pcb线路温升计算
温升计算公式
温升计算公式
温升计算公式
温升计算公式是指温度升高的计算公式,它可以帮助人们计算出物体的温度从一个温度升高到另一个温度所需要的时间。
它的正确使用可以有效地避免温度过高或过低所带来的问题。
温升计算公式的公式为: ΔT = (T2 -T1) / K,其中ΔT为温度升高的量,T2为温度升高后的温度,T1为温度升高前的温度,K为热容量与导热系数的乘积。
在实际应用时,首先要确定T1、T2和K三个参数,然后根据温升计算公式计算出ΔT,即物体温度从T1升到T2所需要的时间。
温升计算公式的正确使用可以帮助人们有效地控制温度,避免温度过高或过低所带来的问题。
比如,当温度升高到一定程度时,可以利用温升计算公式计算出物体温度升高到可接受温度所需要的时间,从而及时采取措施防止温度过高。
此外,温升计算公式还可以用于计算空调和加热系统的运行能效,可以根据温升计算公式来估算出空调和加热系统的能量消耗、运行时间、热量损失等等。
总而言之,温升计算公式是一个重要的工具,它可以帮助人们有效地控制温度,从而更好地控制热量的消耗。
温升计算
压降乘上RMS电流就是损耗,然后用热阻来计算温升,在加上环境温度就是最终的结温,如果不超过datasheet给出的值就OK。
Ploss=0.9*3=2.7W 公式中0.9是VFRt=37℃/WRth=2℃/W不需要加散热器。
电源设计都要考虑效率与散热问题,此公式供大家参考:T=(P/Fm)^0.8 *539/AP : 损耗(热量);Fm: 散热面积;A :散热校正系数,与散热材料有关;T :温升.A的取值范围,要看你所用的散热材料,是用铜,铝还是铁,要查下它们的参数,导热系数,热阻.散热设计是一个比较复杂,也很头痛的事情,相互学习吧.希望有更多的人来参与,讨论.任何器件在工作时都有一定的损耗,大部分的损耗变成热量.小功率器件损耗小,无需散热装置.而大功率器件损耗大,若不采取散热措施,则管芯的温度可达到或超过允许的结温,器件将受到损坏.因此必须加散热装置,最常用的就是将功率器件安装在散热器上,利用散热器将热量散到周围空间,必要时再加上散热风扇,以一定的风速加强冷却散热.在某些大型设备的功率器件上还采用流动冷水冷却板,它有更好的散热效果. 散热计算就是在一定的工作条件下,通过计算来确定合适的散热措施及散热器.功率器件安装在散热器上.它的主要热流方向是由管芯传到器件的底部,经散热器将热量散到周围空间.采用什么方式散热以及散热片要多大,由以下条件决定:1、元件损耗2、元件散热环境3、元件最高允许温度如果要进行散热设计,上面的三个条件必须提供,然后才能进行估算.大部分TO-220三极管,一般中间那个脚是C,它又跟管子本身的金属片相连,也有不相连的.散热片与金属片那个脚相连,所以一些高压,绝缘不良的问题要主意啦,要留有一定的距离,或选好的绝缘材料.以7805为例说明问题.设I=350mA,Vin=12V,则耗散功率Pd=(12V-5V)*0.35A=2.45W按照TO-220封装的热阻θJA=54℃/W,温升是132℃,设室温25℃,那么将会达到7805的热保护点150℃,7805会断开输出.正确的设计方法是:首先确定最高的环境温度,比如60℃,查出7805的最高结温TJMAX=125℃,那么允许的温升是65℃.要求的热阻是65℃/2.45W=26℃/W.再查7805的热阻,TO-220封装的热阻θJA=54℃/W,均高于要求值,都不能使用,所以都必须加散热片,资料里讲到加散热片的时候,应该加上4℃/W的壳到散热片的热阻.计算散热片应该具有的热阻也很简单,与电阻的并联一样,即54//x=26,x=50℃/W.其实这个值非常大,只要是个散热片即可满足.国际化标准组织ISO规定:确定散热器的传热系数K值的实验,应在一个长( 4±0.2 )m×宽( 4±0.2 )m×高( 2.8±0.2 )m的封闭小室内,保证室温恒定下进行,散热器应无遮挡,敞开设置.散热器的传热系数是表示:当散热器内热媒平均温度与室内空气温度的差为1℃时,每㎡散热面积单位时间放出的热量.单位为W/㎡.℃.散热量单位为W.传热系数与散热量成正比.影响散热器传热系数的最主要因素是热媒平均温度与室内空气温度的温差△T,散热器的材质、几何尺寸、结构形式、表面喷涂、热媒温度、流量、室内空气温度、安装方式、片数等条件都会影响传热系数的大小.散热器性能检测标准工况(当△T=64.5℃时),即:热媒进口温度95℃,出口温度70℃,空气基准温度18℃.安规要求:对初/次级距离有三种方式:1.爬电距离达到要求.2.空间距离达到要求.3.采用绝缘材料:a.用大于0.4mm厚的绝缘材料.b.用能达到耐压要求的多层安规绝缘材料距离可小于0.4mm如变压器中用三层黄胶纸.散热器的计算:总热阻RQj-a=(Tjmax-Ta)/PdTjmax :芯组最大结温150℃Ta :环境温度85℃Pd : 芯组最大功耗Pd=输入功率-输出功率={24×0.75+(-24)×(-0.25)}-9.8×0.25×2=5.5℃/W总热阻由两部分构成,其一是管芯到环境的热阻RQj-a,其中包括结壳热阻RQj-C和管壳到环境的热阻RQC-a.其二是散热器热阻RQd-a,两者并联构成总热阻.管芯到环境的热阻经查手册知RQj-C=1.0 RQC-a=36 那么散热器热阻RQd-a应<6.4. 散热器热阻RQd-a=[(10/kd)1/2+650/A]C其中k:导热率铝为2.08d:散热器厚度cmA:散热器面积cm2C:修正因子取1按现有散热器考虑,d=1.0 A=17.6×7+17.6×1×13算得散热器热阻RQd-a=4.1℃/W,热量传递的三种基本方式:导热、对流和辐射.传热的基本计算公式为:Φ=ΚAΔt式中:Φ——热流量,W;Κ——总传热系数,W/(m2·℃);A ——传热面积,m2;Δt——热流体与冷流体之间的温差,℃.散热器材料的选择:常见金属材料的热传导系数:银429 W/mK铜410 W/mK金317 W/mK铝250 W/mK铁90 W/mK热传导系数的单位为W/mK,即截面积为1平方米的柱体沿轴向1米距离的温差为1开尔文(1K=1℃)时的热传导功率.5种不同铝合金热传导系数:AA1070型铝合金226 W/mKAA1050型铝合金209 W/mKAA6063型铝合金201 W/mKAA6061型铝合金155 W/mKADC12 型铝合金96 W/mK绝缘系统与温度的关系:insulation class Maximum Temperatureclass Y 194°F (90℃)class A 221°F (105℃)class E 248°F (120℃)class B 266°F (130℃)class F 311°F (155℃)class H 356°F (180℃)摄氏度,华氏度换算:摄氏度C=(华氏度-32)/1.8华氏度F= 32+摄氏度x1.8绝缘系统是指用于电气产品中兩个或數个绝缘材料的组合.基本绝缘:是指用于带电部分,提供防触电基本保护的绝缘.附加绝缘:是为了在基本绝缘失效后提供防触电保护,而在基本绝缘以外另外的单独绝缘.双重绝缘:是由基本绝缘和附加绝缘组合而成的绝缘.加强绝缘:是用于带电部分的一种单一绝缘系统,其防触电保护等级相当于双重绝缘.根据你提供的:热传导系数的单位为W/mK,即截面积为1平方米的柱体沿轴向1米距离的温差为1开尔文(1K=1℃)时的热传导功率.则:铝板的热传导能力就是:热功率(W}=250*铝板厚度{M)*铝板宽度(M)/铝板长度(M)/温差(℃)对不?做散热用,最好用6063、6061、6060等铝合金型材,便宜,散热好,但是不绝缘.传热的基本计算公式为:Φ=KAΔtΦ - 热流量,W;Κ - 总传热系数,W/(m2·℃);A - 传热面积,m2;Δt- 热流体与冷流体之间的温差,℃.导热基本定律—傅立叶定律:500) {this.resized=true; this.width=500; this.alt='这是一张缩略图,点击可放大。
PCB通流能力经验计算公式
PCB通流能力经验计算公式
先计算Track的截面积,大部分PCB的铜箔厚度为35um(不确定的话可以问PCB厂家)它乘上线宽就是截面积,注意换算成平方毫米. 有一个电流密度经验值,为15~25安培/平方毫米.把它乘上截面积就得到通流容量。
I="KT0".44A0.75 (K为修正系数,一般覆铜线在内层时取0.024,在外层时取0.048。
T 为最大温升,单位为摄氏度(铜的熔点是1060℃),A为覆铜截面积,单位为平方MIL(不是毫米mm,注意是square mil.),I为容许的最大电流,单位为安培(amp)。
一般 10mil=0.010inch=0.254可为 1A,250MIL=6.35mm, 为 8.3A
PCB载流能力的计算一直缺乏权威的技术方法,公式,经验丰富CAD工程师依靠个人经验能作出较准确的判断.但是对于CAD新手,不可谓遇上一道难题。
PCB的载流能力取决与以下因素:线宽,线厚(铜箔厚度),容许温升.大家都知道,PCB走线越宽,载流能力越大.假设在同等条件下,10MIL的走线能承受1A,那么50MIL的走线能承受多大电流,是5A吗答案自然是否定的.请看以下来自国际权威机构提供的数据: 线宽的单位是:Inch (inch 英寸=25.4 millimetres 毫米)1 oz.铜=35微米厚,2 oz.=70微米厚, 1 OZ =0.035mm 1mil.=10-3inch。
电感温升与损耗的计算公式
电感温升与损耗的计算公式
电感是电路中常见的元件,它能储存磁能并将其释放到电路中。
然而,由于电感元件存在内部电阻和电流流过时会产生热量,因此电感的温升和损耗是需要考虑的重要因素。
电感的温升取决于电流和损耗,可以通过以下公式进行计算:
ΔT = (Rms * I^2 * t) / (C * m)
其中,ΔT表示电感的温升(单位为摄氏度),Rms表示电感的有效电阻(单位为欧姆),I表示通过电感的电流(单位为安培),t表示电流流过电感的时间(单位为秒),C表示电感的热容量(单位为焦耳/摄氏度),m表示电感的质量(单位为克)。
这个公式可以帮助我们估算电感在特定电流下的温升情况。
但是请注意,这个公式中的参数需要根据具体的电感元件来确定,不同的电感具有不同的电阻、热容量和质量。
此外,电感的损耗也是需要考虑的因素。
电感的损耗主要由两部分组成:电感器的直流电阻(DCR)损耗和谐振谐振耗损耗。
电感器的直流电阻(DCR)损耗可以通过以下公式计算:
Pdcr = I^2 * Rdc
其中,Pdcr表示电感的直流电阻损耗(单位为瓦特),I表示通过电感的电流(单位为安培),Rdc表示电感的直流电阻值(单位为欧姆)。
谐振耗损耗则可以通过以下公式计算:
P = I^2 * R
其中,P表示电感的谐振耗损耗(单位为瓦特),I表示通过电感的电流(单位为安培),R表示电感的谐振电阻值(单位为欧姆)。
总的来说,了解电感的温升和损耗的计算公式可以帮助我们更好地设计电路,合理选择电感元件,并确保其工作在安全可靠的温度范围内。
温升计算方法探讨
这三种计算方法的散热面积是不同的,所引起的误差要折算到散热系数中, 这样才能使计算出的温升基本相同。
Delta Confidential
5.溫升計算方法
5.3散熱係數 散热系数也有两种: 一种认为散热系数是常数,通常是:0.8× 10-3(w/cm2•℃) 另一种认为散热系数是一条曲线,铁心规格越小散热系数越大,随着铁心规格的 增大散热系数趋向平缓,散热系数约在:1.5~0.7× 10-3 (w/cm2•℃) 之间 ;
Delta Confidential
5.溫升計算方法
5.2散熱面積 散热面积的计算有三种: 第一种认为变压器底部的面积是不能散热的,是将变压器底部表面积不计入 变压器的散热面积, 第二种是认为变压器底部虽不能散热,但底部是安装在金属底板也会散热, 因次将底部的面积计算进去, 第三种是变压器表面不规则时为了计算方便要用等效散热面积去代替,例如 环型变压器,采用直径等于变压器外径,高度等于变压器高度的一个圆柱体的表 面积来代替变压器的散热面积,
故在電器設備設計過程中,從兩個方面進行設計考慮從,儘量的減小損耗和加大散熱。
Delta Confidential
5.溫升計算方法
5.1溫升計算方法 由於變壓器與電抗器結構與材料不同,導致散熱不同,各個廠商對溫升的計算方法 也不同。通常的做法是生產廠商根據樣品溫升試驗,結合熱學規律,推導自己的溫升 計算公式,固各家都有自己的經驗公式:常見計算方法有: 1)熱阻法 热阻法基于温升与损耗成正比,不同磁心型号热阻不同,热阻法计算温升比较准确, 因其本身由试验得来,磁心又是固定不变的,热阻数据由大型磁心生产厂商提供。有了厂 家提供的热阻数据,简单、实用。高频变压器可采用这一方法。而铁心片供应商不能提供 热阻这一类数据,因此低频变压器设计者很难采用。
PCB线宽电流和温升的关系..
关于PCB线宽和电流的经验公式,关系表和软件网上都很多,本文把网上的整理了一下,旨在给广大工程师(当然包括自己啦)在设计PCB 板的时候提供方便。
************************************************************* ************PCB设计铜铂厚度、线宽和电流关系以下总结了网上八种电流与线宽的关系公式,表和计算公式,虽然各不相同(大体相近),但大家可以在实际的PCB板设计中,综合考虑PCB板的大小,通过电流,选择一个合适的线宽。
一、PCB电流与线宽PCB载流能力的计算一直缺乏权威的技术方法、公式,经验丰富CAD工程师依靠个人经验能作出较准确的判断。
但是对于CAD新手,不可谓遇上一道难题。
PCB的载流能力取决与以下因素:线宽、线厚(铜箔厚度)、容许温升。
大家都知道,PCB走线越宽,载流能力越大。
假设在同等条件下,10MIL的走线能承受1A,那么50MIL的走线能承受多大电流,是5A吗?答案自然是否定的。
请看以下来来自国际权威机构提供的数据:供的数据:线宽的单位是:Inch(1inch=2.54cm=25.4mm)数据来源:MIL-STD-275 Printed Wiring for Electronic Equipment参考文献:二、PCB设计铜铂厚度、线宽和电流关系在了解PCB设计铜铂厚度、线宽和电流关系之前先让我们了解一下PCB 敷铜厚度的单位盎司、英寸和毫米之间的换算:"在很多数据表中,PCB 的敷铜厚度常常用盎司做单位,它与英寸和毫米的转换关系如下:1 盎司 = 0.0014 英寸 = 0.0356 毫米(mm)2 盎司 = 0.0028 英寸 = 0.0712 毫米(mm)盎司是重量单位,之所以可以转化为毫米是因为pcb的敷铜厚度是盎司/平方英寸"PCB设计铜铂厚度、线宽和电流关系表也可以使用经验公式计算以上数据均为温度在25℃下的线路电流承载值.导线阻抗:0.0005×L/W(线长/线宽)电流承载值与线路上元器件数量/焊盘以及过孔都直接关系参考文献:另外导线的电流承载值与导线线的过孔数量焊盘的关系导线的电流承载值与导线线的过孔数量焊盘存在的直接关系(目前没有找到焊盘和过孔孔径每平方毫米对线路的承载值影响的计算公式,有心的朋友可以自己去找一下,个人也不是太清楚,不在说明)这里只做一下简单的一些影响到线路电流承载值的主要因素。
SMT回流焊PCB温度曲线讲解
区间
区间温度设定
区间末实际板温
预热 210℃(410°F)
140℃(284°F)
活性 177℃(350°F)
150℃(302°F)
回流 250℃(482℃)
210℃(482°F)
怎样设定锡膏回流温度曲线
图形曲线的形状必须和所希望的相比较,如果形状不协调, 则同下面的图形进行比较。选择与实际图形形状最相协调的曲 线。
得益于升温-到-回流的回流温度曲线
无光泽、颗粒状焊点 一个相对普遍的回流焊缺陷是无光泽、颗粒 状焊点。这个缺陷可能只是美观上的,但也 可能是不牢固焊点的征兆。在RTS曲线内改正 这个缺陷,应该将回流前两个区的温度减少 5° C;峰值温度提高5° C。如果这样还不行, 那么,应继续这样调节温度直到达到希望的 结果。这些调节将延长锡膏活性剂寿命,减 少锡膏的氧化暴露,改善熔湿能力。
得益于升温-到-回流的回流温度曲线
整个温度曲线应该从45℃到峰值温度215(± 5)℃持续3.5~4分钟。冷却速率应控制在每秒 4℃。一般,较快的冷却速率可得到较细的颗 粒结构和较高强度与较亮的焊接点。可是,超 过每秒4° C会造成温度冲击。
得益于升温-到-回流的回流温度曲线
升温-到-回流
RTS温度曲线可用于任何化学成分或合金,为水溶锡膏和难 于焊接的合金与零件所首选。 RTS温度曲线比RSS有几个优 点。RTS一般得到更光亮的焊点,可焊性问题很少,因为在 RTS温度曲线下回流的锡膏在预热阶段保持住其助焊剂载体。 这也将更好地提高湿润性,因此,RTS应该用于难于湿润的 合金和零件。
怎样设定锡膏回流温度曲线
活性区,有时叫做干燥或浸湿区,这个
区一般占加热通道的33~50%,有两个 功用,第一是,将PCB在相当稳定的温 度下感温,允许不同质量的元件在温度 上同质,减少它们的相当温差。第二个 功能是,允许助焊剂活性化,挥发性的 物质从锡膏中挥发。一般普遍的活性温 度范围是120~150℃。
PCB板级电路元件功耗散热估算
PCB板级电路元件功耗散热估算本文中,功耗指的是消耗在该元件本身的功率,此元件的负载功率不计在内。
作最坏情况估算,假设功耗全部转换为热能,导致该元件温度上升,直到功耗和散热达到平衡。
如果散热不佳或功耗过大,温升超过元件(对于芯片,一般是PN结温)的工作温度上限,元件被烧毁。
PN结温升的一个重要参量是热阻,表征每W功耗导致温升多少摄氏度。
大部分元件工作温度上限是100~150度,设计时一般限制升温不超过环境温度20~50度。
元件散热直接跟封装和PCB板相关。
封装具体分为以下因素:塑料封装外壳、引脚、焊脚的尺寸。
绝大多数元件的封装都是标准型号,同一元件不同封装型号的热阻都会在手册上列出。
虽然热阻跟器件种类有关,但是可以用一些典型值对所有相同封装型号的器件估算,比如8脚双列直插SOIC-8的大多在200W/C左右, 自带散热边的如SOT-89多在50~100W/C。
PCB板上的焊盘尺寸、铜皮走线、有无散热片以及散热片尺寸、导热硅胶的厚度材料等是影响散热的另一系列主要因素。
元件产生热量一般大部分通过引脚-焊盘-铜线传导至整个PCB板,因此保证这条路径的有效散热极为重要。
实际设计中,大部分芯片都是用于处理模拟或数字信号,因此功耗一般不大,通常本身的封装尺寸就足够散热;单片机、FPGA等运算类芯片功耗很大,但是一般尺寸也大,管脚很多,也无须特别考虑散热;电阻的功耗很好计算,而且额定功耗也都直接标出,如1/8,1/4,1/2,1W等;电容、二级管在挑选时只要严格按照电流电压的限制,一般功耗都是次要因素。
剩下需要特别考虑的主要是电源类芯片,和工作频率较高的器件,如频繁开关状态下的晶体管、各种各样的驱动芯片和通信芯片等。
开关晶体管:由于工作频率很高,开关管一般功耗较大。
仅以power MOS为例分析,功耗主要考虑驱动栅极电荷的充放电和开关瞬间源漏功耗。
第一项按此式计算Qg*Vgate*fs,Qg是打开MOS管所需的栅极电荷,虽然只是充放电容,但是这部分电荷最终是损耗在各种寄生回路的电阻上的。
pcb走线温升压降仿真
pcb走线温升压降仿真摘要:1.Pcb 走线温升压降仿真的背景和意义2.Pcb 走线温升压降仿真的方法和步骤3.Pcb 走线温升压降仿真中需要注意的参数和因素4.Pcb 走线温升压降仿真结果的分析和应用5.Pcb 走线温升压降仿真在电子设计中的重要性正文:随着电子技术的不断发展,PCB(印刷电路板)的设计和制造技术也日新月异。
PCB 走线温升压降仿真作为一种重要的设计和分析手段,可以帮助我们更好地理解和优化电路性能,提高产品可靠性和稳定性。
一、PCB 走线温升压降仿真的背景和意义在电子产品中,PCB 走线温升压降问题一直是设计工程师关注的焦点。
合理地控制走线温升压降,可以确保产品在长时间运行过程中保持稳定性能,避免因过热而导致的故障。
同时,通过仿真技术,可以在设计阶段预测和优化产品的性能,节省开发时间和成本。
二、PCB 走线温升压降仿真的方法和步骤进行PCB 走线温升压降仿真,首先需要准备电路原理图、PCB 布局和走线信息等设计数据。
接着,根据仿真软件的要求设置相关参数,如材料参数、环境温度等。
然后,进行仿真计算,分析仿真结果,提取所需的温升压降数据。
最后,根据分析结果对设计进行优化。
三、PCB 走线温升压降仿真中需要注意的参数和因素在进行PCB 走线温升压降仿真时,需要关注以下参数和因素:走线宽度、走线长度、覆铜厚度、层数、环境温度、器件功耗等。
这些参数和因素会影响到走线的温升压降性能,需要合理设置和调整。
四、PCB 走线温升压降仿真结果的分析和应用通过仿真软件得到的走线温升压降数据,可以帮助工程师更好地了解产品在实际运行中的性能表现,为产品优化提供依据。
同时,仿真结果还可以用于评估不同设计方案的性能优劣,为设计决策提供支持。
五、PCB 走线温升压降仿真在电子设计中的重要性随着电子产品性能要求的提高,PCB 走线温升压降问题日益突出。
通过PCB 走线温升压降仿真,可以在设计阶段就发现并解决潜在问题,确保产品在实际应用中稳定可靠。
贴片电感温升计算
贴片电感温升计算摘要:1.贴片电感简介2.贴片电感温升计算的重要性3.贴片电感温升计算公式4.影响贴片电感温升的因素5.贴片电感温升计算的实例6.总结正文:贴片电感,又称为表面贴装电感,是一种电子元器件,广泛应用于各类电子产品中。
它的主要作用是在电路中产生电磁感应,从而对电流产生阻碍。
然而,当贴片电感工作在高温环境中时,其性能和寿命可能会受到影响。
因此,准确地计算贴片电感的温升至关重要。
贴片电感温升计算公式如下:L = (T_c - T_ ambient) / (Rθ_jc + Rθ_ ambient)其中,L表示贴片电感的温升,T_c表示贴片电感的温度,T_ambient表示环境温度,Rθ_jc表示贴片电感的结到壳的热阻,Rθ_ambient表示环境到壳的热阻。
影响贴片电感温升的因素有以下几点:1.贴片电感的材料:不同的材料具有不同的热导率和热阻,从而影响温升的计算。
2.贴片电感的尺寸:尺寸会影响贴片电感的散热性能,进而影响温升。
3.工作电流:电流越大,产生的热量越多,贴片电感的温升也越高。
4.工作频率:高频信号会导致贴片电感内部产生更高的热量,从而增加温升。
5.环境温度:当环境温度较高时,贴片电感的温升也会相应增加。
下面我们通过一个实例来计算贴片电感的温升。
假设我们有一个贴片电感,其材料为陶瓷,尺寸为3mm x 3mm x1.5mm,工作电流为1A,工作频率为100MHz,环境温度为25℃。
我们需要计算在正常工作条件下,该贴片电感的温升。
首先,我们需要查找陶瓷材料的热导率和热阻数据。
假设查找到的热导率为120 W/m·K,热阻为10°C/W。
根据公式,我们可以计算出:L = (T_c - T_ ambient) / (Rθ_jc + Rθ_ ambient)= (T_c - 25°C) / (10°C/W + 10°C/W)= (T_c - 25°C) / 20°C/W假设我们已知贴片电感的温度T_c为50°C,代入公式计算:L = (50°C - 25°C) / 20°C/W= 25°C / 20°C/W= 1.25W因此,在正常工作条件下,该贴片电感的温升为1.25W。
温升和铜箔宽度
印制导线温升与导线宽度和负载电流的关系(PCB 设计时铜箔厚度,走线宽度和电流的关系)上图为网友扫描书籍成图片,本人经CorelDRAW描成矢量图,多处网站有此图片但出处不详。
据PCB供应商介绍,一般PCB不做特殊说明通常采用半盎司即0.5oz(约18μm)铜箔厚度来做。
1oz(约35μm)铜箔厚的价格较贵,2oz(约70μm) 铜箔厚的价格更贵,很少采用,3oz(约105μm)及以上铜箔厚的如有特殊需要通常需要定做。
通常采用的PCB基材均为FR-4材料,铜箔的附着强度和工作温度较高,一般PCB允许温度为260℃,但实际使用的PCB温度最高时不可超过150℃,因为如果超过此温度就很接近焊锡的熔点(183℃)了。
同时还应考虑到板上元件允许的温度,通常民品级IC只能承受最高70℃,工业级IC为85℃,军品级IC最高也只能承受125℃。
因此在装有民品IC的PCB上IC附近的铜箔温度就需控制在较低水平,只有在只装耐温较高的大功率器件(125℃~175℃)的板上才能允许较高的PCB温度,但PCB温度较高时对功率器件散热的影响也是需要考虑的。
0.5oz(约18μm)敷铜厚度PCB 上通过电流(A)1oz(约35μm)敷铜厚度PCB 上通过电流(A)3oz(约105μm)敷铜厚度PCB 上通过电流(A)另有多处网站转载表格数据及以往摘抄网上文章件如下,虽不够详细具体,但也可供参考 不同厚度不同宽度的铜箔的载流量见下表:电流(A)宽度(mm) 厚度1oz(约35μm)温升10℃ 厚度1.5oz(约50μm)温升10℃厚度2oz(约70μm)温升10℃2.5 4.5 5.1 62 4 4.3 5.11.5 3.2 3.5 4.21.22.7 33.61 2.3 2.6 3.20.8 2 2.4 2.80.6 1.6 1.9 2.30.5 1.35 1.7 20.4 1.1 1.35 1.70.3 0.8 1.1 1.30.2 0.55 0.7 0.9注:用铜皮作导线通过大电流时铜箔宽度的载流量应参考表中的数值降额50%去选择考虑 再看看摘自<<电子电路抗干扰实用技术>>(国防工业出版社, 毛楠孙瑛96.1第一版)的经验公式, 以下原文摘录:“由于敷铜板铜箔厚度有限,在需要流过较大电流的条状铜箔中,应考虑铜箔的载流 量问题. 仍以典型的0.03mm 厚度的为例,如果将铜箔作为宽为W(mm),长度为L(mm)的条状导线, 其电阻为0.0005*L/W 欧姆. 另外,铜箔的载流量还与印刷电路板上安装的元件种类,数量以及散热条件有关. 在考虑到安全的情况下, 一般可按经验公式0.15*W(A)来计算铜箔的载流量.通常各个论坛中提供经验值最多的是:1mm宽,1个盎司能走1A,较之上表降额50%更为保守.,但不等于2mm宽,1个盎司能走2A或1mm宽,2个盎司能走2A!也有不怕烫1mm宽,1个盎司能走3A这,多不推荐。
电源芯片的温升计算
电源芯片的温升计算电源芯片作为电子设备中的重要组成部分,其稳定性和可靠性对整个系统的性能和寿命有着重要影响。
其中,温升是电源芯片正常工作时不可忽视的重要指标之一,因为高温会导致芯片性能下降、寿命减短甚至烧毁。
因此,对电源芯片的温升进行准确的计算和评估非常重要,本文将介绍电源芯片温升的计算方法和主要影响因素。
第一步,确定芯片的热阻。
热阻是描述芯片热传导能力的物理量,常用的单位是摄氏度/瓦,数值越小表示芯片散热能力越好。
热阻可以通过芯片的热导率和热扩散系数计算得到,其中热导率表示材料导热能力的物理量,热扩散系数表示材料的热膨胀程度。
第二步,确定芯片的功耗。
芯片的功耗可以通过芯片的电流和芯片的工作电压计算得到,其中电流是芯片正常工作时的电流,工作电压是芯片正常工作时的电压。
第三步,确定芯片的环境温度。
环境温度是芯片工作环境的温度,该温度会对芯片的散热情况产生影响。
第四步,计算温升。
温升可以通过以下公式计算得到:温升=功耗×热阻+环境温度通过以上步骤,可以得到芯片的温升值,根据该值可以评估芯片的温度变化情况,从而确定芯片在正常工作状态下的散热需求。
除了上述计算方法外,还有一些其他的影响电源芯片温升的因素,包括芯片封装方式、散热设计、散热材料等。
芯片的封装方式直接影响到芯片的散热能力,通常,越好的封装方式散热能力越好。
散热设计包括芯片散热片的设计和散热器的设计,这些设计要保证芯片能够有足够的散热面积和散热通道。
散热材料的选择也会影响芯片的散热效果,可以选择热导率高、热阻低的材料来提高散热能力。
总结起来,电源芯片温升的计算是一个相对复杂的过程,需要考虑多个因素的综合影响,包括芯片的热阻、功耗、环境温度以及其他影响因素。
通过准确的温升计算和评估,可以为电源芯片的散热设计和可靠性评估提供重要的参考依据。
同时,合理的散热设计和选择合适的散热材料也是降低电源芯片温升的重要手段,可以提高芯片的工作稳定性和使用寿命。
PCB走线载流计算
PCB走线载流计算
朱松
对于PCB走线载流,我们会习惯于查找对比表,下面就如何对PCB的走线度为和过孔载流做一下计算说明,希望对大家能有帮助。
1、PCB走线载流计算:
I=KT0.44A0.75
(K为修正系数,一般覆铜线在内层时取0.024,在外层时取0.048; T为最大温升,单位为摄氏度(铜的熔点是1060℃) A为覆铜截面积,单位为平方mil。
I为容许的最大电流,单位为安培一般10mil=0.01inch=0.254mm载流可为1A(取温升为10℃)。
用公式可得I=0.048*100.44(10*1.378)0.75≈1A(此处取常规PCB铜箔厚35µm=1.378 mil)。
2、过孔载流计算:
PCB过孔的载流能力可以近似等效成PCB表层走线的计算方法:公式同上,但其中A应取过孔的截面积。
先说明一下,PCB加工中,孔壁的沉铜厚度约为1.5mil。
如过孔的内孔径为10mil,计算如下:
A=3.14*(102-8.52)≈27.75mm2
I=0.048*100.44*27.750.75≈1.6A
在PCB设计中,应结合实际应用,做合理布局,理论计算仅做参考,且计算值应取降额50%。
PCB线宽与电流计算公式
PCB布线时首先要设置走线宽度,在此使用下式计算线宽与电流的关系:
0.440.75
,W=A/d (4-1)
I KT A
式中K——修正系数,一般覆铜线在内层时取0.024,在外层时取0.048;
T——最大温升,单位为℃(铜的熔点是1060℃);
A——覆铜截面积,单位为平方mil;(注意不是mm,是square mil)
I——容许的最大电流,单位为安培(A)。
大部分PCB的铜箔厚度为35um,即无特殊要求下d取35um,即d=0.035/0.0254=1.378mil。
由I、K、T导出A,由A、d导出W。
本文选择覆铜厚度为70um,经计算,2A时线宽为0.254mm、3A时线宽为0.6mm,4A时线宽为0.635mm、30A时线宽为6.7mm。
布线完成后的开关电压的印刷电路图如图4-10所示。
10℃温升、5A:
5=0.048*100.44*A0.75
A0.75=5/(0.048*100.44)=37.82mil2
A=126.94mil2
70um=2.7559mil
线宽W=A/2.7559=46mil=1.17mm
30℃温升:
5=0.048*300.44*A0.75
A0.75=5/(0.048*100.44)=23.3236mil2
A=66.6388mil2
70um=2.7559mil
线宽W=A/2.7559=24mil=0.62mm
70um 5A 46MIL=1.2mm
1inch=1000mil=2.54cm=25.4mm
有一个电流密度经验值,为15~25安培/平方毫米现将布线设为1.3mm,理论为1.1mm。
PCB线宽电流和温升的关系
关于PCB线宽和电流的经验公式,关系表和软件网上都很多,本文把网上的整理了一下,旨在给广大工程师(当然包括自己啦)在设计PCB 板的时候提供方便。
************************************************************* ************PCB设计铜铂厚度、线宽和电流关系以下总结了网上八种电流与线宽的关系公式,表和计算公式,虽然各不相同(大体相近),但大家可以在实际的PCB板设计中,综合考虑PCB板的大小,通过电流,选择一个合适的线宽。
一、PCB电流与线宽PCB载流能力的计算一直缺乏权威的技术方法、公式,经验丰富CAD工程师依靠个人经验能作出较准确的判断。
但是对于CAD新手,不可谓遇上一道难题。
PCB的载流能力取决与以下因素:线宽、线厚(铜箔厚度)、容许温升。
大家都知道,PCB走线越宽,载流能力越大。
假设在同等条件下,10MIL的走线能承受1A,那么50MIL的走线能承受多大电流,是5A吗?答案自然是否定的。
请看以下来来自国际权威机构提供的数据:供的数据:线宽的单位是:Inch(1inch=2.54cm=25.4mm)数据来源:MIL-STD-275 Printed Wiring for Electronic Equipment参考文献:二、PCB设计铜铂厚度、线宽和电流关系在了解PCB设计铜铂厚度、线宽和电流关系之前先让我们了解一下PCB 敷铜厚度的单位盎司、英寸和毫米之间的换算:"在很多数据表中,PCB 的敷铜厚度常常用盎司做单位,它与英寸和毫米的转换关系如下:1 盎司 = 0.0014 英寸 = 0.0356 毫米(mm)2 盎司 = 0.0028 英寸 = 0.0712 毫米(mm)盎司是重量单位,之所以可以转化为毫米是因为pcb的敷铜厚度是盎司/平方英寸"PCB设计铜铂厚度、线宽和电流关系表也可以使用经验公式计算:0.15×线宽(W)=A以上数据均为温度在25℃下的线路电流承载值.导线阻抗:0.0005×L/W(线长/线宽)电流承载值与线路上元器件数量/焊盘以及过孔都直接关系参考文献:另外导线的电流承载值与导线线的过孔数量焊盘的关系导线的电流承载值与导线线的过孔数量焊盘存在的直接关系(目前没有找到焊盘和过孔孔径每平方毫米对线路的承载值影响的计算公式,有心的朋友可以自己去找一下,个人也不是太清楚,不在说明)这里只做一下简单的一些影响到线路电流承载值的主要因素。
电缆温升计算公式
电缆温升计算公式电缆是广泛应用在电力系统中的一种重要设备,其主要用途是进行电力传输和供电。
随着电力系统的不断发展和迅猛增长,电缆的数量和类型也在不断增加,应用越来越广泛。
但在电缆运行中,由于电流的通过会发热,这种发热会导致电缆温升,对电力系统的安全和稳定性造成影响,因此需要对电缆温升进行计算。
本文将介绍电缆温升计算公式的相关知识。
1. 电缆温升计算公式的重要性电缆在过载、短路等异常工况下,会产生较高的温升,甚至会导致电缆的烧毁,给电力系统的安全和稳定性带来严重的威胁。
因此,对电缆温升进行合理的计算和分析,可以有效地保证电缆运行的安全性和可靠性,保障电力系统的正常运行。
而电缆温升的计算公式是进行这一过程的关键。
2. 电缆温升计算公式的原理电缆的温升与电缆中的损耗有关,损耗大小又与电流强度、电阻大小等因素相关。
根据基尔霍夫电压定律和欧姆定律,可以得出电缆单位长度的电缆损耗公式:W=(I^2 * R)/L其中,W为单位长度的电缆损耗,I为电缆电流强度,R为电缆电阻,L为电缆长度。
电缆的总功率损耗与单位长度的电缆损耗之间满足如下公式:P=W*l其中,P为电缆总功率损耗,l为电缆长度。
另外,电缆的温度与电缆损耗之间存在着一定的关系,其具体关系式可以通过实验进行测定。
由此可以得到电缆温升的计算公式:ΔT=P/(m*c)其中,ΔT为电缆的温升,m为电缆质量,c为电缆的比热容。
3. 电缆温升计算公式的应用电缆温升计算公式是电力系统中重要的计算方法之一。
在实际应用中,首先需要测定电缆的电流强度、电缆电阻、电缆长度等参数,进而使用上述的电缆温升计算公式,计算出电缆的温升;同时,还要结合实际情况,对计算结果进行评估和验证,以确保计算结果的准确性和合理性。
在电力系统的运行中,坚持使用电缆温升计算公式,可以有效地确保电缆运行的安全性和可靠性,为电力系统的稳定运行提供强有力的保障。
4. 结语在电力系统中,电缆的作用至关重要,而电缆的温升计算公式则是确保电力系统正常运行不可或缺的途径之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Temperature Rise in PCB TracesDouglas BrooksUltraCAD Design, Inc.doug@ Reprinted from the Proceedings of the PCB Design Conference, West, March 23-27, 1998© 1998 Miller Freeman, Inc. © 1998, UltraCAD Design, Inc. BackgroundI built my first “electronic” device over 40 years ago. (I was really young at the time!) Over the intervening years, there have been dramatic changes in technology. Some of these changes include the shift from designing circuits with components to designing systems with IC’s, the shift from high voltage vacuum tube requirements (say 250 volts, or so) to (mostly) low voltage requirements, and the subsequent decline in the relative number of designs where high voltage and high current requirements are an issue. In the 60’s almost all designers had to worry about the current carrying capacity of PCB traces on at least some of their designs. Now, some designers can go through an entire career without having to address this issue at all. As I looked at this I began to understand why the significant investigations into PCB trace temperature-vs-current (T-C) relationships are mostly over 25 years old!The current T-C bible for most of us is the set of charts in IPC-D-275. (IPC) (Footnote 1) Yet there is a nagging concern about them when we use them: Are they current? Are we sure where they came from and can they be trusted? Some people say they were generated with only three or four points and then “French Curves” were used to create smooth lines between the points. Others say they have been redrawn so many times by so many artists that they only somewhat resemble the original data. And you only have to look at the incongruous result from some of them that up to 125 ma of current can flow through a conductor with zero cross-sectional area! (You know, the curves really should go through the origin!)Then I ran across another set of data in an old (1968) copy of “Design News” (DN) (Footnote 2). McHardy and Gandi recently reported on an analysis where they tried to test a theoretical, mathematical model on the IPC and the DN data (Footnote 3) with some limited success. That was when I decided to do the same thing using a different, more analytical (I believe) approach. This paper is a report of that analysis.Defining the ModelWe can think of a model as a representation of reality. In the context of this paper I will use an equation to “model” the relationship between current and the temperature of a trace. If the model is realistic, then when I substitute variables into the equation, the result will (within reason) reflect the actual result that would be obtained in the physical world. We can “test” a model by looking at actual results, and see if the model would give similar results under the same conditions.It is intuitive that the flow of current through a trace (power) will cause the temperature of the trace to increase. The formula for power is I2*R, so the relationship is probably not simply linear. The resistance of a trace (per unit length) is a function of its cross-sectional area (width times thickness). So the relationship between temperature and current, therefore, is probably a non-linear function of current, trace width, and trace thickness. But the ability of a trace to “shed”, or dissipate, heat is a function of its surface area, or width (per unit length). At the same time the current is heating the trace, the trace is cooling through the combined effects or radiation, convection and conduction through its surface. Therefore, the relative effect of width in the overall model is probably different than thickness.A common model in thermodynamics for this type of situation is:I =k *T A 12∆ββEq. 1where:I = current in amps,∆T = change in Temperature above ambient, in degrees C,A = cross sectional area in square mils, andk, β1 and β2 are constants.Indeed, this is the starting point for McHardy and Gandi. Substituting Width*Thickness (W*Th) for area,we obtain a slightly more general model:I =k *T W Th 123∆βββEq. 2So far, so good. But how do we determine those coefficients?Developing the model Least-squares-fit and multiple regression are techniques that can be used to estimate a set of constants in a situation like this. Assume we have a set of actual data for current, temperature change, and the width and thickness of traces. Least squares fit is a technique that will generate the constants and therefore give us an estimate for the equation (model) from that actual data. If we then use the estimated equation to calculate what the result would be, for any individual observation, and then look at the DIFFERENCE between the estimated value and the actual value, that DIFFERENCE is called an error term or a residual.The least squares fit is a technique that finds the set of coefficients that minimizes (“least”) the variance of the error terms. (Footnote 4).The difference between least-squares-fit and regression analysis is the set of assumptions we make about the error terms. Most importantly, we assume that they are randomly distributed. If this is true, then we can make statistically valid statements about probabilities related to the coefficients of a model and the resulting estimates from the model. If the randomness assumption is not valid, then we can still estimate the coefficients, but we cannot make any legitimate statistical inferences abut them. (This is notnecessarily bad; useful predictive equations can often be obtained even when the randomness assumption is not met.)To estimate the coefficients for Eq. 1 or Eq. 2, it is convenient first to convert them to linear form. We can do this using logarithms, as follows:Ln(I) = Ln(k) + β1∗Ln (∆T) + β2*Ln(A)Eq. 3Ln(I) = Ln(k) + β1∗Ln (∆T) + β2*Ln(W) + β3*Ln(Th)Eq. 4Where Ln() is the natural logarithm (to the base e). We will use these forms of the model to find the best fit coefficients for the data.DataThe IPC and DN sources have charts relating temperature change and current for various traceconfigurations. The DN data provides information allowing the independent evaluation of length and width for the traces under study. The IPC data appears to, but in fact it does not. The data really istabulated by cross-sectional area for 4 trace thicknesses. I took approximately 300 data points from these charts, more or less randomly, as the source data for the analysis.The first question is whether this approach can introduce its own error? Obviously my estimation of data points will result in some error. But IF this error is RANDOM, then it will introduce no bias into the estimate of the coefficients (constants), which is what this is all about. This additional random error will have a marginal effect on the statistical inferences we can make. But as we will see, there is enough error from other sources that my errors (if any) in estimating the raw data is pretty insignificant!Analysis of DN DataThe DN data included charts for three trace thicknesses, 1 oz., 2 oz, and 5 oz. copper traces. When all DN data is used in a regression analysis, using Eq. 3, we get the following estimate for Eq. 3 (see Table 1 and Footnote 5):Ln(I) = -3.23 + .45*Ln(∆T) + .69*Ln(A)which leads to this estimate of Eq. 1:I =.04*T A .45∆.69Eq. 5Looking at a graph of this result (Fig. 1), the fit is obviously notreally good, so let’s change the model, as discussed above, to useWidth*Thickness instead of simply Area (Eq. 4) That results in thefollowing estimate (see Table 2):Ln(I) = -3.69 + .45*Ln(∆T) + .79*Ln(W) + .53*Ln(Th).If the effects of Width and Thickness were equal, then theindividual coefficients for Ln(W) and Ln(Th) would be equal andwould be the same as the coefficient for Ln(A) above. That they arenot is one indication that the form factor of the trace (not simply itscross-sectional area) is important.This result leads to this estimate of Eq. 2:I =.025*T W Th ∆...457953Eq. 6Above it was mentioned that one desirable characteristic in aregression analysis is that the residuals (error terms) be randomlydistributed. Figure 2 is a graph of the actual current (I) and thecurrent (I’) predicted from Eq. 6. The fit is better than that in Fig.1. But when we look at the graph of the error terms (I - I’, Fig 3, inorder of trace thickness) the error terms are CLEARLY notrandom. It appears that the residuals for the 2 oz trace aresignificantly shifted from those for 1 oz. and 5 oz.One way of adjusting for, and evaluating, the effects of thisproblem is through the introduction of what is called a “Dummy”variable. This is a variable whose value is 0 (zero) for all casesexcept where the trace thickness is 2 oz, where the value of theDummy variable is 1 (one). Introducing a Dummy variable into Eq.4 results in:Ln(I) = Ln(k) + D + β1∗Ln (∆T) + β2*Ln(W) + β3*Ln(Th)Eq. 7Now, the result of the regression of this modified model is (see Table 3):Ln(I) = -3.58 + .2*(D) + .46*Ln(∆T) + .76*Ln(W) + .54*Ln(Th).Eq. 8Now D=0 for all but 2 oz. traces, so the result is reallyLn(I) = -3.58 + .46*Ln(∆T) + .76*Ln(W) + .54*Ln(Th) for 1 and 5 oz. traces, andEq. 9Ln(I) = -3.38 + .46*Ln(∆T) + .76*Ln(W) + .54*Ln(Th) for 2 oz. traces.Eq. 10This results, in turn, in the following estimated models:I =.028*T W Th ∆...467654 for 1 oz. and 5 oz. traces, andEq. 11I =.034*T W Th ∆...467654 for 2 oz. traces Eq. 12The results of this model are graphed in Fig. 4(a). The residuals (error terms) are graphed in Figs. 4(b) (in Amps) and 4(c) (in percent.) In general, the model fits within 10% or 4 Amps, whichever is less.Summary of DN DataThe implications of this are quite interesting. Let’s summarize the results so far:I =.040*T A .45∆.69Adj. R 2 = .961Eq. 5I =.025*T W Th ∆ (457953)Adj. R 2 = .990Eq. 6I =.028*T W Th ∆...467654 (for 1 oz. and 5 oz. traces, and)Adj. R 2 = .997Eq. 11I =.034*T W Th ∆...467654 (for 2 oz. traces)Eq. 12The “Adjusted R 2” is a measure of “goodness of fit.” In general, the higher the value of R 2, the better the model is at fitting the actual data. A “perfect” fit would result in an R 2 = 1.0, and a “perfect ‘non-fit’ “(which would be suspicious in itself!) would result in an R 2 of 0 (zero). No matter how we look at the data,the coefficient of the ∆T term is .45 or .46 . We can have a high confidence that this reflects a “true”relationship, at least for this data. Separating the cross-sectional area term (A) into its two components,width (W) and thickness (Th) results in significant improvement, and once that is done, those coefficients remain somewhat stable.The impact of the Dummy variable is surprising. What it implies is --- all other things equal --- the 2 oz.traces can carry 21% more current than can the other traces! How can this be? I wasn’t there to see the test conditions. The article summarizes the test conditions, but not nearly in enough detail to be able to evaluate what happened. But my personal opinion is that one or both of the following probably explain this result:1. This kind of test is inherently difficult to set up and to control. The results reflect the normal variability that is to be expected from these kinds of investigations. However, if this were true, then the close consistency of the data for the 1 oz. and 5 oz. traces would not necessarily be expected.2. Since all other results are so consistent, there was some variable that was not controlled as tightly as the researchers thought, and the results reflect conditions that were slightly different when the 2 oz. traces were fabricated and/or tested.Analysis of IPC DataThe IPC data is graphed in IPC-D-275 for two conditions, external traces and internal traces. In a similar manner to the above, the IPC external data was used to fit the coefficients to the model in Eq. 3 with the following results (see Table 4 and Fig. 5):I =.065*T A .43∆.68Eq. 13The IPC data does not provide a way of independently obtaining the width and thickness components of the cross-sectional data except by estimating them from the middle graph. When this is done, the results shown in Table 5 occur. Note that the coefficients for the width and thickness terms are (1) almostidentical to each other, and (2) almost identical to the coefficient for the area term, above. All other results are virtually identical. This illustrates that there is no information to be gained from the IPC data from breaking down the IPC area numbers into their width and thickness components. This, therefore, implies that the IPC data was not taken with this idea in mind, or at least that it was ignored in the subsequent presentation of the data.Comparing the results of this model for the two sets of data reveals:I =.040*T A .45∆.69(DN data)Eq. 5I =.065*T A .43∆.68(IPC data)Eq. 13This data suggest that the fundamental model is the same for both sets of data (IPC and DN) but that all other things equal, the IPC implied currents are over 60% higher. This can be a little misleading,however. Consider this possibility: Use the DN model (Eq. 5) to calculate what the IPC currents would be for each observation of IPC ∆T and Area. Then compare this calculated IPC current (using the DN model,Eq. 5) to the actual IPC current from the chart. When this is done, we get the following relationship (see Table 6):IPC Current (Amps) = .251+ 1.34*(Current Predicted From DN Eq. 5)R 2 = .996Eq. 14This shows that, on average, the IPC currents are shifted UP by 250 ma (remember the comment that they really should go through the origin?), and then are 34% higher than those implied by the DN model. But,then, DN’s own 2 oz. trace data are higher than would be predicted by this model, also!This time it is easier to accept that the reason is different test conditions. Although I have not been able to determine this precisely, I have reason to believe that the test conditions for the DN data collection and the IPC data collection were quite different (Footnote 6). I believe the IPC data were taken with the test board hung vertically, and the temperature change data were determined by the change in resistance of the trace under test. Since the temperature coefficient of resistivity is (supposedly) known for copper, then a change in resistivity can be directly correlated with a change in temperature. The DN data were taken with the test board hung horizontally, and the temperature change read with an infrared microscope. The data are remarkably close considering the fact that the data were taken (a) using different testing procedures on (b) different boards, (c) at different times, (d) by different people! It is especially remarkable that the coefficients for the primary variables are virtually identical.IPC Internal DataThe IPC charts also include data for internal traces (the DN charts do not). Those data were fitted to Eq. 2to compare the results with IPC’s external data with the following results (see Table 7):Ln(I) = -4.20 + .55*Ln(∆T) + .74*Ln(A)which leads to this estimate of Eq. 1:I =.015*T A .55∆.74(IPC Internal)Eq. 15I have heard rumors (which I have not confirmed) that the IPC internal charts were simply derated 50%from the external ones. In a practical sense that is about the conclusion that could be drawn from, and is consistent with, the result of Eq. 15.ConclusionThe relationship of current, change in temperature, and PCB trace cross-sectional area has been assumed to be of the form:I =k *T A 12∆ββEq. 1Analysis of two independent sets of data suggest this relationship is true, with the coefficients β1 and β2being approximately .44 and .68, respectively. The Design News data suggest that this model can be improved by separating the area term into its components, Width * Thickness:I =k *T W Th 123∆βββEq. 2When this occurs, the coefficient β1 does notsignificantly change, but β2 and β3 become.76 and ,54, respectively.The constant term, k, however, variesconsiderably by data source and even withinone set of data, suggesting that it is quitesensitive to variations in test conditions.The IPC internal trace data suggest thatcurrents be derated 50% (with respect toexternal traces) for the same degree ofheating.Temp CalculatorMy company has created a freeware Windowscalculator (PCBTEMP.EXE) for determiningthe relationship between current, traceconfiguration, and trace temperature rise. It isavailable for downloading from:Follow the links to calculators.**********************************************************************************Footnotes1. ANSI/IPC-D-275, Design Standard for Rigid Printed Boards and Rigid Printed Board Assemblies,Figure 3-4, Page 10, IPC, September, 19912. “Printed Circuits and High Currents”, Friar, Michael E. and McClurg, Roger H., Design News, Vol.23, December 6, 1968, pp. 102 - 107.3. “Empirical Equation for Sizing Copper PWB Traces,” McHardy, John, and Gandhi, Mahendra,Presented at IPC Works ‘97, October 5-9, 1997, Arlington, VA4. The formulas can be very complex, and any reasonable problem requires a computer to do the analysis.All major current spreadsheets can perform least squares fits and regression analyses. Almost any text for a first or second course in college level statistics will cover this topic.5. The tables of coefficients and for ANOVA for the various results are included as an Appendix for thosereaders who understand them. A thorough understanding of these tables is not necessary tounderstand the fundamental conclusions that will be drawn from this analysis.6. I am indebted to Ralph Hersey of Ralph Hersey and Associates, Livermore, CA., for insights into testprocedures and the history of this kind of data. (Nevertheless, any errors and/or shortcomings in this analysis are purely my own.)*********************************************************************************Figure 6Example output from PCBTEMP.EXEAppendicesAn Interesting Observation(In the following analysis, “k” represents a constant, but not necessarily the same constant from step to step. This will keep the flow of the logic easier.)Look at the form of Eq. 6:I =k *T W Th ∆...457953Rearrange terms:∆T =k *I /W Th .45.79.53Now, approximately square both sides:∆T k *I W Th 2 1.5≈/Recognize that Area (A) = W*Th ∆T k *I /A *W 2≈Further recognize that Resistance is proportional to 1/A, so ∆T k *I R /W2≈This suggests that ∆T is directly proportional to power (I 2R), which acts to heat the trace, and inversely proportional to the square root of W (surface area), which helps to cool the trace. Thus, the results of this analysis lead to a fairly reasonable, intuitive understanding of the dynamics involved.ANOVA Tables Related to the Various AnalysesMultiple Regression Analysis-----------------------------------------------------------------------------Dependent variable: Ln_I----------------------------------------------------------------------------- Standard TParameter Estimate Error Statistic P-Value -----------------------------------------------------------------------------CONSTANT -3.23158 0.12787 -25.2725 0.0000Ln_DT 0.450045 0.0237091 18.982 0.0000Ln_Area 0.686565 0.0125318 54.7857 0.0000----------------------------------------------------------------------------- Analysis of Variance-----------------------------------------------------------------------------Source Sum of Squares Df Mean Square F-Ratio P-Value -----------------------------------------------------------------------------Model 96.4864 2 48.2432 1646.46 0.0000Residual 3.95567 135 0.0293012-----------------------------------------------------------------------------Total (Corr.) 100.442 137R-squared = 96.0617 percentR-squared (adjusted for d.f.) = 96.0034 percentStandard Error of Est. = 0.171176Mean absolute error = 0.142287Durbin-Watson statistic = 0.215158Table 1Regression of Ln(I) vs Ln(DT) and Ln(A), DN data-----------------------------------------------------------------------------Dependent variable: Ln_I-----------------------------------------------------------------------------Standard TParameter Estimate Error Statistic P-Value-----------------------------------------------------------------------------CONSTANT -3.68796 0.0681556 -54.1109 0.0000Ln_DT 0.452776 0.0118993 38.0508 0.0000Ln_W 0.791638 0.0082062 96.4683 0.0000Ln_Th 0.532173 0.00998182 53.3143 0.0000-----------------------------------------------------------------------------Analysis of Variance-----------------------------------------------------------------------------Source Sum of Squares Df Mean Square F-Ratio P-Value-----------------------------------------------------------------------------Model 99.4532 3 33.1511 4492.18 0.0000 Residual 0.988884 134 0.00737973-----------------------------------------------------------------------------Total (Corr.) 100.442 137R-squared = 99.0155 percentR-squared (adjusted for d.f.) = 98.9934 percentStandard Error of Est. = 0.0859054Mean absolute error = 0.0672203Durbin-Watson statistic = 0.487489Table 2Regression of Ln(I) vs Ln(DT), Ln(W), and Ln(Th), DN DataMultiple Regression Analysis-----------------------------------------------------------------------------Dependent variable: Ln_I-----------------------------------------------------------------------------Standard TParameter Estimate Error Statistic P-Value-----------------------------------------------------------------------------CONSTANT -3.57889 0.0375705 -95.258 0.0000Ln_DT 0.457264 0.00647729 70.5949 0.0000Ln_W 0.762972 0.00474267 160.874 0.0000Ln_Th 0.540707 0.00545039 99.2051 0.0000D 0.200244 0.0111956 17.886 0.0000-----------------------------------------------------------------------------Analysis of Variance-----------------------------------------------------------------------------Source Sum of Squares Df Mean Square F-Ratio P-Value-----------------------------------------------------------------------------Model 100.152 4 25.0379 11467.34 0.0000 Residual 0.290394 133 0.00218341-----------------------------------------------------------------------------Total (Corr.) 100.442 137R-squared = 99.7109 percentR-squared (adjusted for d.f.) = 99.7022 percentStandard Error of Est. = 0.046727Mean absolute error = 0.0335754Durbin-Watson statistic = 1.29037Table 3Effects of Introducing Dummy Variable, D, Into The Regression (Refer to Table 2)-----------------------------------------------------------------------------Dependent variable: Ln_I----------------------------------------------------------------------------- Standard TParameter Estimate Error Statistic P-Value -----------------------------------------------------------------------------CONSTANT -2.73791 0.0392918 -69.6815 0.0000 Ln_DT 0.428273 0.00617235 69.3858 0.0000 Ln_A 0.67321 0.00642648 104.756 0.0000 -----------------------------------------------------------------------------Analysis of Variance-----------------------------------------------------------------------------Source Sum of Squares Df Mean Square F-Ratio P-Value -----------------------------------------------------------------------------Model 35.0315 2 17.5158 7894.06 0.0000 Residual 0.226323 102 0.00221885-----------------------------------------------------------------------------Total (Corr.) 35.2579 104R-squared = 99.3581 percentR-squared (adjusted for d.f.) = 99.3455 percentStandard Error of Est. = 0.0471047Mean absolute error = 0.0373772Durbin-Watson statistic = 1.01609Table 4Regression of Ln(I) vs Ln(DT) and Ln(A), IPC (External) DataMultiple Regression Analysis-----------------------------------------------------------------------------Dependent variable: Ln_I----------------------------------------------------------------------------- Standard TParameter Estimate Error Statistic P-Value -----------------------------------------------------------------------------CONSTANT -2.73817 0.0391329 -69.9712 0.0000 Ln_DT 0.428273 0.00614715 69.6703 0.0000 Ln_W 0.672272 0.00646809 103.937 0.0000 Ln_Th 0.68235 0.00886406 76.9794 0.0000 -----------------------------------------------------------------------------Analysis of Variance-----------------------------------------------------------------------------Source Sum of Squares Df Mean Square F-Ratio P-Value -----------------------------------------------------------------------------Model 35.0356 3 11.6785 5306.56 0.0000 Residual 0.222278 101 0.00220077-----------------------------------------------------------------------------Total (Corr.) 35.2579 104R-squared = 99.3696 percentR-squared (adjusted for d.f.) = 99.3508 percentStandard Error of Est. = 0.0469124Mean absolute error = 0.0369706Durbin-Watson statistic = 1.04776Table 5IPC (External) Results Using A = W*Th.(Note almost no new information is obtained.)Regression Analysis - Linear model: Y = a + b*X-----------------------------------------------------------------------------Dependent variable: IIndependent variable: Col_16----------------------------------------------------------------------------- Standard TParameter Estimate Error Statistic P-Value-----------------------------------------------------------------------------Intercept 0.251202 0.102736 2.44513 0.0162Slope 1.34477 0.0117182 114.758 0.0000-----------------------------------------------------------------------------Analysis of Variance-----------------------------------------------------------------------------Source Sum of Squares Df Mean Square F-Ratio P-Value -----------------------------------------------------------------------------Model 4008.3 1 4008.3 13169.51 0.0000 Residual 31.3493 103 0.304363-----------------------------------------------------------------------------Total (Corr.) 4039.65 104Correlation Coefficient = 0.996112R-squared = 99.224 percentStandard Error of Est. = 0.551691Table 6IPC External Current as a Function of DN Current Estimated From Eq. 5Multiple Regression Analysis-----------------------------------------------------------------------------Dependent variable: Ln_I----------------------------------------------------------------------------- Standard TParameter Estimate Error Statistic P-Value -----------------------------------------------------------------------------CONSTANT -4.19966 0.0766892 -54.7621 0.0000 Ln_DT 0.545301 0.018251 29.8779 0.0000 Ln_Area 0.735127 0.0105064 69.9695 0.0000 -----------------------------------------------------------------------------Analysis of Variance-----------------------------------------------------------------------------Source Sum of Squares Df Mean Square F-Ratio P-Value -----------------------------------------------------------------------------Model 35.6781 2 17.839 2894.21 0.0000 Residual 0.351331 57 0.0061637-----------------------------------------------------------------------------Total (Corr.) 36.0294 59R-squared = 99.0249 percentR-squared (adjusted for d.f.) = 98.9907 percentStandard Error of Est. = 0.0785092Mean absolute error = 0.0563861Durbin-Watson statistic = 0.925714Table 7Regression of Ln(I) vs Ln(DT) and Ln(A), IPC (Internal) Data。