详细版——乳糖操纵子

合集下载

乳糖操纵子

乳糖操纵子

1、乳糖操纵子的组成:大肠杆菌乳糖操纵子含Z、Y、A三个结构基因,分别编码半乳糖苷酶、透酶和半乳糖苷乙酰转移酶,此外还有一个操纵基因、一个启动子和一个调节基因。

结构基因能产生一定的酶系统和结构蛋白。

操纵基因控制结构基因的转录速度,位于结构基因和启动子之间,本身不能转录成mRNA。

启动基因也不能转录成mRNA。

调节基因可调节操纵基因的活动,调节基因能转录出mRNA,并合成一种蛋白,称阻遏蛋白或调节蛋白。

2、阻遏蛋白的负性调节:没有乳糖存在时,I基因编码的阻遏蛋白结合于操纵序列O处,乳糖操纵子处于阻遏状态,不能合成分解乳糖的三种酶;有乳糖存在时,乳糖作为诱导物诱导阻遏蛋白变构,不能结合于操纵序列,乳糖操纵子被诱导开放合成分解乳糖的三种酶。

所以,乳糖操纵子的这种调控机制为可诱导的负调控。

3、CAP的正性调节:CRP是cAMP受体蛋白(cAMP receptor protein),cAMP(环腺苷酸)是细胞内广泛存在的第二信使。

细菌中的cAMP含量与葡萄糖的分解代谢有关,当细菌利用葡萄糖分解供给能量时,cAMP生成少而分解多,cAMP含量低;相反,当环境中无葡萄糖可供利用时,cAMP含量就升高。

cAMP浓度低,CRP未与cAMP结合,CRP不能被活化,当cAMP浓度升高时,CRP 与cAMP结合并发生空间构象的变化而活化,称为CAP(CRP-cAMP activated protein),能以二聚体的方式与特定的DNA序列结合。

CAP的通用名称是分解代谢基因激活蛋白(catabolic gene activator protein)。

在启动子上游有CAP结合位点(CAP binding site),当大肠杆菌从以葡萄糖为碳源的环境转变为以乳糖为碳源的环境时,cAMP浓度升高,与CAP结合,使CAP发生变构,CAP结合于乳糖操纵子启动序列附近的CAP结合位点,增强RNA聚合酶的转录活性,促进结构基因转录,调节蛋白结合于操纵子后促进结构基因的转录,对乳糖操纵子实行正调控,加速合成分解乳糖的三种酶。

(精选)乳糖操纵子简介

(精选)乳糖操纵子简介

操纵子(operon):很多功能相关的结构基因串联排列在染色体上,由一个共同的控制区来操纵这些基因的表达,包含这些结构基因和控制区的整个核苷酸序列就称为操纵子。

乳糖操纵子▪三个特异性序列:▪操纵序列 O (operator): 阻遏蛋白结合位点。

▪启动子 P (promoter): 位于结构基因的上游。

▪CAP结合位点:环cAMP受体蛋白(分解代谢物激活蛋白)结合位点。

▪一个调节基因●lac I:编码阻遏蛋白,能结合于操纵序列位点。

操纵子的组成:▪----结构基因(structural gene, SG) :操纵元中被调控的编码蛋白质的基因▪----启动子(promoter,P):是指能被RNA聚合酶识别、结合并启动基因转录的一段DNA序列。

▪----操纵基因(operator,O):是指能被调控蛋白特异性结合的一段DNA序列。

▪阻遏物基因(inhibitor,I),产生阻遏物(repressor)。

结构基因• Z编码β-半乳糖苷酶:将乳糖水解成葡萄糖和半乳糖。

•Y编码β-半乳糖苷透过酶:使外界的β-半乳糖苷(如乳糖)能透过大肠杆菌细胞壁和原生质膜进入细胞内。

•A编码β-半乳糖苷乙酰基转移酶:乙酰辅酶A上的乙酰基转到β-半乳糖苷上,形成乙酰半乳糖。

当一个mRNA含有编码一个以上蛋白质的编码信息,而且这些蛋白质都是以独立的多肽被翻译时,这样的mRNA称之多顺反子mRNA。

▪多顺反子mRNA在细菌中是很普遍的。

▪多顺反子lac mRNA中的lacZ,lacY,lacA经翻译生成的产物分别生成代谢分解乳糖的三种酶▪始终存在着一定的比例关系( Z : Y : A = 5 : 2 : 1 )▪lacZ、Y、A基因的转录是由lacI基因指令合成的阻遏蛋白R所控制。

lacI一般和结构基因相毗连,但它本身具有自己的启动子和终止子,成为独立的转录单位。

▪由于lacI的产物是可溶性蛋白,按照理说是无需位于结构基因的附近。

乳糖操纵子

乳糖操纵子

1、乳糖操纵子的组成:大肠杆菌乳糖操纵子含Z、Y、A三个结构基因,分别编码半乳糖苷酶、透酶和半乳糖苷乙酰转移酶,此外还有一个操纵序列O,一个启动子P和一个调节基因I。

2、阻遏蛋白的负性调节:没有乳糖存在时,I基因编码的阻遏蛋白结合于操纵序列O处,乳糖操纵子处于阻遏状态,不能合成分解乳糖的三种酶;有乳糖存在时,乳糖作为诱导物诱导阻遏蛋白变构,不能结合于操纵序列,乳糖操纵子被诱导开放合成分解乳糖的三种酶。

所以,乳糖操纵子的这种调控机制为可诱导的负调控。

3、CAP的正性调节:在启动子上游有CAP结合位点,当大肠杆菌从以葡萄糖为碳源的环境转变为以乳糖为碳源的环境时,cAMP浓度升高,与CAP结合,使CAP发生变构,CAP结合于乳糖操纵子启动序列附近的CAP结合位点,激活RNA聚合酶活性,促进结构基因转录,调节蛋白结合于操纵子后促进结构基因的转录,对乳糖操纵子实行正调控,加速合成分解乳糖的三种酶。

4、协调调节:乳糖操纵子中的I基因编码的阻遏蛋白的负调控与CAP的正调控两种机制,互相协调、互相制约。

5、在葡萄糖存在的情况下乳糖操纵子不表达,只有在葡萄糖不存在而乳糖存在的情况下表达。

色氨酸操纵子要点色氨酸操纵子负责色氨酸的生物合成,当培养基中有足够的色氨酸时,这个操纵子自动关闭,缺乏色氨酸时操纵子被打开,trp基因表达,色氨酸或与其代谢有关的某种物质在阻遏过程(而不是诱导过程)中起作用。

阻遏-操纵机制对色氨酸来说是一个一级开关,主管转录是否启动,相当于粗调开关。

trp操纵子中对应于色氨酸生物合成的还有另一个系统进行细调控,指示已经启动的转录是否继续下去。

这个细微调控是通过转录达到第一个结构基因之前的过早终止来实现的,由色氨酸的浓度来调节这种过早终止的频率。

当培养基中色氨酸的浓度很低时,前导区结构是2-3配对,不形成3-4配对的终止结构,所以转录可继续进行。

当培养基中色氨酸浓度较高时,核糖体可顺利通过两个相邻的色氨酸密码子,3-4区自由配对形成基一环终止子结构,转录被终止,trp操纵子被关闭。

基因调控-乳糖操纵子

基因调控-乳糖操纵子

乳糖操纵子在生物工程中的优化与应用
乳糖操纵子在生物工程领域具有潜在的应用价值,例如用于构建基因表达调控系统。通过优化乳糖操 纵子的元件和调控机制,可以开发出更高效、更精确的基因表达调控工具。
研究可以探索将乳糖操纵子与其他基因调控机制结合,以实现更复杂的基因表达模式。这种结合可以 为生物工程领域提供更多创新性的解决方案,例如用于生产生物药物、工业酶或改良作物品种等应用 。
特点
乳糖操纵子具有高度的可诱导性,当环境中乳糖浓度升高时,相 关基因的表达水平也随之升高,当乳糖浓度降低时,相关基因的 表达水平也随之降低。
乳糖操纵子的结构与组成
结构基因Z、Y、A
分别编码β-半乳糖苷酶、β-半乳糖苷 透酶和半乳糖苷乙酰转移酶,这些酶 在乳糖代谢中起关键作用。
调节基因I
编码阻遏蛋白,该蛋白可与乳糖操纵 子上的O序列结合,抑制结构基因的 表达。
适应性进化研究
乳糖操纵子可应用于适应性进化研究中,通过研究乳糖操纵子在不同环境下的适应性变化,揭示生物对环境的适 应机制。
05
未来展望与研究方向
乳糖操纵子与其他基因调控机制的关系
乳糖操纵子是原核生物中一种典型的基因调控机制,通过与 阻遏蛋白的相互作用来调节基因的表达。未来研究可以探索 乳糖操纵子与其他基因调控机制之间的相互作用和关系,以 更全面地理解基因表达的复杂性。
乳糖操纵子的功能与作用机制
功能
乳糖操纵子在乳糖存在时表达相关酶, 将乳糖转化为葡萄糖和半乳糖,供细 胞代谢利用。
作用机制
当环境中乳糖浓度升高时,乳糖通过 与阻遏蛋白结合,使阻遏蛋白失去活 性,从而解除对结构基因表达的抑制 作用,使相关酶得以表达。
02
基因调控的原理
基因表达的调控

详细描述乳糖操纵子系统的调控机制。

详细描述乳糖操纵子系统的调控机制。

详细描述乳糖操纵子系统的调控机制。

乳糖操纵子系统是细菌中的一种代谢途径,它能够将乳糖转化为能量和碳源。

这个系统的调控机制非常复杂,包括转录调控、翻译调控、磷酸化调控等多个层面。

下面我们将详细介绍乳糖操纵子系统的调控机制。

1. 转录调控乳糖操纵子系统的转录调控主要由两个转录因子LacI 和CRP 控制。

LacI 是一个负向转录因子,它能够结合到乳糖操纵子系统的启动子上,阻止RNA 聚合酶结合并启动转录。

当乳糖存在时,乳糖会结合到 LacI 上,使其失活,从而允许 RNA 聚合酶结合并启动转录。

CRP 是一个正向转录因子,它能够结合到乳糖操纵子系统的启动子上,促进RNA 聚合酶结合并启动转录。

当细菌处于低糖状态时,cAMP 的浓度会升高,从而使 CRP 活化,促进乳糖操纵子系统的转录。

2. 翻译调控乳糖操纵子系统的翻译调控主要由riboswitch 控制。

riboswitch 是一种RNA 分子,它能够结合到乳糖分子上,从而改变自身的构象,影响翻译的进行。

当乳糖存在时,riboswitch 会结合到乳糖上,从而使翻译终止子暴露在mRNA 上,阻止翻译的进行。

当乳糖不足时,riboswitch 会解离乳糖,从而使翻译终止子被遮盖,允许翻译的进行。

3. 磷酸化调控乳糖操纵子系统的磷酸化调控主要由两个蛋白激酶PhoR 和PtsG 控制。

PhoR 是一种膜蛋白激酶,它能够感知到细胞外的磷酸浓度,从而调控乳糖操纵子系统的磷酸化状态。

当细胞外的磷酸浓度低时,PhoR 会被激活,从而使乳糖操纵子系统的磷酸化水平升高。

PtsG 是一种磷转移酶,它能够将磷酸转移给乳糖,从而影响乳糖的代谢。

当细胞内的磷酸浓度低时,PtsG 会被磷酸化,从而使其活性降低,减少对乳糖的代谢。

乳糖操纵子系统的调控机制非常复杂,包括转录调控、翻译调控、磷酸化调控等多个层面。

这些调控机制相互作用,共同调节乳糖的代谢,从而使细菌能够适应不同的环境条件。

乳糖操纵子简介

乳糖操纵子简介

乳糖操纵子简介操纵子(operon):很多功能相关的结构基因串联排列在染色体上,由一个共同的控制区来操纵这些基因的表达,包含这些结构基因和控制区的整个核苷酸序列就称为操纵子。

乳糖操纵子三个特异性序列:操纵序列O (operator): 阻遏蛋白结合位点。

启动子P (promoter): 位于结构基因的上游。

CAP结合位点:环cAMP受体蛋白(分解代谢物激活蛋白)结合位点。

一个调节基因●lac I:编码阻遏蛋白,能结合于操纵序列位点。

操纵子的组成:----结构基因(structural gene, SG) :操纵元中被调控的编码蛋白质的基因----启动子(promoter,P):是指能被RNA聚合酶识别、结合并启动基因转录的一段DNA序列。

----操纵基因(operator,O):是指能被调控蛋白特异性结合的一段DNA序列。

阻遏物基因(inhibitor,I),产生阻遏物(repressor)。

结构基因Z编码β-半乳糖苷酶:将乳糖水解成葡萄糖和半乳糖。

Y编码β-半乳糖苷透过酶:使外界的β-半乳糖苷(如乳糖)能透过大肠杆菌细胞壁和原生质膜进入细胞内。

A编码β-半乳糖苷乙酰基转移酶:乙酰辅酶A上的乙酰基转到β-半乳糖苷上,形成乙酰半乳糖。

当一个mRNA含有编码一个以上蛋白质的编码信息,而且这些蛋白质都是以独立的多肽被翻译时,这样的mRNA称之多顺反子mRNA。

多顺反子mRNA在细菌中是很普遍的。

多顺反子lac mRNA中的lacZ,lacY,lacA经翻译生成的产物分别生成代谢分解乳糖的三种酶始终存在着一定的比例关系( Z : Y : A = 5 : 2 : 1 )lacZ、Y、A基因的转录是由lacI基因指令合成的阻遏蛋白R所控制。

lacI一般和结构基因相毗连,但它本身具有自己的启动子和终止子,成为独立的转录单位。

由于lacI的产物是可溶性蛋白,按照理说是无需位于结构基因的附近。

它是能够分散到各处或结合到分散的DNA位点上。

详细版——乳糖操纵子

详细版——乳糖操纵子

Collaboration between mentor and student won a Nobel Prize. It has not been common in the history. Only the lucky ones, who were willing to share the credit and lived long, panned out in the end. That was why I remember this story: The teacher-student team: Franç Jacob (1920-2013), student. ois Jacques Monod (1910-1976), Lwoff's colleauge. AndréLwoff (1902-1994), Jacob's mentor. Notable awards: 1965 Nobel Prize in Medicine. He shared the 1965 Nobel Prize in Medicine with Jacques Monod and AndréLwoff (1902-1994).
25 2013-10-31
以乳糖操纵子中的操纵区为例,其操纵区 (o)序列位于启动子(p)与被调控的基因之 间,部分序列与启动子序列重叠。 仔细分析操纵区序列,可见这段双链DNA具 有回文(palindrome)样的对称性一级结构, 能形成十字形的茎环(stem loop)构造。不 少操纵区都具有类似的对称性序列,可能与特 定蛋白质的结合相关。
8 2013-10-31
9 2013-10-31
这种典型的诱导现象,是研究基因表达调 控极好的模型。针对大肠杆菌利用乳糖的适应 现象,法国的Jocob和Monod等人做了一系列遗 传学和生化学研究实验,于1961年提出乳糖操 纵子(lac operon)学说。

详细版乳糖操纵子

详细版乳糖操纵子
1.培养大肠杆菌时,如果不加入半乳糖,一个 抑制蛋白就会结合到操纵子上,阻止RNA聚合酶转录 操纵子基因。此时操纵子就处于关闭状态;
2.当加入诱导物半乳糖后,半乳糖就会和抑制 蛋白结合,并改变抑制蛋白的构象使得它不能结合 到操纵子上。只要没有抑制蛋白的结合,RNA聚合酶 就可以识别启动子并转录操纵子的结构基因,得到 mRNA。此时操纵子是开启的。
3
业内人士评论认为,沃森和克 里克发现了DNA结构,雅各布等人 的工作则揭示了遗传信息如何传递 。 "Anything found to be true of E. coli must also be true of elephants," claimed by Jacques Monod. “大肠杆菌的基因调控的任何发现, 也 适用于大象基因调控。”
5 它由依次排列的调节基因、cAMP受体蛋 白CRP位点、启动子、操纵基因和3个相连 的编码利用乳糖的酶的结构基因组成。
9
y基因长780bp,编码有260个氨基酸、分
子量为30,000的半乳糖透过酶,促使环境 中的乳糖进入细菌;
a基因长825bp,编码275氨基酸、分子
量为32,000的转乙酰基酶,以二聚体活性 形式催化半乳糖的乙酰化。
The teacher-student team:
François Jacob (1920-2013), student.
Jacques Monod (1910-1976), Lwoff's colleauge.
AndréLwoff (1902-1994), Jacob's mentor.
Notable awards: 1965 Nobel Prize in Medicine. He shared the 1965 Nobel Prize in Medicine with Jacques Monod and AndréLwoff (1902-1994).

[复习]乳糖操纵子

[复习]乳糖操纵子

[复习]乳糖操纵子1、乳糖操纵子的组成:大肠杆菌乳糖操纵子含Z、Y、A三个结构基因,分别编码半乳糖苷酶、透酶和半乳糖苷乙酰转移酶,此外还有一个操纵基因、一个启动子和一个调节基因。

结构基因能产生一定的酶系统和结构蛋白。

操纵基因控制结构基因的转录速度,位于结构基因和启动子之间,本身不能转录成mRNA。

启动基因也不能转录成mRNA。

调节基因可调节操纵基因的活动,调节基因能转录出mRNA,并合成一种蛋白,称阻遏蛋白或调节蛋白。

2、阻遏蛋白的负性调节:没有乳糖存在时,I基因编码的阻遏蛋白结合于操纵序列O处,乳糖操纵子处于阻遏状态,不能合成分解乳糖的三种酶;有乳糖存在时,乳糖作为诱导物诱导阻遏蛋白变构,不能结合于操纵序列,乳糖操纵子被诱导开放合成分解乳糖的三种酶。

所以,乳糖操纵子的这种调控机制为可诱导的负调控。

3、CAP的正性调节:CRP是cAMP受体蛋白(cAMP receptor protein),cAMP(环腺苷酸)是细胞内广泛存在的第二信使。

细菌中的cAMP含量与葡萄糖的分解代谢有关,当细菌利用葡萄糖分解供给能量时,cAMP生成少而分解多,cAMP含量低;相反,当环境中无葡萄糖可供利用时,cAMP含量就升高。

cAMP浓度低,CRP未与cAMP结合,CRP不能被活化,当cAMP浓度升高时,CRP与cAMP结合并发生空间构象的变化而活化,称为CAP(CRP-cAMP activated protein),能以二聚体的方式与特定的DNA序列结合。

CAP的通用名称是分解代谢基因激活蛋白(catabolic gene activator protein)。

在启动子上游有CAP结合位点(CAP binding site),当大肠杆菌从以葡萄糖为碳源的环境转变为以乳糖为碳源的环境时,cAMP浓度升高,与CAP结合,使CAP发生变构,CAP结合于乳糖操纵子启动序列附近的CAP结合位点,增强RNA 聚合酶的转录活性,促进结构基因转录,调节蛋白结合于操纵子后促进结构基因的转录,对乳糖操纵子实行正调控,加速合成分解乳糖的三种酶。

乳糖操纵子名词解释

乳糖操纵子名词解释

乳糖操纵子名词解释乳糖操纵子:乳糖操纵子也称为乳糖运输蛋白,是一种催化乳糖分解的酶。

表1乳糖操纵子名词解释 1。

催化酶。

由于其构成的蛋白质分子中有一个特殊序列(N),即所谓“不对称区”,在这个区域内有两种催化结构的酶同时起作用,因此对绝大多数天然底物有高度选择性。

乳糖是一种低聚糖,它与人体所需要的葡萄糖、半乳糖、阿拉伯糖等都属于单糖,在人体内具有特殊的功能,是糖类的主要成分之一,被吸收后参与新陈代谢。

因此,乳糖可作为食品添加剂应用到食品中去,作为提高人们生活水平的功能食品。

在食品工业上主要用来制造无糖糕点和饼干、奶粉、冰淇淋等,并将乳糖经发酵变成乳酸,以提高甜度,改善风味。

2。

乳糖操纵子。

存在于胞质溶胶内,又称胞质溶胶。

分布于质膜下,含有一个多肽复合物,由100多个氨基酸残基组成,不完全相同的数目超过10万个,该区域为不对称的α螺旋形结构。

3。

表位( mRNA)。

存在于胞质溶胶的不对称区,由RNA聚合酶在转录前的间隔期间转录。

表位是一种特殊的RNA,除了与操纵子有关外,还在RNA结构和进化中扮演着重要角色。

4。

基因家族。

位于基因簇,位于多个细胞中,组织中或系统中。

5。

编码区( coding region)。

基因组DNA上特定位置,在大多数哺乳动物和鸟类的基因中,在前驱物导入时,必须改变。

6。

操纵子( modulator)。

在一个基因簇上控制转录的一段DNA序列,有时可以是RNA。

这些序列有几个特征,例如与位于转录起始位置的操纵元结合,与酶有关联的氨基酸序列。

7。

基因簇( locus)。

在不同种或同种不同个体间,共享一段相同的核苷酸序列的核苷酸序列集合,包括基因。

8。

微卫星( Microsatellite)。

在染色体的DNA序列中,短的重复序列,常常出现的两个重复序列之间的间隙,是连续的DNA序列中的一段。

9。

小卫星( mini satellite)。

在染色体的DNA序列中,长的重复序列,常常出现的三个重复序列之间的间隙,是连续的DNA序列中的一段。

详细版——乳糖操纵子

详细版——乳糖操纵子

和染色体结构比较简单,转录和翻译可
在同一时间和位置上发生,基因表达的
调节主要在转录水平上进行。真核生物
由于存在细胞核结构的分化,转录和翻
译过程在时间和空间上被彼此隔开,且
在转录和翻译后还有复杂的加工过程,
因此基因表达在不同水平上都要进行调
节。
详细版——乳糖操纵子
2 2021/2/13
原核基因表达的调控
详细版——乳糖操纵子
14 2021/2/13
详细版——乳糖操纵子
12 2021/2/13
业内人士评论认为,沃森和克 里克发现了DNA结构,雅各布等人 的工作则揭示了遗传信息如何传递。
"Anything found to be true of E. coli must also be true of elephants," claimed by Jacques Monod. “大肠杆菌的基因调控的任何发现, 也 适用于大象基因调控。”
Andre Lwoff分享了1965年诺贝尔医学或生理学
奖。 详细版——乳糖操纵子
11 2021/2/13
Collaboration between mentor and student won a Nobel Prize. It has not been common in the history. Only the lucky ones, who were willing to share the credit and lived long, panned out in the end. That was why I remember this story:
基因表达是指基因转录成mRNA,然后进一步
翻译成蛋白质的过程。在研究蛋白质的生物合成

详细版——乳糖操纵子

详细版——乳糖操纵子
15 2021/2/16
至少在第一个结构基因5’侧具有核糖体 结合 位点 (ribosome binding site, RBS), 因而当这段含多个结构基因的DNA被转录成多 顺反子mRNA,就能被核糖体所识别结合、并 起始翻译。核糖体沿mRNA移动,在合成完第 一个编码的多肽后,核糖体可以不脱离mRNA 而继续翻译合成下一个基因编码的多肽,直 至合成完这条多顺反子mRNA所编码的全部多 肽。
25 2021/2/16
阻遏蛋白与操纵区结合,就妨碍了RNA聚合 酶与启动子的结合及其后ß -半乳糖苷酶等基 因的转录起始,从而阻遏了这群基因的表达。
最早只把与阻遏蛋白结合、起阻遏作用的 序列称为操纵区,但其后发现有的操纵子中
26 2021/2/16
同一操纵序列与不同构像的蛋白质结合, 可以分别起阻遏或激活基因表达的作用, 阿拉伯糖操纵子中的操纵序列就是典型的 例子。因而凡能与调控蛋白特异性结合、 从而影响基因转录强弱的序列,不论其对 基因转录的作用是减弱、阻止或增强、开 放,都可称为操纵区。
33 2021/2/16
(5) 终止子
终 止 子 ( terminator , T ) 是 给 予 RNA 聚
合酶转录终止信号的DNA序列。在一个操纵子 中至少在结构基因群最后一个基因的后面有一 个终止子。
34 2021/2/16
它们都在结构基因的附近,只能对同一条 DNA链上的基因表达起调控作用,这种作用在遗 传学实验上称为顺式作用(cis-action),启 动子、操纵子和终止子就属于顺式作用元件 (cis-acting element)。
奖得主之一、法国分子遗传学家弗朗索瓦•雅各
布(Francois Jacob)于2013年4月19日在法国巴

乳糖操纵子名词解释

乳糖操纵子名词解释

乳糖操纵子名词解释乳糖操纵子( lac- G cluster),指能够对半乳糖等六种乳糖分子进行跨膜转运的转运体。

相关酶存在于高尔基体上的乳糖操纵基因( lac- G)调控亚单位(操纵子)内。

通常一个亚基由一个DNA 分子(操纵子)及若干个操纵蛋白(亚基)所组成,蛋白质为单顺反子。

当前的研究表明,乳糖操纵子可分为三个基本组件:操纵基因、蛋白转运亚基及转运蛋白。

在每一亚基中,均含有一对核酸( DNA或RNA)和蛋白质。

蛋白质的氨基酸序列和其相应的顺反子序列都是保守的,而与这些保守的氨基酸序列相互作用的核苷酸序列则因亚基而异。

操纵基因可以有若干个,通常是整合到基因组上;有些细菌的转运体可包括四个基因。

在不同的细菌间,同一乳糖操纵子也存在很大的差异,甚至同一菌属不同菌株间也存在着相当大的差异。

各种转运体之间有极其复杂的交叉现象,导致乳糖操纵子具有非常高的多样性。

乳糖操纵子的结构十分保守,对于鉴定遗传标记具有重要意义。

同一乳糖操纵子存在不同的亚基,其生理功能也有所差异。

一般来说,乳糖操纵子各亚基的基本功能是不同的,其主要区别有以下几点:( 1)转运亚基的形态和位置,取决于该亚基所携带的乳糖分子的大小和电荷。

此外,一个亚基往往含有两种或两种以上的乳糖分子,从而使该亚基的活性受到不同程度的影响。

( 2)转运蛋白的空间结构与转运性质。

转运蛋白以一种特定的方式结合在内质网上的特殊位点上,在转运过程中对于转运方向起重要作用。

人类及其它哺乳动物细胞中有多种转运体,这些转运体并不编码一种乳糖分子,但都有类似的结构,并且能将外源性乳糖分子从胞外转运至胞内。

不同细胞中乳糖操纵子的亚基数目可有很大差别,例如,分泌性胃肠道的Lac- G cluster包括一个编码前导蛋白的操纵基因,一个与受体蛋白结合的转运蛋白,还有两个负责ATP生成的转运蛋白亚基。

在乳糖操纵子中,有一部分的Lac- G亚基是不编码蛋白质的,这些亚基称为操纵基因。

详细版——乳糖操纵子

详细版——乳糖操纵子
29 2013-10-31
激活蛋白(activating protein):与操 纵区结合后能增强或起动其调控的基因转 录,所介导的调控方式为正调控 (positive regulation)。
30 2013-10-31
某些特定的物质能与调控蛋白结合,使调 控蛋白的空间构像发生变化,从而改变其对基 因转录的影响,这些特定物质可称为效应物 (effector)。有两种:
Collaboration between mentor and student won a Nobel Prize. It has not been common in the history. Only the lucky ones, who were willing to share the credit and lived long, panned out in the end. That was why I remember this story: The teacher-student team: Franç Jacob (1920-2013), student. ois Jacques Monod (1910-1976), Lwoff's colleauge. AndréLwoff (1902-1994), Jacob's mentor. Notable awards: 1965 Nobel Prize in Medicine. He shared the 1965 Nobel Prize in Medicine with Jacques Monod and AndréLwoff (1902-1994).
13 2013-10-31
2. 操纵子的基本组成
乳糖操纵子模型已被许多研究实验所证 实,对其有了更深入的认识,并且发现其他 原核生物基因调控也有类似的操纵子组织, 操纵子是原核基因表达调控的一种重要的组 织形式,大肠杆菌的基因多数以操纵子的形 式组成基因表达调控的单元。

01乳糖操纵子的调控模式

01乳糖操纵子的调控模式

▪ 遗传学图谱分析指出,Oc突变位于I与Z之 间,所以,lac体系的4个基因的序列为 IOZY。通过这些观察,Jacob和Monod推 断Oc突变代表DNA链上的一个位点或一个
非编码区域,而不是一个基因,因为可编 码的基因具诱导型合成还是 永久型合成,O区域称为操纵基因。
一、 乳糖操纵子的调控模式
▪ 大肠杆菌乳糖操纵子(lactose operon)包括3 个结构基因:Z、Y和A,以及启动子、控制 子和阻遏子等。转录时,RNA聚合酶首先与 启动区(promoter,P)结合,通过操纵区 (operator,O)向右转录。转录从O区的中间开 始,按Z→Y→A方向进行,每次转录出来的 一条mRNA上都带有这3个基因。转录的调控 是启动区和操纵区进行的 .
6. lac操纵子DNA的调控区域--P.O.区
lac P(启动子区)从I基因结束到 mRNA转录起始位点止,共长82bp(-82~ +1)O区就是阻遏物结合区,位于P区后半 部分和转录起始区(-7~+28),该区序列 有对称性,其对称中心点在+11位。P区的 CAMP-CAP结合区(-67~-52)也有对称 性,其对称位点在-60~-59之间。
5. cAMP与代谢物激活蛋白
▪ 当葡萄糖和乳糖同时存在于培养基中时, lac启动子表达受阻,没有β-半乳糖苷酶活 性;当葡萄糖消耗完以后(图中箭头处), 细胞内cAMP浓度增加,β-半乳糖苷酶活性 被诱导,一度停止生长的细胞又恢复分裂。
如果将细菌放在缺乏碳源的培养基中,细 胞内cAMP浓度就很高;若在含葡萄糖的培 养基中培养,细菌中的cAMP浓度就会很低; 如果将细菌置于甘油或乳糖等不进行糖酵 解的碳源培养基中,细菌中cAMP的浓度也 会很高。
②在lac mRNA分子内部,A基因比Z基因更 易受内切酶作用发生降解,因此,在任何时候Z基 因的完整拷贝数要比A基因多。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档