计量经济学报告报告

合集下载

计量经济学实验报告

计量经济学实验报告

计量经济学实验报告1. 引言计量经济学是应用数学和统计学方法来研究经济现象的一门学科。

实验是计量经济学研究中常用的方法之一,通过设计和实施实验,可以帮助我们理解经济现象背后的因果关系。

本文将对一项计量经济学实验进行详细描述和分析,以展示实验的设计、数据分析和结论。

2. 实验设计2.1 实验目的本次实验的目的是研究市场供需关系对商品价格的影响。

具体而言,我们希望通过改变商品的市场供给量,观察商品价格如何变化,并分析供给弹性的大小。

2.2 实验假设在实验设计阶段,我们需要制定实验假设来指导实验的进行。

在本次实验中,我们假设市场供给量的变动会对商品价格产生影响,而且供给弹性的大小会决定价格的变动幅度。

2.3 实验步骤本次实验包括以下几个步骤:1.设定实验组和对照组:我们将随机选择一些参与者,并将其分为两组,一组作为实验组,一组作为对照组。

实验组将面临市场供给量变动的情况,而对照组则不受干扰。

2.确定商品和市场:我们选择一个特定的商品,并确定一个特定的市场来进行实验。

这样可以使实验更加具体和可控。

3.设定实验条件:在实验组中,我们逐步调整市场供给量,并记录下不同供给量下的商品价格。

对照组则保持市场供给量不变。

4.数据收集:在每次实验条件设定完毕后,我们将记录实验组和对照组的商品价格,并对数据进行整理和存储。

2.4 实验风险和伦理考虑在设计实验时,我们需要考虑实验可能存在的风险,并确保实验过程符合伦理要求。

具体而言,我们需要确保参与者的权益得到保护,并在可能对参与者造成负面影响的情况下停止实验。

3. 数据分析在实验进行完毕后,我们对数据进行分析,以验证实验假设并得出结论。

3.1 数据整理首先,我们将实验组和对照组的数据整理成表格形式,方便后续分析。

由于文档要求不能包含表格,这里无法展示具体的数据。

3.2 数据分析方法我们采用的数据分析方法主要包括描述统计分析和回归分析。

描述统计分析用于描述数据的基本特征,包括平均值、标准差、最小值和最大值等。

计量经济学实训报告

计量经济学实训报告

计量经济学实训报告一、实验设计:本次实验是基于计量经济学的理论知识和方法,通过对已有的数据进行回归分析,验证理论假设的可行性。

实验的目的是了解计量经济学在实际应用中的重要性,以及掌握回归分析等基本方法。

二、实验过程:1.数据收集:我们选择了一个包含多个变量的数据集,包括自变量和因变量,旨在通过回归模型来预测因变量的取值。

2.数据清洗:对收集到的数据进行清洗和预处理,包括处理缺失值、异常值等。

3.变量选择:根据计量经济学的原理和假设,选择适合的自变量和因变量,并对其进行初步的分析。

4.模型建立:根据选择的自变量和因变量,建立回归模型,并假设一些条件。

5.模型估计:利用统计软件对建立的回归模型进行估计和拟合,获得回归系数和拟合度等相关参数。

6.模型诊断与检验:对建立的回归模型进行诊断和检验,检查模型的拟合度和有效性。

7.结果分析:根据模型估计和检验结果,分析自变量对因变量的影响程度和显著性等,并解读模型。

三、实验结果:经过以上的实验过程和分析,我们得到了以下结论:1.自变量X对因变量Y的影响具有统计显著性;2.自变量X1对因变量Y的影响程度较大,而自变量X2的影响相对较小;3.拟合度较高,模型的解释能力较强。

四、实验感想:通过本次实验,我们深刻认识到计量经济学在实际问题中的重要性。

通过建立回归模型,我们可以对研究对象的变量关系进行实证分析,从而对问题进行解释和预测。

同时,我们也了解到了回归分析中的一些注意事项,如数据的选择和处理、模型的建立和检验等。

在今后的学习中,我们将进一步掌握和应用计量经济学的方法,提高对实际问题的分析和解决能力。

同时,我们也意识到计量经济学的方法和理论需要结合实际问题来进行应用,只有在实际问题中进行实践和应用,才能更好地理解和掌握计量经济学的知识。

计量经济实验报告多元(3篇)

计量经济实验报告多元(3篇)

第1篇一、实验目的本次实验旨在通过多元线性回归模型,分析多个自变量与因变量之间的关系,掌握多元线性回归模型的基本原理、建模方法、参数估计以及模型检验等技能,提高运用计量经济学方法解决实际问题的能力。

二、实验背景随着经济的发展和社会的进步,影响一个变量的因素越来越多。

在经济学、管理学等领域,多元线性回归模型被广泛应用于分析多个变量之间的关系。

本实验以某地区居民消费支出为例,探讨影响居民消费支出的因素。

三、实验数据本实验数据来源于某地区统计局,包括以下变量:1. 消费支出(Y):表示居民年消费支出,单位为元;2. 家庭收入(X1):表示居民家庭年收入,单位为元;3. 房产价值(X2):表示居民家庭房产价值,单位为万元;4. 教育水平(X3):表示居民受教育程度,分为小学、初中、高中、大专及以上四个等级;5. 通货膨胀率(X4):表示居民消费价格指数,单位为百分比。

四、实验步骤1. 数据预处理:对数据进行清洗、缺失值处理和异常值处理,确保数据质量。

2. 模型设定:根据理论知识和实际情况,建立多元线性回归模型:Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε其中,Y为因变量,X1、X2、X3、X4为自变量,β0为截距项,β1、β2、β3、β4为回归系数,ε为误差项。

3. 模型估计:利用统计软件(如SPSS、R等)对模型进行参数估计,得到回归系数的估计值。

4. 模型检验:对估计得到的模型进行检验,包括以下内容:(1)拟合优度检验:通过计算R²、F统计量等指标,判断模型的整体拟合效果;(2)t检验:对回归系数进行显著性检验,判断各变量对因变量的影响是否显著;(3)方差膨胀因子(VIF)检验:检验模型是否存在多重共线性问题。

5. 结果分析:根据模型检验结果,分析各变量对因变量的影响程度和显著性,得出结论。

五、实验结果与分析1. 拟合优度检验:根据计算结果,R²为0.812,F统计量为30.456,P值为0.000,说明模型整体拟合效果较好。

计量经济学实验报告

计量经济学实验报告

计量经济学实验报告:马艺菡学号:4班级:9141070302任课教师:静文实验题目简单线性回归模型分析一实验目的与要求目的:影响财政收入的因素可能有很多,比如国生产总值,经济增长,零售物价指数,居民收入,消费等。

为研究国生产总值对财政收入是否有影响,二者有何关系。

要求:为研究国生产总值变动与财政收入关系,需要做具体分析。

二实验容根据1978-1997年中国国生产总值X和财政收入Y数据,运用EV软件,做简单线性回归分析,包括模型设定,模型检验,模型检验,得出回归结果。

三实验过程:(实践过程,实践所有参数与指标,理论依据说明等)简单线性回归分析,包括模型设定,估计参数,模型检验,模型应用。

(一)模型设定为研究中国国生产总值对财政收入是否有影响,根据1978-1997年中国国生产总值X和财政收入Y,如图11978-1997年中国国生产总值和财政收入(单位:亿元)1996 66850.5 7407.991997 73452.5 8651.14根据以上数据作财政收入Y 和国生产总值X的散点图,如图2从散点图可以看出,财政收入Y和国生产总值X大体呈现为线性关系,所以建立的计量经济模型为以下线性模型:(二)估计参数1、双击“Eviews”,进入主页。

输入数据:点击主菜单中的File/Open/EV Workfile—Excel—GDP.xls;2、在EV主页界面点击“Quick”菜单,点击“Estimate Equation”,出现“Equation Specification”对话框,选择OLS估计,输入““y c x”,点击“OK”。

即出现回归结果图3;参数估计结果为:Y=857.8375+0.100036iX(67.12578)(0.002172)t=(12.77955)(46.04910)2r=0.991583F=2120.520S.E.=208.5553DW=0.864 0323、在“Equation”框中,点击“Resids”,出现回归结果的图形(图4):剩余值(Residual)、实际值(actual),拟合值(fitted)4、.(三)模型检验1.经济意义检验回归模型为:Y=857.8375+0.100036*X(其中Y为财政收入,iX为国生产总值;)所估计的参数=0.100036,说明国生产总值每增加1亿元,财政收入平均增加0.100036亿元。

计量经济学实训报告心得

计量经济学实训报告心得

一、前言计量经济学作为一门应用性极强的学科,在经济学、管理学、统计学等领域具有广泛的应用。

为了更好地学习和掌握计量经济学知识,我参加了为期一个月的计量经济学实训。

在此期间,我通过实际操作,对计量经济学有了更深入的理解和认识,现将实训心得总结如下。

二、实训内容1. 实训目的通过本次实训,我旨在:(1)熟悉计量经济学的基本理论和方法;(2)掌握计量经济学软件的使用技巧;(3)提高运用计量经济学方法解决实际问题的能力。

2. 实训内容(1)理论学习:系统学习了计量经济学的基本概念、假设、模型、估计方法和检验方法等;(2)软件操作:掌握了计量经济学软件EViews的基本操作,包括数据导入、模型建立、参数估计、模型检验等;(3)案例分析:针对实际经济问题,运用计量经济学方法进行模型建立、参数估计和模型检验。

三、实训心得1. 理论与实践相结合在实训过程中,我深刻体会到理论联系实际的重要性。

通过理论学习,我掌握了计量经济学的基本知识,但在实际操作中,我遇到了很多困难。

在老师的指导下,我逐渐学会了如何将理论知识应用于实际问题,提高了自己的实际操作能力。

2. 学会了如何使用计量经济学软件在实训过程中,我学习了EViews软件的基本操作,包括数据导入、模型建立、参数估计、模型检验等。

通过实际操作,我掌握了EViews软件的使用技巧,为今后的学习和研究奠定了基础。

3. 提高了运用计量经济学方法解决实际问题的能力在实训过程中,我针对实际经济问题,运用计量经济学方法进行了模型建立、参数估计和模型检验。

通过这个过程,我学会了如何根据实际问题选择合适的模型,如何进行参数估计和模型检验,提高了自己的实际操作能力。

4. 培养了团队协作精神在实训过程中,我与同学们一起完成了案例分析,共同探讨问题,共同解决问题。

在这个过程中,我学会了如何与团队成员沟通、协作,提高了自己的团队协作能力。

5. 认识到自己的不足在实训过程中,我发现自己在理论知识和实际操作方面还存在很多不足。

计量经济学》实验报告

计量经济学》实验报告

计量经济学》实验报告一、经济学理论概述1、需求是指消费者(家庭)在某一特定时期内,在每一价格水平时愿意而且能够购买的某种商品量。

需求是购买欲望与购买能力的统一。

2、需求定理是说明商品本身价格与其需求量之间关系的理论。

其基本内容是:在其他条件不变的情况下,一种商品的需求量与其本身价格之间成反方向变动,即需求量随着商品本身价格的上升而减少,随商品本身价格的下降而增加。

3、需求量的变动是指其他条件不变的情况下,商品本身价格变动所引起的需求量的变动。

需求量的变动表现为同一条需求曲线上的移动。

二、经济学理论的验证方法在此次试验中,我运用了Eviews和Excel软件对相关数据进行处理和分析。

1、拟合优度检验——可决系数R2统计量回归平方和反应了总离差平方和中可由样本回归线解释的部分,它越大,参差平方和越小,表明样本回归线与样本观测值的拟合程度越高。

2、方程总体线性的显着性检验——F检验(1)方程总体线性的显着性检验,旨在对模型中被解释变量与解释变量之间的线性关系在总体上是否显着成立作出判断。

(2)给定显着性水平α,查表得到临界值Fα(k,n-k-1),根据样本求出F统计量的数值后,可通过F>Fα(k,n-k-1) (或F ≤Fα(k,n-k-1))来拒绝(或接受)原假设H0,以判定原方程总体上的线性关系是否显着成立。

3、变量的显着性检验——t检验4、异方差性的检验——怀特检验怀特检验不需要排序,对任何形式的异方差都适用。

5、序列相关性的检验——图示法和回归检验法6、多重共线性的检验——逐步回归法以Y为被解释变量,逐个引入解释变量,构成回归模型,进行模型估计。

三、验证步骤1、确定变量(1)被解释变量“货币流通量”在模型中用“Y”表示。

(2)解释变量①“货币贷款额”在模型中用“X”表示;1②“居民消费价格指数”在模型中用“2X ”表示;③把由于各种原因未考虑到和无法度量的因素归入随机误差项,在模型中用“μ”。

【精品】《计量经济学》实验报告

【精品】《计量经济学》实验报告

【精品】《计量经济学》实验报告
一、实验目的
通过本实验,了解计量经济学的基本概念,认识计量经济学的应用,以及如何利用统计软件STATA进行计量经济学的研究。

二、实验内容
本次实验利用国外一项有关家庭经济收支的调查资料,分析收入与消费的关系,研究对收入的影响因素。

三、实验方法
(1)调查资料:国外家庭收支资料是由100个家庭的收支情况数据组成,其中包括这100个家庭的收入、消费、家庭编号、家庭购买力等。

(2)计量模型:在该实验中,建立二元线性回归模型:
(3)计量经济学的应用:利用STATA软件进行实证分析,以估计该家庭收入与消费的关系,并进一步研究影响收入的因素。

四、实验结果
(1)估计结果:家庭收入与消费的估计结果如下:
模型结果:Y=0.697+2.154X
线性拟合结果:R2=0.811,p=0.000
(2)影响收入的因素:利用STATA软件回归分析发现,家庭购买力、家庭编号等因素影响家庭收入。

五、实验结论
通过本次实验,我们可以得出以下结论:
(1)计量经济学是一种有效的用来研究家庭收入与消费关系的方法。

(2)家庭收入与消费显著正相关,即家庭收入越高,消费也越高。

(3)家庭购买力以及家庭编号等因素对家庭收入有显著影响。

计量经济学实验报告

计量经济学实验报告

计量经济学实验报告计量经济学实验报告引言计量经济学是经济学中的一门重要学科,它通过运用数学和统计学的方法来研究经济现象,并对经济理论进行实证分析。

实验是计量经济学研究中不可或缺的一部分,通过实验可以验证经济理论的有效性,提供实证依据,为政策制定和经济决策提供参考。

本篇文章将介绍一个基于计量经济学方法的实验,以探讨某一特定经济现象的影响因素和机制。

研究背景在当今社会,消费者购买决策是经济活动中的重要环节,而价格是影响消费者购买决策的关键因素之一。

然而,不同的消费者对价格的敏感程度可能存在差异,这可能受到个体的经济状况、心理因素以及市场竞争程度等多种因素的影响。

因此,了解消费者对价格的反应机制对于企业制定定价策略以及政府进行市场监管具有重要意义。

研究目的本实验旨在通过模拟市场环境,探究消费者对价格的反应机制,并分析不同因素对消费者价格敏感度的影响。

实验设计实验采用随机抽样的方法,选取了100名具有不同经济背景和消费习惯的消费者作为实验对象。

实验分为两个阶段进行,第一阶段是价格变动实验,第二阶段是心理因素调查。

第一阶段:价格变动实验在价格变动实验中,我们将随机选取50名消费者,并给予他们一定的购买预算。

然后,我们将分别设定两个不同的价格水平,并观察消费者对不同价格水平下商品的购买行为。

通过对购买行为的观察和数据分析,我们可以得出消费者对价格变动的反应程度。

第二阶段:心理因素调查在心理因素调查中,我们将采用问卷调查的方式,向所有参与实验的消费者提供一份针对价格敏感度的问卷。

问卷中包含了有关个体经济状况、消费心理以及市场竞争程度等方面的问题。

通过问卷调查的结果,我们可以分析不同因素对价格敏感度的影响,并进一步探讨价格敏感度的机制。

实验结果与讨论通过对实验数据的分析,我们得出了以下结论:1. 消费者对价格的敏感度存在差异,有些消费者对价格变动非常敏感,而另一些消费者对价格变动的反应较为迟缓。

2. 个体经济状况是影响消费者价格敏感度的重要因素之一。

计量经济学试验报告

计量经济学试验报告

计量经济学试验报告实验报告实验1:单方程线性计量经济学模型的最小二乘估计和统计检验1实验目的掌握计量经济学专用软件(Eviews)使用方法,理解和正确解释输出结果。

在学习计量经济学的基本理论和方法的基础上,掌握建立计量经济模型对实际经济问题进行实证分析的方法。

运用Eviews软件完成对线形回归模型的最小二乘估计、统计检验、计量经济学检验以及进一步进行经济结构分析、经济预测和政策评价,培养发现问题、分析问题、解决问题的能力。

2实验软件Eviews5.03实验数据甲商品从1988―2021年的销售量Y/千个,价格X1 /(元/个),售后服务支出X2 /万元年份 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2021 2021 2021Y 121 133 130 126 131 147 148 159 160 156 155 157 179 189 180 183 202 200X1 1500 1490 1480 1470 1460 1450 1440 1430 1420 1410 1400 1390 1380 1370 1360 1350 1340 1330 X2 12 15 13 10 11 14 13 15 13 12 11 10 15 15 13 12 14 12 12021 2021 2021 2021201 203 258 234 1320 1310 1300 1290 11 10 15 12 4实验内容及其步骤实验内容:研究甲商品1988―2021年价格和售后服务支出对销售量的影响。

其中,销售量Y、价格X1、售后服务支出X2的数据如上所示。

建立多元线性计量经济学回归模型为:Yi = β0 + β1X1i + β2X2i + μi实验步骤:1、建立工作文件:双击Eviews,进入Eviews主界面在主菜单上依次点击File → New → Workfile,出现Workfile对话框,在workfile frequency中选择Annual,在Start里输入起始日期1988,在End里输入结束日期2021。

计量经济学实训实验报告

计量经济学实训实验报告

一、实验背景计量经济学是经济学的一个重要分支,它运用数学统计方法对经济现象进行分析和研究。

本实验旨在通过实际操作,使学生掌握计量经济学的基本理论和方法,提高学生的实际操作能力。

二、实验目的1. 掌握计量经济学的基本理论和方法;2. 熟悉计量经济学软件的操作;3. 能够运用计量经济学方法分析实际问题;4. 培养学生的团队合作意识和沟通能力。

三、实验内容1. 实验数据来源本实验数据来源于我国某地区的统计数据,包括地区生产总值(GDP)、居民消费水平(C)、投资水平(I)和进出口总额(M)等变量。

2. 实验步骤(1)数据预处理首先,将原始数据导入计量经济学软件,对数据进行清洗和整理。

包括去除缺失值、异常值等。

(2)建立模型根据实验目的,选择合适的计量经济学模型。

本实验采用多元线性回归模型,研究地区生产总值与居民消费水平、投资水平和进出口总额之间的关系。

(3)模型估计利用计量经济学软件对模型进行参数估计,得到模型参数的估计值。

(4)模型检验对估计得到的模型进行检验,包括残差分析、F检验、t检验等。

(5)模型预测根据估计得到的模型,对地区生产总值进行预测。

3. 实验结果与分析(1)模型估计结果通过计量经济学软件,得到多元线性回归模型的估计结果如下:Y = 10000 + 0.5X1 + 0.3X2 + 0.2X3其中,Y为地区生产总值,X1为居民消费水平,X2为投资水平,X3为进出口总额。

(2)模型检验结果通过残差分析、F检验和t检验,发现模型估计结果具有较好的拟合效果,可以接受。

(3)模型预测结果根据估计得到的模型,对地区生产总值进行预测。

预测结果如下:当居民消费水平为5000元、投资水平为3000元、进出口总额为2000元时,地区生产总值约为11000元。

四、实验总结1. 通过本次实验,使学生掌握了计量经济学的基本理论和方法,提高了学生的实际操作能力;2. 学生学会了运用计量经济学软件进行数据预处理、模型估计、模型检验和模型预测;3. 培养了学生的团队合作意识和沟通能力。

计量经济学实验报告(自相关性)

计量经济学实验报告(自相关性)

实验6.美国股票价格指数与经济增长的关系——自相关性的判定和修正一、实验内容:研究美国股票价格指数与经济增长的关系。

1、实验目的:练习并熟练线性回归方程的建立和基本的经济检验和统计检验;学会判别自相关的存在,并能够熟练使用学过的方法对模型进行修正。

2、实验要求:(1)分析数据,建立适当的计量经济学模型(2)对所建立的模型进行自相关分析(3)对存在自相关性的模型进行调整与修正二、实验报告1、问题提出通过对全球经济形势的观察,我们发现在经济发达的国家,其证券市场通常也发展的较好,因此我们会自然地产生以下问题,即股票价格指数与经济增长是否具有相关关系?GDP是一国经济成就的根本反映。

从长期看,在上市公司的行业结构与国家产业结构基本一致的情况下,股票平均价格的变动跟GDP的变化趋势是吻合的,但不能简单地认为GDP 增长,股票价格就随之上涨,实际走势有时恰恰相反。

必须将GDP与经济形势结合起来考虑。

在持续、稳定、高速的GDP增长下,社会总需求与总供给协调增长,上市公司利润持续上升,股息不断增加,老百姓收入增加,投资需求膨胀,闲散资金得到充分利用,股票的内在含金量增加,促使股票价格上涨,股市走牛。

本次试验研究的1970-1987年的美国正处在经济持续高速发展的状态下,据此笔者利用这一时期美国SPI与GDP的数据建立计量经济学模型,并对其进行分析。

2、指标选择:指标数据为美国1970—1987年美国股票价格指数与美国GDP数据。

3、数据来源:实验数据来自《总统经济报告》(1989年),如表1所示:表1 4、数据处理将两组数据利用Eviews绘图,如图1、2所示:图1 GDP数据简图图2 SPI数据简图经过直观的图形检验,在1970-1987年间,美国的GDP保持持续平稳上升,SPI虽然有些波动,但波动程度不大,和现实经济相符,从图形上我们并没有发现有异常数据的存在。

所以可以保证数据的质量是可以满足此次实验的要求。

计量经济学实验报告回归分析

计量经济学实验报告回归分析

计量经济学实验报告回归分析计量经济学实验报告:回归分析一、实验目的本实验旨在通过运用计量经济学方法,对收集到的数据进行分析,研究自变量与因变量之间的关系,并估计回归模型中的参数。

通过回归分析,我们可以深入了解变量之间的关系,为预测和决策提供依据。

二、实验原理回归分析是一种常用的统计方法,用于研究自变量与因变量之间的线性或非线性关系。

在回归分析中,我们通过最小二乘法等估计方法,得到回归模型中未知参数的估计值。

根据估计的参数,我们可以对因变量进行预测,并分析自变量对因变量的影响程度。

三、实验步骤1.数据收集:收集包含自变量与因变量的数据集。

数据可以来自数据库、调查、实验等。

2.数据预处理:对收集到的数据进行清洗、整理和格式化,以确保数据的质量和适用性。

3.模型选择:根据问题的特点和数据的特性,选择合适的回归模型。

常见的回归模型包括线性回归模型、多元回归模型、岭回归模型等。

4.模型估计:运用最小二乘法等估计方法,对选择的回归模型进行估计,得到模型中未知参数的估计值。

5.模型检验:对估计后的模型进行检验,以确保模型的适用性和可靠性。

常见的检验方法包括残差分析、拟合优度检验等。

6.预测与分析:根据估计的模型参数,对因变量进行预测,并分析自变量对因变量的影响程度。

四、实验结果与分析1.数据收集与预处理本次实验选取了某网站的销售数据作为样本,数据包含了商品价格、销量、评价等指标。

在数据预处理阶段,我们剔除了缺失值和异常值,以确保数据的完整性和准确性。

2.模型选择与估计考虑到商品价格和销量之间的关系可能存在非线性关系,我们选择了多元回归模型进行建模。

采用最小二乘法进行模型估计,得到的估计结果如下:销量 = 100000 + 10000 * 价格 + 5000 * 评价 + 随机扰动项3.模型检验对估计后的模型进行残差分析,发现残差分布较为均匀,且均在合理范围内。

同时,拟合优度检验也表明模型对数据的拟合程度较高。

计量经济学实验报告 stata

计量经济学实验报告 stata

计量经济学实验报告 stata
《计量经济学实验报告:利用 Stata 进行数据分析与解释》
引言
计量经济学是经济学中的一个重要分支,它通过运用数学和统计工具来分析经济现象。

在实际研究中,经济学家们经常需要进行数据分析和解释,以验证经济理论和政策的有效性。

而 Stata 是一款广泛应用于计量经济学领域的统计软件,它提供了丰富的数据分析工具和功能,可以帮助经济学家们进行高效的数据处理和解释。

实验设计
为了展示 Stata 在计量经济学研究中的应用,我们设计了一个实验来分析劳动力市场的收入差距。

我们收集了一份包含个体收入、教育水平、工作经验等变量的数据集,并使用 Stata 进行数据清洗和整理。

接着,我们运用多元线性回归模型来分析收入与教育水平、工作经验之间的关系,并使用 Stata 的回归诊断工具来检验模型的假设和稳健性。

数据分析与解释
通过 Stata 的数据分析功能,我们得出了以下结论:教育水平和工作经验对个体收入有显著的正向影响,即受教育程度越高、工作经验越丰富的个体,其收入水平也越高。

而且,我们还发现了一些其他影响收入的因素,比如性别、种族等。

通过 Stata 的回归结果输出和图表工具,我们可以清晰地展示这些影响因素对个体收入的影响程度和方向,为我们进一步的研究和政策制定提供了重要的参考依据。

结论
本实验充分展示了 Stata 在计量经济学研究中的重要作用。

通过 Stata 的数据处理、回归分析和可视化工具,我们可以高效地进行数据分析和解释,为经济现象提供科学的解释和政策建议。

因此,我们鼓励经济学家们在其研究中充分利用 Stata 这一强大的工具,以提高研究的科学性和可信度。

《计量经济学》课程实验报告

《计量经济学》课程实验报告
y最大值: 19 最小值:3.2 平均值: 11.6625标准差: 5.498591
2.估计结果,解释参数的数量关系
数量关系: GDP每增加一万亿元,可导致全国财政收入增加0.0041212万亿元,农业总产值每增加一万亿元,可导致全国财政收入增加0.0489586万亿元,税收每增加一万亿元,可导致全国财政收入增加1.183604万亿元。
三、实证分析
1.描述性统计(数据的最大值最小值,平均值,方差等,定性分析,了解数据质量)
X1最大值: 101.6 最小值: 18.6 平均值: 57.375 标准差: 27.22657
X2最大值: 7.2 最小值:2 平均值: 4.45625标准差: 1.648016
X3最大值: 15.8 最小值:2.9 平均值: 9.9125 标准差: 4.480606
图示检验法:
由图可得:模型存在正的相关序列。
3.检验模型是否存在多重共线性
Variable | VIF 1/VIF
-------------+----------------------
x2 | 70.29 0.014226
x1 | 54.81 0.018246
x3 | 52.31 0.019117
x2 | 3.299357 .1326672 24.87 0.000 3.014814 3.5839
_cons | -3.04026 .6279573 -4.84 0.000 -4.387095 -1.693426
------------------------------------------------------------------------------
二、模型和变量解释
1.模型建立,写出方程,阐述设定模型的经济理论

计量经济学实验报告

计量经济学实验报告

实验一一、实验内容:以1978-2012年中国进口总额(IM)、GDP、CPI(以1978年为基期)序列为例,取对数(LnIm, lnGDP, lnCPI),对其进行单位根检验,协整检验,并建立误差修正模型。

二、实验步骤:1、平稳—ADF单位根检验图1由图1可知,这些序列都带有明显的上升趋势,即非平稳。

因此对这三个序列逐一进行单位根检验。

打开LnIm序列,点击View→Unit Root Test,出现如图2所示界面,需进行多次试验,分别选择含截距项,含时间趋势向和截距项,不含时间趋势项和截距项,对序列分别进行水平,一阶差分和二阶差分,选择AIC准则,点击ok。

图2对另外连个序列做同样的操作。

最后三个序列的单位根检验结果如下:表1注:检验形式(C,T,L)中,C、T、L分别代表常数项、时间趋势和滞后阶数。

***表示在1%显著水平上拒绝零假设。

根据单位根检验结果,LnIm、LnGDP、LnCPI的水平序列的ADF 值在5%的显著性水平上大于其临界值,不能拒绝单位根假设。

一阶差分后,其ADF值小于5%的临界值,则应拒绝单位根假设。

因此,LnIm、LnGDP、LnCPI是非平稳的,服从I(1)过程,而其一阶差分是平稳的,服从I(0)过程。

2、协整检验根据前面的实验结果可知,LnIm、LnGDP、LnCPI都是一阶单整,因此符合协整检验的前提条件。

①建立VAR模型点击Quick→Estimate VAR,出现如图3所示界面:输入内生变量(Endogenous Variables)LnIm、LnGDP、LnCPI,点击确定。

图3 其运行结果如图4所示,三列分别代表三个方程式,第一行的三个变量表示三个方程式等号左边的被解释变量,不带括号的数字分别表示相应方程式右侧变量的回归系数估计值,回归系数下面第一个带括号的数字表示相应回归系数估计量的标准差,第二个括号里的数字表示相应回归系数估计量的t统计量的值。

图4②VAR模型最佳滞后期的选择在VAR模型估计结果窗口点击View→Lag structure→Lag Length Criteria,在弹出的对话框中填2,其结果如图5所示。

计量经济学实验报告(西安交通大学)

计量经济学实验报告(西安交通大学)

计量经济学实验报告姓名:何璐(交换生)班级:经济91学号:09182250实验报告1.第二章十二题1.1实验目的建立一元计量经济学模型并对方程进行检验和预测1.2实验内容1)做出散点图,建立税收随国内生产总值GDP变化的一元线性回归方程。

并解释斜率的经济意义。

2)对所建立的回归方程进行检验3)若2008某地区国内生产总值为8500亿元,求该地区税收的预测值及区间。

下表是中国2007年内地各地区税收Y和国内生产总值GDP的统计资料1.3实验过程与结论(1)做Y关于GDP 的散点图,按照如下步骤:在Eviews软件中,选择Quick/Graph(图1-1),出现Serise List(图1-2)对话框图1-1图1-2在Graph窗口的Graph Type栏中选择Scatter Diagram,点击OK按钮,即出现如图1-3所示的散点图。

图1-3在Eviews软件下,为了得到税收Y随GDP变化的一元线形回归方程,选择Quick/Estimate Equation(图1-4),得到如下结果:图1-4由此可知,Y随GDP变化的一元线形方程:Ý=-10.63+0.071GDP(-0.12) (9.59)R2=0.7603斜率的经济意义是:2007年,中国内地各省区GDP每增加1亿元时,税收平均增加0.071亿元。

(2)在α=5%的显著水平下,自由度为31-2=29的t分布的临界值位2.045,可由此判断,斜率项显著不为零,截距项显著为零.R2=0.7603,表明税收的76%的变化可以GDP的变化来解释,拟合度较好(3)通过Eviews操作得出Y在GDP=8500下的预测值(图1-5)为593.2667图1-52、第三章十一题2.1实验目的学习对二元回归方程进行估计,并进行F检验和t检验2.2实验内容1)估计回归方程的参数及随机干扰项的方差,计算可决系数和调整的可决系数。

2)对方程进行F检验,对参数进行t检验,并构造参数95%的置信区间。

计量经济学实验报告1

计量经济学实验报告1
(二)结果分析
一.预期Y和各个解释变量之间的关系
家庭书刊年支出(Y)与家庭月收入(X),户主受教育程度(T)呈线性相关关系
二. Y对X的回归
1.建立经济模型
2.在eviews中录入数据,并用最小二乘法估计参数得到回归结果,如下表
可知:
(1)线性回归方程为
(2)估计的回归系数 , 的标准误差和t值分别为
: =0
SE( )=117.1579 ;t( )=1.604113取
查t分布表得自由度为n-2=18-2=16的临界值 (16)=2.120>t( )=1.60411
未落在了拒绝域内,故假设成立
:=0
SE( )=0.056922;t( )=5.128460取
查t分布表得自由度为n-2=18-2=16的临界值 (16)=2.120<t( )=5.128460
SE( )=117.1579 ;t( )=1.604113;
SE( )=0.056922;t( )=5.128460
(3) =0.621759 F=26.30110 n=18
经济意义解释:
当家庭月平均收入每变动一单位时,家庭书刊年消费支出就同向变动0.291923个单位
4.参数显著性检验(对回归系数的t检验)
四.模型选择及原因
应选择多元线性回归模型
原因:多元线性回归模型对两种解释变量“家庭月平均收入”和“户主受教育年数”对被解释变量“家庭书刊年消费支出”的影响都有做分析,这样就能更全面的分析问题,结果的可信度也相对较高。
原因:多元线性回归模型对两种解释变量“家庭月平均收入”和“户主受教育年数”对被解释变量“家庭书刊年消费支出”的影响都有做分析,这样就能更全面的分析问题,结果的可信度也相对较高。

计量经济学实验报告(范例)

计量经济学实验报告(范例)
因为研究的目的是各地区城市居民消费的差异,并不是城市居民消费在不同时间的变动,所以应选择同一时期各地区城市居民的消费支出来建立模型。因此建立的是2002年截面数据模型。
影响各地区城市居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。因此这些其他因素可以不列入模型,即便它们对居民消费有某些影响也可归入随即扰动项中。为了与“城市居民人均消费支出”相对应,选择在统计年鉴中可以获得的“城市居民每人每年可支配收入”作为解释变量X。
2.在中经网数据库获取数据,并建立Excel表格类型的数据文档。
3.利用 ,求解参数估计值。
4.将数据导入Eviews5.0中,首先利用equation命令求解,进一步利用程序设计地方法解得参数估计值。
5.根据模型估计结果检验估计效果和拟合图形。
实验成果(系统化研究结果的说明和研究过程介绍,纸张不够可以加页)
对回归系数的t检验:针对 和 ,由表2.6中还可以看出,估计的回归系数 的标准误差和t值分别为: , ; 的标准误差和t值分别为: , 。取 ,查t分布表得自由度为 的临界值 。因为 ,所以不能拒绝 ;因为 ,所以应拒绝 。这表明,城市人均年可支配收入对人均年消费支出有显著影响。
四、回归预测
由表2.5中可看出,2002年中国西部地区城市居民人均年可支配收入除了西藏外均在8000以下,人均消费支出也都在7000元以下。在西部大开发的推动下,如果西部地区的城市居民人均年可支配收入第一步争取达到1000美元(按现有汇率即人民币8270元),第二步再争取达到1500美元(即人民币12405元),利用所估计的模型可预测这时城市居民可能达到的人均年消费支出水平。可以注意到,这里的预测是利用截面数据模型对被解释变量在不同空间状况的空间预测。

计量经济学实验报告模板加实例

计量经济学实验报告模板加实例
3.估计VAR模型
从上表可知,我们估计的VAR模型是:
lnYt= 0.70 lnYt-1+0.25 lnXt-1-0.09 lnYt-2+0.14 lnXt-2-0.63
lnXt= -0.15 lnYt-1+1.44 lnXt-1+0.13 lnYt-2-0.40lnXt-2-0.03
该模型的稳定性检验如下:
45.9
7
1990
1154.4
159
1951
19.6
6.9
1971
48.4
5
1991
1357
187.3
1952
19.4
4.8
1972
63
5
1992
1655.3
212.8
1953
23.7
5.1
1973
109.8
9
1993
1957
256.5
1954
24.4
4.1
1974
145.7
14
1994
2366.2
4.要求我们正确运用软件,明白软件中给出的数据所代表的意义。能够了解理论、数据与实际之间的相关性。
【实验原理】
1.Eviews8软件使用方法;
2.单位根检验、约翰森检验、VECM模型、格兰杰因果关系分析、脉冲反应和方差分解理论。
【实验内容】
1.创建工作文件,输入数据;
2.利用Eviews检验时间序列数据的平稳性(样本相关图和ADF检验);
29.2
4.2
1983
436.2
53.9
2003
8509.9
923.1
1964
34.7
4.4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《计量经济学》课程论文城镇居民消费主要影响因素的实证分析小组成员:何志滔李学贤吴晓天指导教师:张子昱日期:2010年12月23日城镇居民消费主要影响因素的实证分析摘要中国经济的快速增长,城镇化步伐加快。

城镇居民的消费在国民经济中占有极其重要的比重,城镇居民的消费水平对整个国名经济的的发展有重大的作用。

面对这个巨大的消费,如何提高消费水平就成了扩大内需、拉动经济所面对的问题。

本文运用计量经济学的方法,就城镇居民的消费水平的主要影响因素进行了简单的分析。

关键词:城镇居民;消费水平;影响因素一问题的提出经济危机以来,中国遭遇增长上的瓶颈。

一直以来中国经济的增长主要依赖于投资、出口和消费三架马车,而又以投资和出口的拉动作用最大。

虽然我国一直在强调要扩大内需,但经济危机中由于出口减少而引起经济的下滑还是说明国内经济对出口的依赖还是很大的。

西方经济学中有很多关于需求、消费的理论。

微观经济学中供求和均衡价格理论中的需求定理阐述了需求的定义和影响因素。

需求是指某一特定时期内,在各种可能的价格水平下,消费者愿意而且能够买到的某种商品的数量。

影响需求的主要因素包括商品本身的价格、其他商品的价格、消费者的偏好、消费者收入及人们对未来的期望等。

由于数据的可获得性及影响的重要性,对于城镇居民的消费水平主要选取了以下两个影响因素;城镇居民家庭可支配纯收入及商品零售价格指数。

二1991年到2008年城镇居民消费水平及其影响因素的统计数据(表1)三建立模型由数据分析,初步建立模型Y=b0+b1*X1+b2*X2+ui b0表示在没有任何影响因素下城镇居民的消费水平;b1表示城镇家庭可支配纯收入对城镇居民消费水平的影响;b2表示商品零售价格指数对城镇居民的消费水平的影响;ui为随机扰动项四模型的检验与修正(一)模型的参数估计及经济意义和统计意义上的检验利用Eviews软件,做Y对X1 X2的回归。

回归结果如下表1:Dependent Variable: YMethod: Least SquaresDate: 12/22/10 Time: 12:48Sample: 1991 2008Included observations: 18Variable Coefficient Std. Errort-StatisticProb.C 3435.487 1604.745 2.140831 0.0491 X1 0.782495 0.024778 31.58077 0.0000X2 -20.24790 14.85835 -1.362728 0.1931R-squared 0.986696 Meandependent var 6826.167Adjusted R-squared 0.984922 S.D.dependent var 3180.842 S.E. of regression 390.5890 Akaike info 14.92420criterionSum squared resid 2288397. Schwarzcriterion 15.07260Log likelihood -131.3178 F-statistic 556.2194Durbin-Watson stat 0.346363 Prob(F-statistic) 0.000000参数估计:由上表可知回归系数估计值b。

=3435.487 b1=0.782495 b3=-20.24790(二)经济意义上的检验该模型可以初步估计经济意义上的检验,系数符号均符合经济意义。

城镇居民人均纯收入及零售商品价格指数均能在数量上增加居民消费。

统计意义上的检验当n=18 a=0.10时 t=1.341由数表可以看出C X1 X2的t统计量绝对值都大于1.341 符合t检验当n=18 a=0.05时,查表得Fa=6.63 有F=556.2194则符合。

R-squared=0.986696 Adjusted R-squared=0.984922 模型的拟合优度比较好。

因此这些因素对城镇居民消费水平有较大影响。

(三)计量经济学检验异方差检验样本容量为18 且模型为二元线性回归模型利用怀特检验对异方差进行检验。

利用OLS课上的残差ei 求残差的平方和ei的平方并将其X1 X2 X2的平方 X1的平方和X1*X2 进行回归可得到如下表2 且Xii为X1的平方 Xi为XjWhite Heteroskedasticity Test:F-statistic 9.554524 Probability 0.000788Obs*R-squared 13.43130 Probability 0.009350Test Equation:Dependent Variable: RESID^2Method: Least SquaresDate: 12/22/10 Time: 21:53Sample: 1991 2008Included observations: 18Variable Coefficient Std. Errort-StatisticProb.C -5784096. 7392893. -0.782386 0.4480X1 -133.9330 33.41135 -4.008609 0.0015X1^2 0.006014 0.001953 3.078579 0.0088 X2 131397.1 135226.4 0.971683 0.3489X2^2 -663.1973 619.4676 -1.070592 0.3038R-squared 0.746183 Meandependent var 127133.2Adjusted R-squared 0.668086 S.D.dependent var 178382.8S.E. of regression 102769.8 Akaike infocriterion 26.14850Sum squared resid 1.37E+11 Schwarzcriterion 26.39583Log likelihood -230.3365 F-statistic 9.554524Durbin-Watson stat 1.614357 Prob(F-statistic) 0.000788由表可知 R-squared=0.746183 查表得样本数为18 自由度为7的χ2=14.07 nR2=13.5<14.07 所以接受原假设,表明残差是同方差的。

不存在异方差性。

(四)序列相关检验Dubin-wolson state=0.3464 查表dl=1.16 du=1.39 而DW值小于dl,存在正序列相关利用秩代法序列相关进行处理一次秩代结果(表3)Dependent Variable: YMethod: Least SquaresDate: 12/23/10 Time: 00:03Sample (adjusted): 1992 2008Included observations: 17 after adjustmentsConvergence achieved after 18 iterationsVariable Coefficient Std. Errort-StatisticProb.C 2846.687 1363.509 2.087766 0.0571 X1 0.729693 0.035606 20.49341 0.0000X2 -8.363091 15.08058 -0.554560 0.5886AR(1) 0.712252 0.160164 4.447033 0.0007R-squared 0.997387 Meandependent var 7119.471Adjusted R-squared 0.996784 S.D.dependent var 3017.423S.E. of regression 171.1210 Akaike infocriterion 13.32494Sum squared resid 380671.3 Schwarzcriterion 13.52099Log likelihood -109.2620 F-statistic 1653.972Durbin-Watson stat 1.945502 Prob(F-statistic) 0.000000Inverted AR Roots .71经过一次秩代,DW值1.945所以其大于du而小于4-du 所以模型的序列不相关。

所以模型所选变量比较好。

(五)多重共线性检验利用Frish综合分析法做检验,让Y对X1 X2做回归首先让Y对X1做回归,得下表Dependent Variable: YMethod: Least SquaresDate: 12/23/10 Time: 09:39Sample: 1991 2008Included observations: 18Variable Coefficient Std. Errort-StatisticProb.C 1264.137 195.6462 6.461341 0.0000 X1 0.792040 0.024395 32.46719 0.0000R-squared 0.985048 Meandependent var 6826.167Adjusted R-squared 0.984114 S.D.dependent var 3180.842S.E. of regression 400.9134 Akaike infocriterion 14.92981Sum squared resid 2571705. Schwarzcriterion 15.02874 Log likelihood -132.368F-statistic 1054.1193Durbin-Watson stat 0.274278 Prob(F-statistic) 0.000000 将Y与X2回归得如下结果Dependent Variable: YMethod: Least SquaresDate: 12/23/10 Time: 09:41Sample: 1991 2008Included observations: 18Variable Coefficient Std. Errort-StatisticProb.C 22716.79 11804.76 1.924376 0.0723X2 -152.9007 113.3674 -1.348718 0.1962R-squared 0.102084 Meandependent var 6826.167Adjusted R-squared 0.045964 S.D.dependent var 3180.842S.E. of regression 3106.879 Akaike infocriterion 19.02506Sum squared resid 1.54E+08 Schwarzcriterion 19.12399Log likelihood -169.2256 F-statistic 1.819041Durbin-Watson stat 0.140831 Prob(F-statistic) 0.196209由上两表可知Y与X1的拟合度比较好 Y与X2的拟合度不那么好。

相关文档
最新文档