
- 观察学生在课堂上的参与情况,如小组讨论、角色扮演等活动中的表现,评估学生的合作能力和实践应用能力。
- 设计课堂小测验,测试学生对代数式化简、因式分解等技能的掌握情况,及时发现并解决学生存在的问题。
2. 作业评价
- 对课后作业进行认真批改,关注学生在化简代数式、代入求解等题目中的错误类型,给出具体的改正建议。
- 点评学生的作业完成情况,肯定学生的努力和进步,指出需要改进的地方,鼓励学生持续努力。
北师大版七年级数学3.2代数式教案
实践活动环节,学生们分组讨论和实验操作的表现让我感到欣慰。他们积极参与,互相交流,展示出了良好的团队协作精神。但同时,我也注意到有的小组在讨论过程中存在依赖个别同学的现象,其他成员参与度不高。针对这一问题,我将在后续教学中加强对小组讨论的引导,确保每个同学都能积极参与,提高讨论效果。
举例:重点强调单项式中字母指数的概念,如“3x^2”中的“x^2”表示x乘以自己一次,以及多项式“2x + 3x^2 - 4”中如何识别和合并同类项“2x”和“3x^2”。
2.教学难点
-合并同类项:理解同类项的概念,掌握合并同类项的规则,尤其是系数的正负和字母指数的匹配。
-多项式的加减运算:在进行多项式的加减运算时,容易出现的错误包括符号错误、遗漏项、错误合并非同类项等。
3.加强小组讨论的引导,提高学生的参与度和团队协作能力。
4.加入口语表达的训练,提高学生的表达能力和自信心。
希望通过这些改进,能让我的教学更加贴近学生需求,帮助他们更好地掌握代数式的知识,为后续学习打下坚实基础。
1.教学重点
-代数式的概念:理解代数式的定义,知道代数式是由数、字母和运算符号组成的表达式。
-代数式的分类:区分单项式和多项式,掌握它们的结构特征。
-单项式的定义:明确单项式的组成,理解数与字母乘积的意义。
-多项式的定义:理解多项式的组成,掌握多项式的加减运算规则。
-代数式的化简:掌握合并同类项的方法,能够对代数式进行简化。
5.代数式的化简:合并同类项,进行加减运算。
北师大版七年级数学上册优秀教学案例:3.2.2代数式
1.设计有针对性的问题,引导学生围绕问题展开思考,逐步揭示代数式的本质特征。
2.鼓励学生提出问题,培养学生的质疑精神和问题意识。
3.引导学生运用已有的知识解决实际问题,提高学生的知识运用能力。
(三)小组合作
1.合理分组,确保每个小组成员都能在合作中发挥自己的特长。
2.明确分工,让每个学生在合作过程中都有责任和任务。
作为一名特级教师,我深知教学案例亮点的重要性。在教学过程中,我将根据学生的年龄特点、认知水平和学习需求,继续探索更多有效的教学方法和手段,为学生的全面发展奠定坚实基础。同时,我将关注学生的个体差异,尊重学生的个性发展,让每个学生在数学学习中都能找到适合自己的方法,体验到学习的乐趣和成就感。
4.教学方法灵活多样:本节课运用了讲授、讨论、实践等多种教学方法,使学生在轻松愉快的氛围中掌握代数式的相关知识,提高了学生的学习效果。
5.教学评价关注全面发展:本节课采用多元化的评价方式,关注学生的知识掌握程度、思维品质、情感态度等方面的发展,使每个学生在数学学习中都能找到适合自己的方法,体验到学习的乐趣和成就感。
2.要求学生在作业中运用本节课所学知识解决实际问题,提高学生的知识运用能力。
3.鼓励学生进行自我反思,发现自己的优点和不足,调整学习策略。
作为一名特级教师,我深知教学内容与过程的重要性。在教学过程中,我将关注学生的年龄特点、认知水平和学习需求,灵活运用各种教学方法和手段,充分调动学生的学习积极性,激发学生的思维潜能,培养学生的数学素养。同时,我将关注学生的个体差异,尊重学生的个性发展,让每个学生在数学学习中都能找到适合自己的方法,体验到学习的乐趣和成就感。
2.运用多媒体教学手段,创设生动活泼的学习情境,激发学生的学习兴趣,提高学生的学习积极性。
(北师大版2024)七年级数学上册同步3.1 第1课时 代数式 教案
第三章 整式及其加减1 代数式第1课时 代数式1.经历探索规律并用字母表示规律的过程.2.体会字母表示数的意义,形成初步的符号感,初步感受从特殊到一般的思维方式,体验用矛盾转化的观点认识问题.重点:会列代数式并理解代数式的意义.难点:会列代数式表示实际问题中的数量关系.一、情境导入1.从A 地到B 地要走3个小时.这里A ,B 表示什么?2.用字母表示加法交换律:a +b =b +a.二、合作探究探究点一:代数式的定义及书写格式下列各式中是代数式的是( )A .S =πr 2B .2a >bC .3x +yD .π≈3.14答案:C下列式子中,符合代数式书写格式的有( )①m ×n ;②313 ab ;③14(x +y ); ④m +2天;⑤abc 3A .2个B .3个C .4个D .5个解析:①正确的书写格式是mn ;②正确的书写格式是103ab ;③的书写格式是正确的,④正确的书写格式是(m +2)天;⑤的书写格式是正确的.故选A .方法总结:书写含字母的式子时应注意:①数与字母、字母与字母相乘省略乘号;②数与字母相乘时数字在前;③式子中出现除法运算时,一般按分数形式来写;④带分数与字母相乘时,把带分数化成假分数;⑤后面带单位的式子相加或相减时,式子整体加括号. 探究点二:列代数式及代数式的意义用含有字母的式子表示下列数量:(1)练习簿的单价为a 元,100本练习簿的总价为 元;(2)练习簿的单价为b 元,a 本练习簿的总价是 元;(3)小明的家离学校s 千米,小明骑车上学.若每小时骑行10千米,则需 时;(4)若每斤苹果312元,则买m 斤苹果需 元; (5)小明个子高,经测量他通常跨一步的距离为1米,若取向前为正,向后为负,则小明向前跨a 步为 米,向后跨a 步为 米.答案:(1)100a (2)ab (3)s 10 (4)72m (5)a -a如图所示,搭一个正方形需要4根火柴棒.(1)按上面的方式,搭2个正方形需要 根火柴,搭3个正方形需要 根火柴;(2)搭7个这样的正方形需要 根火柴;(3)搭100个这样的正方形需要多少根火柴?(4)如果用x 表示所搭正方形的个数,那么搭x 个这样的正方形需要多少根火柴? 解:(1)7 10 (2)22(3)4+3×(100-1)=301.故搭100个这样的正方形需要301根火柴.(4)4+3×(x -1)=3x +1.故搭x 个这样的正方形需要(3x +1)根火柴.对代数式a -b 2的意义表述正确的是( )A .a 与b 差的平方B .a ,b 平方的差C .a 减去b 的平方的差D .a 的平方与b 的平方的差答案:C方法总结:说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.三、板书设计代数式⎩⎪⎨⎪⎧代数式的概念⎩⎪⎨⎪⎧代数式的书写要求识别代数式根据实际问题列代数式解释代数式所表示的实际意义通过本课时的教学要让学生经历在实际问题中列代数式,初步理解代数式的意义,让学生循序渐进的学习本部分内容,可以先用数,然后引入代数式.让学生在现实情境中去理解、感悟、体会字母能够代替数,发展学生的符号感.在数学教学中,让学生逐步学会用代数的思想方法分析和解决问题,体会其优越性,让学生体验成就感.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《代数式》教学设计一、学生起点分析本节课是教材第三章《字母表示数》的第二节,在此之前,学生对有理数及有理数的运算有了一定的基础,在第一节中对于字母表示数已具有一定的认知水平,并且学生从小学开始就已经和字母有了接触,从小学到初中的数的运算实质就是代数式的运算,在此基础上导入代数式和代数式值的内容,对学生来说无疑是一个良好的时机.学生主动参与意识增强,课堂氛围进一步浓烈,分析能力和综合思维能力都有了一定程度的提高,很多同学都已能够将数学知识与生活实际联系起来,这样将有利于学生掌握代数式和代数式值的意义,解决有关代数式的运用问题.二、教学任务分析本课时的教学内容直奔教学主题――代数式的意义,降低了教学的难度,有效地克服了学生的心里障碍,并结合上一节的内容很自然地引入了代数式值的意义,再通过具体的情境来列代数式并求其值,然后通过反问代数式还能表示哪些实际意义,将教学活动引向高潮,激发学生联想、类比,进一步拓展学生的思维,同时也进一步调动了学生学习的积极性,最后教材提供了一个刻画有趣现象的经验公式――蟋蟀叫的次数与温度的关系,既使学生感悟了数学建模的思想,又使学生在轻松愉快的环境中加深了对代数式和求代数式值的理解.教学中要充分利用实际的背景,争取学生主动参与,通过丰富有趣的活动让学生经历符号化的过程,以及运用它推断代数式所反映规律的过程,同时也可以借助多媒体辅助教学来提供更多的实际背景,从而拓展学生的思维,在进行从语言到代数式、从代数式到语言转化的过程中,要注重培养学生正确运用数学语言进行表达和交流的能力.根据以上分析,确定本节课的教学目标如下:1.进一步理解字母表示数的意义,能结合具体情景给字母赋于实际意义;理解代数式和代数式的值的意义,能解释一些简单代数式的实际背景或几何意义,在具体情景中能求出代数式的值.(知识与技能)2.通过创设实际背景和引用符号,经历观察、体验、验算、猜想、归纳等数学过程,体会数学与现实世界的联系,增强符号感,发展运用符号解决问题和数学探究意识.(过程与方法)3.在解决问题的过程中体验类比、联想等思维,体验数学美,增强学习自信心。
(情感与态度)教学重点:列代数式。
教学难点:正确列出代数式表示现实问题中的数量关系;从不同的角度给代数式赋予实际意义。
三、教学过程分析本节课由五个教学环节组成,它们是① 旧知归纳,直奔主题 ② 创设背景,理解概念 ③ 反设探究,意义升华 ④ 趣题滋润,建模感悟 ⑤练习交流, 巩固提高 .其具体内容与分析如下:第一环节 旧知归纳,直奔主题内容: 承接先前的若干实例,回顾具体代数式所表达的含义。
归纳它们的基本特征。
目的:通过复习上一节知识内容,直接点出本节主题,在于降低教学难度,激发兴趣,使 学生在注意力集中前提下顺利过渡到本节知识内容.目的在于引导学生体验把实际问题抽象成数学问题的一般方法,同时在解答问题中形成认知冲突.效果:学生在通过上一节知识的回顾,知道像4+3(x -1),x +x +(x -1),a +b ,ab , 2(m +n ),ts ,a 3 …… 这样一些式子都具有一定的实际意义,而探求当x =200时4+3(x -1)的代数式的值,不仅理解了代数式和代数式的值的意义,而且了解到学习这些知识的重要性,极大地调动了学生学习数学的积极性.同时滲透了把实际问题抽象成数学问题的一般思想方法.第二环节 创设背景,理解概念内容:讲解教材中的例1 列代数式,并求值目的: 经过多媒体展示实际背景,学生演板、师生交流,让学生从实际问题中抽象出数学 问题,学会列代数式和求代数式的值,体验数学来源于生活,又为现实生活服务,极大地调动学生学习的主动性、积极性;规定代数式的书写要求,代数式求值的格式并用多媒体展示,门票 成人:10元/张 学生:5元/目的在于让学生体会数学的规范性,严密性,进一步培养学生的数感和符号感.效果:本环节开始就有效地激发了学生的学习兴趣,调动了学生学习的积极性,学生主动学习和合作交流较为充分,学生成功的交流,使学生感受到数学结果的多样性,数学符号的美妙性,同时初步学会了列代数式和求代数式的值的方法.第三环节反设探究,意义升华内容:承接上面的例子,继续提出问题:前面10x+5y表示的是x个成人、y个学生进公园的门票费,那么它还可以表示什么呢?请大家想一想后,写出一种或两种表示的内容要求学生在独立思考的基础之上,做小组交流,随后全班交流。
根据讨论结果,共同归纳:字母可以表示任何数,或者任何一个量,“10x+5y”可以赋于很多的实际的意义,投影展示学生思考的多种结果。
目的:用多媒体将问题展示后,让学生充分地观察、思考,进而产生联想,针对“10x+5y”所表示的意义让学生各自发表自己观点,并在小组进行交流,通过交流,学生意识到了“10x+5y”可以表示很多不同的问题,接着让各小组长上台进行展示和师生对答案进行综合评价,最后教师又用多媒体展示部分准确答案,目的是帮助学生进一步体会符号表示的意义,同时也是为了拓宽学生的思维,发展学生联想、类比、归纳等能力.效果:教学中学生充分地观察、思考,针对“10x+5y”所表示的意义各自发表自己观点,并在小组进行交流,对学生独立思考和交流都作了要求,小组交流中要求去伪存真,各抒己见,这样,给学生相互之间提供了一个学习的机会,让学困生能看到自己的不足,从而充分调动每个学生学习的主动性和积极性,培养了学生合作交流的精神和意识.第四环节趣题滋润,建模感悟内容:讨论教材上的例2。
分析需要使用代数式表达信息的原因。
通过解决具体问题,让学生感受代数式求值的含义。
蟋蟀目的:这里首先展示出学生生活中非常熟悉的小动物――蟋蟀的图片,从而提出蟋蟀每分钟叫的次数与当时温度的关系的问题,目的是刺激学生的感官,引发学生的求知欲望.对第(1)中的蟋蟀1分所叫的次数探求或变式,目的在于帮助学生自设字母来表示有关的量,为学生列代数式铺平道路,同时让学生体会数学建模的思想.求x=80、100、120时,该地当时的温度,目的在于让学生进一步学会求代数式的值,加深对蟋蟀1分叫的次数与当时温度的关系的体会.效果:在这个环节中教师首先给出一个实际背景,一下子就引起了学生的注意力,接着通过师生循序渐进的分析,学生很自然地领悟了数学建模的方法,掌握了列代数式的新的方法――先设字母,再列式子,使课堂气氛显得格外轻松.同时在这里通过变式,增强了思维的灵活性,降低了学习的难度,调动了学生学习的积极性.第五环节练习交流, 巩固提高内容:解决教材中的随堂练习等。
同学之间交流本节课的学习收获和体会.教师帮助学生归纳必要的内容,展示:代数式的意义代数式代数式的值代数式表示的实际意义布置作业。
目的:本环节的目的就是为了检测学生的达标情况和巩固练习,同时为学有余力的学生设置了试一试、想一想等有创新思维的问题,以满足不同层次的学生在数学发展方面的需要.选择题目的出发点在于帮助学生学会列代数式,进一步明确代数式的实际背景或几何意义,发展学生的符号感;通过小结让学生进一步把握本章的重点,明确学习的方向.师生交流、归纳小结的目是让学生准确全面的表述自己的观点,培养及时归纳知识的习惯.效果:学生分层次独立完成课中随堂练习,再由教师念答案学生自我评分,按不同的要求统计优秀成绩(基础差的同学做对第1题就是优秀),让每个学生都有了成就感,增强了学生学习数学的信心,真正做到了面向全体学生.四、教学反思与点评《代数式》是义务教育课程标准实验教科书(北师大版)七年级上学期的内容,本节课的教学是一节研究课,得到了20多名听课人员的高度赞扬,学生也倍感成功,学的轻松,过的愉快。
本节课一开始就直奔主题,揭示出代数式和代数式值的意义,并要求学生回顾4+3(x -1),x +x +(x -1),a +b ,ab ,2(m +n ),ts ,a 3 ……等这些式子的实际背景和求4+3(x -1)中当x =200时的火柴棒的根数,学生有了这些基础后,对列代数式和求值就不会感到陌生了,进而引出例1这样正规的列代数式和求值的题型,并且给出了实际背景;紧接着,对代数式“10x +5y ”还可以表示什么?作了全面而广泛的探究,学生从生产资料、生活用品、科学技术、几何物体;静止的、运动的;平面的、立体的;等等,很多方面引出代数式“10x +5y ”在实际背景或几何背景下所表示的意义.这就体现数学的从特殊到一般的研究方法和变式教学的教学方法,也让学生通过联想、类比、归纳等数学方法拓展了思维.通过例2,引出与学生生活中最熟悉的动物――蟋蟀有关的数学问题:蟋蟀1分所叫的次数与该地当时的温度的关系,让学生在轻松愉快的教学活动中,学会了如何设字母列代数式的方法,在这个教学过程中,给出了如37+x ;37+a ;37+m 等多个不同字母所表示的代数式,拓展学生的思维,活跃了课堂气氛.在课堂练习中,给出了不同层次的问题,分层次对学生提出要求,不同层次的学生问题解答的都很好.回顾本节课的教学,有以下几点作的比较成功:第一,根据课程标准把握教材.新的课程标准要求,淡化概念,注重知识的形成过程,如在学生已有的知识基础上引入代数式的概念,显得自然流畅,学生学的轻松,在学习例1和后面的“想一想”时,让学生充分观察、思考、分析和讨论,帮助学生在不断地纠错中学习新知识,在不断归纳中学习新知识,在不断创新中学习新知识,使学生的大脑始终处于兴奋之中,收到了预想不到的教学效果. 第二,恰当插入背景,渲染了气氛.如例1中插入“公园大门”图片,例2中插入“蟋蟀”图片,激发了学生的学习兴趣,让学生感受到现实生活离不开数学,从而进一步调动了学生学习数学的积极性.第三,整个教学过程中,体现了学生为主体的教学理念,教师只是教学活动的参与者、引导者,不论在例1和后面“想一想”,还是在例2 中,学生活动始终是占主体地位.第四,在课堂练习中分层次安排内容、分层要求,使他们人人具有成就感,充分体现了人文关怀,体现了面向全体学生.。