与圆有关的计算资料

合集下载

专题21 与圆有关的计算(6大考点)(学生版)

专题21 与圆有关的计算(6大考点)(学生版)

第五部分圆专题21与圆有关的计算(6大考点)核心考点核心考点一弧长与扇形面积的相关计算核心考点二与扇形有关的阴影部分面积计算核心考点三圆切线与阴影部分求面积结合核心考点四圆锥、圆柱的相关计算核心考点五圆与正多边形的相关计算核心考点六圆的其他计算问题新题速递核心考点一弧长与扇形面积的相关计算(2021·辽宁沈阳·统考中考真题)如图,ABC是O 的内接三角形,AB =60ACB ∠=︒,连接OA ,OB ,则 AB 的长是()A .3πB .23πC .πD .43π(2022·辽宁朝阳·统考中考真题)如图,在矩形ABCD 中,AD =DC =DC 绕点D 按逆时针方向旋转,当点C 的对应点E 恰好落在边AB 上时,图中阴影部分的面积是_____.例3(2022·山东东营·统考中考真题)如图,AB 为O 的直径,点C 为O 上一点,BD CE ⊥于点D ,BC 平分ABD ∠.(1)求证:直线CE 是O 的切线;(2)若30,ABC O ∠=︒ 的半径为2,求图中阴影部分的面积.知识点一、弧长及扇形的面积设O ⊙的半径为R ,n ︒圆心角所对弧长为l ,(一)弧长的计算(1)弧长公式:.180n R l π=(2)公式推导:在半径为R 的圆中,因为360︒的圆心角所对的弧长就是圆周长2C R π=,所以1︒的圆心角所对的弧长是2,360R π︒即,180R π︒于是n ︒的圆心角所对的弧长为.180n R l π=注意:(1)在弧长公式中,n 表示1︒的圆心角的倍数,不带单位。

例如圆的半径6R cm =,计算20︒的圆心角所对弧长l 时,不要错写成()206.180l cm π︒⨯⨯=(2)在弧长公式中,已知,,,l n R 中的任意两个量,都可以求出第三个量。

(二)扇形面积的计算(1)扇形的定义:由组成圆心角的两条半径和圆心角所对的弧围成的图形叫作扇形。

圆的面积公式怎么算有关圆的面积公式有哪些

圆的面积公式怎么算有关圆的面积公式有哪些

圆的面积公式怎么算有关圆的面积公式有哪些在生活中我已经会看到与圆有关的图形或形状。

有些特别好学的同学就会问,那么圆的面积公式怎么算,有关圆的面积公式有哪些呢?下面是由小编为大家整理的“圆的面积公式怎么算有关圆的面积公式有哪些”,仅供参考,欢迎大家阅读。

圆的面积公式怎么算圆的面积计算公式:S = π×r2 =3.1416×r2 圆周长计算公式:L = 2×π×r (圆的面积说白了一点就是:半径乘于半径乘于3.14) 推导过程:把圆平均分成若干份,可以拼成一个近似的长方形。

长方形的宽就等于圆的半径(r),长方形的长就是圆周长(C)的一半。

长方形的面积是ab,那圆的面积就是:圆的半径(r)乘以二分之一周长C,S=r*C/2=r*πr。

有关圆的面积公式有哪些半圆的面积=圆周率×半径×半径÷2圆环面积=外大圆面积-内小圆面积圆的周长=直径×圆周率半圆周长=圆周率×半径+直径拓展阅读:半圆的面积公式怎么算半圆形的面积计算公式半圆形面积是与它等直径的圆面积的一半。

圆面积计算公式为πr^2。

则圆周率×半径的平方。

所以半圆面积是πr^2÷2。

半圆形的周长计算公式半圆的周长等于圆周长的一半加上一条直径。

圆的周长公式是C=2πr,周长的一半即2πr÷2=πr;所以圆的周长为:C=πr+d 或C=πr+2r=r(π+2)。

圆的知识点总结大全集合:圆:圆可以看作是到定点的距离等于定长的点的集合;圆的外部:可以看作是到定点的距离大于定长的点的集合;圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹:1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆;2、到线段两端点距离相等的点的轨迹是:线段的中垂线;3、到角两边距离相等的点的轨迹是:角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

与圆有关的计算

与圆有关的计算

∴S 阴影=S 扇形 = OCD
= .故选:A.
典例解析——例4
例 4.如图所示,小明同学用纸制作了一个圆锥形漏斗模型,它的底面 直径 AB=12cm,高 OC=8cm,则这个圆锥漏斗的侧面积是( C ) A.30cm2 B.36πcm2 C.60πcm2 D.120cm2
典例解析——例4
解:圆锥的母线长=
A.6cm
B.7cm
C.8cm
D.10cm
知识梳理----(1)正多边形和圆
注意: (1)构造直角三角形(弦心距 、边长的一半、半径组成的) 求线段之间的关系等; (2)准确记忆相关公式,并 熟悉公式的推导方法。
知识梳理----(2)弧长和面积
知识梳理----(3)圆柱和圆锥
例 1. 以半径为 2 的圆的内接正三角形、正方形、正六边形的边心距
+6π.
灵活运用,拓展延伸
1.如图17,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且
AM=BN,点O是正五边形的中心,则∠MON的度数是 72 度.
灵活运用,拓展延伸-----解析
解:连接OA、OB、OC, ∵∠AOB=∠BOC=72°, OA=OB=OC, ∴∠OAB=∠OBC, ∵在△AOM和△BON中,AM=BN, ∴△AOM≌△BON, ∴∠BON=∠AOM, ∴∠MON=∠AOB=72°, 故答案为:72.
灵活运用,拓展延伸-----解析
2.解:连接 OA,如图 ∵AB=AC,OB=OC= BC= ,∴AO⊥BC,
∵∠ABC=30°,∴∠BAC=120°,AO= OB=1,
∴AB=2OA=2,设这个圆锥底面圆的半径为 r,
2πr=
,解得 r= .
故选:A.

圆有关的计算公式

圆有关的计算公式

圆有关的计算公式圆是一个非常重要的几何形状,有着广泛的应用。

在数学中,使用圆的特性和计算公式可以解决许多与圆相关的问题。

本文将介绍与圆有关的一些常见公式,包括圆的面积、周长、弧长、扇形面积、以及圆锥、圆柱和圆球的体积等。

1.圆的面积计算公式:圆的面积公式是圆的半径r的平方乘以π(pi)。

即:A = πr^2 2.圆的周长计算公式:圆的周长公式是圆的直径d乘以π。

即:C=πd也可以使用半径r来计算周长,公式为:C=2πr其中,C表示圆的周长,d表示圆的直径。

3.圆的弧长计算公式:圆的弧长是圆周上两个点之间的弧所对应的圆心角所对应的弧长。

计算圆的弧长公式为:L=s=rθ其中,L表示弧长,s表示弧所对应的弧长,r表示圆的半径,θ表示圆心角的度数(以弧度制表示)。

4.扇形面积计算公式:扇形是圆上由圆心引出的两条半径所夹的角所对应的区域。

计算扇形面积的公式为:S=0.5r^2θ其中,S表示扇形的面积,r表示圆的半径,θ表示圆心角的度数(以弧度制表示)。

5.圆锥的体积计算公式:圆锥是一个以圆为底面,顶点位于圆心上方并与底面相连的三维几何体。

计算圆锥的体积的公式为:V=1/3πr^2h其中,V表示圆锥的体积,r表示圆的半径,h表示圆锥的高。

6.圆柱的体积计算公式:圆柱是一个由两个平行的圆底面和它们之间的侧面组成的三维几何体。

计算圆柱的体积的公式为:V=πr^2h其中,V表示圆柱的体积,r表示圆底面的半径,h表示圆柱的高。

7.圆球的体积计算公式:圆球是一个由所有到圆心距离相等于半径的点组成的三维几何体。

计算圆球的体积的公式为:V=4/3πr^3其中,V表示圆球的体积,r表示圆球的半径。

除了以上介绍的公式,还有许多与圆相关的计算公式,如圆的切线与半径的关系、圆锥的侧面积计算公式、圆柱的侧面积计算公式等。

这些公式在解决具体问题时会有所应用。

总结:圆是一个基本的几何形状,在数学和实际应用中都有着广泛的用途。

使用与圆有关的计算公式,可以准确计算圆的面积、周长、弧长,以及与圆相关的三维几何体(如圆锥、圆柱和圆球)的体积。

专题25 圆的有关计算与证明(共20道)(解析版)-2023年中考数学真题分项汇编(全国通用)

专题25 圆的有关计算与证明(共20道)(解析版)-2023年中考数学真题分项汇编(全国通用)

专题25圆的有关计算与证明(20道)一、填空题1.(2023·江苏徐州·统考中考真题)如图,在O 中,直径AB 与弦CD 交于点 ,2E AC BD=.连接AD ,过点B 的切线与AD 的延长线交于点F .若68AFB ∠=︒,则DEB ∠=°.【答案】66【分析】连接BD ,则有90ADB ∠=︒,然后可得22,68A ABD ∠=︒∠=︒,则44ADE =︒∠,进而问题可求解.【详解】解:连接BD ,如图所示:∵AB 是O 的直径,且BF 是O 的切线,∴90ADB ABF ∠=∠=︒,∵68AFB ∠=︒,∴22A ∠=︒,∴68ABD ∠=︒,∵ 2AC BD=,∴244ADC A ∠=∠=︒,【答案】0.1【分析】由已知求得AB 与而即可得解.【详解】∵2OA OB AOB ==∠,∴22AB =,∵C 是弦AB 的中点,D 在∴延长DC 可得O 在DC 上,∴22CD OD OC =-=-,∴()22222322CD s AB OA-=+=+=,9022360l ππ⨯⨯==,∴30.1l s π-=-≈.故答案为:0.1.【点睛】本题考查扇形的弧长,掌握垂径定理。

弧长公式是关键.二、解答题3.(2023·辽宁盘锦·统考中考真题)如图,ABC 内接于O ,AB 为O 的直径,延长AC 到点G ,使得CG CB =,连接GB ,过点C 作CD GB ∥,交AB 于点F ,交点O 于点D ,过点D 作DE AB ∥.交GB 的延长线于点E .(1)求证:DE 与O 相切.(2)若4AC =,2BC =,求BE 的长.【答案】(1)见详解(2)523【分析】(1)连接OD ,结合圆周角定理,根据CG CB =,可得45CGB CBG ∠=∠=︒,再根据平行的性质45ACD CGB ∠=∠=︒,即有290AOD ACD ∠=∠=︒,进而可得90ODE AOD ∠=∠=︒,问题随之得证;(2)过C 点作CK AB ⊥于点K ,先证明四边形BEDF 是平行四边形,即有BE DF =,求出2225AB AC BC =+=,即有152OD AO OB AB ====,利用三角形函数有2sin 5AC ABC AB ∠==,同理1cos 5ABC ∠=,即可得4sin 5KC BC ABC =⨯∠=,2cos 5KB BC ABC =⨯∠=,进而有35OK OB KB =-=,再证明CKF DOF ∽,可得55445OF OD FK CK ===,即可得55359935OF OK ==⨯=,在Rt ODF △中,有∵AB 为O 的直径,∴90ACB ∠=︒,∴90GCB ∠=︒,∵CG CB =,∴45CGB CBG ∠=∠=︒,∵CD GB ∥,∴45ACD CGB ∠=∠=︒,∴290AOD ACD ∠=∠=︒,即∵DE AB ∥,∴90ODE AOD ∠=∠=︒,∴半径OD DE ⊥,∴DE 与O 相切;(2)过C 点作CK AB ⊥∵CD GB ∥,DE AB ∥,∴四边形BEDF 是平行四边形,∴BE DF =,∵4AC =,2BC =,∴222AB AC BC =+=∴152OD AO OB AB ====,∵CK AB ⊥,∴90CKB ACB ∠=︒=∠,∴在Rt ACB △,2sin 5AC ABC AB ∠==,同理1cos 5ABC ∠=,∵在Rt KCB 中,2CB =,∴4sin 5KC BC ABC =⨯∠=,2cos 5KB BC ABC =⨯∠=,∴35OK OB KB =-=,∵CK AB ⊥,OD AB ⊥,∴OD CK ∥,∴CKF DOF ∽,∴55445OF OD FK CK ===,∴59OF OF FK OF OK ==+,∴55359935OF OK ==⨯=,∴在Rt ODF △中,22523DF OD OF =+=,∴523BE DF ==.【点睛】本题是一道综合题,主要考查了圆周角定理,切线的判定,相似三角形的判定与性质,平行四边形的判定与性质,三角函数以及勾股定理等知识,掌握切线的判定以及相似三角形的判定与性质,是解答本题的关键.4.(2023·江苏南通·统考中考真题)如图,等腰三角形OAB 的顶角120AOB ∠=︒,O 和底边AB 相切于点C ,并与两腰OA ,OB 分别相交于D ,E 两点,连接CD ,CE .(1)求证:四边形ODCE 是菱形;(2)若O 的半径为2,求图中阴影部分的面积.【答案】(1)见解析(2)4233S π=-阴影【分析】(1)连接OC ,根据切线的性质可得60AOC BOC ∠=∠=︒,从而可得ODC 和△OD CD CE OE ===,即可解答;(2)连接DE 交OC 于点F ,利用菱形的性质可得利用勾股定理求出DF 的长,从而求出DE ODCE 的面积,进行计算即可解答.【详解】(1)证明:连接OC ,O 和底边AB 相切于点C ,OC AB ∴⊥,OA OB = ,120AOB ∠=︒,1602AOC BOC AOB ∴∠=∠=∠=︒,OD OC = ,OC OE =,ODC ∴ 和OCE △都是等边三角形,OD OC DC \==,OC OE CE ==,OD CD CE OE ∴===,∴四边形ODCE 是菱形;(2)解:连接DE 交OC 于点F ,四边形ODCE 是菱形,112OF OC ∴==,2DE DF =,90OFD ∠=︒,在Rt ODF 中,2OD =,2222213DF OD OF ∴=-=-=,223DE DF ∴==,∴图中阴影部分的面积=扇形ODE 的面积-菱形ODCE 的面积2120213602OC DE π⨯=-⋅4122332π=-⨯⨯4233π=-,∴图中阴影部分的面积为4233π-.【点睛】本题考查了切线的性质,扇形面积的计算,等腰三角形的性质,菱形的判定与性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.5.(2023·辽宁鞍山·统考中考真题)如图,四边形ABCD 内接于O ,AB 为O 的直径,过点D 作DF BC ⊥,交BC 的延长线于点F ,交BA 的延长线于点E ,连接BD .若180EAD BDF ∠+∠=︒.(1)求证:EF 为O 的切线.∵EAD BDF ∠+∠=∴BDF BAD ∠=∠,∵AB 为O 的直径,∴90ADB ∠=︒,BFD ∠∴BDF DBF ∠+∠=∴DBF ABD ∠=∠,∵OB OD =,∴DBF ABD ∠=∠=∴OD BF ∥,∴90ODE F ∠=∠=又OD 为O 的半径,∴EF 为O 的切线;(2)连接AC ,则:∵AB 为O 的直径,∴90ACB F ∠=︒=∠,∴AC EF ,∴E BAC BDC ∠=∠=∠,在Rt BFE △中,10BE =,2sin sin 3E BDC =∠=,∴220sin 1033BF BE E =⋅=⨯=,设O 的半径为r ,则:,10OD OB r OE BE OB r ===-=-,∵OD BF ∥,∴ODE BFE ∽,∴OD OE BF BE =,即:1020103r r -=,∴4r =;∴O 的半径为4.【点睛】本题考查圆与三角形的综合应用,重点考查了切线的判定,解直角三角形,相似三角形的判定和性质.题目的综合性较强,熟练掌握相关知识点,并灵活运用,是解题的关键.6.(2023·辽宁阜新·统考中考真题)如图,AB 是O 的直径,点C ,D 是O 上AB 异侧的两点,DE CB ⊥,交CB 的延长线于点E ,且BD 平分ABE ∠.(1)求证:DE 是O 的切线.(2)若60ABC ∠=︒,4AB =,求图中阴影部分的面积.【答案】(1)见解析(2)233π-【分析】(1)连接OD ,根据OB OD =,得出OBD ODB ∠=∠.根据BD 平分ABE ∠,得出OBD EBD ∠=∠,则EBD ODB ∠=∠.根据DE CB ⊥得出90EBD EDB ∠+∠=︒,进而得出90ODB EDB ∠+∠=︒,即可求证;(3)连接OC ,过点O 作OF BC ⊥于点F ,通过证明OBC △为等边三角形,得出60BOC ∠=︒,【点睛】本题主要考查了切线的判定,等边三角形的判定和性质,解直角三角形,求扇形面积,解题的关键是掌握经过半径外端切垂直于半径的直线是圆的切线;扇形面积公式7.(2023·黑龙江哈尔滨·统考中考真题)已知ABC 内接于O ,AB 为O 的直径,N 为 AC 的中点,连接ON 交AC 于点H .(1)如图①,求证2BC OH =;(2)如图②,点D 在O 上,连接DB ,DO ,DC ,DC 交OH 于点E ,若DB DC =,求证OD AC ∥;(3)如图③,在(2)的条件下,点F 在BD 上,过点F 作FG DO ⊥,交DO 于点G .DG CH =,过点F 作FR DE ⊥,垂足为R ,连接EF ,EA ,32EF DF =::,点T 在BC 的延长线上,连接AT ,过点T 作TM DC ⊥,交DC 的延长线于点M ,若42FR CM AT ==,,求AB 的长.【答案】(1)见解析(2)见解析(3)213【分析】(1)连接OC ,根据N 为 AC 的中点,易证AH HC =,再根据中位线定理得出结论;(2)连接OC ,先证DOB DOC ≌V V 得BDO CDO ∠=∠,再根据OB OD =得DBO BDO ∠=∠,根据ACD ABD ∠=∠即可得出结论;(3)连接AD ,先证DOB DOC ≌V V ,再证四边形ADFE 是矩形,过A 作AS DE ⊥垂足为S ,先证出FR AS =,再能够证出CAS TCM ≌V V 从而CT AC =,得到等腰直角ACT ,利用三角函数求出AC ,再根据EDF BAC ∠=∠求出BC ,最后用勾股定理求出答案即可.【详解】(1)证明:如图,连接OC ,设2BDC α∠=,BD DC = ,DO DO =DOB DOC \≌V V ,12BDO CDO \Ð=Ð=OB OD = ,DBO \ÐACD ABD a Ð=Ð=Q DO AC \∥;(3)解:连接AD ,FG OD ^Q ,90DGF ∴∠=︒,90CHE ∠=︒ ,DGF CHE \Ð=Ð,FDG ECH Ð=ÐQ ,DG CH =,DGF CHE \≌V V ,DF CE ∴=,AH CH = ,OH AC \^,CE AE DF \==,EAC ECA a Ð=Ð=Q ,2AED EAC ECA a Ð=Ð+Ð=,BDC AED ∴∠=∠,DF AE ∴∥,∴四边形ADFE 是平行四边形,AB 是O 的直径,90ADB ∴∠=︒,∴四边形ADFE 是矩形,90EFD ∴∠=︒,3tan 2EF EDF FD \Ð==,过点A 作AS DE ⊥垂足为S ,sin AS AES AE\Ð=,FR DC ^Q ,sin FR FDR FD\Ð=,FD AE ∥ ,FDR AES \Ð=Ð,sin sin FDR AES \Ð=Ð,FR AS \=,AB 是O 的直径,(1)若图1中两个大圆的直径相等,则璧与环的“肉”的面积之比为;(2)利用圆规与无刻度的直尺,解决下列问题(保留作图痕迹,不写作法).①图2为徐州狮子山楚王墓出土的“雷纹玉环”及其主视图,试判断该件玉器的比例关系是否符合“肉好若一”?②图3表示一件圆形玉坯,若将其加工成玉璧,且比例关系符合“肉倍好”,请画出内孔.【答案】(1)32:27(2)①符合,图见详解;②图见详解【分析】(1)根据圆环面积可进行求解;(2)①先确定该圆环的圆心,然后利用圆规确定其比例关系即可;②先确定好圆的圆心,然后根据平行线所截线段成比例可进行作图.【详解】(1)解:由图1可知:璧的“肉”的面积为()22318ππ⨯-=;环的“肉”的面积为()223 1.5 6.75ππ⨯-=,∴它们的面积之比为8:6.7532:27ππ=;故答案为32:27;(2)解:①在该圆环任意画两条相交的线,且交点在外圆的圆上,且与外圆的交点分别为A 、B 、C ,则分别以A 、B 为圆心,大于12AB 长为半径画弧,交于两点,连接这两点,同理可画出线段AC 的垂直平分线,线段,AB AC 的垂直平分线的交点即为圆心O ,过圆心O 画一条直径,以O 为圆心,内圆半径为半径画弧,看是否满足“肉好若一”的比例关系即可由作图可知满足比例关系为1:2:1的关系;②按照①中作出圆的圆心O ,过圆心画一条直径AB ,过点A 作一条射线,然后以A 为圆心,适当长为半径画弧,把射线三等分,交点分别为C 、D 、E ,连接BE ,然后分别过点C 、D 作BE 的平行线,交AB 于点F 、【点睛】本题主要考查圆的基本性质及平行线所截线段成比例,熟练掌握圆的基本性质及平行线所截线段成比例是解题的关键.9.(2023·辽宁·统考中考真题)的延长线上,且AFE ABC ∠=∠(1)求证:EF 与O (2)若1sin BF AFE =∠,【答案】(1)见解析(2)245BC =∵ =BEBE ,∴EOB ∠∵2CAB EAB ∠=∠,∴CAB EOB ∠=∠,∵AB 是O 的直径,∴90C ∠=︒,∵AFE ABC ∠=∠,∴OFE ABC ∽△△,∴90OEF C ∠=∠=︒,∵OE 为O 半径,∴EF 与O 相切;(2)解:设O 半径为x ,则1=+OF x ,∵AFE ABC ∠=∠,4sin 5AFE ∠=,∴4sin 5ABC ∠=,在Rt OEF △中,90OEF ∠=︒,4sin 5AFE ∠=,∴45OE OF =,即415x x =+,解得4x =,经检验,4x =是所列方程的解,∴O 半径为4,则8AB =,在Rt ABC △中,90C ∠=︒,4sin 5ABC ∠=,8AB =,∴32sin 5A AB C AB C ∠==⋅,∴22245BC AB AC =-=.【点睛】本题考查了圆的切线的判定、圆周角定理、解直角三角形以及相似三角形的判定和性质等知识,熟练掌握圆的相关知识和相似三角形的判定和性质是解题的关键.10.(2023·贵州·统考中考真题)如图,已知O 是等边三角形ABC 的外接圆,连接CO 并延长交AB 于点D ,交O 于点E ,连接EA ,EB .(1)写出图中一个度数为30︒的角:_______,图中与ACD 全等的三角形是_______;(2)求证:AED CEB ∽△△;(3)连接OA ,OB ,判断四边形OAEB 的形状,并说明理由.【答案】(1)1∠、2∠、3∠、4∠;BCD△(2)证明见详解(3)四边形OAEB 是菱形【分析】(1)根据外接圆得到CO 是ACB ∠的角平分线,即可得到30︒的角,根据垂径定理得到90ADC BDC ∠=∠=︒,即可得到答案;(2)根据(1)得到3=2∠∠,根据垂径定理得到5660∠=∠=︒,即可得到证明;(3)连接OA ,OB ,结合5660∠=∠=︒得到OAE △,OBE △是等边三角形,从而得到OA OB AE EB r ====,即可得到证明;【详解】(1)解:∵O 是等边三角形ABC 的外接圆,∴CO 是ACB ∠的角平分线,60ACB ABC CAB ∠=∠=∠=︒,∴1230∠=∠=︒,∵CE 是O 的直径,∴90CAE CBE ∠=∠=︒,∴3430∠=∠=︒,∴30︒的角有:1∠、2∠、3∠、4∠,∵CO 是ACB ∠的角平分线,∴90ADC BDC ∠=∠=︒,56903060∠=∠=︒-︒=︒,在ACD 与BCD △中,∵1290CD CD ADC BDC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴ACD BCD ≌,故答案为:1∠、2∠、3∠、4∠,BCD △;(2)证明:∵56∠=∠,3=230∠∠=︒,∴AED CEB ∽△△;(3)解:连接OA ,OB ,∵OA OE OB r ===,5660∠=∠=︒,∴OAE △,OBE △是等边三角形,∴OA OB AE EB r ====,∴四边形OAEB 是菱形.【点睛】本题考查垂径定理,菱形判定,等边三角形的判定和性质,相似三角形的判定等知识,解题的关键是熟练掌握垂径定理,从而得到相应角的等量关系.11.(2023·湖北鄂州·统考中考真题)如图,AB 为O 的直径,E 为O 上一点,点C 为»EB 的中点,过点C 作CD AE ⊥,交AE 的延长线于点D ,延长DC 交AB 的延长线于点F .(1)求证:CD 是O 的切线;(2)若1DE =,2DC =,求O 的半径长.【答案】(1)证明见解析(2)52【分析】(1)连接OC ,根据弦、弧、圆周角的关系可证DAC CAF ∠=∠,根据圆的性质得OAC OCA ∠=∠,∵点C 为»EB的中点,∴ ECCB =,∴DAC CAF ∠=∠,∵OA OC =,∴OAC OCA∠=∠∵CD AD ⊥,∴90D Ð=°,∵1DE =,2DC =,∴2222215CE CD DE =+=+=,∵D 是 BC的中点,∴ ECCB =,∴EC CB ==5,∵AB 为O 的直径,∴90ACB ∠=︒,∵180DEC AEC ∠+∠=︒,180ABC AEC ∠+∠=︒,∴DEC ABC ∠=∠,∴DEC CBA ∽ ,∴DE CE BC AB=,∴155AB =,∴5AB =,1522AO AB ==∴O 的半径长为52.【点睛】本题考查了切线的判定和性质,勾股定理,相似三角形的判定和性质,正确地作出辅助线是解题的关键.12.(2023·吉林长春·统考中考真题)【感知】如图①,点A 、B 、P 均在O 上,90AOB ∠=︒,则锐角APB ∠的大小为__________度.【探究】小明遇到这样一个问题:如图②,O 是等边三角形ABC 的外接圆,点P 在 AC 上(点P 不与点A 、C 重合),连结PA 、PB 、PC .求证:PB PA PC =+.小明发现,延长PA 至点E ,使AE PC =,连结BE ,通过证明PBC EBA ≌△△,可推得PBE 是等边三角形,进而得证.BA BC ∴=,(SAS)PBC EBA ∴ ≌,∴PB EB =,PBC EBA ∠=∠,60EBA ABP PBC ABP ABC ∴∠+∠=∠+∠=∠=︒,PBE ∴ 是等边三角形,PB PE ∴=,PB PE PA AE PA PC ∴==+=+,即PB PA PC =+;应用:延长PA 至点E ,使AE PC =,连结BE ,四边形ABCP 是O 的内接四边形,180BAP BCP ∴∠+∠=︒.180BAP BAE ∠+∠=︒ ,BCP BAE ∴∠=∠.AB CB = ,(SAS)PBC EBA ∴ ≌,∴PB EB =,PBC EBA ∠=∠,90EBA ABP PBC ABP ABC ∴∠+∠=∠+∠=∠=︒,PBE ∴ 是等腰直角三角形,222PB BE PE ∴+=,222PB PE ∴=,即2PE PB =,PE PA AE PA PC =+=+ ,2PA PC PB ∴+=,22PB PA = ,2224PA PC PA PA ∴+=⨯=,3PC PA ∴=,222233PB PA PC PA ∴==,故答案为:223.【点睛】本题考查了圆周角定理,圆内接四边形对角互补,邻补角,全等三角形的判定和性质,等边三角形、等腰直角三角形的判定和性质,勾股定理解直角三角形;解题的关键是做辅助线构造PBC EBA ≌,进行转换求解.13.(2023·甘肃兰州·统考中考真题)如图,ABC 内接于O ,AB 是O 的直径, BCBD =,DE AC ⊥于点E ,DE 交BF 于点F ,交AB 于点G ,2BOD F ∠=∠,连接BD .(1)求证:BF 是O 的切线;(2)判断DGB 的形状,并说明理由;(3)当2BD =时,求FG 的长.【答案】(1)见解析(2)DGB 是等腰三角形,理由见解析(3)4FG =【分析】(1)连接CO ,根据圆周角定理得出2BOD BOC BAC ∠=∠=∠,根据已知得出F BAC ∠=∠,根据DE AC ⊥得出90AEG ∠=︒,进而根据对等角相等,以及三角形内角和定理可得90FBG AEG ∠=∠=︒,即可得证;(2)根据题意得出 AD AC=,则ABD ABC ∠=∠,证明EF BC ∥,得出AGE ABC ∠=∠,等量代换得出FGB ABD ∠=∠,即可得出结论;(3)根据FGB ABD ∠=∠,AB BF ⊥,设FGB ABD α∠=∠=,则90DBF F α∠=∠=︒-,等边对等角得出DB DF =,则224FG DG DB ===.【详解】(1)证明:如图所示,连接CO ,∵ BCBD =,∴2BOD BOC BAC ∠=∠=∠,∵2BOD F ∠=∠,∴F BAC ∠=∠,∵DE AC ⊥,∴90AEG ∠=︒,∵AGE FGB∠=∠∴90FBG AEG ∠=∠=︒,即AB BF ⊥,又AB 是O 的直径,∴BF 是O 的切线;(2)∵ BCBD =,AB 是O 的直径,∴ AD AC =,BC AC ⊥,∴ABD ABC ∠=∠,∵DE AC ⊥,BC AC ⊥,∵EF BC ∥,∴AGE ABC ∠=∠,又AGE FGB ∠=∠,∴FGB ABD ∠=∠,∴DGB 是等腰三角形,(3)∵FGB ABD ∠=∠,AB BF ⊥,设FGB ABD α∠=∠=,则90DBF F α∠=∠=︒-,(1)求证:DE 是O 的切线;(2)若30C ∠=︒,23CD =,求 BD的长.【答案】(1)见解析(2)43π∵OB OD =,∴B ODB ∠=∠,∵AB AC =,∴B C ∠=∠,∴OD AC ∥,∴ODE DEC ∠=∠。

第7讲 圆的有关计算(

第7讲 圆的有关计算(

第7讲 圆的有关计算考点1 圆的弧长及扇形面积公式如果圆的半径是R ,弧所对的圆心角度数是n ,那么 弧长公式 弧长l =180n R π 扇形面积公式 S 扇=2360n R π=12lR 考点2 圆锥的侧面积与全面积图形圆锥简介 (1)h 是圆锥的高,r 是底面半径;(2)l 是圆锥的母线,其长为侧面展开后所得扇形的① ;(3)圆锥的侧面展开图是半径等于② 长,弧长等于圆锥底面③ 的扇形.圆锥的侧面积S 侧=④ 圆锥的全面积 S 全=⑤命题点1 正多边形与圆例1 (2013·滨州)若正方形的边长为6,则其外接圆半径与内切圆半径的( )A.6,32B.32,3C.6,3D.62,321.如图,⊙O 是正方形ABCD 的外接圆,点P 在⊙O 上,则∠APB 等于( )A.30°B.45°C.55°D. 60°2.(2014·天津)3,则该正六边形的边长是( )3 B.2 C.3 33.半径为r 的圆内接正三角形的边长为 (结果可保留根号).命题点2 弧长与扇形面积的计算例2 如图,水平地面上有扇形AOB ,半径OA =6 cm ,∠AOB =60°,且OA 与地面垂直,在没有滑动的情况下,将扇形向右滚动至OB 与地面垂直为止,此时O 点移动的距离为 cm ,则此扇形的面积为 cm 2.(结果保留π)方法归纳:求弧长的关键是要知道半径和弧所对的圆心角的度数;求扇形的面积可用两个公式:①S 扇形=2360n R π清楚地反映了变量S ,n ,R 三者之间的关系,②S 扇形=12lR 反映的则是变量S ,l ,R 三者之间的关系,据此可解决相关的“知二求一”问题.1.(2014·云南)已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为( )A.34π B.2π C.3π D.12π 2.(2014·成都)在圆心角为120°的扇形AOB 中,半径OA =6 cm ,则扇形OAB 的面积是( )A.6πcm 2B.8πcm 2C.12πcm 2D.24πcm 23.已知扇形的圆心角为120°,弧长为20π cm ,求扇形的面积(结果用π表示).命题点3 阴影面积的计算1.(2014·东营)如图,已知扇形的圆心角为60°,半径为3,则图中弓形的面积为( )A.4334π-B.34π- C.2334π- D.332π-2.(2014·重庆A 卷)如图,△OAB 中,OA =OB =4,∠A =30°,AB 与⊙O 相切于点C ,则图中阴影部分的面积是.(结果保留π)3.一个商标图案如图,矩形ABCD中,AB=2BC,且AB=8 cm,以A为圆心,AD长为半径作半圆,求商标图案的面积.命题点4 圆锥的有关计算例4 (2014·日照)小明用图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5 cm,弧长是6πcm,那么这个的圆锥的高是( )A.4 cmB.6 cmC.8 cmD.2 cm1.(2014·宁波)圆锥的母线长为4,底面半径为2,则此圆锥的侧面积是( )A.6πB.8πC.12πD.16π2.用圆心角为120°,半径为6 cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是( )A.2cmB.32cmC.42cmD.4 cm3.(2014·南京)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2 cm,扇形的圆心角θ=120°,则该圆锥的母线长l为cm.4.如图,已知每个小正方形的边长为1 cm,O、A、B都在小正方形顶点上,扇形OAB是某个圆锥的侧面展开图,求这个圆锥的全面积.1.(2014·衡阳)圆心角为120°,弧长为12π的扇形半径为( )A.6B.9C.18D.362.边长为a 的正六边形的内切圆的半径为( )A.2aB.a 3 D.12a 3.(2014·泸州)一个圆锥的底面半径是6 cm ,其侧面展开图为半圆,则圆锥的母线长为( )A.9 cmB.12 cmC.15 cmD.18 cm4.(2014·沙坪坝模拟)如图,⊙O 的半径是1,P A 、PB 分别切⊙O 于A 、B 两点,连接OA 、O B.若∠P =60°,则图中阴影部分的面积是( )A.3πB.23πC.4πD.5π5.(2014·重庆B 卷)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,AC =8,BD =6,以AB 为直径作一个半圆,则图中阴影部分的面积为( )A.25π-6B.252π-6C.256π-6D.258π-6 6.(2013·菏泽)在半径为5的半圆中,30°的圆心角所对弧的弧长为 .(结果保留π)7.(2014·崇明二模)3cm ,那么它的外接圆的半径的长度为 cm .8. (2014·襄阳)如图,在正方形ABCD 中,AD =2,E 是AB 的中点,将△BEC 绕点B 逆时针旋转90°后,点E 落在CB 的延长线上点F 处,点C 落在点A 处.再将线段AF 绕点F 顺时针旋转90°得线段FG ,连接EF ,CG .(1)求证:EF ∥CG ;(2)求点C ,点A 在旋转过程中形成的AC ,AG 与线段CG 所围成的阴影部分的面积.。

第十八讲 与圆有关的计算(含解答)-

第十八讲  与圆有关的计算(含解答)-

第十八讲 与圆有关的计算【趣题引路】拿破仑是法国一位卓越的军事家、政治家,又是一个数学爱好者.一次他在远征埃及的航海途中,问部下:“怎样光用圆规把圆分成四等份?•”大家面面相觑,还是拿破仑自己解了这个谜.聪明的读者你知道他是怎样解的吗? 解析 (1)先用圆规画一个已知圆,如图 (1).(2)在已知圆中,画4个相同的小圆,它们的直径等于已知圆的半径,如图 (2) (3)在4个小圆相交的图形中,4个偏月牙形就是面积完全相同的图形,如图 (3).【知识延伸】与圆有关的计算,着重讲正多边形和圆、圆的面积、周长、弧长,扇形的面积以及圆柱和圆锥侧面展开图的计算问题.对于以上问题,首先要理解概念,熟记公式,法则,其次要会灵活运用各方面的知识.如正n 边形的计算可以集中在正n 边形的半径、边心距把正n 边形分成2n•个全等的直角三角形中,通过解直角三角形或三角形相似来解决.例1 如图,正五边形ABCDE 的边长为10,它的对角线分别交于点A 1,B 1,•C 1,D 1,E 1. (1)求证:D 1把线段AE 1分成黄金分割;(2)求五边形A 1B 1C 1D 1E 1的边长. 证明 (1)作正五边形的外接圆O, ∵AB=BC=CD=DE=EA=72°,∴∠D 1AB=∠D 1BA=•∠E 1BD 1=36°. 又∠BE 1D 1=∠BD 1E 1=72°, ∴AD 1=D 1B=BE.∵△ABE 1∽△B D 1E 1,∴11111AE BE BE D E =, 即11111AE AD AD D E =. ∴A D 12=AE 1·D 1E 1,即D 1把线段A E 1分成黄金分割. (2)设D 1E 1=x,则A E 1=AB=10,AD 1=10-D 1E 1=10-x,∴(10-x)2=10x,即x 2-30x+100=0. 解得,得x 1=15-55,x 2=15+55>10(舍去)∴D 1E 1=15-55.点评对于正多边形的计算,要注意利用相似三角形的性质去解,在本题的计算中,•用到了正五边形的两条对角线的交点是对角线的黄金分割点.在计算与面积有关问题时,等积变形,•把不规则图形的面积变成规则图形的面积去求,是经常使用的方法.例2 如图,已知在矩形ABCD 中,AB=1,BC=2,以B 为圆心,BC•为半径画弧交AD 于点F,交BA 的延长线于点F.求阴影部分的面积.解析 连结BF,∵BF=BC=2,AB=1,∠BAF=90°, ∴∠ABF=60°.在Rt △ABF 中,AF=22BF AB -=3,∴S 阴影=S 扇形BEF -S △ABF=2602360π-12×1×3 =23π-32. 点评阴影部分是不规则图形,无法直接计算,设法利用规则图形面积来计算,连结BF,则阴影部分的面积等于扇形面积减去三角形的面积.在处理展开图问题时,一定不要弄错对应关系,如圆锥侧面展开图是扇形,•这个扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长等.例2 如图,一个圆锥的高是10cm,侧面开展图是半圆,求圆锥的侧面积. 解析 设圆锥底面半径为r,扇形弧长为C,母线长为L. 由题意,得c=22lπ ,又∵c=2r π, ∴22lπ=2r π,得L=2r. ① 在Rt △SOA 中L 2=r 2+102. ② 由①,②解得r=1033cm, L=2033cm.∴所求圆锥的侧面积为S=πrL=π1033·2033=2003π(cm2).点评经过圆锥高(即轴)的截面所揭示的母线、高、底面半径.•锥角等元素之间的关系是解题的突破口,也是圆锥中几种量之间的基本关系.【好题妙解】佳题新题品味例1已知如图,AC切⊙O于点A,点B在⊙O上,AB=AC=AO,OC、BC分别交⊙O•于点E、F.求证:EF是⊙O的内接正二十四边形的一边.证明连结OB,OF,因AC是⊙O的切线,∴∠OAC=90°,∵AC=AO,∴∠AOC=45°.∵AB=AO=BD,∴△ABO是等边三角形.∴∠BAO=60°,∴∠BAC=60°+90°=150°,∵AB=AC,∴∠ABC=15°.∴∠AOF=2∠ABC=30°.∴∠EOF=∠AOC-∠AOF=45°-30°=15°.∵正二十四边形的中心角为360°÷24=15°,∴EF是正二十四边形的一边.点评证明一条弦是正多边形的一边.•需证这条弦所对的圆心角等于这个多边形的中心角.如证一条弦是正三角形的一边,需证这条边所对的圆心角为120°.证一条弦是正六边形的一边,需证这条弦所对的圆心角为60°.例2如图,⊙O1与⊙O2内切于点P,过P的直线交⊙O1于点A,交⊙O2于点B,•AC切⊙O2于点C,交⊙O1于点D,且PB、PD的长恰好是关于x的方程x2-16m+x=0的两根.求(1)PC的长;(2)若BP BC=,且S△PBC:S△APC=1:k,求代数式m(k2-k)的值.解析 (1)过P作两圆公切线PT,∵∠A=TPD,∠TPC=∠DCP,∠DCP=∠1+∠A,∠TPC=∠2+∠TPD.∴∠1=∠2.已知∠PBC=∠PCD,∴△PBC∽△PCD.∴P C2=PB·PD.而PB,PD是方程x2-16m+x+4=0的根. ∴PC2=4,∴PC=2.O2T21DCBAP O1(2)由BP=BC及∠1=∠2,知BC∥PD,PB=BC.∴AB BCAP PD=,∵1PBCAPCSPBPA S k∆∆==,∴1BC AB kPD AP k-==.∴PB2=4(1)kk-·PD2=41kk-.又由根与系数关系知PB+PD=16m+,∴m+16=PB2+PD2+2PB·PD=4(1)kk-+41kk-+8.∴m=24k k-,∴m(k2-k)=4.点评(1)小题仅涉及PB、PD的长是方程x2-16m+x+4=0的根,故易知PB·PD,从而须找PC•与PB·PD的关系;(2)由题意可知PB·PD均可用字母K表示,由根与系数的关系可知K 与m的关系,由此求出m,代入m(k2-k)中即可.例3如图有一直径是1m的圆形铁皮,要从中剪出一个最大的圆心角是90°的扇形ABC.求(1)被剪掉阴影部分的面积.(2)用所得的扇形铁皮围成一个圆锥,该圆锥的底面半径是多少?(结果可用根号表示).解析 (1)连结BC,∵∠BAC=90°,∴BC为⊙O的直径.又∵AB=AC,∴AB=AC=BC.sin45°=1×22=22.∴S阴=S⊙O-S扇形BAC=π(12)2-2290()2180π⨯=18π(m)2.(2)设圆锥的底面圆的半径为r,∴2902180π⨯=2πr ∴r=28.点评用和差法求图形中阴影部分的面积是最基本的方法,也是应用最广泛的方法.中考真题欣赏例1 (2003年吉林省中考题)圆心角都是90°的扇形OAB与扇形OCD,如图那样叠放在一起,连结AC、BD.(1)求证:△AOC≌△BOD;(2)若OA=3cm,OC=1cm,求阴影部分的面积.证明 (1)∵∠COD=∠AOB=90°.∴∠AOC=∠BOD.∵OA=OB,OC=OD,∴△AOC≌△BOD.(2)S阴影=S扇形AOB-S扇形COD=14π×32-14π×12=2π.点评(1)只需证∠DOB=∠COA即可;(2)将阴影部分转化为两个扇形面积的差,•再进行计算.例2 (2003年桂林市中考题)如图,AB是⊙O的直径,过圆上一点D作⊙O的切线DE,与过点A的直线垂直于E,弦BD的延长线与直线AE交于点C.(1)求证:点D为BC的中点;(2)设直线EA与⊙O的另一交点为F.求证:C A2-AF2=4CE·EA;(3)若AD=12DB,⊙O的半径为r,求由线段DE,AE和AD所围成的阴影部分的面积.证明 (1)连结OD,∵ED为⊙O的切线, ∴OD⊥DE,∵DE⊥AC,∴OD∥AC.∵O为AB中点,∴D为BC中点.(2)连结BF,∵AB为⊙O的直径,∴∠CFB=∠CED=90°.∴ED∥BF,∵D为BC中点,∴E为CF中点.∴CA2-AF2=(CA-AF)(CA+AF)=(CE+AE-EF+AE)·CF=2AE·2CE.∴CA2-AF2=4CE·AE.(3)解析:∵AD=12DB,∴∠AOD=60°.连结DA,可知△OAD为等边三角形.∴OD=AD=r. 在Rt△DEA中,∠EDA=30°,∴EA=12r,ED=32r,EDCA BF∴S 阴影=S 梯形DOAE -S 扇形OAD =13()222r r +-16πr 2=338r 216πr 2. 点评(1)由O 为圆心,设法证CF ∥OD,可得结论;(2)由D 为BC 的中点,证E 为CF 的中点,证得ED ∥BF,然后进行线段的恒等变形,•可得结论.(3)由图形的差可得阴影部分.竞赛样题展示例1 (2002年全国数学竞赛试题)如图,7•根圆形筷子的横截面圆的半径为r,求捆扎这7根筷子一周的绳子长度.解析:设⊙O 1,⊙O 2和绳子切A,B,C 点,知∠A O 1B =60°,∴AB 的长为601803r ππ=r, ∴AB 和线段BC 和的长为3πr,故整个绳长为6(AB+BC)=6(13r π+2r)=2(π+6)r.点评绳长由两部分组成,一部分是直线长,另一部分是弧线长,只要计算出AB•的长和O 1O 2的长,其余类推即可. 例2 (汉城国际数学竞赛试题)把3根长为1cm 的火柴杆和三根长为3cm 的火柴杆,摆放在如左图的圆周上构成六边形,此六边形的面积是由三根1cm 的火柴杆所构成的等边三角形面积的多少倍?解析 如图 (1),因为六边形ABCDEF 内接于⊙O,连结OA,OB,OC,OD,OE,OF, 显然△AOB ≌△AOF ≌△EOF;△BOC ≌△COD ≌△DOE.把底边长为1和3的等腰三角形作间隔排列拼成如图 (2),• 并向两端延长边长为3的边,得边长为5的等边三角形.边长为5的等边三角形可分割为25个边长为1的等边三角形,•于是此六边形可分割为22个边长为1的等边三角形.故此六边形的面积是边长为1的等边三角形面积的22倍.点评几何计算常建立在几何证明的基础之上,通过证明,•解决有关图形的位置关系和数量关系,从而使问题获得解决.全能训练A卷1.两圆相交,公共弦长为且在一圆中为内接正三角形的一边,在另一圆中为内接正六边形的一边,求这两圆的面积之比.2.已知三个正多边形的边数分别是a,b,c,从中各取一个内角相加,其和为360°.求111a b c++的值.3.已知半径为1的圆内接正五边形ABCDE中,P是AE的中点.求AP·BP的值.4.已知一个正三角形,一个正方形,一个圆的周长相等,•正三角形和正方形的外接圆半径为r1,r2,圆的半径为R,则r1,r2,R的大小关系是( ).A.r1>r2>RB.r2>R>r1C.R>r1>r2D.r2>r1>R5.如图,已知一个边长为2cm的正六边形,若要剪一张圆形纸片完全盖住这个图形,则这个圆形纸片的最小半径是_________.6.如图,大小两个同心圆的圆心为O,现任作小圆的三条切线分别交于A、B、C点,记△ABC的面积为S,以A、B、C为顶点的三个阴影部分的面积分别为S1,S2,S3,•试判断S1+S2+S3-S是否为定值,若是,求出这个值;若不是,说明理由.A卷答案:1.设正三角形外接圆O1的半径为R3,正三角形边长是AB,正六边形外接圆O2的半径为R6,∴R3=33AB,R6=AB.∴R3:R6=3:3 ,∴S⊙O1:S⊙O2=R32:R62=1:3.2.由180(2)aa︒-+180(2)bb︒-+180(2)cc︒-=360°,得111a b c++=12.3.连结OA交BP于F,证AP=PF,再证△OPF∽△BPO.∴PF·BP=O P2,∴AP·BP=PF·BP=OP2=14.A5.2cm6.如图,设大小圆半径分别为R和r(R和r为定值).小圆的每条切线与大圆所夹小弓形的面积相等且为定值,设这个定值为p,则有S1+S2+S3′=P;S2+S3+S1′=•P;•S3+S1+S2′=P. ∴(S1+S2+S3)·2+(S1′+S2′+S3′)=3P.又∵S1+S2+S3+S1′+S2′+S3′+S=πR2.∴S1′+S2′+S3′= -(S1+S2+S3)-S代入①式得:S1+S2+S3-S=3P- πR2 (定值)故S1+S2+S3-S为定值,这个定值为3P-πR2.B卷1.如图1,两个半圆,大圆的弦CD平行于直径AB,且与小圆相切,已知CD=24,•则在大半圆中挖去小半圆后剩下部分的面积为________.(1) (2)2.如图2,圆心在原点,半径为2的圆内一点P(22,22) ,过P作弦AB与劣弧AB组成一个弓形,则该弓形面积的最小值为___________.3.小伟在半径为1cm,圆心角为60°的扇形铁皮上剪取一块尽可能大的正方形铁皮,小伟在扇形铁皮上设计如图所示的甲,乙两种剪取方案,请你帮小伟计算一下,按甲、乙两种方案剪取所得的正方形面积,并估算哪个正方形的面积较大(•估算时3=1.73,结果保留两位有效数字).4.如图,在圆周内部有一凸四边形,其边的延长线分别交圆周于A 1,•A 2,B 1,B 2,C 1,C 2,D 1,D 2. 求证:若A 1B 2=B 1C 2=C 1D 2=D 1A 2,则由直线A 1A 2,B 1B 2,C 1C 2,D 1D 2所围成的四边形是圆内接四边形.5.如图,给定正七边形A 1A 2…A 7.证明:121314111A A A A A A =+.- 11 - B 卷答案:1.可将小半圆的圆心移至大半圆圆心重合.此时小半圆与CD 切于M 点,•同心圆圆心设为O, 则S 阴=12πOD 2-12πOM 2=12π(O D 2-OM 2)= 12πMD 2=12π×122=72π。

圆的有关计算(例题+练习+详解)

圆的有关计算(例题+练习+详解)

知识框架知识点一:扇形、圆柱和圆锥的相关计算公式1、扇形:(1)弧长公式:180n Rl π=; (2)扇形面积公式: 213602n R S lR π== n :圆心角 R :扇形多对应的圆的半径 l :扇形弧长 S :扇形面积2、圆柱:(1)圆柱侧面展开图2S S S =+侧表底=222rh r ππ+(2)圆柱的体积:2V r h π= 3 .圆锥侧面展开图(1)S S S =+侧表底=2Rr r ππ+ (2)圆锥的体积:213V r h π=知识点二:圆内正多边形的计算(1)正三角形在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆中进行:::1:3:2OD BD OB =;(2)正四边形S lBAO母线长底面圆周长C 1D 1DCBAB1RrCBAODCBAOECBADOD(B ')A(A ')D 'C 'CBCBDOA 同理,四边形的有关计算在Rt OAE ∆中进行,::1:1:2OE AE OA =:(3)正六边形同理,六边形的有关计算在Rt OAB ∆中进行,::1:3:2AB OB OA =.【例题经典】考点1:圆的周长、弧长中考中对圆的周长及弧长公式的考查内容难度较小,常以填空选择题出现。

[例1]如图,一块边长为8cm 的正方形木板ABCD,在水平桌面上绕点A 按逆时针方向旋转至A ′B ′C ′D ′的位置,则顶点C•从开始到结束所经过的路径长为( ) A.16cm B.162cm C.8πcm D.42πcm[例2] 如图,Rt △ABC 的斜边AB=35,AC=21,点O 在AB 边上,OB=20,一个以O 为圆心的圆,分别切两直角边边BC 、AC 于D 、E 两点,求DE 的长度.【分析】求弧长时,只要分别求出圆心角和半径,特别是求半径时,要综合应用所学知识解题,如此题求半径时,就用到了相似.考点2:扇形及不规则图形的面积求不规则图形的面积一直是历年来中考考查的主要内容,一般方法是运用割补法和整体减局部的方法把不规则图形转化为规则图形,从而利用扇形公式等计算,从而达到考查目的。

圆的有关计算

圆的有关计算

圆的有关计算考点一1.如果弧长为l,圆心角为n°,圆的半径为r,那么弧长的计算公式为:l=nπr 180.2.由组成圆心角的两条半径和圆心角所对弧围成的图形叫做扇形.若扇形的圆心角为n°,所在圆半径为r,弧长为l,扇形面积为S,则S=nπr2360,或S=12lr.考点二1.圆柱的侧面展开图是矩形,这个矩形的长等于圆柱的底面周长c,宽是圆柱的母线长l,如果圆柱的底面半径是r,则S圆柱侧=cl=2πrl.2.圆锥的侧面展开图是扇形,这个扇形的弧长等于圆锥的底面周长c,半径等于圆锥的母线长l.若圆锥的底面半径为r,这个扇形的圆心角为α,则α=rl·360°,S圆锥侧=12cl=πrl.考点三1.规则图形:按规则图形的面积公式去求.2.不规则图形:采用“转化”的数学思想方法.把不规则图形的面积采用“割补法”、“等积变形法”、“平移法”、“旋转法”等转化为规则图形的面积.(1)(2010·昆明)如图,已知圆锥侧面展开图的扇形面积为65π cm2,扇形的弧长为10π cm,则圆锥母线长是()A.5 cm B.10 cm C.12 cm D.13 cm(2)(2010·兰州)现有一个圆心角为90°,半径为8 cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝处忽略不计).该圆锥底面圆的半径为()A.4 cm B.3 cm C.2 cm D.1 cm(3)(2010·哈尔滨)将一个底面半径为5 cm,母线长为12 cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是________度.(4)(2010·龙岩)如图是圆心角为30°,半径分别是1、3、5、7、……的扇形组成的图形,阴影部分的面积依次记为S1、S2、S3、……,则S50=________(结果保留π).例二图(2010·宁波)如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF 与半径OB相交于点P,连结EF、EO,若DE=23,∠DPA=45°.(1)求⊙O的半径;(2)求图中阴影部分的面积.举一反三1.如图,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,则图中阴影部分的面积为()(结果保留π)(第1题)(第2题)2.如图,在△ABC中,AB=AC,∠A=120°,BC=23,⊙A与BC相切于点D,且交AB、AC于M、N两点,则图中阴影部分的面积是()(结果保留π)3.一个圆锥的侧面展开图是一个半圆,则此圆锥母线长与底面半径之比为()A.2∶1B.1∶2C.3∶1D.1∶34.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型,如图所示.它的底面半径OB=6 cm,高OC=8 cm.则这个圆锥漏斗的侧面积是()A.30 cm2B.30π cm2C.60π cm2D.120 cm2(第4题) (第5题)5.如图,已知菱形ABCD的边长为1.5 cm,B、C两点在扇形AEF的EF上,求BC的长度及扇形ABC的面积.圆的有关计算经典练习弧长的计算公式为:l =nπr 180 .扇形面积为S ,则S =nπr 2360,或S =12lr. S 圆锥侧=12cl =πrl.1.如图,若圆锥底面圆的半径为3,则该圆锥侧面展开图扇形的弧长为( ) A .2π B .4π C .6π D .9π3图4图1图2.如图,一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是( )A .1 B.34 C.12 D.133.如图,5个圆的圆心在同一条直线上,且互相相切,若大圆直径是12,4个小圆大小相等,则这5个圆的周长的和为( )A .48πB .24πC .12πD .6π 4.△ABC 中,∠A =30°,∠C =90°,作△ABC 的外接圆,如图,若AB 的长为12 cm ,那么AC 的长是( )A .10 cmB .9 cmC .8 cmD .6 cm5图6图7图5.如图,在△ABC 中,AB =AC ,AB =8,BC =12,分别以AB 、AC 为直径作半圆,则图中阴影部分的面积是 ( )A .64π-127B .16π-32C .16π-247D .16π-1276.如图,已知点A 、B 、C 、D 均在已知圆上,AD ∥BC ,AC 平分∠BCD ,∠ADC =120°,四边形ABCD 的周长为10 cm ,则图中阴影部分的面积为 ( )A.32 B.3 C .2 3 D .4 37.如图,冰淇淋蛋筒下部呈圆锥形,则蛋筒圆锥部分的包装纸的面积(接缝忽略不计)是( )A .20 cm 2B .40 cm 2C .20π cm 2D .40π cm 28图9图10图8.如图,A 是半径为2的⊙O 外的一点,OA =4,AB 是⊙O 的切线,点B 是切点,弦BC ∥OA ,连结AC ,则图中阴影部分的面积等于( )A.23πB.83π C .π D.23π+ 39.如图,将圆沿AB 折叠后,圆弧恰好经过圆心,则AMB 的度数等于( ) A .60° B .90° C .120° D .150°10.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型,如图所示,它的底面半径OB =6 cm ,高OC =8 cm ,则这个圆锥漏斗的侧面积是( )A .30 cm 2B .30π cm 2C .60π cm 2D .120 cm 211.如图,现有30%圆周的一个扇形彩纸片,该扇形的半径为40 cm ,小红同学为了在“六一”儿童节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10 cm 的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片的圆心角为( )11图12图A .9°B .18°C .63°D .72° 12.如图,圆柱的高线长为10 cm ,轴截面的面积为240 cm 2,则圆柱的侧面积是( ) cm 2. A .240 B .240π C .480 D .480π 二、填空题13.已知扇形的面积为12π,半径等于6,则它的圆心角等于________度. 14.若一个圆锥的侧面积是18π,侧面展开图是半圆,则该圆锥的底面圆半径是________.15.如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形,O 、A 、B 分别是小正方形的顶点,则扇形OAB 的弧长等于________.(结果保留根号及π)15图16图16.如图,在扇形OAB 中,∠AOB =90°,⊙P 与OA 、OB 分别相切于点F 、E ,并且与弧AB 切于点C ,则扇形OAB 的面积与⊙P 的面积比是________.三、解答题17.(10分)如图,线段AB与⊙O相切于点C,连结OA、OB,OB交⊙O于点D,已知OA=OB=6 cm,AB=6 3 cm.求:(1)⊙O的半径;(2)图中阴影部分的面积.19.(10分)如图所示,AC与⊙O相切于点C,线段AO交⊙O于点B.过点B作BD∥AC 交⊙O于点D,连结CD、OC,且OC交DB于点E.若∠CDB=30°,DB=5 3 cm.(1)求⊙O的半径长;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)20.(12分)如图,PA、PB是半径为1的⊙O的两条切线,点A、B分别为切点,∠APB =60°,OP与弦AB交于点C,与⊙O交于点D.(1)在不添加任何辅助线的情况下,写出图中所有的全等三角形;(2)求阴影部分的面积.(结果保留π)圆的有关计算例一答案【解答】(1)∵12lr =S 扇形,∴12×10π×r =65π,∴r =13,故选D.(2)∵2πr =90180π×8,∴r =2,故选C.(3)∵nπ360×122=π×5×12,∴n =150(4)设每个扇形大圆半径为R ,小圆半径为r ,则R 1=3,R 2=7,R 3=11,……,R n =4n -1,r 1=1,r 2=5,r 3=9,……,r n =4n -3.则当n =50时,S 50=30360π(R 250-r 250)=π12×[(4×50-1)2-(4×50-3)2]=66π. 例二、【解答】(1)∵直径AB ⊥DE ,∴CE =12DE = 3.∵DE 平分AO ,∴CO =12AO =12OE.又∵∠OCE =90°,∴∠CEO =30°.在Rt △COE 中,OE =CEcos30°= 3 32=2.∴⊙O 的半径为2.(2)连结OF ,如图所示.在Rt △DCP 中,∵∠DPC =45°, ∴∠D =90°-45°=45°, ∴∠EOF =2∠D =90°.∵S 扇形OEF =90360×π×22=π,S △OEF =12×OE ×OF =12×2×2=2.∴S 阴影=S 扇形OEF -S △OEF =π-2. 举一反三答案: 1、52π-4.2、3-π3.3、A 4、C 5、BC 的长为π2 cm ,S 扇形ABC =38π cm 2练习1-12 CCBCD BCACC BB 5、【解析】由题意可知,该图形关于直线AD 成轴对称,所以AD ⊥BC ,BD =DC.因为BC =12,所以BD =6,在Rt △ABD 中,AD =AB 2-BD 2=82-62=27,所以S △ABD =12AD·BD =12×27×6=67.由于阴影部分的面积即为半圆ADB 的面积减去△ABD 面积的2倍,所以S 阴影=2×(12π×42-S △ABD )=2(8π-67)=16π-127.6、【解析】设圆心为O ,由题意得∠B =60°,∠ACB =30°,∴∠BAC =90°.∴BC 为⊙O 的直径,连结OA 、OD ,则S 阴影=S 等边△OAD =34×22= 3. 9、【解析】由圆的轴对称性得,过O 作OC ⊥AB 于C ,连结OA ,则OC =12OA ,∴∠OAB =30°,∴∠AOB=120°,∴AMB 的度数是120°.11、【解析】设剩下的纸片的圆心角为n°,则nπ180×40=2π×10,∴n =90,∴剪去的圆心角为360°×30%-90°=108°-90°=18°.13、【解析】∵nπ×62360=12π,∴n =120.14、【解析】设圆锥的底面圆的半径是r 1,圆锥母线长为l ,则由题意得⎩⎪⎨⎪⎧πrl =18π,2πr =12×2πl.∵r 、l 都是正数,∴r =3,l =6.15、【解析】易知∠AOB =90°,则扇形OAB 的弧长为14圆周长,扇形OAB 的半径r =22+22=2 2.即扇形OAB 的弧长为14×2πr =14×2π×22=2π.16、【解析】设⊙O 半径为R ,则扇形的半径为(1+2)R ,则扇形OAB 的面积与⊙P 的面积比为14π(1+2)2R 2:πR 2=3+224.18、解:(1)连结OC ,则OC ⊥AB ,∵OA =OB ,∴BC =12AB =12×63=3 3 cm.在Rt △OCB 中,OC =OB 2-BC 2=62-(33)2=3,即⊙O 的半径为3 cm.(2)在Rt △OCB 中,sin ∠COB =BC OB =336=32,∴∠COB =60°,∴S 阴影=S △OBC -S 扇形COD =12×OC ×BC -nπr 2360=12×3×33-60π×32360=923-32π.即图中阴影部分的面积为(923-32π)cm 2.19、解:(1)∵AC 与⊙O 相切于点C ,则OC ⊥AC ,∴BD ∥AC ,∴OE ⊥DB ,则EB =12BD =523cm.∵∠CDB =30°,∴∠O =60°,在Rt △OEB 中,sinO =EB OB ,∴OB =EBsinO =523sin60°=5 (cm).即⊙O 的半径长为5 cm.(2)在Rt △OEB 中,OE =OB 2-EB 2=52,∴CE =5-52=52,即CE =OE.又∵∠CED =∠OEB ,ED =EB ,∴△CED ≌△OEB ,∴S 阴影=S 扇形BOC =60π×52360=256π (cm 2).20、解:(1)△ACO ≌△BCO ,△APC ≌△BPC ,△PAO ≌△PBO. (2)∵PA 、PB 为⊙O 的切线,∴PO 平分∠APB ,PA =PB , ∠PAO =90°,∠PBO =90°,PO ⊥AB.于是由圆的对称性可知:S 阴影=S 扇形AOD .∵在Rt △PAO 中,∠APO =12∠APB =12×60°=30°,∴∠AOP =90°-∠APO =90°-30°=60°. ∴S 阴影=S 扇形AOD =60×π×12360=π6.。

有关圆的简便计算和简便方法

有关圆的简便计算和简便方法

有关圆的简便计算和简便方法圆形是我们生活中最常见的几何图形之一,因此,对于圆形的计算和测量是非常重要的。

但是,在计算和测量圆形时,有些人可能会感到困难。

因此,本文将介绍一些简便的计算和方法,以帮助我们更轻松地处理圆形。

一、圆的面积计算圆的面积计算公式为S=πr²,其中S代表圆的面积,r代表圆的半径,π约等于3.14。

但是,有时候我们并没有知道圆的半径,而只知道圆的直径。

此时,我们可以使用直径来计算圆的面积,公式如下:S=π(d/2)²,其中d代表圆的直径。

在某些情况下,如果面积的计算涉及到大量的计算,我们还可以利用计算机和电子表格等工具来进行计算。

例如,在Excel中,我们可以直接使用下述公式来计算圆的面积:=PI()*B1^2,其中B1代表圆的半径所在的单元格。

二、圆的周长计算圆的周长计算公式为C=2πr,其中C代表圆的周长,r代表圆的半径,π约等于3.14。

同样,在没有半径的情况下,我们可以使用直径来计算圆的周长,公式如下:C=πd,其中d代表圆的直径。

同样,计算机和电子表格也可以为我们提供便捷的计算圆的周长的方法。

例如,在Excel中,我们可以使用下述公式来计算圆的周长:=2*PI()*B1,其中B1代表圆的半径所在的单元格。

三、圆的切割在日常生活中,我们有时需要将一个圆形物体分成相等的部分,比如将一个披萨或蛋糕分成若干份。

这时,我们可以使用如下的方法进行切割:将圆形物体平分为两半:将一把切菜刀或刀片从圆心沿着直径切割,切出两个半圆。

将圆形物体平分为四份:将圆形物体切成两半,然后将两个半圆沿圆周切成四份。

将圆形物体平分为六份:将圆形物体切成两半,然后将两个半圆恰好平分成六份。

四、圆与三角形的关系在一些数学问题中,我们需要知道圆形与三角形的关系。

对于圆内接于正三角形的情况,我们具体参照下面的方法来计算:对于以圆心为定点的正三角形,将圆心作为三角形的高H,通过圆的半径r,可以计算出三角形的边长a=2r。

第26课 与圆有关的计算

第26课 与圆有关的计算

略不计).
图 26-13
【正解】 如解图,将容器的半个侧面展开,作点 A 关于 EF 的对称 点 A′,连结 A′B,则 A′B 即为最短距离.
(典例 1 正解) ∵A′D=12,DE=2,BE=18-4=14, ∴A′B= A′D2+BD2= 122+162 =20(cm). ★ 名师指津 圆柱或圆锥的最短路径问题往往需要把侧面展开成平面图 形,常用“两点之间线段最短”来解决,当两点不在同一平面上时, 需转化到同一平面上.
4.圆锥的侧面积和全面积: 圆锥的侧面展开图是一个扇形,若圆锥的母线长为 l,底面半径 为 r,则这个扇形的半径为 l,扇形的弧长为 2πr. (1)圆锥的侧面积公式:S 圆锥侧=πrl. ((23))圆 圆锥锥的 侧全 面面 展积 开图公式 扇: 形的S 圆圆锥全心=角πr度2+数π的rl.计算公式:θ=rl·360°.
题型二 扇形面积
已知半径、圆心角或半径、弧长都能直接求出扇形面 积,要注意公式的选择.求不规则图形的面积时,通常有 两种思路,一是转化成规则图形面积的和、差,二是进行 图形的割补.
【典例 2】 (2019·张家界)如图 26-6,AB 为⊙O 的直径,且 AB=4 3, ︵
C 是AB上的一动点(不与点 A,B 重合),过点 B 作⊙O 的切线,交 AC 的延长线于点 D,E 是 BD 的中点,连结 EC. (1)求证:EC 是⊙O 的切线. (2)当∠D=30°时,求阴影部分的面积.
的比.
(5)构造方程法.
(6)去重法.
1.(2018·成都)如图 26-1,在▱ ABCD 中,∠B=60°,⊙C
的半径为 3,则图中阴影部分的面积是
()
A. π
B. 2π
C. 3π

第1部分 第6章 第3节 与圆有关的计算

第1部分 第6章 第3节 与圆有关的计算

弧长的相关计算 抓住弧长公式 l=n1π80r,若求弧长 l,则设法求出 n 或 r,若已知弧 长 l,则根据公式可求 n 或 r.
(2019·庐江模拟)如图,AB 是⊙O 的直 径,BC 是⊙O 的弦,∠ABC 的平分线交⊙O 于点 D. 若 AB=6,∠BAC=30°,则劣弧A︵D的长等 于π .
1.(2017 安徽,13,5 分)如图,已知等边△ABC 的边长为 6,以 AB 为直径的⊙O 与边 AC,BC 分 别交于 D,E 两点,则劣弧D︵E的长为 π .
【解析】连接 OD,OE,∵在等边三角形 ABC 中,∠A=∠B=60 °,又 OA=OB=OE=OD=3,∴△OBE,△ODA 都是等边三角形,
圆柱和圆锥的侧面积和全面积
1.圆柱 设圆柱的高为 h,底面半径为 R,则有: (1)S 圆柱侧=⑧ 2πRh ; (2)S 圆柱全=2πRh+2πR2.
2.圆锥 设圆锥的母线长为 l,底面半径为 R,高为 h,则有: (1)S 圆锥侧=⑨ πlR ; (2)S 圆锥全=πlR+πR2; (3)圆锥的侧面展开图是一个扇形,圆锥底面圆的周长等于其侧面 展开图扇形的弧长,圆锥的母线长等于其侧面展开图扇形的半径.
莱洛三角形 4.(2019·泰州)如图,分别以正三角形的三个顶点 为圆心,边长为半径画弧,三段弧围成的图形称为莱洛 三角形.若正三角形边长为 6cm,则该莱洛三角形的周 长为 6π . 【解析】3×601π80×6=6π(cm).
圆与正多边形的相关计算(冷考) (注:安徽中考近五年未单独考查)
弧长、扇形面积的有关计算(常考)
利用等腰直角三角形的性质得到 AB= 2R,利用圆锥的侧面展开图为
一扇形,这个扇形的弧长等于圆锥底面的周长得到 2πr=

九年级数学圆中有关计算知识精讲

九年级数学圆中有关计算知识精讲

九年级数学圆中有关计算【本讲主要内容】圆中有关计算包括圆中有关线段的计算,角度的计算,圆的周长及面积等。

【知识掌握】 【知识点精析】1. 垂弦定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

2. 直径上的圆周角等于90°。

3. 勾股定理。

4. 锐角三角函数。

5. 圆的周长R 2C π=,弧长:l 180Rn π=。

6. 圆的面积:2R S π=,扇形面积:21R 360n S 2=π=扇l R弓形面积:±=扇弓S S 等腰三角形的面积【解题方法指导】例1. (2005年某某市)如图,AE 切圆D 于点E ,AC =CD =DB =10,则线段AE 的长∴∴ 评析:切线的性质可以构造出直角三角形。

例2. (2005年某某市)如图,已知圆O 的半径为5,弦AB =8,P 是弦AB 上任意一点,则OP 的取值X 围是________。

2∵OB =5 345CB OB OC 2222=-=-=∴5OP 3≤≤∴∵∠A =∠D ,∠C =∠BBEAE DE CE BECEDE AE DBE ACE ⋅=⋅∴=∴∆∆∴∽ ∵AB =4,E 是AB 中点, ∴AE =EB =2 又DE =CE +3,设CE =x ,则DE =x +3 22)3x (x ⨯=+∴ 04x 3x 2=-+4x 1x 21-==∴,(舍去)∴CE =1,DE =1+3=4 ∴CD =1+4=5 故选B 。

解:∵OA =OB , ∴∠OAB =∠OBA =25°∴∠AOB =180°―25°―25°=130° 又∠AOB =2∠C∴∠C 21=∠AOB 21=×130°=65°故选D 。

评析:这里用到了同弧上的圆心角是圆周角的2倍。

【考点突破】【考点指要】 圆中的计算问题内容很丰富,涉及到许多性质,可以考查同学们的计算能力,因此在中考中经常出现,但难度不是很大,加上对实际问题中弧长、扇形等问题的不断出现,还应该对圆中的计算问题予以重视,在计算中,还要注意推理。

与圆有关的计算

与圆有关的计算
本文首先阐述了正多边形与圆的关系,指出正多边形各边相等、各角也相等的特性,并解释了如何通过等分圆周来构造内接正多边形。接着,介绍了弧长公式,即在半径为r的圆中,n°的圆心角所对的弧长l的计算方法。同时,也给出了扇形面积公式,包括由圆心角和半径计算扇形面积的公式,以及由弧长和半径计算扇形面积的公式。此外,通过一系列例题和解析,展示了如何应用这些公式ቤተ መጻሕፍቲ ባይዱ解决实际问题,如计算正多边形的边长、内角、面积,以及扇形的弧长和面积等。最后,总结了与正多边形和圆有关的常用计算公式,为读者提供了便捷的参考。

(中考考点梳理)与圆有关的计算-中考数学一遍过

(中考考点梳理)与圆有关的计算-中考数学一遍过

考点19 与圆有关的计算一、正多边形的有关概念正多边形中心:正多边形的外接圆的圆心叫做这个正多边形的中心.正多边形半径:正多边形外接圆的半径叫做正多边形半径.正多边形中心角:正多边形每一边所对的圆心角叫做正多边形中心角.正多边形边心距:正多边形中心到正多边形的一边的距离叫做正多边形的边心距.二、与圆有关的计算公式1.弧长和扇形面积的计算扇形的弧长l=π180n r;扇形的面积S=2π360n r=12lr.2.圆锥与侧面展开图(1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥的母线,扇形的弧长等于圆锥的底面周长.(2)若圆锥的底面半径为r,母线长为l,则这个扇形的半径为l,扇形的弧长为2πr,圆锥的侧面积为S圆锥侧=12ππ2l r rl⋅=.圆锥的表面积:S圆锥表=S圆锥侧+S圆锥底=πrl+πr2=πr·(l+r).在求不规则图形的面积时,注意利用割补法与等积变化方法归为规则图形,再利用规则图形的公式求解.考向一正多边形与圆任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.典例1 如图,已知⊙O的周长等于8π cm,则圆内接正六边形ABCDEF的边心距OM的长为A.2 cm B.cmC.4 cm D.cm【答案】B【点睛】本题考查了正多边形和圆、正六边形的性质、等腰三角形的判定与性质;熟练掌握正六边形的性质是解决问题的关键.1.若一个正多边形的一个外角为60°,则它的内切圆半径与外接圆半径之比是__________.2.如图,正方形ABCD的外接圆为⊙O,点P在劣弧CD上(不与C点重合).(1)求∠BPC的度数;(2)若⊙O的半径为8,求正方形ABCD的边长.考向二弧长和扇形面积1.弧长公式:π180n Rl=;2.扇形面积公式:2π360n RS=扇形或12S lR=扇形.典例2 时钟的分针长5 cm ,经过15分钟,它的针尖转过的弧长是 A .254π cm B .152π cm C .52π cm D .512π cm 【答案】C【解析】∵分针经过60分钟,转过360°,∴经过15分钟转过360°×1560=90°,则分针的针尖转过的弧长是l C .学科=网 典例3 小明用如图所示的扇形纸片折叠成一个圆锥的侧面,已知圆锥的母线长为5 cm ,扇形的弧长是6πcm ,那么这个圆锥的高是A .4 cmB .6 cmC .8 cmD .3 cm【答案】A【解析】设圆锥的底面半径是r ,则2πr =6π,解得:r =3cm ). 【点睛】本题主要考查圆锥侧面展开图的计算.用到的知识点:圆锥的侧面展开图是一个扇形,扇形的弧长等于圆锥底面的周长,扇形的半径是圆锥的母线长.3.已知扇形的圆心角为60°,半径长为12,则扇形的面积为 A .34π B .2π C .3π D .24π4.如图1,圆锥底面圆半径为1,母线长为4,图2为其侧面展开图.(1)求阴影部分面积(π可作为最后结果);(2)母线SC 是一条蜜糖线,一只蚂蚁从A 沿着圆锥表面最少需要爬多远才能吃到蜜糖?1,则该圆的内接正六边形的边心距是A.2B.1C D2.如图,正方形ABCD内接于⊙O,AB,则 AB的长是A.πB.32πC.2πD.12π3.圆锥的主视图与左视图都是边长为4的等边三角形,则圆锥的侧面展开图扇形的圆心角是A.90° B.120° C.150° D.180°4.已知半径为5的⊙O是△ABC的外接圆.若∠ABC=25°,则劣弧 AC的长为A.25π36B.125π36C.25π18D.5π365.如图,ABCDEF为⊙O的内接正六边形,AB=a,则图中阴影部分的面积是A .2π6aB .26π(a C 2D .23π(a 6.如图,在ABC △中,90ACB ∠=︒,30A ∠=︒,4AB =,以点B 为圆心,BC 长为半径画弧,交AB于点D ,则 CD的长为A .1π6B .1π3C .2π3D 7.如图,AB 是圆锥的母线,BC 为底面半径,已知BC =6 cm ,圆锥的侧面积为15π cm 2,则sin ∠ABC的值为A .34B .35C .45D .538.如图,在正方形ABCD 中,AB =12,点E 为BC 的中点,以CD 为直径作半圆CFD ,点F 为半圆的中点,连接AF ,EF ,图中阴影部分的面积是A .18+36πB .24+18πC .18+18πD .12+18π9.如图,从一块直径为2m 的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为A .2πm 2B 2mC .2πmD .22πm10.如图,在⊙O 的内接四边形ABCD 中,AB AD =,120C ∠=︒,点E 在弧AD 上.若AE 恰好为⊙O 的内接正十边形的一边, DE的度数为__________.11cm ,其侧面展开图的圆心角为120°,则圆锥的母线长是__________cm . 12.用一块圆心角为216︒的扇形铁皮,做一个高为40cm 的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是__________cm .13.如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则∠AFE 的度数为__________.14.如图,正六边形ABCDEF 的边长为1,以点A 为圆心,AB 的长为半径,作扇形ABF ,则图中阴影部分的面积为__________(结果保留根号和π).15.如图1,作∠BPC 平分线的反向延长线PA ,现要分别以∠APB ,∠APC ,∠BPC 为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC 为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而902=45是360°(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是__________;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是__________.16.如图,AB是⊙O的弦,BC切⊙O于点B,AD⊥BC,垂足为D,OA是⊙O的半径,且OA=3.(1)求证:AB平分∠OAD;(2)若点E是优弧AEB上一点,且∠AEB=60°,求扇形OAB的面积(计算结果保留π).17.已知:如图,AB是⊙O的直径,AB=4,点F,C是⊙O上两点,连接AC,AF,OC,弦AC平分∠FAB,∠BOC=60°,过点C作CD⊥AF交AF的延长线于点D,垂足为点D.(1)求扇形OBC的面积(结果保留π);(2)求证:CD是⊙O的切线.学-科网18.已知:如图,以等边△ABC的边BC为直径作⊙O,分别交AB,AC于点D,E,过点D作DF⊥AC交AC于点F.(1)求证:DF是⊙O的切线;(2)若等边△ABC的边长为8,求由 DE、DF、EF围成的阴影部分面积.19.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作DF⊥AC于点F.(1)若⊙O的半径为3,∠CDF=15°,求阴影部分的面积;(2)求证:DF是⊙O的切线;(3)求证:∠EDF=∠DAC.20.如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.21.如图,AB 是⊙O 的直径,AM 和BN 是⊙O 的两条切线,E 为⊙O 上一点,过点E 作直线DC 分别交AM ,BN 于点D ,C ,且CB =CE . (1)求证:DA =DE ;(2)若AB =6,CD1.(2018·益阳)如图,正方形ABCD 内接于圆O ,AB =4,则图中阴影部分的面积是A .4π16-B .8π16-C .16π32-D .32π16-2.(2018·山西)如图,正方形ABCD 内接于⊙O ,⊙O 的半径为2,以点A 为圆心,以AC 长为半径画弧交AB 的延长线于点E ,交AD 的延长线于点F ,则图中阴影部分的面积为A .4π-4B .4π-8C .8π-4D .8π-83.(2018·抚顺)如图,AB 是⊙O 的直径,CD 是弦,∠BCD =30°,OA =2,则阴影部分的面积是A .π3B .2π3C .πD .2π4.(2018·十堰)如图,扇形OAB 中,∠AOB =100°,OA =12,C 是OB 的中点,CD ⊥OB 交 AB 于点D ,以OC 为半径的 CE交OA 于点E ,则图中阴影部分的面积是A .B .C .D .5.(2018·盘锦)如图,一段公路的转弯处是一段圆弧 AB ,则 AB 的展直长度为A .3π mB .6π mC .9π mD .12π m6.(2018·广安)如图,已知⊙O 的半径是2,点A 、B 、C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分面积为A .23π- B .13πC .43π- D .43π7.(2018·钦州)如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB =2,则莱洛三角形的面积(即阴影部分面积)为A .π+B .π-C .2πD .2π-8.(2018·成都)如图,在ABCD 中,60B ∠=︒,C 的半径为3,则图中阴影部分的面积是A .πB .2πC .3πD .6π9.(2018·湖州)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣: ①将半径为r 的⊙O 六等分,依次得到A ,B ,C ,D ,E ,F 六个分点; ②分别以点A ,D 为圆心,AC 长为半径画弧,G 是两弧的一个交点; ③连接OG . 问:OG 的长是多少? 大臣给出的正确答案应是A r B.()rC.()r D r10.(2018·温州)已知扇形的弧长为2π,圆心角为60°,则它的半径为__________.11.(2018·呼和浩特)同一个圆的内接正方形和正三角形的边心距的比为__________.△是半径为2的圆内接正三角形,则图中阴影部分的面积是__________ 12.(2018·绥化)如图,ABC(结果用含π的式子表示).13.(2018·贵阳)如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是__________度.学科网14.(2018·玉林)如图,正六边形ABCDEF的边长是O1,O2分别是△ABF,△CDE的内心,则O1O2=__________.15.(2018·烟台)如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1∶r2=__________.16.(2018·株洲)如图,正五边形ABCDE 和正三角形AMN 都是⊙O 的内接多边形,则∠BOM =__________.17.(2018·宜宾)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O 的半径为1,若用圆O 的外切正六边形的面积来近似估计圆O 的面积,则S =__________.(结果保留根号)18.(2018·凉山州)将ABC △绕点B 逆时针旋转到A'BC'△使A 、B 、C'在同一直线上,若90BCA ∠=︒,30BAC ∠=︒,4cm AB =,则图中阴影部分面积为__________2cm .19.(2018·重庆A 卷)如图,在矩形ABCD 中,3AB =,2AD =,以点A 为圆心,AD 长为半径画弧,交AB 于点E ,图中阴影部分的面积是__________(结果保留π).20.(2018·泰州)如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠ABC 的平分线交⊙O 于点D ,DE ⊥BC于点E .(1)试判断DE 与⊙O 的位置关系,并说明理由;(2)过点D 作DF ⊥AB 于点F ,若BE ,DF =3,求图中阴影部分的面积.21.(2018·扬州)如图,在ABC ∆中,AB AC =,AO BC ⊥于点O ,OE AB ⊥于点E ,以点O 为圆心,OE 为半径作半圆,交AO 于点F . (1)求证:AC 是O 的切线;(2)若点F 是AO 的中点,3OE =,求图中阴影部分的面积;(3)在(2)的条件下,点P 是BC 边上的动点,当PE PF +取最小值时,直接写出BP 的长.1∶2.【解析】∵一个正多边形的一个外角为60°,∴360°÷60°=6, ∴这个正多边形是正六边形,设这个正六边形的半径是r ,则外接圆的半径是r ,,2.2.【点睛】垂径定理:垂直于弦的直径平分弦并且平分弦所对的两条弧.3.【答案】D【解析】扇形的面积为D.4.【答案】(1)S阴=4π–8;(2)一只蚂蚁从A沿着圆锥表面最少需要爬个单位长度才能吃到蜜糖.【解析】(1)如图2中,作SE⊥AF交弧AF于C,设图2中的扇形的圆心角为n°·1,∴n=90°,∵SA=SF,∴△SFA是等腰直角三角形,∴S△SAF=12×4×4=8,又S扇形SAFS阴=S扇形SAF–S△SAF=4π–8.(2)在图2中,∵SC是一条蜜糖线,AE⊥SC,AF=,AE∴一只蚂蚁从A沿着圆锥表面最少需要爬个单位长度才能吃到蜜糖.1.【答案】B,故选B . 2.【答案】A【解析】如图,连接OA 、OB ,∵正方形ABCD 内接于⊙O , ∴AB =BC =DC =AD ,∴ AB BCCD DA ===, ∴∠AOB =14×360°=90°,在Rt △AOB 中,由勾股定理得:2AO 2=()2, 解得:AO =2, ∴ AB 的长为90π2180⨯=π,故选A . 3.【答案】D【解析】∵圆锥的主视图与左视图都是边长为4的等边三角形, ∴圆锥的母线长为4,底面圆的直径为4, 则圆锥的侧面展开图扇形的半径为4, 设圆锥的侧面展开图扇形的圆心角是n , 根据题意,得:·π·4180n =4π, 解得:n =180°,故选D . 4.【答案】C【解析】如图,连接AO ,CO ,∵∠ABC =25°,∴∠AOC =50°,∴劣弧 AC 的长=50π525π=18018⨯,故选C . 5.【答案】B【解析】∵正六边形的边长为a , ∴⊙O 的半径为a , ∴⊙O 的面积为π×a 2=πa 2,∵空白正六边形为六个边长为a 的正三角形,∴每个三角形面积为12×a ×a a 2,∴正六边形面积为a 2a 2,∴阴影面积为(πa 2a 2)×16=(π6)a 2,故选B .6.【答案】C【解析】∵90ACB ∠=︒,4AB =,30A ∠=︒,∴60B ∠=︒,2BC =,∴ CD的长为60π22π1803⨯=,故选C . 7.【答案】C【解析】设圆锥的母线长为R ,由题意得15π=π×3×R ,解得R =5, ∴圆锥的高为4,∴sin ∠ABC =45.故选C . 8.【答案】C【解析】作FH ⊥BC 于H ,连接FH ,如图,∵点E 为BC 的中点,点F 为半圆的中点,∴BE =CE =CH =FH =6,AE易得Rt △ABE ≌△EHF ,∴∠AEB =∠EFH ,而∠EFH +∠FEH =90°,∴∠AEB +∠FEH =90°,∴∠AEF =90°,∴图中阴影部分的面积=S 正方形ABCD +S 半圆-S △ABE -S △AEF =12×12+12·π·62-12×12×6-12· =18+18π.故选C . 9.【答案】A【解析】如图,连接AC .∵从一块直径为2 m 的圆形铁皮上剪出一个同心角为90°的扇形,即∠ABC =90°, ∴AC 为直径,即AC =2 m ,AB =BC .∵AB 2+BC 2=22,∴AB =BC m =1π2(m 2).故选A .11.【答案】【解析】设该圆锥的母线长是x cm x =.故答案为:. 12.【答案】50【解析】设这个扇形铁皮的半径为R cm ,圆锥的底面圆的半径为r cm , 根据题意得2πr =216π180R ⋅⋅,解得r =35R ,因为402+(35R )2=R 2,解得R =50. 所以这个扇形铁皮的半径为50 cm .故答案为:50. 13.【答案】72°【解析】∵五边形ABCDE 为正五边形,∴AB =BC =AE ,∠ABC =∠BAE =108°, ∴∠BAC =∠BCA =∠ABE =∠AEB =(180°−108°)÷2=36°, ∴∠AFE =∠BAC +∠ABE =72°,故答案为:72°.14-π3 【解析】正六边形的中心为点O ,如图,连接OD 、OE ,作OH ⊥DE 于H ,∴∠DOE =3606︒=60°,∴OD =OE =DE =1,∴OH∴正六边形ABCDEF 的面积=12,∠A =(62)1806-⨯︒=120°,∴扇形ABF 的面积=2120π13π603⨯=,∴图中阴影部分的面积-π3-π3. 15.【答案】14;21【解析】图2中的图案外轮廓周长是:8-2+2+8-2=14; 设∠BPC =2x ,∴以∠BPC 为内角的正多边形的边数为:360180180290x x =--,以∠APB 为内角的正多边形的边数为:360x,∴图案外轮廓周长是=18090x --2+360x -2+360x -2=18090x -+720x-6,根据题意可知:2x 的值只能为60°,90°,120°,144°, 当x 越小时,周长越大,∴当x =30时,周长最大,此时图案定为会标, 则则会标的外轮廓周长是=180720903030+--6=21,故答案为:14;21.16.【解析】(1)连接OB ,如图所示:∵BC切⊙O于点B,∴OB⊥BC,∵AD⊥BC,∴AD∥OB,∴∠DAB=∠OBA,∵OA=OB,∴∠OAB=∠OBA,∴∠DAB=∠OAB,∴AB平分∠OAD;(2)∵点E是优弧AEB上一点,且∠AEB=60°,∴∠AOB=2∠AEB=120°,∴扇形OAB的面积=2120π3360⨯=3π.17.【解析】(1)∵AB=4,∴OB=2,∵∠COB=60°,∴S扇形OBC=60π42π3603⨯=.(2)∵AC平分∠FAB,∴∠FAC=∠CAO,∵AO=CO,∴∠ACO=∠CAO,∴∠FAC=∠ACO,∴AD∥OC,∵CD⊥AF,∴CD⊥OC∵C在圆上,∴CD是⊙O的切线.18.【解析】(1)如图,连接CD、OD,∵BC是⊙O的直径,∴∠CDB=90°,即CD⊥AB,又∵△ABC是等边三角形,∴AD=BD,∵BO=CO,∴DO是△ABC的中位线,∴OD∥AC,∵DF⊥AC,∴DF⊥OD,∴DF是⊙O的切线.19.【解析】(1)如图,连接OE,过O作OM⊥AC于M,则∠AMO=90°,∵DF⊥AC,∴∠DFC=90°,∵∠FDC=15°,∴∠C=180°-90°-15°=75°,∵AB=AC,∴∠ABC=∠C=75°,∴∠BAC=180°-∠ABC∠C=30°,∴OM =12OA =12×3=32,AM OM , ∵OA =OE ,OM ⊥AC ,∴AE =2AM , ∴∠BAC =∠AEO =30°, ∴∠AOE =180°-30°-30°=120°,∴阴影部分的面积S =S 扇形AOE -S △AOE =2120π3133π36022⨯-⨯=-.(2)如图,连接OD ,∵AB =AC ,OB =OD ,∴∠ABC =∠C ,∠ABC =∠ODB , ∴∠ODB =∠C , ∴AC ∥OD , ∵DF ⊥AC , ∴DF ⊥OD , ∵OD 过点O , ∴DF 是⊙O 的切线. (3)如图,连接BE ,∵AB 为⊙O 的直径, ∴∠AEB =90°, ∴BE ⊥AC ,∵DF ⊥AC , ∴BE ∥DF , ∴∠FDC =∠EBC , ∵∠EBC =∠DAC , ∴∠FDC =∠DAC , ∵A 、B 、D 、E 四点共圆, ∴∠DEF =∠ABC , ∵∠ABC =∠C , ∴∠DEC =∠C , ∵DF ⊥AC , ∴∠EDF =∠FDC , ∴∠EDF =∠DAC .20.【解析】(1)直线DE 与⊙O 相切.理由如下:连接OE 、OD ,如图,∵AC 是⊙O 的切线, ∴AB ⊥AC , ∴∠OAC =90°,∵点E 是AC 的中点,O 点为AB 的中点, ∴OE ∥BC ,∴∠1=∠B ,∠2=∠3, ∵OB =OD , ∴∠B =∠3, ∴∠1=∠2,在△AOE 和△DOE 中,12OA OD OE OE =⎧⎪∠=∠⎨⎪=⎩,∴△AOE≌△DOE,∴∠ODE=∠OAE=90°,∴OA⊥AE,∴DE为⊙O的切线.(2)∵点E是AC的中点,∴AE=12AC=2.4,∵∠AOD=2∠B=2×50°=100°,∴图中阴影部分的面积=2×12×2×2.4-2100π2104.8π3609⨯=-.21.【解析】(1)如图,连接OE、BE,∵OB=OE,∴∠OBE=∠OE B.∵BC=EC,∴∠CBE=∠CEB,∴∠OBC=∠OEC.∵BC为⊙O的切线,∴∠OEC=∠OBC=90°.∵OE为半径,∴CD为⊙O的切线,∵AD切⊙O于点A,∴DA=DE.(2)如图,连接OC,过点D作DF⊥BC于点F,则四边形ABFD是矩形,∴AD=BF,DF=AB=6,∴DC=BC+AD,∵CF=,∴BC -AD∴BC在直角△OBC 中,tan ∠BOC =BCOB, ∴∠BOC =60°.在△OEC 与△OBC 中,OE OB OC OC CE CB =⎧⎪=⎨⎪=⎩,∴△OEC ≌△OBC (SSS ), ∴∠BOE =2∠BOC =120°,∴S 阴影部分=S 四边形BCEO -S 扇形OBE =2×12BC ·OB -2120π360OB ⋅⋅-3π.1.【答案】B【解析】如图,连接OA 、OB ,∵四边形ABCD 是正方形, ∴∠AOB =90°,∠OAB =45°, ∴OA =AB ·, 所以阴影部分的面积=S ⊙O -S 正方形ABCD =π×()2-4×4=8π-16.故选B . 2.【答案】A【解析】利用对称性可知:阴影部分的面积=扇形AEF 的面积-△ABD 的面积=290π413602⨯⨯-×4×2=4π-4,故选A . 3.【答案】B【解析】∵∠BCD =30°,∴∠BOD =60°, ∵AB 是⊙O 的直径,CD 是弦,OA =2,∴阴影部分的面积是:260π22π3603⨯⨯=,故选B . 4.【答案】C【解析】如图,连接OD ,AD ,∵点C 为OA 的中点,∴OC =12OA =12OD , ∵CD ⊥OA ,∴∠CDO =30°,∠DOC =60°,∴△ADO 为等边三角形,OD =OA =12,OC =CA =6,∴CD ,∴S 扇形AOD =260π12360⋅⋅=24π, ∴S阴影=S扇形AOB -S扇形COE -(S扇形AOD -S △COD)=22100π12100π61(24π63603602⋅⋅⋅⋅---⨯⨯,故选C . 5.【答案】B【解析】 AB 的展直长度为:108π10180⨯=6π(m ).故选B .6.【答案】C【解析】连接OB 和AC 交于点D ,如图,∵圆的半径为2,∴OB =OA =OC =2,又四边形OABC 是菱形,∴OB ⊥AC ,OD =12OB =1,在Rt △COD 中利用勾股定理可知:CD =,AC =2CD ,∵sin ∠COD =CD OC =∴∠COD =60°,∠AOC =2∠COD =120°,∴S 菱形ABCO =12B ×AC =12S 扇形AOC =2120π24π3603⨯⨯=,则图中阴影部分面积为S 菱形ABCO -S 扇形AOC =4π3-C .8.【答案】C【解析】∵在 ABCD 中,∠B =60°,⊙C 的半径为3,∴∠C =120°,∴图中阴影部分的面积是:2120π3360⨯⨯=3π,故选C . 9.【答案】D【解析】如图,连接CD ,AC ,DG ,AG .∵AD 是⊙O 直径,∴∠ACD =90°,在Rt △ACD 中,AD =2r ,∠DAC =30°,∴AC , ∵DG =AG =CA ,OD =OA ,∴OG ⊥AD ,∴∠GOA =90°,∴OG r ,故选D .10.【答案】6【解析】设扇形的半径为r ,根据题意得:60π2π180r=,解得:r =6,故答案为:6.111【解析】设⊙O 的半径为r ,⊙O 的内接正方形ABCD ,如图,过O 作OQ ⊥BC 于Q ,连接OB 、OC ,即OQ 为正方形ABCD 的边心距, ∵四边形BACD 是正方形,⊙O 是正方形ABCD 的外接圆, ∴O 为正方形ABCD 的中心,∴∠BOC =90°, ∵OQ ⊥BC ,OB =CO ,∴QC =BQ ,∠COQ =∠BOQ =45°,∴OQ =OC R . 设⊙O 的内接正△EFG ,如图,过O 作OH ⊥FG 于H ,连接OG ,即OH 为正△EFG 的边心距,∵正△EFG 是⊙O 的外接圆,∴∠OGF =12∠EGF =30°, ∴OH =OG ×sin30°=12R ,∴OQ ∶OH =R )∶(12R )∶1∶1.12.【答案】4π-【解析】如图,点O 既是它的外心也是其内心,∴2OB =,130∠=︒,∴112OD OB ==,BD =,∴3AD =,BC =,∴132ABC S =⨯=△2π24π=⨯=,所以阴影部分的面积4π=-,故答案为:4π-. 13.【答案】72【解析】如图,连接OA 、OB 、OC ,∠AOB =3605︒=72°, ∵∠AOB =∠BOC ,OA =OB ,OB =OC ,∴∠OAB =∠OBC ,在△AOM 和△BON 中,OA OB OAM OBN AM BN =⎧⎪∠=∠⎨⎪=⎩,∴△AOM ≌△BON ,∴∠BON =∠AOM ,∴∠MON =∠AOB =72°,故答案为:72. 14.【答案】【解析】如图,过A 作AM ⊥BF 于M ,连接O 1F 、O 1A 、O 1B ,∵六边形ABCDEF 是正六边形,∴∠A =(62)1806-⨯︒=120°,AF =AB ,∴∠AFB =∠ABF =12×(180°-120°)=30°, ∴△AFB 边BF 上的高AM =12AF =12×(FM =BM+6,∴BF设△AFB 的内切圆的半径为r , ∵S △AFB =111AO F AO B BFO S S S ++△△△,∴12×()×(+6)=12×()×r +12×()×r +12×(×r , 解得:r =32,即O 1M =r =32,∴O 1O 2=2×32.152【解析】如图,连接OA ,由已知,M 为AF 中点,则OM ⊥AF ,∵六边形ABCDEF 为正六边形,∴∠AOM =30°,设AM =a ,∴AB =AO =2a ,OM , ∵正六边形中心角为60°,∴∠MON =120°,∴扇形MON πa =,则r 1a , 同理:扇形DEF 的弧长为:120π24π1803a a ⋅⋅=,则r 2=23a ,r 1:r 222. 16.【答案】48°【解析】如图,连接OA ,∵五边形ABCDE 是正五边形,∴∠AOB =3605︒=72°,∵△AMN 是正三角形,∴∠AOM =3603︒=120°, ∴∠BOM =∠AOM -∠AOB =48°,故答案为:48°.17.【答案】【解析】依照题意画出图象,如图所示.∵六边形ABCDEF 为正六边形,∴△ABO 为等边三角形,∵⊙O 的半径为1,∴OM =1,∴BM =AM AB∴S =6S △ABO =6×12. 18.【答案】4π【解析】由旋转可得△ABC ≌△A ′BC ′.∵∠BCA =90°,∠BAC =30°,AB =4 cm ,∴BC =2 cm ,AC ,∠A ′BA =120°,∠CBC ′=120°,∴阴影部分面积=(S △A ′BC ′+S 扇形BAA ′)-S 扇形BCC ′-S △ABC =120π360×(42-22)=4π cm 2.故答案为:4π. 19.【答案】6π- 【解析】S 阴影=S 矩形ABCD -S 扇形ADE =2×3-290π2360⨯=6-π,故答案为:6-π. 20.【解析】(1)DE 与⊙O 相切,理由:如图,连接DO ,∵DO =BO ,∴∠ODB =∠OBD ,∵∠ABC 的平分线交⊙O 于点D ,∴∠EBD =∠DBO ,∴∠EBD =∠BDO ,∴DO ∥BE ,∵DE ⊥BC ,∴∠DEB =∠EDO =90°,∴DE 与⊙O 相切.(2)∵∠ABC 的平分线交⊙O 于点D ,DE ⊥BE ,DF ⊥AB ,∴DE =DF =3,∵BE ,∴BD =6, ∵sin ∠DBF =31=62, ∴∠DBA =30°,∴∠DOF =60°,∴sin60°=3DF DO DO ==,∴DO ,则FO132π2=. 21.【解析】(1)如图,过O 作AC 垂线OM ,垂足为M .∵AB AC =,AO BC ⊥,∴AO 平分BAC ∠,∵OE AB OM AC ⊥⊥,, ∴OE OM =,∵OE 为⊙O 的半径,∴OM 为⊙O 的半径,∴AC 是⊙O 的切线.(2)∵3OM OE OF ===,且F 是OA 的中点,∴6AO =,AE =,∴2AEO S AO AE =⋅÷=△, ∵OE AB ⊥,∴60EOF ∠=︒,即9π603π3602OEF S ⋅︒==︒扇形,∴3π2S =-阴影.学科=网 (3)作B 关于BC 的对称点G ,交BC 于H ,连接FG 交BC 于P ,此时PE PF +最小, 由(2)知60EOF ∠=︒,30EAO ∠=︒,∴60B ∠=︒,∵3EO =,∴3EG =,32EH =,BH =, ∵EG BC ⊥,FO BC ⊥,∴EHP △∽FOP △, ∴31322EH HP FO PO ==÷=,即2HP OP =,∵BO HP OP =+=,∴3HP =,即HP =,∴BP ==.。

中考数学点对点-涉及圆的证明与计算问题(解析版)

中考数学点对点-涉及圆的证明与计算问题(解析版)

专题27 涉及圆的证明与计算问题专题知识点概述圆的证明与计算是中考必考点,也是中考的难点之一。

纵观全国各地中考数学试卷,能够看出,圆的证明与计算这个专题内容有三种题型:选择题、填空题和解答题。

一、与圆有关的概念1.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。

定点称为圆心,定长称为半径。

圆的半径或直径决定圆的大小,圆心决定圆的位置。

2.圆心角:顶点在圆心上的角叫做圆心角。

圆心角的度数等于它所对弧的度数。

3.圆周角:顶点在圆周上,并且两边分别与圆相交的角叫做圆周角。

4. 外接圆和外心:经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆。

外接圆的圆心,叫做三角形的外心。

外心是三角形三条边垂直平分线的交点。

外心到三角形三个顶点的距离相等。

5.若四边形的四个顶点都在同一个圆上,这个四边形叫做圆内接四边形,这个圆叫做这个四边形的外接圆。

6.和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

内心是三角形三个角的角平分线的交点。

内心到三角形三边的距离相等。

二、与圆有关的规律1.圆的性质:(1)圆具有旋转不变性;(2)圆具有轴对称性;(3)圆具有中心对称性。

2.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

3.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.4.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。

5.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.7.圆内接四边形的特征①圆内接四边形的对角互补;②圆内接四边形任意一个外角等于它的内对角。

与圆的面积相关的计算

与圆的面积相关的计算

与圆的面积相关的计算圆是数学中最基本的几何图形之一,它具有许多重要的性质和特点。

其中之一是它的面积。

在本文中,我们将探讨与圆的面积相关的计算方法。

首先,让我们先来了解一下圆的定义。

圆可以定义为平面上所有距离圆心相等的点的集合。

圆心就是圆的中心点,而半径则是从圆心到圆上任意一点的距离。

在数学符号中,我们通常用字母“r”表示半径。

现在让我们来看一些实例来解释这个公式。

假设我们有一个半径为2个单位长度的圆,我们可以使用公式A=πr²来计算它的面积。

将半径的值替换到公式中,我们得到A=π(2²)=4π。

因此,这个圆的面积是4π平方单位。

但是,有时候我们可能需要用一个近似值来计算圆的面积,尤其是当半径是一个无理数(如根号2或pi)或一个很长的小数时。

在这种情况下,我们可以使用一个近似值来代替pi,通常使用3.14或22/7、例如,如果我们用半径为3个单位长度的圆来计算面积,我们可以使用近似值π≈3.14或π≈22/7,我们得到A≈3.14(3²)≈28.26或A≈(22/7)(3²)≈28.29,所以这个圆的面积约为28.26或28.29平方单位。

有时候,我们可能需要计算两个或多个圆的总面积。

在这种情况下,我们可以将两个或多个圆的面积加在一起。

例如,如果我们有一个半径为4个单位长度的圆和一个半径为6个单位长度的圆,我们可以计算它们的面积并将结果相加。

使用近似值π≈3.14,我们得到A₁=3.14(4²)=50.24和A₂=3.14(6²)=113.04,因此总面积是A=A₁+A₂=50.24+113.04=163.28平方单位。

除了使用圆的半径来计算面积外,有时我们可能只知道圆的直径。

直径是通过圆心的两个点之间的距离,等于半径的两倍。

在这种情况下,我们可以使用直径来计算圆的面积。

公式为A=π(d/2)²,其中"d"是直径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与圆有关的计算导学案
基础知识
知识点一、弧长的计算公式
1. 圆周长公式:C =2πr 或C =πD.
2. 弧长公式:在半径为r 的圆中,n°圆心角所对的弧长计算公式:180
2360r
n r n l ππ=
⋅=. 知识点二、扇形及其面积计算
1. 扇形的定义:由组成圆心角的两条半径和圆心角所对的弧组成的图形叫做扇形. 扇形的周长:扇形的周长等于弧长与两条半径的长之和.
2. 圆面积公式:2
r S π=圆(r 为圆的半径).
3. 扇形的面积计算公式: ①36036022
r n r n S ππ=⋅=扇形
,其中r 为半径,n 为扇形的圆心角度数. ②lr S 2
1
=
扇形,其中为扇形的弧长,r 为半径. 知识点三、圆锥的侧面积和全面积
1. 圆锥的侧面展开图:沿一条母线将圆锥的侧面剪开并展平,其侧面展开图是一个扇形,这个立体图形转化为平面图形的过程中,有三个不变的关系,需要关注: ① 扇形的半径等于圆锥的母线长; ② 扇形的弧长等于圆锥的底面圆周长; ③ 扇形的面积等于圆锥的侧面积.
2. 圆锥的表面积:设圆锥的底面半径为r ,母线长为l , 则它的侧面积lr r l S ππ=⋅=
22
1
侧 全面积分别为2
r lr S S S ππ+=+=底侧全.
典型例题解析
例1. (广元)半径为R ,圆心角为300°的扇形的周长为( ) A.
253R π B.53R π C.(513π+)R D.(523
π+)R 答案:D
解析:本题考查了扇形弧长的计算,解题的关键是掌握扇形的弧长公式.根据扇形的圆心角 和半径大小求出弧长,再加上 两条半径得周长. 故选择D .
例2. (宁夏)如图是一个几何体的三视图,则这个几何体的侧面积是( )
A .π10cm
2
B .2π10cm
2
C .π6cm
2
D .π3cm 2
例3. (咸宁)如图,在扇形OAB 中,∠AOB =90°,点C 是⌒
AB 上的一个动点(不与A ,B 重合),OD ⊥BC ,OE ⊥AC ,垂足分别为D ,E .若DE =1,则扇形OAB 的面积为 .
例4.(哈尔滨)一个底面直径为10cm ,母线长为15cm 的圆锥,它的侧面展开图圆心角是_________________度.
15
10180
n ππ⋅=
,解得n =120,故该圆锥的侧面展开图的圆心角是120度.故选择A .
例5.(南充) 如图,矩形ABCD 中,AB =5,AD =12,将矩形ABCD 按如图所示的方式在直线上进行两次旋转,则点B 在两次旋转过程中经过的路径的长是( )
A .25π2
B .13π
C .25π
D .252
例6 (牡丹江)如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =23,
则阴影S =( ) A .π
B . 2π
C .
33
2 D .π3
2
答案: D
解析:本题考查了了垂径定理、扇形面积的计算,解题的关键是图形的转化.连接OD 、BC
容易发现B C∥OD,
BC都经过圆心O,
AB和⌒
例7. (吉林)如图,将半径为3的圆形纸片,按下列顺序折叠,若⌒
则阴影部分的面积是 (结果保留π).
例8. (襄阳) 如图,在正方形ABCD中,AD=2,E是AB的中点,将△BEC绕点B逆时针旋转90°后,点E落在CB的延长线上点F处,点C落在点A处.再将线段AF绕点F顺时针旋转90°得线段FG,连接EF,CG.
(1)求证:EF∥CG;
(2)求点C,点A在旋转过程中形成的⌒AC,⌒AG与线段CG所围成的阴影部分的面积.
答案(1)证明:∵四边形ABCD是正方形,

425π-(或
4
10π
-). 巩固训练
1. (自贡)一个扇形的半径为8cm ,弧长为
16
3
cm π,则扇形的圆心角为( ) A .60︒ B .120︒ C .150︒ D .180︒
2(内蒙古)如图,三个小正方形的边长都为1,则图中阴影部分面积的和是( ) A .
34π B .38π C .32π D .316π
3. (黄冈)已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为( ) A .π B .4π C .π或4π D .2π或4π
4. (辽宁)用圆心角为120°,半径为6cm 的扇形纸片卷成一个圆锥形纸帽(如图所示),则这个纸帽的高是( )
A .2 cm
B .32cm
C .42cm
D .4cm
5. (莱芜)如图,AB 为半圆的直径,且AB =4,半圆绕点B 顺时针旋转45°,点A 旋转到A ′的位置,则图中阴影部分的面积为( ) A. π B. 2π C.
2
π
D. 4π
6.(郴州)圆锥的全面积为10 cm2,底面圆的半径为2cm,则这个圆锥的母线长为cm
7.(威海)如图,⊙A与⊙B外切于⊙O的圆心O,⊙O的半径为1,则阴影部分的面积是______________.
8. (杭州)如图是某几何体的三视图,则该几何体的体积是 .
9. (福州)如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点成为格点.已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是
____________.
10. (吉林)图①是电子屏幕的局部示意图,4×4网格的每个小正方形的边长均为1,每个小正方形顶点叫做格点,点A,B,C,D在格点上,光点P从AD的中点出发,按图②的程序移动.
(1)请在图①中用圆规画出光点P经过的路径;
(2)在图①中,所画图形是图形(填“轴对称”或“中心对称”),所画图形的周长是(结果保留π).
(图①) (图②)
11. (本溪)如图,己知在Rt△ABC中,∠B=30°,∠ACB=90°.延长CA 到O,使AO=AC ,以O为圆心OA为半径作⊙O交BA延长线于点D,连接CD.
(1)求证:CD也是⊙O的切线:
(2)若AB=4,求图中阴影部分的面积.
中考预测
1. 已知圆锥的母线长为3,底面的半径为2,则圆锥的侧面积是( )
A.4π B.6π C.10π D.12π
2. 如图,用两根等长的金属丝,各自首尾相接,分别围成正方形ABCD和扇形A1D1C1,使A1D1 = AD,D1C1 = DC,正方形面积为P,扇形面积为Q,那么P和Q的关系是()
A.P<Q B.P = Q C.P>Q D.无法确定
3.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,AC =8,BD =6,以AB 为直径作一个半圆,则图中阴影部分的面积为( )
A .256-π
B .
2562

C .
2566

D .
2568

4.如图,正六边形ABCDEF 是边长为2cm 的螺母,点P 是FA 延长线上的点,在A 、P 之间拉一条长为12cm 的无伸缩性细线,一端固定在点A ,握住另一端点P 拉直细线,把它全部紧紧缠绕在螺母上(缠绕时螺母不动),则点P 运动的路径长为( ) A .13πcm B.14πcm C.15πcm D.16πcm
5. 用一个圆心角为120°,半径为3的扇形作一个圆锥的侧面,则这个圆锥的侧面积为 .
6. 如图,在□ABCD 中,以点A 为圆心,AB 的长为半径的圆恰好与CD 相切于点C ,交AD 于点E ,延长BA 与⊙A 相交于点F .若EF 的长为
2
π,则图中阴影部分的面积为 .
90的最大扇形7. 如图所示,有一直径是2米的圆形铁皮,现从中剪出一个圆周角是
ABC.则(1)AB的长为米;
(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为米.
8. 如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在EF上,则图中阴影部分的面积为 .
9. 如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,其中
A(5,4),B(1,3),将△AOB绕点O逆时针旋转90°后得到△A1OB1.
(1)画出△A1OB1;
(2)在旋转过程中点B所经过的路径长为________;
(3)求在旋转过程中线段AB、BO扫过的图形的面积之和.
(第9题图)
10. 如图,AB是⊙O的直径,C是半圆O上的一点,AC平分∠DAB,AD⊥CD,垂足为D,AD 交⊙O于E,连接CE。

(1)判断CD与⊙O的位置关系,并证明你的结论;
(2)若E是AC的中点,⊙O的半径为1,求图中阴影部分的面积。

相关文档
最新文档