陈家璧版-光学信息技术原理及应用习题解答(8-11章)
陈家璧版光学信息技术原理及应用习题解答(7-8章)
陈家璧版光学信息技术原理及应用习题解答(7-8章)-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII第七章 习题解答1. 某种光盘的记录范围为内径80mm,外径180mm 的环形区域,记录轨道的间距为2um.假设各轨道记录位的线密度均相同记录微斑的尺寸为um,试估算其单面记录容量. (注: 内、外径均指直径)解: 记录轨道数为 25000002.0280180=⨯-=N单面记录容量按位计算为 ∑=⨯≈⨯+=Nn n M 110107.10006.0)002.040(2π bits = 17 Gb.按字节数计算的存储容量为 2.1GB.2. 证明布拉格条件式(7-1)等效于(7-17)式中位相失配= 0的情形, 因而(7-18)式描述了体光栅读出不满足布拉格条件时的位相失配。
证明: 将体光栅读出满足布拉格条件时的照明光波长(介质内) 和入射角 (照明光束与峰值条纹面间夹角)分别记为0和θ0, 则根据布拉格条件式(7-1)有: 2sin θ0= 0 其中为峰值条纹面间距.对于任意波长λa (空气中) 和入射角θr (介质内), 由(7-17)式, 位相失配 δ 定义为:24)cos(n K K ar πλθφδ--=其中n 0为介质的平均折射率, K = 2π/Λ为光栅矢量K 的大小,φ为光栅矢量倾斜角,其值为 22πθθφ++=sr ,θr 为再现光束与系统光轴夹角 (参见图7-9).当 δ = 0 时,有2422cos n K K a r s r πλθπθθ=⎪⎭⎫ ⎝⎛-++ 即:Λ=Λ=⎪⎭⎫ ⎝⎛-2422sin 0λππλθθn s rλ为介质中的波长. 由于角度2sr θθ-恰为照明光与峰值条纹面的夹角θ, ∑ ©亦即布拉格条件2Λ sin θ = λ.当读出光偏离布拉格角θo 和布拉格波长λo 的偏移量分别为∆θ和∆λ时,有[]0200200002044sin )sin(cos )cos( 4)()(cos n K n K K K n K K πλπλθθφθθφπλλθθφδ∆--∆--∆-=∆+-∆+-=利用布拉格条件式(7-17), 以及∆θ和∆λ很小时的近似关系 cos ∆θ≈1 和 sin ∆θ≈∆θ, 立即可得:δ =∆θK sin(φ-θ0) - ∆λK 2/4πn 0 即(7-18)式 原题得证。
《光学信息处理》习题解答
第 2 页 共 61 页
Q
a
<
1 L
,
b
<
1 W
《光学信息技术原理及应用》习题解答
∴ 1 > L, 1 > W ab
Q
1 a
是
H(
fx,
fy)
在
fx
方向的宽度,
1 b
是
H(
fx,
fy)
在
fy
方向的宽度,
L
、W
分别是输入函数
f ( x, y) 在频域上的频带宽。
∴ H( fx, fy) 在 fx 、 fy 方向的宽度大于 F( fx, fy) ,即 F( fx, fy) 能完全通过系统传递函数为
解:对于线性空间不变系统,设系统的脉冲响应为 h( x) ,输入函数表示式为 g( x) ,输出函数表示式为
g ' ( x) ,则
g'(x) = g(x) ∗h(x) 或 G'( f ) = G( f ) ⋅ H ( f )
+∞
∑ 由 g(x) = comb(x) 知, G( f ) = comb( f ) = δ ( f − n) ,所以 n=−∞
第 6 页 共 61 页
《光学信息技术原理及应用》习题解答
图 1.4(a)
(1)由 H 1 (
f
)
=
rect
(
f 2
)
得 h1 ( x )
=
2 sin
c(2 x)
,函数图形如图
1.4(b)所示
图 1.4(b)
+16
∑ g1(x) = gi (x) ∗ h1(x) = Λ( x − 3n) * h1( x) ,函数图形如图 1.4(c)所示。 n=−16 +16 ∑ 如果考虑到系统为线性不变系统,对上式的卷积可以先计算 Λ(x) * 2sinc(2x) 。 Λ(x − 3n) 表 n=−16
陈家璧版光学信息技术原理及应用习题解答(7-8章)
陈家璧版光学信息技术原理及应用习题解答(7-8章)-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII第七章 习题解答1. 某种光盘的记录范围为内径80mm,外径180mm 的环形区域,记录轨道的间距为2um.假设各轨道记录位的线密度均相同记录微斑的尺寸为um,试估算其单面记录容量. (注: 内、外径均指直径)解: 记录轨道数为 25000002.0280180=⨯-=N单面记录容量按位计算为 ∑=⨯≈⨯+=Nn n M 110107.10006.0)002.040(2π bits = 17 Gb.按字节数计算的存储容量为 2.1GB.2. 证明布拉格条件式(7-1)等效于(7-17)式中位相失配= 0的情形, 因而(7-18)式描述了体光栅读出不满足布拉格条件时的位相失配。
证明: 将体光栅读出满足布拉格条件时的照明光波长(介质内) 和入射角 (照明光束与峰值条纹面间夹角)分别记为0和θ0, 则根据布拉格条件式(7-1)有: 2sin θ0= 0 其中为峰值条纹面间距.对于任意波长λa (空气中) 和入射角θr (介质内), 由(7-17)式, 位相失配 δ 定义为:24)cos(n K K ar πλθφδ--=其中n 0为介质的平均折射率, K = 2π/Λ为光栅矢量K 的大小,φ为光栅矢量倾斜角,其值为 22πθθφ++=sr ,θr 为再现光束与系统光轴夹角 (参见图7-9).当 δ = 0 时,有2422cos n K K a r s r πλθπθθ=⎪⎭⎫ ⎝⎛-++ 即:Λ=Λ=⎪⎭⎫ ⎝⎛-2422sin 0λππλθθn s rλ为介质中的波长. 由于角度2sr θθ-恰为照明光与峰值条纹面的夹角θ, ∑ ©亦即布拉格条件2Λ sin θ = λ.当读出光偏离布拉格角θo 和布拉格波长λo 的偏移量分别为∆θ和∆λ时,有[]0200200002044sin )sin(cos )cos( 4)()(cos n K n K K K n K K πλπλθθφθθφπλλθθφδ∆--∆--∆-=∆+-∆+-=利用布拉格条件式(7-17), 以及∆θ和∆λ很小时的近似关系 cos ∆θ≈1 和 sin ∆θ≈∆θ, 立即可得:δ =∆θK sin(φ-θ0) - ∆λK 2/4πn 0 即(7-18)式 原题得证。
光学信息技术原理及技术陈家壁第二版课后习题答案
第一章 习题解答1.1 已知不变线性系统的输入为()()x x g comb = 系统的传递函数⎪⎭⎫⎝⎛bfΛ。
若b 取(1)50=.b (2)51=.b ,求系统的输出()x g '。
并画出输出函数及其频谱的图形。
答:(1)()(){}1==x x g δF 图形从略, (2)()()()()()x s co f f δf δx g x x x πδ232+1=⎭⎬⎫⎩⎨⎧1+31+1-31+=F 图形从略。
1.2若限带函数()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零, (1)如果L a 1<,Wb 1<,试证明()()y x f y x f b x a x ab ,,sinc sinc =*⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1 证明:(){}(){}(){}()()(){}(){}()y x,f sinc sinc 1,,y x,f ∴,,,,y x,f ====bxa x ab bf af rect y x f bf af rect y x f Wf L f rect y x f y x yx yx F F F F F 1-(2)如果L a 1>, Wb 1>,还能得出以上结论吗? 答:不能。
因为这时(){}(){}()y x yx bf af rect y x f Wf L f rect y x f ,,F ,,F ≠⎪⎪⎭⎫ ⎝⎛。
1.3 对一个空间不变线性系统,脉冲响应为 ()()()y x y x h δ77=sinc ,试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。
(必要时,可取合理近似)(1)()x y x f π4=1cos ,答:()(){}(){}{}{}()(){}{}{}{}{}xcos x cos f rect x cos y 7x sin x cos y x h y x f y x g x πππδπ4=4=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛74=74==1-1-1-11-1F F F F F F F ,F ,F F ,(2)()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754=2y rect x rect x cos y x f π, 答:()(){}(){}{}()()(){}{}()()()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛77575⋅75*4=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754==1-1-11-2y rect x rect x cos f rect f sinc 75f sinc x cos y 7x sin y rect x rect x cos y x h y x f y x g x y x ππδπF F F F F ,F ,F F ,(3)()()[]⎪⎭⎫⎝⎛758+1=3x rect x cos y x f π,答:()()[]()(){}(){}()()()()()()()()()()()(){}⎪⎭⎫ ⎝⎛75=75≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛75*⎪⎭⎫ ⎝⎛4+81+4-81+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775*8+1=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75f sinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g y x x y x x y x x x x y x δδδδδπδπF F F F F F F F ,(4)()()()()()y rect x rect x comby x f 22*=4, 答:()()()()(){}()(){}{}()()()()()()()()()()()()(){}()()x π6cos x π2cos f f f f f f f f f f f rect f f δf f δf f δf f δf rect f sinc 2f sinc f f com b y 7x sin y rect x rect x com by x g y x y x y x y x y x x yx y x y x y x x y x y x 1060-3180+250=3+0530-3-0530-1+1590+1-1590+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛-3-2120-1+6370+1-6370+41=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛7⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛2⎪⎭⎫ ⎝⎛41=722*=1-1-1-1-2...,.,.,.,.,F ,.,.,.,F F F F F ,δδδδ0.25δδδ1.4 给定一个不变线性系统,输入函数为有限延伸的三角波()()x x rect x comb x g i Λ*⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛50⎪⎭⎫ ⎝⎛331=对下述传递函数利用图解方法确定系统的输出。
陈家璧版-光学信息技术原理及应用习题解答(4-7章)
第四章习题4.1 若光波的波长宽度为λΔ,频率宽度为νΔ,试证明:λλννΔΔ=。
设光波波长为nm 8632=.λ,nm 8-10⨯2=λΔ,试计算它的频宽νΔ。
若把光谱分布看成是矩形线型,那么相干长度?=c l证明:参阅苏显渝,李继陶《信息光学》P349,第4.1题答案。
421.510c λνλ∆∆==⨯赫,32010()c c cl ct m ν===⨯∆ 4.2 设迈克尔逊干涉仪所用的光源为nm 0589=1.λ,nm 6589=.2λ的钠双线,每一谱线的宽度为nm 010.。
(1)试求光场的复自相干度的模。
(2)当移动一臂时,可见到的条纹总数大约为多少?(3)可见度有几个变化周期?每个周期有多少条纹?答:参阅苏显渝,李继陶《信息光学》P349,第4.2题答案。
假设每一根谱线的线型为矩形,光源的归一化功率谱为 (1)光场的复相干度为式中12ννν-=∆,复相干度的模为 由于νδν∆,故第一个因子是τ的慢变化非周期函数,第二个因子是τ的快变化周期函数。
相干时间由第一个因子决定,它的第一个零点出现在ντ1=c 的地方,c τ为相干时间,故相干长度δλλδλλδντ22≈===cc l c c 。
(2)可见到的条纹总数589301.05893====δλλλcl N (3)复相干度的模中第二个因子的变化周期ντ∆=1,故可见度的变化周期数601.06==∆=∆==δλλδννττc n 每个周期内的条纹数9826058930===n N 4.3假定气体激光器以N 个等强度的纵模振荡,其归一化功率谱密度可表示为 式中,νΔ是纵模间隔,ν为中心频率并假定N 为奇数。
(1)证明复自相干度的模为 (2)若3=N ,且ντΔ10≤≤,画出()τγ与ντΔ的关系曲线。
答:参阅《统计光学(基本概念个习题)》P131。
证明(1),复相干度)(τγ与归一化功率谱密度即光源的光谱特性间具有下列关系: 将(4.3.1)式带入得到其中()∑-=∆+∆∆--=2)1(022/)1(2211N n j N j nj e e eντπντπντπ 因而(){[]()[][][][]})2e xp ()2e xp (2/2/)1(2e xp 2/)1(2e xp 2/12e xp 2/)1(2e xp)2e xp (1ντπντπντπντπντπντπτνπτγ∆--∆-+∆--+∆--∆-+-∆-=j j N j N j N j N j j N=ντπντπντπτνπ∆-+∆--∆-2cos 12/)1(2cos 2/)1(2cos 12N N eN j =ντπντπτνπ∆∆-sin sin 12N e N j 复相干度的包络则为 (2),当N=3时,其ντγ∆-曲线如图1所示。
陈家璧版_光学信息技术原理及应用习题解答(1-3章)
第一章习题1.1 已知不变线性系统的输入为()()x x g com b = 系统的传递函数⎪⎭⎫⎝⎛b f Λ。
若b 取(1)50=.b (2)51=.b ,求系统的输出()x g '。
并画出输出函数及其频谱的图形。
答:(1)()(){}1==x x g δF 图形从略,(2)()()()()()x s co f f δf δx g x x x πδ232+1=⎭⎬⎫⎩⎨⎧1+31+1-31+=F 图形从略。
1.2若限带函数()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零, (1)如果La 1<,Wb 1<,试证明()()y x f y x f bx a x ab ,,sinc sinc =*⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1证明:(){}(){}(){}()()(){}(){}()y x,f bxsinc a x sinc ab bf afrect y x f y x,f bfaf rect y x f W f L f rect y x f y x,f yxyx y x *⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1==∴=⎪⎪⎭⎫⎝⎛=,,F F,,F ,,F F 1-(2)如果La 1>, Wb 1>,还能得出以上结论吗?答:不能。
因为这时(){}(){}()yx yx bf af rect y x f Wf L f rect y x f ,,F ,,F ≠⎪⎪⎭⎫ ⎝⎛。
1.3 对一个空间不变线性系统,脉冲响应为()()()y x y x h δ77=sinc ,试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。
(必要时,可取合理近似) (1)()x y x f π4=1cos ,答:()(){}(){}{}{}()(){}{}{}{}{}xcos x cos f rect x cos y 7x sin x cos y x h y x fy x g x πππδπ4=4=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛74=74==1-1-1-11-1F F F FF F F ,F ,F F,(2)()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754=2y rect x rect x cos y x f π, 答:()(){}(){}{}()()(){}{}()()()()⎪⎭⎫⎝⎛75⎪⎭⎫⎝⎛754≅⎭⎬⎫⎩⎨⎧⎪⎭⎫⎝⎛77575⋅75*4=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754==1-1-11-2y rect xrect x cos f rect f sinc 75f sinc x cos y 7x sin y rect xrect x cos y x h y x fy x g x yxππδπF FF F F ,F ,F F,(3)()()[]⎪⎭⎫⎝⎛758+1=3x rect x cos y x f π, 答:()()[]()(){}(){}()()()()()()()()()()()(){}⎪⎭⎫⎝⎛75=75≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛75*⎪⎭⎫⎝⎛4+81+4-81+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775*8+1=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫⎝⎛758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75fsinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g yxx y xx y xx x x y xδδδδδπδπF FFF FF F F,(4)()()()()()y rect x rect x comb y x f 22*=4, 答:()()()()(){}()(){}{}()()()()()()()()()()()()(){}()()x π6cos x π2cos f f f f f f f f f ff rect f f δf f δf f δf f δf rect f sinc 2f sinc f f comb y 7x sin y rect x rect x comby x g y x y x y x y x y xx y x y x y x y x xy x y x 1060-3180+250=3+0530-3-0530-1+1590+1-1590+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫⎝⎛-3-2120-1+6370+1-6370+41=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛7⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛2⎪⎭⎫ ⎝⎛41=722*=1-1-1-1-2...,.,.,.,.,F,.,.,.,F FF F F,δδδδ0.25δδδ1.4 给定一个不变线性系统,输入函数为有限延伸的三角波 ()()x x rect x comb x g i Λ*⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛50⎪⎭⎫⎝⎛331=对下述传递函数利用图解方法确定系统的输出。
激光原理及应用陈家璧主编习题解答
思考练习题11. 试计算连续功率均为1W 的两光源,分别发射λ=μm ,ν=3000MHz 的光,每秒从上能级跃迁到下能级的粒子数各为多少?答:粒子数分别为:188346341105138.21031063.6105.01063.61⨯=⨯⨯⨯⨯=⨯⨯==---λνc h q n 239342100277.51031063.61⨯=⨯⨯⨯==-νh q n2.热平衡时,原子能级E 2的数密度为n 2,下能级E 1的数密度为n 1,设21g g =,求:(1)当原子跃迁时相应频率为ν=3000MHz ,T =300K 时n 2/n 1为若干。
(2)若原子跃迁时发光波长λ=1μ,n 2/n 1=时,则温度T 为多高?答:(1)(//m n E E m m kTn n n g e n g --=)则有:1]3001038.11031063.6exp[2393412≈⨯⨯⨯⨯⨯-==---kT h e n n ν(2)K T Te n n kTh 3623834121026.61.0]1011038.11031063.6exp[⨯=⇒=⨯⨯⨯⨯⨯⨯⨯-==----ν3.已知氢原子第一激发态(E 2)与基态(E 1)之间能量差为×l0-18J ,设火焰(T =2700K)中含有1020个氢原子。
设原子按玻尔兹曼分布,且4g 1=g 2。
求:(1)能级E 2上的原子数n 2为多少?(2)设火焰中每秒发射的光子数为l08 n 2,求光的功率为多少瓦?答:(1)1923181221121011.3]27001038.11064.1exp[4----⨯=⨯⨯⨯-⨯=⇒=⋅⋅n n e g n g n kTh ν且202110=+n n 可求出312≈n(2)功率=W 918810084.51064.13110--⨯=⨯⨯⨯4.(1)普通光源发射λ=μm 波长时,如受激辐射与自发辐射光功率体密度之比q q 激自1=2000,求此时单色能量密度νρ为若干?(2)在He —Ne 激光器中若34/100.5m s J ⋅⨯=-νρ,λ为μm ,设μ=1,求q q 激自为若干? 答:(1)3173436333/10857.31063.68)106.0(2000188m s J h h c q q ⋅⨯=⇒⨯⨯⨯=⇒=---ννννρρπρπλρνπ=自激(2)943436333106.71051063.68)106328.0(88⨯=⨯⨯⨯⨯⨯==---πρπλρνπννh h c q q =自激5.在红宝石Q 调制激光器中,有可能将全部Cr 3+(铬离子)激发到激光上能级并产生巨脉冲。
陈家璧版光学信息技术原理及应用习题解答章
第一章习题1.1 不变线性系统的输入为系统的传递函数。
假设b 取〔1〕50=.b 〔2〕51=.b ,求系统的输出()x g '。
并画出输出函数及其频谱的图形。
答:〔1〕()(){}1==x x g δF 图形从略,〔2〕()()()()()x s co f f δf δx g x x x πδ232+1=⎭⎬⎫⎩⎨⎧1+31+1-31+=F 图形从略。
()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零,(1)如果,,试证明证明:(){}(){}(){}()()(){}(){}()y x,f b x sinc a x sinc ab bf af rect y x f y x,f bf af rect y x f W f L f rect y x f y x,f y x y x y x *⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛1==∴=⎪⎪⎭⎫ ⎝⎛=,,F F ,,F ,,F F 1- (2)如果, ,还能得出以上结论吗?答:不能。
因为这时(){}(){}()y x y x bf af rect y x f W f L f rect y x f ,,F ,,F ≠⎪⎪⎭⎫ ⎝⎛。
1.3 对一个空间不变线性系统,脉冲响应为试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。
〔必要时,可取合理近似〕〔1〕()x y x f π4=1cos ,答:()(){}(){}{}{}()(){}{}{}{}{}x cos x cos f rect x cos y 7x sin x cos y x h y x f y x g x πππδπ4=4=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛74=74==1-1-1-11-1F F F F F F F ,F ,F F ,〔2〕()()⎪⎭⎫ ⎝⎛75⎪⎭⎫⎝⎛754=2y rect x rect x cos y x f π, 答:()(){}(){}{}()()(){}{}()()()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛77575⋅75*4=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754==1-1-11-2y rect x rect x cos f rect f sinc 75f sinc x cos y 7x sin y rect x rect x cos y x h y x f y x g x y x ππδπF F F F F ,F ,F F ,〔3〕()()[]⎪⎭⎫ ⎝⎛758+1=3x rect x cos y x f π, 答: ()()[]()(){}(){}()()()()()()()()()()()(){}⎪⎭⎫ ⎝⎛75=75≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛75*⎪⎭⎫ ⎝⎛4+81+4-81+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775*8+1=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75f sinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g y x x y x x y x x x x y x δδδδδπδπF F F F F F F F , 〔4〕()()()()()y rect x rect x comb y x f 22*=4,答:1.4 给定一个不变线性系统,输入函数为有限延伸的三角波 对下述传递函数利用图解方法确定系统的输出。
激光原理及应用[陈家璧主编][习题解答]
思考练习题11. 试计算连续功率均为1W 的两光源,分别发射λ=0.5000μm ,ν=3000MHz 的光,每秒从上能级跃迁到下能级的粒子数各为多少?答:粒子数分别为:188346341105138.21031063.6105.01063.61⨯=⨯⨯⨯⨯=⨯⨯==---λνc h q n 239342100277.51031063.61⨯=⨯⨯⨯==-νh q n2.热平衡时,原子能级E 2的数密度为n 2,下能级E 1的数密度为n 1,设21g g =,求:(1)当原子跃迁时相应频率为ν=3000MHz ,T =300K 时n 2/n 1为若干。
(2)若原子跃迁时发光波长λ=1μ,n 2/n 1=0.1时,则温度T 为多高?答:(1)(//m n E E m m kTn n n g e n g --=)则有:1]3001038.11031063.6exp[2393412≈⨯⨯⨯⨯⨯-==---kT h e n n ν(2)K T Te n n kT h 3623834121026.61.0]1011038.11031063.6exp[⨯=⇒=⨯⨯⨯⨯⨯⨯⨯-==----ν3.已知氢原子第一激发态(E 2)与基态(E 1)之间能量差为1.64×l0-18J ,设火焰(T =2700K)中含有1020个氢原子。
设原子按玻尔兹曼分布,且4g 1=g 2。
求:(1)能级E 2上的原子数n 2为多少?(2)设火焰中每秒发射的光子数为l08 n 2,求光的功率为多少瓦?答:(1)1923181221121011.3]27001038.11064.1exp[4----⨯=⨯⨯⨯-⨯=⇒=⋅⋅n n e g n g n kTh ν且202110=+n n 可求出312≈n(2)功率=W 918810084.51064.13110--⨯=⨯⨯⨯4.(1)普通光源发射λ=0.6000μm 波长时,如受激辐射与自发辐射光功率体密度之比q q 激自1=2000,求此时单色能量密度νρ为若干?(2)在He —Ne 激光器中若34/100.5m s J ⋅⨯=-νρ,λ为0.6328μm ,设μ=1,求q q 激自为若干? 答:(1)3173436333/10857.31063.68)106.0(2000188m s J h h c q q ⋅⨯=⇒⨯⨯⨯=⇒=---ννννρρπρπλρνπ=自激(2)943436333106.71051063.68)106328.0(88⨯=⨯⨯⨯⨯⨯==---πρπλρνπννh h c q q =自激5.在红宝石Q 调制激光器中,有可能将全部Cr 3+(铬离子)激发到激光上能级并产生巨脉冲。
陈家璧版_光学信息技术原理及应用 试卷与答案
光学信息技术试卷 答案一.问答题(30分)1. 体全息图有什么样的特性?一般有哪些应用?答:体全息图对于角度和波长具有苛刻的选择性,只有当再现光完全满足布拉格条件时才能得到最强的衍射光,这就造成了它特殊的应用前景。
其一是体全息图可以用白光再现,因为在由多种波长构成的复合光中,仅有一种波长即与记录光波相同波长的光才能达到衍射极大,而其余波长都不能出现足够亮度的衍射像,避免了色串扰的出现;其二是体全息图可以用于大容量高效率全息储存,因为当照明光角度稍有偏离时,便不能得到衍射像,因而可以以很小的角度间隔储存多重三维图像而不发生像串扰。
2. 用相干光学信息处理产生多重像往往会由于相干噪声的干扰而影响了它的应用。
在实际应用中,我们可以采用怎样的办法来获得比较“干净”的多重像?试简述其原理。
答:采用白光照明的4f 系统,在输入面上放置物透明片,其上覆盖一维正弦光栅用于调制物函数。
到达频谱面时是两者频谱的卷积。
由于白光的作用,频谱面上除零级谱为白色之外,其余均呈现为彩虹色带。
滤波器选取一组频率不同的正弦光栅用于对正一级频谱彩带中不同波长的频谱进行调制,结果将会产生三个像,三组衍射像的零级像重合在坐标中央,形成白色像,而三组的正、负一级像以不同的间隔分布在两侧,只要图像的线宽和调频光栅的频率选取得当,输出图像便不会重叠,于是在输出面得到红、绿、蓝三色多重像。
实验结果表明,用白光信息处理系统得到的多重彩色像,有效的消除了相干噪声。
二.计算题(70分)1、 给定正实常数0f 和实常数a 与b ,求证:(1) 若021f b >, 则 02cos *sinc 10=⎪⎭⎫ ⎝⎛x f b x b π(2) 若2a b <, 则 ⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛⎪⎭⎫⎝⎛a x b a x b x 22sinc sinc *sinc证明:(1)再进行傅里叶反变换则命题得证(2)再进行傅里叶反变换则命题得证()()()()[]0212cos *sin 1122100000=++-⋅=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛>⇒>f f f f bf rect x f b x c b F bf f b δδπ ()⎪⎭⎫ ⎝⎛⋅=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⋅=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛>⇒<a f tri ab a f tri a bf rect b a xc b x c F ab a b x 222sin *sin 2122、 单色球面波在x-y 平面上产生的复振幅分布为()()()[]⎭⎬⎫⎩⎨⎧-+-=220434exp )2exp(2,y x k j k j a y x U问此球面波是发散还是会聚的?其中心坐标是多少?解:对照球面波的复振幅表达形式,因为式中前一个指数项中指数为正数,故此球面波是发散的。
光学信息技术原理及应用答案
f F F cos π xrect x F F cos π xcos π x
x rect y
(2) f x,y cos π x rect 答:
4 5 x 0 . 043 cos 2 x 0 . 027 cos 2 x rect ( ) 3 3 50
该函数依然限制在 25,25 区间内,但其平均值为零,是振幅为 0.043,周期为 0.75,的一 个余弦函数与振幅为 0.027,周期为 0.6 的另一个余弦函数的叠加。
(4) f x,y comb x rect x rect y 答:
g x,y F F comb x rect x rect y F sin7x δ y f x f y fx rect F comb f δ f sinc sinc x y 2 f x F δ f x , f y . δ f x , f y . δ f x , f y . δ f x , f y rect F 0.25δ f x , f y . δ f x , f y . δ f x , f y . δ f x , f y . δ f x , f y . . cos 2π x . cos 6π x
1.6 若只能用 a b 表示的有限区域上的脉冲点阵对函数进行抽样,即
x y x y g s x, y g x, y comb comb rect rect X Y a b
试说明,即使采用奈魁斯特间隔抽样,也不能用一个理想低通滤波器精确恢复 g x,y 。 答:因为 a b 表示的有限区域以外的函数抽样对精确恢复 g x,y 也有贡献,不可省略。
2023大学_激光原理及应用(陈家璧著)课后习题答案下载
2023激光原理及应用(陈家璧著)课后习题答案下载激光原理及应用(陈家璧著)课后答案下载绪论一、激光的发展简史二、激光的特点三、本课程的学习方法第1章光和物质的近共振相互作用1.1 电磁波的吸收和发射1.2 电磁场吸收和发射的唯象理论1.3 光谱线加宽1.4 激光器中常见的谱线加宽1.5 光和物质相互作用的近代理论简介思考和练习题第2章速率方程理论2.1 典型激光器的工作能级2.2 三能级系统单模速率方程组2.3 四能级系统单模速率方程组2.4 小信号光的介质增益2.5 均匀加宽介质的增益饱和2.6 非均匀加宽介质的增益饱和2.7 超辐射激光器思考和练习题第3章连续激光器的工作特性3.1 均匀加宽介质激光器速率方程3.2 激光振荡阈值3.3 均匀加宽介质激光器中的'模竞争3.4 非均匀加宽介质激光器的多纵模振荡 3.5 激光器输出特性思考和练习题第4章光学谐振腔理论4.1 光学谐振腔的研究方法4.2 光学谐振腔的基本知识4.3 光学谐振腔的矩阵光学理论4.4 光学谐振腔的衍射积分理论4.5 平行平面腔的自再现模4.6 对称共焦腔的自再现模思考和练习题第5章高斯光束5.1 高斯光束的基本特点5.2 高斯光束的传输5.3 高斯光束的特性改善思考和练习题第6章典型激光器6.1 概述6.2 气体激光器6.3 固体激光器6.4 染料激光器6.5 半导体激光器6.6 其他激光器思考和练习题第7章激光的应用7.1 激光在基础科学研究中的应用 7.2 激光在通信及信息处理中的应用 7.3 激光在军事技术中的应用7.4 激光在生物及医学中的应用7.5 激光在材料加工中的应用7.6 激光在测量技术(计量学)中的应用7.7 激光在能源、环境中的应用7.8 激光在土木、建筑中的应用思考和练习题附录A.常用物理常数表B.常见激光器的典型技术参数C.常用电光晶体的典型技术参数D.常用光学非线性晶体的典型技术参数E.常用激光晶体的典型技术参数F.常见光功率计型号和厂家G.典型激光波长使用的光学零件及其材料性能参数H.常见光路和光学元件的传播矩阵参考文献激光原理及应用(陈家璧著):内容简介点击此处下载激光原理及应用(陈家璧著)课后答案激光原理及应用(陈家璧著):目录主要介绍了激光发展简史及激光的特性,激光产生的基本原理,光学谐振腔与激光模式,高斯光束,激光工作物质的增益特性,激光器的工作特性,激光特性的控制与改善,典型激光器,半导体激光器,光通信系统中的激光器和放大器,激光全息技术,激光与物质的相互作用,以及激光在其他领域的应用等内容。
陈家璧版-光学信息技术原理及应用习题解答(8-11章)
习 题8.1利用4f 系统做阿贝—波特实验,设物函数t (x 1,y 1)为一无限大正交光栅 ⎥⎦⎤⎢⎣⎡*⨯⎥⎦⎤⎢⎣⎡*=)c o m b ()r e c t ()c o m b (r e c t (),(21212111111111b y a y b b x a x b y x t其中a 1、a 2分别为x 、y 方向上缝的宽度,b 1、b 2则是相应的缝间隔。
频谱面上得到如图8-53(a )所示的频谱。
分别用图8-53(b )(c )(d )所示的三种滤波器进行滤波,求输出面上的光强分布(图中阴影区表示不透明屏)。
图8.53(题8.1 图)解答:根据傅里叶变换原理和性质,频谱函数为 T ( f x , f y ) = ℱ [ t ( x 1 , y 1 )]= { 11b ℱ [)rect(11a x ]·ℱ [)comb(11b x ] } *{21b ℱ [rect(21a y ·ℱ [comb(21b y ]}将函数展开得 T ( f x , f y ) ={}•••++++)δ()sinc()δ()sinc()sinc(111111111b 1b 1-x x x f b a f b a f a b a*{}•••++++)δ()sinc(δ()sinc()sinc(222222222b 1b 1-y y y f b a f b a f ab a(1)用滤波器(b )时,其透过率函数可写为1 f x = + 1/ b 1 f y = 0F ( f x , f y ) =0 f x ≠ 1/ b 1 f y = 任何值 滤波后的光振幅函数为 T ·F =[])δ()δ()sinc(111111b 1b 1-++x x f f b a b a输出平面光振幅函数为 t ’(x 3,y 3)= ℱ -1[ T ·F ]= )]}(exp [(sinc(13131111b 2-b 2x j x j b a b a ππ+=)(cos)sinc(131111b 22x b a b a π•输出强度分布为 I (x 3,y 3)=)(cos )(sinc 1321122121b 24x b a b a π•=)cos()(sinc131122121b 42x b a b a π• - C其中C 是一个常数,输出平面上得到的是频率增加一倍的余弦光栅。
《光学信息处理》习题解答
(2)
如果
a
>
1, L
b
>
1 W
,因
f
( x,
y) 是限带函数,在频域内, F (
fx,
f y ) 在长、宽分别为 L 、W
的矩
形内不为零, a > 1 、 b > 1 即 1 < L 、1 < W ,也就是说滤波器通带宽度比输入函数波形宽度窄,
L
Wa
b
势必有一部分信号不能通过滤波器,在频域内,这时 F ( f x , f y ) ⋅ H ( f x , f y ) ≠ F ( f x , f y ) ,在空域内即 1 sinc( x )sinc( y ) * f (x, y) ≠ f (x, y) ab a b
g 1 ( x , y ) = F −1 [G 1 ( f x , f y )] = cos 4π x
(2)由
f2
(x,
y)
=
cos(
4π x ) rect
(x 75
) rect
(y 75
)
得:
F2 (
fx,
fy
)
=
1 [δ 2
(
fx
−
2)
+
δ(
fx
+
2)]δ
(
fy
)
∗ 752 sinc(75
f x )sinc(75
)]
*
Λ(
x)
对下述传递函数用图解方法确定系统的输出。
(1)
H 1 ( f ) = rect(
f) 2
(2)
H 2 ( f ) = rect(
f ) − rect( 4
陈家璧版 光学信息技术原理及应用习题解答(5-6章)
第五章习题解答5.1两束夹角为 θ = 450的平面波在记录平面上产生干涉,已知光波波长为632.8nm ,求对称情况下(两平面波的入射角相等)该平面上记录的全息光栅的空间频率。
答案:已知:θ = 450,λ= 632.8nm求:全息光栅空间频率f x解:根据平面波相干原理,干涉条纹的空间分布满足关系式 2 d sin (θ/2)= λ其中d 是干涉条纹间隔。
由于两平面波相对于全息干板是对称入射的,故记录在干板上的全息光栅空间频率为f x = (1/d )= (1/λ)·2 sin (θ/2)= 1209.5 l /mm 答:全息光栅的空间频率为1209.5 l /mm 。
5.2 如图5.33所示,点光源A (0,-40,-150)和B (0,30,-100)发出的球面波在记录平面上产生干涉:xz图5.33 (5.2题图)(1)写出两个球面波在记录平面上复振幅分布的表达式;解答:设:点源A 、B 发出的球面波在记录平面上的复振幅分布分别为U A 和U B , 则有 ()[{]}22--22)()()/(e x p e x p A A A A A A y y x x z jk jkz a U +=()[{]}22--22)()()/(e x p e x p B B B B B B y y x x z jk jkz a U +=其中: x A = x B = 0, y A = -40, z A = -150, y B = 30, z B = -100; a A 、a B 分别是球面波的振幅;k 为波数。
(2)写出干涉条纹强度分布的表达式;I = |U A +U B |2 = U A ·U A * + U B ·U B * +U A *·U B + U A ·U B *[{]{[]}}[{]{[]}}--2---2-4--2--2--442222222222)()()/()()()/(exp )exp()()()/()()()/(exp )exp(B B B A A A B A BA B B B A A A B ABA BA y y x x z jk y y x x z jk jkz jkz a a y y x x z jk y y x x z jk jkz jkz a a a a ++•+++++•++=(3)设全息干板的尺寸为100 × 100 mm 2,λ = 632.8nm ,求全息图上最高和最低空间频率;说明这对记录介质的分辨率有何要求?解答:设全息干板对于坐标轴是对称的,设点源A 与点源B 到达干板的光线的最大和最小夹角分别为θmax和θmin,A 、B 发出的到达干板两个边缘的光线与干板的夹角分别为θA 、θB 、θA ’和θB ’,如图所示,它们的关系为θA = tg-1[z A /(-y A - 50)] ,θB = tg-1[z B /(-y B - 50)]θA ’= tg -1[z A /(y A - 50)] ,θ B ’= tg -1[z B /(y B - 50)]θmax =θ A -θB, θmin =θ B ’-θA ’根据全息光栅记录原理,全息图上所记录的 最高空间频率 f max = (2/λ)sin (θmax /2)·cos α 1 最低空间频率 f min = (2/λ)sin (θmin /2)·cos α2其中α角表示全息干板相对于对称记录情况的偏离角,由几何关系可知 cos α 1 = sin (θA+θB )/2 , cos α 2 = sin (θA ’+θB ’)/2将数据代入公式得 f max = 882 l /mm ,f min = 503 l /mm答:全息图的空间频率最高为882 l /mm ,最低为503 l /mm ,要求记录介质的分辨率不得低于900 l /mm 。
《激光原理及应用》陈家璧第版
8hν3
要
与温度T及频率 ν 的关系,即为普朗克黑体辐射的单色辐射能量密度公式
与 激 光
式中k为波尔兹曼常数。
8hν3
c3
1
hν
e kT
1
产 生
总辐射能量密度 : 0 νdν
的
条
件
第一章 上一页 回首页 下一页 回末页 回目录
第 §1.1 光的波粒二象性
一 章
1.3.2 光和物质的作用
激 光 产 生
对于大量原子统计平均来说,从E2经自发辐射跃 迁到E1具有一定的跃迁速率。
dn2 A21n2dt
图(1-6)自发辐射
的 式中“-”表示E2能级的粒子数密度减少;n2为某时刻高能级E2上的原子
条 件
数密度(即单位体积中的原子数);dn2表示在dt时间间隔内由E2自发跃迁 到E1的原子数。A21称为爱因斯坦自发辐射系数,简称自发辐射系数。
理 论
平面波:波阵面是平面
概 (2)单色平面波:具有单一频率的平面波
要
准单色波:实际上不存在完全单色的光波,总有一定的频率宽度,如
与
称为准单色波。
激 光
设理真想空的中单电色磁平波面的波电(矢简量谐波E在)坐标原点沿x方向作简谐振动,磁矢量 B在y方
产
向作简谐振动,频率均为 ,且t=0时两者的初位相均为零。则 E、 B的振动
的
m
条 件
已知A21,可求得单位体积内发出的光功率。若一个光子的能量为 hν ,某时 刻激发态的原子数密度为n2(t),则该时刻自发辐射的光功率密度(W/m3)为:
q21(t) n2 (t) A21hν
陈家璧版_光学信息技术原理及应用习题解答(1-2章)
第一章习题1.1 已知不变线性系统的输入为()()x x g com b = 系统的传递函数⎪⎭⎫⎝⎛b f Λ。
若b 取(1)50=.b (2)51=.b ,求系统的输出()x g '。
并画出输出函数及其频谱的图形。
答:(1)()(){}1==x x g δF 图形从略,(2)()()()()()x s co f f δf δx g x x x πδ232+1=⎭⎬⎫⎩⎨⎧1+31+1-31+=F 图形从略。
1.2若限带函数()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零, (1)如果L a 1<,Wb 1<,试证明()()y x f y x f b x a x ab ,,sinc sinc =*⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1 证明:(){}(){}(){}()()(){}(){}()y x,f b x sinc a x sinc ab bf af rect y x f y x,f bf af rect y x f Wf L f rect y x f y x,f y x y x yx *⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛1==∴=⎪⎪⎭⎫⎝⎛=,,F F ,,F ,,F F 1-(2)如果L a 1>, Wb 1>,还能得出以上结论吗? 答:不能。
因为这时(){}(){}()y x yx bf af rect y x f Wf L f rect y x f ,,F ,,F ≠⎪⎪⎭⎫ ⎝⎛。
1.3 对一个空间不变线性系统,脉冲响应为()()()y x y x h δ77=sinc ,试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。
(必要时,可取合理近似) (1)()x y x f π4=1cos ,答:()(){}(){}{}{}()(){}{}{}{}{}xcos x cos f rect x cos y 7x sin x cos y x h y x f y x g x πππδπ4=4=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛74=74==1-1-1-11-1F F F F F F F ,F ,F F ,(2)()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754=2y rect x rect x cos y x f π, 答:()(){}(){}{}()()(){}{}()()()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛77575⋅75*4=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754==1-1-11-2y rect x rect x cos f rect f sinc 75f sinc x cos y 7x sin y rect x rect x cos y x h y x f y x g x y x ππδπF F F F F ,F ,F F ,(3)()()[]⎪⎭⎫⎝⎛758+1=3x rect x cos y x f π,答: ()()[]()(){}(){}()()()()()()()()()()()(){}⎪⎭⎫ ⎝⎛75=75≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛75*⎪⎭⎫ ⎝⎛4+81+4-81+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775*8+1=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75f sinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g y x x y x x y x x x x y x δδδδδπδπF F F F F F F F ,(4)()()()()()y rect x rect x comb y x f 22*=4, 答:()()()()(){}()(){}{}()()()()()()()()()()()()(){}()()x π6cos x π2cos f f f f f f f f f f f rect f f δf f δf f δf f δf rect f sinc 2f sinc f f comb y 7x sin y rect x rect x comb y x g y x y x y x y x y x x y x y x y x y x x y x y x 1060-3180+250=3+0530-3-0530-1+1590+1-1590+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛-3-2120-1+6370+1-6370+41=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛7⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛2⎪⎭⎫ ⎝⎛41=722*=1-1-1-1-2...,.,.,.,.,F ,.,.,.,F F F F F ,δδδδ0.25δδδ1.4 给定一个不变线性系统,输入函数为有限延伸的三角波 ()()x x rect x comb x g i Λ*⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛50⎪⎭⎫ ⎝⎛331=对下述传递函数利用图解方法确定系统的输出。
光学信息技术原理及应用答案[1]
第一章 习题解答1.1 已知不变线性系统的输入为()()x x g c o m b =系统的传递函数⎪⎭⎫⎝⎛b f Λ。
若b 取(1)50=.b (2)51=.b ,求系统的输出()x g '。
并画出输出函数及其频谱的图形。
答:(1)()(){}1==x x g δF 图形从略,(2)()()()()()x s co f f δf δx g x x x πδ232+1=⎭⎬⎫⎩⎨⎧1+31+1-31+=F 图形从略。
1.2若限带函数()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零, (1)如果La 1<,Wb 1<,试证明()()y x f y x f b x a x ab ,,sinc sinc =*⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1证明:(){}(){}(){}()()(){}(){}()y x,f bxsinc a x sinc ab bf afrect y x f y x,f bfaf rect y x f W f L f rect y x f y x,f yxyx y x *⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1==∴=⎪⎪⎭⎫⎝⎛=,,F F,,F ,,F F 1-(2)如果La 1>, Wb 1>,还能得出以上结论吗?答:不能。
因为这时(){}(){}()yx y x bf af rect y x f W f L f rect y x f ,,F ,,F ≠⎪⎪⎭⎫ ⎝⎛。
1.3 对一个空间不变线性系统,脉冲响应为 ()()()y x y x h δ77=sinc ,试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。
(必要时,可取合理近似)(1)()x y x f π4=1cos ,答:()(){}(){}{}{}()(){}{}{}{}{}xcos x cos f rect x cos y 7x sin x cos y x h y x fy x g x πππδπ4=4=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛74=74==1-1-1-11-1F F F FF F F ,F ,F F,(2)()()⎪⎭⎫ ⎝⎛75⎪⎭⎫⎝⎛754=2y rect xrect x cos y x f π,答: ()(){}(){}{}()()(){}{}()()()()⎪⎭⎫⎝⎛75⎪⎭⎫ ⎝⎛754≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛77575⋅75*4=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754==1-1-11-2y rect x rect x cos f rect f sinc 75f sinc x cos y 7x sin y rect xrect x cos y x h y x fy x g x y xππδπF FF F F ,F ,F F,(3)()()[]⎪⎭⎫⎝⎛758+1=3xrect x cos y x f π, 答:()()[]()(){}(){}()()()()()()()()()()()(){}⎪⎭⎫⎝⎛75=75≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛75*⎪⎭⎫⎝⎛4+81+4-81+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775*8+1=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫⎝⎛758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75f sinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g yxx y xx y xx xx y xδδδδδπδπF FFF FF F F,(4)()()()()()y rect x rect x comb y x f 22*=4,答: ()()()()(){}()(){}{}()()()()()()()()()()()()(){}()()x π6cos x π2cos f f f f f f f f f ff rect f f δf f δf f δf f δf rect f sinc 2f sinc f f comb y 7x sin y rect x rect x comby x g y x y x y x y x y xx yx y x y x y x x y x y x 1060-3180+250=3+0530-3-0530-1+1590+1-1590+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫⎝⎛-3-2120-1+6370+1-6370+41=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛7⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛2⎪⎭⎫ ⎝⎛41=722*=1-1-1-1-2...,.,.,.,.,F,.,.,.,F FF F F,δδδδ0.25δδδ1.4 给定一个不变线性系统,输入函数为有限延伸的三角波()()x x rect x comb x g i Λ*⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛50⎪⎭⎫ ⎝⎛331=对下述传递函数利用图解方法确定系统的输出。
光学信息技术原理及应用(第二版)课后答案汇总
第一章 习题解答1.1 已知不变线性系统的输入为()()x x g c o m b =系统的传递函数⎪⎭⎫⎝⎛b f Λ。
若b 取(1)50=.b (2)51=.b ,求系统的输出()x g '。
并画出输出函数及其频谱的图形。
答:(1)()(){}1==x x g δF 图形从略, (2)()()()()()x s co f f δf δx g x x x πδ232+1=⎭⎬⎫⎩⎨⎧1+31+1-31+=F 图形从略。
1.2若限带函数()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零,(1) 如果L a 1<,Wb 1<,试证明()()y x f y x f b x a x ab ,,sinc sinc =*⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1 证明:(){}(){}(){}()()(){}(){}()y x,f b x sinc a x sinc ab bf af rect y x f y x,f bf af rect y x f Wf L f rect y x f y x,f y x y x yx *⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛1==∴=⎪⎪⎭⎫⎝⎛=,,F F ,,F ,,F F 1-(2) 如果L a 1>, Wb 1>,还能得出以上结论吗?答:不能。
因为这时(){}(){}()y x yx bf af rect y x f W f L f rect y x f ,,F ,,F ≠⎪⎪⎭⎫⎝⎛。
1.3 对一个空间不变线性系统,脉冲响应为 ()()()y x y x h δ77=sinc ,试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。
(必要时,可取合理近似) (1)()x y x f π4=1cos ,答:()(){}(){}{}{}()(){}{}{}{}{}xcos x cos f rect x cos y 7x sin x cos y x h y x f y x g x πππδπ4=4=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛74=74==1-1-1-11-1F F F F F F F ,F ,F F ,(2)()()⎪⎭⎫ ⎝⎛75⎪⎭⎫⎝⎛754=2y rect x rect x cos y x f π, 答:()(){}(){}{}()()(){}{}()()()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛77575⋅75*4=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754==1-1-11-2y rect x rect x cos f rect f sinc 75f sinc x cos y 7x sin y rect x rect x cos y x h y x f y x g x y x ππδπF F F F F ,F ,F F ,(3)()()[]⎪⎭⎫⎝⎛758+1=3x rect x cos y x f π, 答:()()[]()(){}(){}()()()()()()()()()()()(){}⎪⎭⎫ ⎝⎛75=75≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛75*⎪⎭⎫ ⎝⎛4+81+4-81+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775*8+1=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75f sinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g y x x y x x y x x x x y x δδδδδπδπF F F F F F F F ,(4)()()()()()y rect x rect x comby x f 22*=4, 答:()()()()(){}()(){}{}()()()()()()()()()()()()(){}()()x π6cos x π2cos f f f f f f f f f f f rect f f δf f δf f δf f δf rect f sinc 2f sinc f f com b y 7x sin y rect x rect x com by x g y x y x y x y x y x x yx y x y x y x x y x y x 1060-3180+250=3+0530-3-0530-1+1590+1-1590+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛-3-2120-1+6370+1-6370+41=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛7⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛2⎪⎭⎫ ⎝⎛41=722*=1-1-1-1-2...,.,.,.,.,F ,.,.,.,F F F F F ,δδδδ0.25δδδ1.4 给定一个不变线性系统,输入函数为有限延伸的三角波()()x x rect x comb x g i Λ*⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛50⎪⎭⎫ ⎝⎛331= 对下述传递函数利用图解方法确定系统的输出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习 题8.1利用4f 系统做阿贝—波特实验,设物函数t (x 1,y 1)为一无限大正交光栅 ⎥⎦⎤⎢⎣⎡*⨯⎥⎦⎤⎢⎣⎡*=)comb()rect()comb()rect(),(21212111111111b y a y b b x a x b y x t 其中a 1、a 2分别为x 、y 方向上缝的宽度,b 1、b 2则是相应的缝间隔。
频谱面上得到如图8-53(a )所示的频谱。
分别用图8-53(b )(c )(d )所示的三种滤波器进行滤波,求输出面上的光强分布(图中阴影区表示不透明屏)。
. . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . .(a ) (b ) (c ) (d )图8.53(题8.1 图)解答:根据傅里叶变换原理和性质,频谱函数为T ( f x , f y ) = ℱ [ t ( x 1 , y 1 )]= { 11b ℱ [)rect(11a x ]·ℱ [)comb(11b x ] } *{21b ℱ [)rect(21a y ·ℱ [comb(21b y ]} 将函数展开得T ( f x , f y ) = {}•••++++)δ()sinc()δ()sinc()sinc(111111111b 1b 1-x x x f b a f b a f a b a * {}•••++++)δ(sinc(δ()sinc()sinc(222222222b 1b 1-y y y f b a f b a f a b a (1) 用滤波器(b )时,其透过率函数可写为1 f x = + 1/ b 1 f y = 0F ( f x , f y ) =0 f x ≠ 1/ b 1 f y = 任何值滤波后的光振幅函数为T ·F = [])δ()δ()sinc(111111b 1b 1-++x x f f b a b a 输出平面光振幅函数为t ’(x 3,y 3)= ℱ -1[ T ·F ] = )]}(exp [)](){exp [sinc(13131111b 2-b 2x j x j b a b a ππ+ = )(cos )sinc(131111b 22x b a b a π• 输出强度分布为 I (x 3,y 3)= )(cos )(sinc 1321122121b 24x b a b a π• = )cos()(sinc 131122121b 42x b a b a π• - C 其中C 是一个常数,输出平面上得到的是频率增加一倍的余弦光栅。
(2)用滤波器(c )时,其透过率函数可写为 1 f x ,f y ≠ 0F ( f x , f y ) =0 f x = f y = 0滤波后的光振幅函数为 T ·F = {}•••+++)()sinc()()sinc(11111111b 1b 1-x x f b a f b a b a δδ * {}•••+++)()sinc()()sinc(22222222b 1b 1-y y f b a f b a b a δδ 输出平面光振幅函数为t ’(x 3,y 3)= ℱ -1[ T ·F ] = {[)(rect 1311a x b *])comb(13b x - )rect(1311b x b a } × {[)(rect 2321a y b *])comb(23b y - )rect(2322b y b a }输出强度分布为I (x 3,y 3)= | t ’(x 3,y 3)|2 有两种可能的结果,见课本中图8.9和图8.10。
(3)用滤波器(d )时,输出平面将得到余弦光栅结构的强度分布,方向与滤波狭缝方向垂直,周期为b ’,它与物光栅周期b 1、b 2的关系为 2221111b b b +=’8.2 采用图8-53(b )所示滤波器对光栅频谱进行滤波,可以改变光栅的空间频率,若光栅线密度为100线/mm ,滤波器仅允许 + 2级频谱透过,求输出面上干板记录到的光栅的线密度。
解答:根据对8.1题的分析,当滤波器仅允许+ 2级频谱通过时,输出平面上的光振幅应表达为t ’(x 3)= ℱ -1 { )]()()[sinc(111122-b f b f b a x x ++δδ} = 13111142b x b a b a πcos )c(sin 其振幅分布为一周期函数,空间频率是基频的2倍。
而干板记录到的是强度分布: I = 132112212144b x b a b a πcos )(sinc = 13112212182b x b a b a πcos )(sinc - C 其中C 是一个常数。
答:干板上记录到的光栅频率是基频的4倍,即400线/mm 。
8.3 在4f 系统中,输入物是一个无限大的矩形光栅,设光栅常数d = 4,线宽a =1,最大透过率为1,如不考虑透镜有限尺寸的影响,(a )写出傅里叶平面P 2上的频谱分布表达式;(b )写出输出平面复振幅和光强分布表达式;(c )在频谱面上作高通滤波,挡住零频分量,写出输出平面复振幅和光强分布表达 式;(d )若将一个π位相滤波器 exp (j π) x 2,y 2 ≤ x 0,y 0H (x 2,y 2)=0 其它放在P 2平面的原点上,写出输出平面复振幅和光强分布表达式,并用图形表示。
解答:将8.1题结果代入,其中b 1 = d = 4,a 1 = a = 1,除去与y 分量有关的项,可得(a )P 2平面上的频谱分布为: })()sinc()()sinc(){sinc()(•••++++=414141-4141x x x x f f f f T δδ (b )输出平面:复振幅 t (x 3)= ℱ -1[T (f x )]若不考虑透镜尺寸的影响,它应该是原物的几何像,即t (x 3) = )[rect(341x *)]comb(43x 光强分布 I (x 3) = | t (x 3)| 2 = )[rect(3161x *234)]comb(x (c)挡住零频分量,输出平面情况与8.1题(3)相同,即 t (x 3) = )[rect(341x *)]comb(43x -)rect(4413x I = | t (x 3) | 2由于a = d / 4,所以强度将出现对比度反转,像光栅常数仍为d = 4,线宽为a ’= 3,见下图t (x 3) I (x 3)3(d )将一个π exp (j π) f x = f y = 0H (f x ,f y )=1 f x ,f y ≠ 0只考虑一维情况,频谱变为T ’(f x )= T (f x )·H (f x )= })()sinc()()sinc()exp(){sinc(•••++++414141-4141x x x f f j f δδπ =})()sinc()()sinc()sinc({•••++++414141-41-41x x x f f f δδ 输出平面上的复振幅为 t (x 3) = ℱ -1[T (f x )·H (f x )]= -)[rect()rect(334141x x +*)]comb(43x - )rect(4413x 8.4 图8-54所示的滤波器函数可表示为:1 f x >0H (f f ,f y )= 0 f x =0-1 f x <0此滤波器称为希尔伯特滤波器。
证明希尔伯特滤波能够将弱位相物体的位相变化转变为光强的变化。
LL 2x图8.54(题8.4 图)解答:位相物可表达为t0(x1,y1)= A·exp [ jφ(x1,y1)]对于弱位相物有φ< 1弧度,上式近似为(忽略A)t0(x1,y1)≅ 1+ jφ(x1,y1)滤波平面得到T(f,f y)= ℱ [t0(x1,y1)]x=δ(f x,f y)+ jΦ(f x,f y)其中Φ(f x,f y)= ℱ [φ(x1,y1)]。
经希尔伯特滤波器,频谱面后的光分布为T’(f x,f y)= T(f x,f y)·H(f f ,f y)jΦ(f,f y)f x > 0x= 0 f x= 0- jΦ(f x,f y)f x< 0像平面光场复振幅为(以下无把握)t’(x3,y3)= ℱ-1[T’(f x,f y)]jφ(-x3,-y3)x3> 0= 0 x3= 0- jφ(-x3,-y3)x3< 0光强分布为 I = t’·t’∗-φ2(-x3,-y3)x3> 0= 0 x3= 0φ 2(-x3,-y3)x3< 0(此结论和于美文书上的答案不一样,建议取消此题)8.5 如图8-55所示,在激光束经透镜会聚的焦点上,放置针孔滤波器,可以提供一个比较均匀的照明光场,试说明其原理。
针孔图8.55(题8.5 图)8.6 光栅的复振幅透过率为t(x)= cos 2πf0 x把它放在4f系统输入平面P1上,在频谱面P2上的某个一级谱位置放一块λ/ 2位相板,求像面的强度分布。
解答:将复振幅透过率函数变换为t (x )= cos 2πf 0 x = [1+cos 2πf 0 x ] / 2其频谱为T (f x )= ℱ [t (x )] 21=δ(f x )+ 21ℱ [cos 2πf 0 x ] = 21δ(f x )+ 41 δ(f x - f 0)+ 41δ(f x + f 0) 其中第一项为零级谱,后两项以次为+1级和-1级谱。
设将λ/ 2位相板放在+1级谱上,其透过率表达为H (f x )= exp (j π)则频谱面P 2后的光振幅变为T ’= T ·H =21δ(f x )+ 41 δ(f x - f 0)·exp (j π)+ 41δ(f x + f 0) = 21δ(f x )- 41 δ(f x - f 0)+ 41δ(f x + f 0) 像平面光场复振幅为t ’(x )= ℱ -1 [T ’] =21 - 41exp (j 2πf 0x 3)+ 41exp (-j 2πf 0x 3) = 21 - 21j sin (2πf 0x 3) 像平面强度分布为I = t ’(x ) 2 = t ’(x )· t ’(x )∗ =41[1- j sin (2πf 0x 3)][1+ j sin (2πf 0x 3)] =41+41 sin 2(2πf 0x 3) 像平面得到的仍是一周期函数,其周期缩小1倍,振幅减小4倍,本底也有所变化,并且出现图形的横向位移,位移量为1/2周期。