图像的伪彩色处理[3]
武汉文理学院医学影像后处理技术考试重点
武汉文理学院医学院医学影像技术专业试题题库一.名词解释(本大题共5小题,每题3分,共15分)1.医学影像后处理技术:经计算机技术对目前医学影像检查手段如CR、DR、CT、MRI、DSA、SPECT、PET和超声等产生的数字化图像进行再加工并从定性到定量对图像进行分析的过程。
2.医学图像三维重组技术:是指将计算机断层扫描(computed tomography,CT)、磁共振成像(magnetic resonance imaging,MRI)等医学成像技术获得的二维图像数据重组为三维图像数据。
3.医学影像:是通过某种医学成像方式非侵人地取得人体内部组织结构的图像,反映人体组织的客观信息。
6.医学图像三维重组技术:是指将计算机断层扫描(computed tomography,CT)、磁共振成像(magnetic resonance imaging,MRI)等医学成像技术获得的二维图像数据重组为三维图像数据。
7.呼吸触发:是指通过在腹部放置一个呼吸门控装置,探测受检者的呼吸波形,在相对呼气末平台期完成信号采集。
8.像素:是指人体某部位一定厚度信息的二维影像,是构成数字图像的最小单位,是图像的基本单位。
9.矩阵(matrix):像素以二维方式排列的阵列,它是一个数学概念,表示横成行、纵成列的数字集合。
10.灰阶(gray level):显示器上显示的人体不同组织结构的亮暗程度。
11.窗口技术:是指根据人眼的视觉特点采用计算机设置的不同灰度标尺。
一般选择用窗宽、窗位来观察图像的感兴趣区。
12.图像的负片:是经曝光和显影加工后得到的影像,其明暗与被摄体相反。
13.重建间隔:每相邻两层重建图像之间的距离。
14.螺距(pitch):X-CT球管旋转一周检查床移动的距离与射线束宽度的比值。
15.密度分辨力:又称为灰度分辨力,低对比度分辨力,表示能够分辨不同组织的能力,即在低对比情况下,分辨物体微小差别的能力。
16.空间分辨力(spatial resolution):是指在高对比的情况下,能够分辨图像细节的能力,即对物体空间大小最小距离的鉴别能力,又称高对比分辨力,用LP/cm表示。
伪彩色处理方法
伪彩色处理方法
嘿,你知道伪彩色处理方法吗?这可真是个超有趣的技术呢!
伪彩色处理方法呀,简单来说就是把灰度图像或者单一波段的图像转化为彩色图像的过程。
具体步骤呢,首先要选择合适的映射函数,这就像是给图像选一件合适的“衣服”,得精心挑选哦!然后将灰度值或者波段值通过这个映射函数转换为对应的彩色值。
这里要注意啦,映射函数的选择可是至关重要的,要是选错了,那可就糟糕啦!同时,在处理过程中还要注意图像的分辨率和质量,别一不小心把图像弄“花”了呀。
在这个过程中,安全性和稳定性那也是相当重要的呀!就好像走钢丝一样,得稳稳当当的。
只要我们按照正确的步骤和注意事项来操作,一般来说是不会出现什么大问题的。
当然啦,也不能掉以轻心,要时刻保持警惕呢。
那伪彩色处理方法有啥应用场景和优势呢?哇塞,那可多了去啦!比如在医学领域,可以让医生更清楚地看到病变部位;在遥感领域,可以更直观地分辨不同的地物;在工业检测中,能够快速发现问题所在。
它的优势就是能让原本单调的图像变得丰富多彩,让人一目了然呀!这就好比原本是黑白的世界突然变得五彩斑斓,多神奇呀!
来看看实际案例吧,在医学影像中,通过伪彩色处理,原本难以分辨的组织和器官一下子就清晰可见了,医生就能更准确地诊断病情啦!这效果,简直太惊人啦!
我觉得呀,伪彩色处理方法真的是超级棒的技术,它能让我们看到更多的细节,发现更多的美好,给我们的生活和工作带来了极大的便利呀!。
伪彩色图像处理
伪彩色图像处理一、伪彩色处理的原理伪彩色处理是指将黑白图像转化为彩色图像,或者是将单色图像变换成给定彩色分布图像。
由于人眼对彩色的分辨能力远远高于对灰度的分辨能力,所以将灰度图像转化成彩色表示,就可以提高对图像细节的辨别力。
因此,伪色彩处理的主要目的是为了提高人眼对图像细节的分辨能力,以达到图像增强的目的。
伪彩色处理的基本原理是将黑白图像或者单色图像的各个灰度级匹配到彩色空间中的一点,从而使单色图像映射成彩色图像。
对黑白图像中不同的灰度赋予不同的彩色。
设f(x,y)为一幅黑白图像,R(x,y),G(x,y),B(x,y)为f值得注意的是,伪彩色虽然能将黑白灰度转化为彩色,但这种彩色并不是真正表现图像的原始颜色,而仅仅是一种便于识别的伪彩色。
伪彩色处理技术的实现方法有多种,如密度分层法、灰度级-彩色变换法、频域滤波法等等。
其中灰度级-彩色变换伪色彩处理技术可以将灰度图像变为具有多种颜色渐变的连续彩色图像。
该方法先将灰度图像送入具有不同变换特性的红、绿、蓝三个变换器,然后再将三个变换器的不同输出分别送到彩色显像管的红、绿、蓝枪,再合成某种颜色。
同一灰度由三个变换器对其实施不同变换,使三个变换器输出不同,从而不同大小灰度级可以合成不同颜色。
这种方法变换后的图像视觉效果好。
二、伪彩色处理之灰度级-彩色变换法以上是一组典型的灰度级-彩色变换的传递函数。
其中图(a )、(b )、(c )分别表示红色、绿色、蓝色的传递函数,图(d )是三种彩色传递函数组合在一起的情况。
由图(a )可见,凡灰度级小于L/2的像素将被转变为尽可能的暗红色,而灰度级位于L/2到3L/4之间的像素则取红色从暗到亮的线性变换。
凡灰度级大于3L/4的像素均被转变成最亮的红色。
其他的颜色以此类推。
三、灰度级-彩色变换法的Matlab 实现,其程序如下:I=imread(' F:\yyu\happy\DSC01015.jpeg'); %读入灰度图像image2g.jpg I=double(I);[M,N]=size(I);L=256;for i=1:Mfor j=1:Nif I(i,j)<L/4R(i,j)=0;G(i,j)=4*I(i,j);B(i,j)=L;else if I(i,j)<=L/2R(i,j)=0;G(i,j)=L;;B(i,j)=-4*i(i,j)+2*L;else if I(i,j)<=3*L/4R(i,j)=4*I(i,j)-2*L;G(i,j)=L;B(i,j)=0;elseR(i,j)=L;G(i,j)=-4*I(i,j)+4*L;B(i,j)=0;endendendendendfor i=1:Mfor j=1:NG2C(i,j,1)=R(i,j);G2C(i,j,2)=R(i,j);G2C(i,j,3)=R(i,j);endendG2C=G2C/256;Figure;Inshow(G2C);四、总结伪彩色处理不改变像素的几何位置,而仅仅改变其显示的颜色。
红外图像伪彩色编码和处理
文章编号!"##$%$#&$’$##()#*%#+",%#+红外图像伪彩色编码和处理刘缠牢-谭立勋-李春燕-马刚’西安工业大学光电工程学院-西安."##/$)摘要!利用红外热成像系统可将物体的热分布转化为可视图像-并在监视器上以灰度级或伪彩色显示出来-从而得到被测目标的温度分布场0根据热成像测温原理以及红外图像的特点-在对室温热成像系统研究的基础上-对红外图像伪彩色编码进行了研究-提出一种新的伪彩色编码方法-即自动阈值法0利用自动阈值法可以在室温环境下-对目标的温度及其分布进行测量0在123/$#4($#$和5678室温热成像系统中对提出的方法进行了验证0实验结果表明-该方法可使红外图像层次分明-容易分辨出不同的温度区域0关键词!热成像系统9伪彩色编码9自动阈值9温度分布中图分类号!16.*"文献标志码!8:;<=>?@A ?B ?C A ?>D E FG E >H C ?A <;;D E FI ?C D E I C G C <>D J G F <;K L M 4N O P %Q O R -18S K T %U V P -K L 4N V P %W O P -287O P X’3Y N R R Q R Z [\]R ^Q ^Y ]_R P T Y O Q ‘P X T P ^^_T P X -a T b O PL P c ]T ]V ]^R Z 1^Y N P R Q R X W -a T b O P ."##/$-4N T P O)d e ;f C G A f !1N ^]N ^_g O Q h T c ]_T i V ]T R PR Z R i j ^Y ]c Y O Pi ^]_O P c Z R _g ^hT P ]R]N ^k T c V O Q \T Y ]V _^c i W]N ^T P Z _O _^h]N ^_g O Q T g O X T P X c W c ]^g O P h h T c \Q O W ^h R P]N ^g R P T ]R _T PX _^W Q ^k ^Q R _\c ^V h R %Y R Q R _-]N V c ]N ^]^g \^_O ]V _^h T c ]_T i V ]T R P R ZR i j ^Y ]cY O P i ^R i ]O T P ^h l 8Y Y R _h T P X ]R ]N ^]N ^_g O QT g O X T P X \_T P Y T \Q ^R Z ]^g \^_O ]V _^g ^O c V _^g ^P ]O P h]N ^Y N O _O Y ]^_T c ]T Y cR Z T P Z _O _^hT g O X ^c -]N ^\c ^V h R %Y R Q R _Y R h T P XR Z T P Z _O _^hT g O X ^c T c c ]V h T ^hT P]N T c \O \^_l 8P ^m \c ^V h R %Y R Q R _Y R h T P X -O V ]R g O ]T Y ]N _^c N R Q hg ^]N R h -T c \_^c ^P ]^h l 1N T c g ^]N R hm O c \_R k ^hi W123/$#4($#$O P h5678]N ^_g O Q T g O X T P Xc W c ]^g cO ]_R R g ]^g \^_O ]V _^l ‘U \^_T g ^P ]O Q _^c V Q ]cc N R m ]N O ]X _O h O ]T R P cR Z T P Z _O _^h T g O X ^cY O Pi ^h T c Y _T g T P O ]^hO P hh T Z Z ^_^P ]]^g \^_O ]V _^_^X T R P cY O Pi ^^O c T Q W_^c R Q k ^hi W]N ^g ^]N R hl n <op ?C >;!]N ^_g O Q T g O X T P Xc W c ]^g 9\c ^V h R %Y R Q R _Y R h T P X 9O V ]R g O ]T Y]N _^c N R Q h 9]^g \^_O ]V _^h T c ]_T i V ]T R P引言红外成像技术是一种辐射信息探测技术-可利用某种特殊的电子装置将物体表面的温度分布转换成人眼可见的图像-并以不同颜色显示出来0显示出来的图像表征景物的红外辐射分布-它决定于景物发射率和温度的空间分布0利用这一特点建立的红外热成像测温系统-不但测温速度快而且准确-可广泛运用于高温高压及快速移动等传统测温方式难以测量的场合-正在逐步替代传统测温方式0近年来-红外热成像测温系统更是朝着小型化q 智能化q 多功能的方向发展0由于人眼的彩色敏感细胞能分辨出几千种彩色色调和亮度-但对黑白灰度级却不敏感0热成像测温系统所产生的红外图像为黑白灰度级图像-灰收稿日期!$##(%#*%"/9修回日期!$##(%#(%"+作者简介!刘缠牢’",($r)-男-陕西渭南人-博士-西安工业大学光电学院副院长-主要从事测控技术与仪器专业领域的研究0‘%g O T Q !Q Y Q #"$/s c R N V l Y R g第$.卷第*期$##(年,月应用光学t R V _P O Q R Z 8\\Q T ^h[\]T Y cu R Q l $.-S R l *3^\l -$##(度值动态范围不大!人眼很难从这些灰度级中获得丰富的信息"为了更直观地增强显示图像的层次!提高人眼分辨能力!对系统所摄取的图像进行伪彩色处理!从而达到图像增强的效果!使图像信息更加丰富"伪彩色编码的方法很多!可根据不同的情况采用不同的方法!典型的方法主要有医学图像#$%&高温图像和室温图像编码等"本文主要针对室温情况下红外图像的伪彩色编码进行研究"$热成像测温系统$’$热成像测温原理热成像测温系统构成框图如图$所示"系统通过非制冷红外焦平面探测器采集目标辐射并转换为电压信号输出!通过()*+和,-)对图像预处理&温度标定和伪彩色编码的最终信号以)+.制式输出!并显示图像"于最亮的红色调!"其它彩色映射与此类似"通过图#$%!红色的变换函数&图#$’!绿色的变换函数和图#$(!蓝色的变换函数的合成)得到图#$*!合成变换函数"低温区域为蓝色变换+中低温区域的前半部分是以蓝色为主&绿色为辅的变化)后半部分则是以绿色为主&蓝色为辅的变化+中温区域为红色的线性变化)绿色保持不变)产生黄色编码值+高温区域则是以红色为主色调)绿色输入线性递减)产生高温区的编码值"#,-自动阈值的伪彩色编码新编码.由于采用了固定范围方法)当灰度范围比较集中时)图像的色彩反映并不是很强烈)使观察者很难辨别温度的高低范围)因此对新编码.进行改进"笔者采用自动阈值的方法进行编码)得到新编码#)如图-所示"根据不同物体的像素值分布区域的特点)先确定图像灰度的最小值/0和最大值/.)在最大与最小值之间划分几个不同的区域)然后再根据新编码.的变换函数)在重新划分的区域中对图像进行重新编码"这样的编码无论图像灰度如何变化)都会突出物体的图像)不易造成人的视觉错觉)能使辐射图像层次分明)图像清晰"这样的图像可以使观察者很快分辨出温度的不同区域"!"#!"$%&’""#(&#!"%"#)*+,-#’!&#!"./012"-3*!*,*.1.*!"22$#’45678!)&9(*)*#$!&:$#$!&;<==>;<=?@A B C D @E C F >74<6张敬贤;李玉丹7激光与红外成像技术4G 67北京B 北京理工大学出版社;>C C H 7I J 8K L5$#’E M $&#;N O P -E 3N &2".E $#+.&."3O %&’$#’Q "!(#*,*’04G 67R "$S $#’B R "$S $#’O #2)$)-)"*+Q "!(#*,*’09."22;>C C H 7?$#T ($#"2"A 4D 6阮秋琦7数字图像处理学4G 67北京B 电子工业出版社;<==>7U V 8K W $-E X $7Y $’-."O %&’$#’9.*!"22$#’4G 67R "$S $#’B 9-/,$2($#’J *-2"*+Z ,"!).*#$!2O #3-2).0;<==>7?$#T ($#"2"A 4F 6张丽;陈志强7色彩调和理论在辐射成像的伪彩色处理中的应用4567核电子学与探测技术;<===;<=?H A B <D D E <D H 7I J 8K L N $;T J Z K I ($E X $&#’7811,$!&)$*#*+!*,*.(&.%*#0$#.&3$&)$*#$%&’$#’4567K -!,"&.Z ,"!).*#$!2[\")"!)$*#Q "!(#*,*’0;<===;<=?H A B <D D E <D H 7?$#T ($#"2"A 4H 6宁国祥;易新建7红外焦平面阵列图像的伪彩色编码和处理4567红外技术;<==<;<F ?<A B H ]E H C 7K O K LL -*E M $&#’;P O ^$#E S $̘"-3*E !*,*."#!*3$#’.*!"22$#’+*.$%&’"2*+$#+.&."3+*!&,1,&#"&..&04567O #+.&."3Q "!(#*,*’0;<==<;<F ?<A BH ]E H C 7?$#T ($#"2"_________________________________________________A 单兵武器发展思路从广义上看;供单兵使用的武器均可称为单兵战斗武器‘美苏都经历了第二次世界大战;并对取得的经验有着近乎相同的理解;双方均沿着战斗武器小口径化方向发展;不约而同地发展了小口径单兵战斗武器‘而在这之后;由于美苏两国对现代战争的理解偏差及双方技术a 经济水平的不平衡;对下一代单兵战斗武器的发展思路却迥然不同‘b 非接触与近距离美苏两国不同的民族思想形成了不同的战术战法‘美国致力于发展c 非接触式c 作战;主张在敌方火力范围外对敌实施打击;以减少伤亡为基础;努力提高武器的效能‘而俄罗斯?苏A 主张近战;希望以密集的火力压制杀伤敌人‘这种差异直接影响了两国的武器研制‘美国从>C C F 年开始了庞大的理想单兵战斗武器计划?d O T e A ;旨在综合各种前沿技术;研制集发射动能弹和榴弹于一体的a 具有革新意义的武器系统‘而俄罗斯秉承苏联时期的设计思路;结合新的精密机械结构开发了8K C F 突击步枪;努力提高动能弹的射击效能;大幅提高士兵的近战能力‘b 电子化与机械化美军的d O T e 系统采用了大量的电子元件;配置了全解算火控系统;包括激光测距仪a 弹道计算机a 摄像机a 直瞄式光学瞄具a 环境传感器a 电子罗盘a 目标跟踪装置a 热成像组件和可选择性激光指示器‘与美国相比;俄罗斯的优势在于成熟的武器机构设计理论和良好的机械加工能力;因此俄罗斯的发展重点在于开发新结构;充分挖掘机械结构能力;提高武器性能‘在此原理基础上;俄罗斯在>C C F 年推出了8K C F 突击步枪;并已开始大范围列装‘b 复杂与简单早期的轻武器相当简单;但随着技术的发展;轻武器也向着复杂的方向发展‘苏俄一直坚持武器应简单可靠的原则f 而美国积极开发各种新技术;也积极地将其运用在轻武器上;因此武器系统相对复杂‘结构简单和性能可靠这两大特性被苏俄武器设计人员认为是战斗中最为重要的因素;而美国的轻武器工作者很显然被所谓的高性能所迷惑;忽视了实战的要求‘但强大的经济实力使美国有能力装备复杂昂贵的武器系统‘b 人适应武器与武器适应人苏俄的轻武器设计思想十分注重其内在品质;对硬性指标要求十分苛刻;而对于其软性指标?如人机工程A 等从思想上不够重视;片面致力于人如何适应武器的研究;而忽略了武器如何适应人的研究‘美国对轻武器人机工程相当关注;这是由于西方国家武器以人为本的思想引导;以及人机工程学在美国其他方面运用的促进所造成的‘?清泉供稿Ag<<F g 应用光学<==h ;<]?H A刘缠牢;等B 红外图像伪彩色编码和处理。
伪彩色图像处理
伪彩色图像处理一、伪彩色处理的原理伪彩色处理是指将黑白图像转化为彩色图像,或者是将单色图像变换成给定彩色分布图像。
由于人眼对彩色的分辨能力远远高于对灰度的分辨能力,所以将灰度图像转化成彩色表示,就可以提高对图像细节的辨别力。
因此,伪色彩处理的主要目的是为了提高人眼对图像细节的分辨能力,以达到图像增强的目的。
伪彩色处理的基本原理是将黑白图像或者单色图像的各个灰度级匹配到彩色空间中的一点,从而使单色图像映射成彩色图像。
对黑白图像中不同的灰度赋予不同的彩色。
设f(x,y)为一幅黑白图像,R(x,y),G(x,y),B(x,y)为f值得注意的是,伪彩色虽然能将黑白灰度转化为彩色,但这种彩色并不是真正表现图像的原始颜色,而仅仅是一种便于识别的伪彩色。
伪彩色处理技术的实现方法有多种,如密度分层法、灰度级-彩色变换法、频域滤波法等等。
其中灰度级-彩色变换伪色彩处理技术可以将灰度图像变为具有多种颜色渐变的连续彩色图像。
该方法先将灰度图像送入具有不同变换特性的红、绿、蓝三个变换器,然后再将三个变换器的不同输出分别送到彩色显像管的红、绿、蓝枪,再合成某种颜色。
同一灰度由三个变换器对其实施不同变换,使三个变换器输出不同,从而不同大小灰度级可以合成不同颜色。
这种方法变换后的图像视觉效果好。
二、伪彩色处理之灰度级-彩色变换法以上是一组典型的灰度级-彩色变换的传递函数。
其中图(a )、(b )、(c )分别表示红色、绿色、蓝色的传递函数,图(d )是三种彩色传递函数组合在一起的情况。
由图(a )可见,凡灰度级小于L/2的像素将被转变为尽可能的暗红色,而灰度级位于L/2到3L/4之间的像素则取红色从暗到亮的线性变换。
凡灰度级大于3L/4的像素均被转变成最亮的红色。
其他的颜色以此类推。
三、灰度级-彩色变换法的Matlab 实现,其程序如下:I=imread(' F:\yyu\happy\DSC01015.jpeg'); %读入灰度图像image2g.jpg I=double(I);[M,N]=size(I);L=256;for i=1:Mfor j=1:Nif I(i,j)<L/4R(i,j)=0;G(i,j)=4*I(i,j);B(i,j)=L;else if I(i,j)<=L/2R(i,j)=0;G(i,j)=L;;B(i,j)=-4*i(i,j)+2*L;else if I(i,j)<=3*L/4R(i,j)=4*I(i,j)-2*L;G(i,j)=L;B(i,j)=0;elseR(i,j)=L;G(i,j)=-4*I(i,j)+4*L;B(i,j)=0;endendendendendfor i=1:Mfor j=1:NG2C(i,j,1)=R(i,j);G2C(i,j,2)=R(i,j);G2C(i,j,3)=R(i,j);endendG2C=G2C/256;Figure;Inshow(G2C);四、总结伪彩色处理不改变像素的几何位置,而仅仅改变其显示的颜色。
遥感影像中的真、假彩色合成及伪彩色等
聊一聊遥感影像中的真彩色、假彩色及伪彩色真彩色不是和肉眼一致吗?为什么还会有假彩色、伪彩色呢?【基本认知】➢遥感影像有黑白和彩色之分黑白影像是根据物体的灰度不同而呈现的,一般建筑物为灰白色,而草地和森林颜色较深遥感彩色影像又有真彩色和假彩色之分✧真彩色影像上地物颜色能够真实反映实际地物的颜色特征,符合人的认知习惯✧假彩色影像上,草、树和庄稼覆盖地区通常为红色,而水是灰色和蓝色的,城市是蓝灰色的【何为图像的彩色显示】遥感数据是直接从遥感器得到的数字数据的罗列。
为了使其内容直观易懂,彩色显示是非常重要的技术,彩色显示有两种方法:①把多个波段的图像分别赋予一种原色而进行显示的彩色合成法对一幅黑白图像的灰阶赋予颜色的假彩色(伪彩色)显示法彩色合成【基本概念】从通过滤光片、棱镜、衍射光栅等分光而获得的多波段图像中选出三个波段,分别赋予三原色进行合成,根据三原色的对应方式不同,可以得到不同的彩色合成图像。
1)真彩色合成在通过对应于三原色蓝、绿、红的滤光片而拍摄的三张多波段图像上,如果使用同样的三原色滤光片进行合成,就可以得到接近天然色的颜色,即为真彩色合成。
2)假彩色合成通常的遥感图像不一定是在分解为三原色的滤光片的波长范围内拍摄的,多数场合是使用了人眼看不见的红外波段,因为这种图像的彩色合成已经不是天然色彩了,所以称为假彩色合成。
3)红外彩色合成在遥感中,多采用对近红外区赋予红色,对红色的波长区赋予绿色,对绿色的波长区赋予蓝色,称为红外彩色合成。
彩色合成法可应用于从不同的遥感器中获得的图像显示,例如,通过把空间分辨率高的黑白图像和空间分辨率低的多波段图像进行彩色合成,就可以做出空间分辨率高且具有多波段信息的图像,这对于图像判读是非常有效的。
伪彩色显示(又称密度分割)把一张黑白图像的灰阶分为若干等级,在每个等级上赋予颜色,就成为最简单的伪彩色显示【总结】✧真彩色:R G B三波段的合成显示图✧假彩色:任意三个波段的合成显示图✧伪彩色:只含有一个任意波段的图像显示假彩色也好,伪彩色也罢,都是为了增加遥感影像的可读性。
伪彩技术及伪彩与真彩色转换公式
伪彩(又称“B彩”)是一种将黑白图形或图像显示方式转变为彩色显示的方式,原则上可用于所有灰阶显示的超声图形或图像中,如:二维,M型,频谱多普勒等。
它先将回声幅度(黑白显示为灰阶)划分为许多彩色域,然后采用伪彩编码的方法将灰阶显示变换为彩色显示,使黑白图形或图像变成彩色。
由于人眼对灰阶等级的分辨不甚敏感,黑白图形或图像转换为彩色后可增强人眼对不同回声强度的敏感度,从主观上增加了显示信号的动态范围,增强图像边界的可识别程度。
灰度到伪彩色的转换公式:f表示某一像素点的灰度if 0<=f<63 thenbeginr :=0; g :=254-4*f; b :=255;end;if 64<=f<127 thenbeginr :=0; g :=4*f-254; b :=510-4*f;end;if 128<=f<191 thenbeginr :=4*f-510; g :=255; b :=0;end;if 192<=f<=255 thenbeginr :=255; g :=1022-4*f; b :=0;end;//灰度图像转成伪彩色实例:procedure GrayToColor(Bmp: TBitmap);vari, j, uG: Integer;P: PByteArray;beginBmp.PixelFormat := pf24bit;for j := 0 to Bmp.Height - 1 dobeginP := Bmp.ScanLine[j];for i := 0 to Bmp.Width - 1 dobeginuG := P[3 * i];if (0 <= uG) and (uG < 63) then //灰度------>伪彩色beginP[3 * i + 2] := 0;P[3 * i + 1] := 254 - 4 * uG;P[3 * i] := 255;end;if (64 <= uG) and (uG < 127) thenbeginP[3 * i + 2] := 0;P[3 * i + 1] := 4 * uG - 254;P[3 * i] := 510 - 4 * uG;end;if (128 <= uG) and (uG < 191) thenbeginP[3 * i + 2] := 4 * uG - 510;P[3 * i + 1] := 255;P[3 * i] := 0;end;if (192 <= uG) and (uG <= 255) thenbeginP[3 * i + 2] := 255;P[3 * i + 1] := 1022 - 4 * uG; P[3 * i] := 0;end;end;end;end;。
实验五 彩色图像处理
实验五彩色图像处理一、实验目的使用MatLab 软件对图像进行彩色处理。
使学生通过实验熟悉使用MatLab软件进行图像彩色处理的有关方法,并体会到图像彩色处理技术以及对图像处理的效果。
二、实验要求要求学生能够完成彩色图像的分析,能正确讨论彩色图像的亮度、色调等性质;会对彩色图像进行直方图均衡,并能正确解释均衡处理后的结果;能够对单色图像进行伪彩色处理、利用多波长图像进行假彩色合成、进行单色图像的彩色变换。
三、实验内容与步骤(1) 彩色图像的分析调入并显示彩色图像flower1.tif ;拆分这幅图像,并分别显示其R,G,B分量;根据各个分量图像的情况讨论该彩色图像的亮度、色调等性质。
(2) 彩色图像的直方图均衡接内容(1);显示这幅图像的R,G,B分量的直方图,分别进行直方图均衡处理,并显示均衡后的直方图和直方图均衡处理后的各分量;将处理完毕的各个分量合成彩色图像并显示其结果;观察处理前后图像的彩色、亮度、色调等性质的变化。
(3) 假彩色处理调入并显示红色可见光的灰度图像vl_red.jpg、绿色可见光的灰度图像vl_green.jpg 和蓝色可见光的灰度图像vl_blue.jpg;以及近红外灰度图像infer_near.jpg和中红外灰度图像infer_mid.jpg;以图像vl_red.jpg为R;图像vl_green.jpg为G;图像vl_blue.jpg为B,将这三幅图像组合成可见光RGB彩色图像;分别以近红外图像infer_near.jpg和中红外图像infer_mid替换R分量,形成假彩色图像;观察处理的结果,注意不同波长红外线图像组成图像的不同结果(4) 伪彩色处理1:灰度切片处理调入并显示灰度图像head.jpg;利用MATLAB提供的函数对图像在8~256级的范围内进行切片处理,并使用hot模式和cool 模式进行彩色化;观察处理的结果。
(5) 彩色变换(选做)调入并显示灰度图像Lenna.jpg;使用不同相位的正弦函数作为变换函数,将灰度图像变换为RGB图像。
图像伪彩色处理解析
数字图像处理课程实践灰度图像的伪彩色处理学院:物电学院班级:11级电信班指导老师:小组成员:目录1.1伪彩色图像处理原理 (1)1.2伪彩色增加的目的 (2)1.3伪彩色图像处理增强的方法 (2)2.1 源程序执行原理 (4)2.2 源程序 (5)2.3实验结果 (6)3.1学习心得 (7)参考文献 (8)1.1伪彩色图像处理原理数字图像处理(Digital Image Processing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术,又称为计算机图像处理。
扩展了人眼的视觉范围,使之跳出传统的可视界限,在人类生活发展的各个方面至关重要。
如何用计算机系统解释图像,形成了图像的理解或称为计算机视觉的理解外部世界。
所谓伪彩色图像处理,就是将图像中的黑白灰度级编程不同的彩色,如过分层越多,人眼所能提取的信息也多,从而达到图像增强的效果。
这是一种视觉效果明显,又不太复杂的图像增强技术。
伪彩色图像处理技术不仅适用于航空摄影和遥感图片,也可用于x光片及云母的判读等处理中。
实现伪彩色处理的主要方法主要有密度分割法、灰度级-伪彩色变换法、频域伪彩色处理等多种方法。
我们在这里主要介绍了各种方法的基本原理并重点介绍了灰度级-伪彩色变换法的序设计。
伪彩色图像处理(又称假彩色)有三种:第一种是把真实景物图像的像素逐个地映射为另一种颜色,使目标在原图像中更突出;第二种是把多光谱图像中任意三个光谱图像映射为可见光红、绿、蓝三种可见光谱段的信号,再合成为一幅彩色图像;第三种是把黑白图像,用灰度级映射或频谱映射而成为类似真实彩色的处理,相当于黑白照片的人工着色方法。
伪彩色处理是根据特定的准则对灰度值赋以彩色的处理。
由于人眼对彩色的分辨率远高于对灰度差的分辨率,所以这种技术可用来识别灰度差较小的像素。
这是一种视觉效果明显而技术又不是很复杂的图像增强技术。
灰度图像中,如果相邻像素点的灰度相差大,人眼将无法从图像中提取相应的信息,因为人眼分辨灰度的能力很差,一般只有几十个数量级,但是人眼对彩色信号的分辨率却很强,这样将黑白图像转换为彩色图像后,人眼可以提取更多的信息量。
数字图像处理-伪彩色处理
除了对灰度图像进行伪彩色处理之外,还可以对彩色 图像进行伪彩色处理。
其主要目的是:
⒈ 为了引起特殊关注,把自然彩色图像变成伪彩色图 像;
⒉ 为了突出某些图像细节内容,可把其变成人眼敏感 的彩色。
• 彩色图像的伪彩色处理方法:
本章完
做出更好地判断和相应的治疗
• 医学上主要使用的是强度分层的技术来对x光、CT等医学 检测仪器得到的图片进行伪彩色处理,是不同的灰度级显 示不同的颜色,从而更明显的分辨出病因,判断病变位置。
总结
• 伪彩色图像处理的两种技术 1.强度分层技术:该方法具有简单易行、便于软件和硬件 实现的优点,但同时存在变换出的彩色数目有限的缺点。 主要应用在遥感、医学图像处理中。 2.灰度级-彩色变换:比强度分层复杂,但可以得到具有 多种颜色渐变的连续彩色图像。
少安全隐患
• 使用强度分层技术后对灰度图像的伪彩色处理效果
• 使用灰度级到彩色变换的伪彩色增强效果图
• 多光谱图像彩色编码
伪彩色图像处理在医学上的应用
• 医学检查身体病变无法获得准确的病理位置 • 人眼对灰度的敏感度导致无法识别病变的严重程度 • 通过伪彩色处理可以突出病变部位,使医生对患者的病因
• 强度分层
强度分层技术(有时又称密度分层)和彩色编码是伪 彩色图像处理最简单的例子之一。如果一幅图像被描述为 三维函数(作为空间坐标的强度),则分层方法可以看成 是放置一些平行于图像坐标面的平面,然后每个平面在相 交的区域中切割图像函数。
• 强度分层技术的几何解释
• 灰度级到彩色的赋值
f(x,y)ck
f(x,y)Vk
• 强度分层技术的另一种解释
• 灰度级到彩色转换
基本概念:对任何输入像素的灰度级执行3个独立变 换,然后将3个变换的结果分别送到彩色电视监视器的红、 绿、蓝通道。这种方法产生一幅合成图像,其彩色内容受 变换函数特性调制。
红外焦平面阵列图像的伪彩色编码和处理
个 ,( y 都 有 相应 的 红 、 、 输 出 , z, ) 绿 蓝 之后 三 者又
R( y x, )一 T f x, ) R{ ( y ) G , )= T , , ) C{ ) B , )= T f x, ) B{ ( )
( G, R, B)= { , , , , , ) R( )G( ) B( )
宁 国祥 , 易新建 , 曾延安 , 刘会通
( 中科 技大学光电子工 程系,湖北 武汉 4 0 7 ) 华 3 04
摘要 : 红 外 焦平 面阵列 成 的热 圉像 的伪彩 色编码 有利于 人 眼识别 和 获取 图像 中的有 用信 息 。本 文所 描述 的软件 可 对红 外 图像 进行 1 6种伪彩色编 码 , 蹦中值 滤波 、 直方 图均匀 化等处 理 , 同时显 示 图像 中每 点的温度 。 文 中描 述 了伪彩 色编码 原理 , 出 了软 件 实现 的方 法和 所开发 的热像 仪 原理框 图。 给 关键 词 : 红 外焦 平面 阵列 ; 热像 仪 ; 伪 彩色 ; 图像处理 中图分类号 : T 1 N2 6 文献标 识 : A 文章编 号 : 10 81 20 )205—3 0 189 {0 20—070 UF A 同步 工作 。DS P P完成 以下 功 能 ;. 均匀 性 校 a非
工作温度较高时 , 固有的热激发过程增加很快, 通过增 加 暗 电流和噪声 , 降低 了焦平 面性能 , 因此 光电子探 测 器必须制冷。在实验室, 常用液氮杜 瓦致冷 。 0 9 年代 以后 , 制冷红 外焦 平 面 技术 取 得 了 重要 突 破 并达 到 非 实用化。非制冷型红外热像仪与制冷型相 比, 它成本 低, 功耗小寿命长 , 小型化和可靠性好 , 在军用及民用 领域已获得重要的应用, 并在广大 民用领域显示出巨 大的市场潜力 , 成为当前热成像技术中撮为引人注 目 的突 破之一 。
伪像名词解释
伪像名词解释伪像是指在图像处理的过程中,由于一些误差、干扰或技术问题造成的视觉失真或虚假的图像。
它是一种被人工或自然世界引起的错觉,可能会误导人们的感知和理解。
伪像的形成原因有多种,下面将详细解释三种常见的伪像类型,并给出相关参考内容:1. 光学伪像光学伪像是由于光线在传播过程中受到折射、反射、散射等现象的影响而产生的伪像。
常见的光学伪像包括折射伪像、反射伪像和散射伪像。
- 折射伪像:当光线从一种介质传播到另一种介质时,会发生折射现象,使得图像产生偏移、拉伸、扭曲等现象。
例如,当将一根杆子倾斜插入水中,杆子的真实位置和方向会看起来发生了改变。
参考内容:Kubovy, M. & Pomerantz, J.R. (1981). The Law of Similarity and Binocular Rivalry. Perception & Psychophysics,30(2), 206-214.- 反射伪像:当光线照射到一个反射表面时,会产生镜面反射,图像会出现镜像和倒影。
例如,当我们看到镜子中的自己,实际上是看到了一个真实的倒影。
参考内容:O’Shea, R.P., Brinton, J.M., & Alabanese, P. (2000). Perceived Shape and Reflections. Journal of Experimental Psychology: Human Perception and Performance, 26(2), 686-702.- 散射伪像:当光线通过一个散射体或粗糙表面时,会产生散射现象,使得图像变得模糊、雾化或产生光斑。
例如,当我们在阳光下看到树叶上的光斑,实际上是由于光线被树叶的表面散射而形成的。
参考内容:Mackiewicz, M., Zawicki, P., & Sasiadek, J. Z. (2011). Durability of Point Light Scattering and Coherence Properties of Backscattering Light. Optics express, 19(7), 6211–6224.2. 数字图像伪像数字图像伪像是在数字图像采集、处理、传输或显示过程中引入的失真、噪声或错误导致的虚假图像。
红外图像伪彩色编码和处理
i a e a e d s rmi a e n i e e t t m p r t r e i n c n b a i e o v d b t e m g s c n b ici n td a d d f r n e e au e r go s a e e sl r s l e y h f y
i r r d t er a ma i g s t m n s l y d on t o t n gr y l v lo s ud c o nf a e h m li g n ys e a d di p a e hem niori e e e r p e o— ol r,t us h
LI Cha l U n~ao。 TAN — Lixun, LIChu y n,M A n n— a Ga g
( c o l f Op o lc r n c l g n e i g,Xi n I s iu e o c n l g S h o t ee t o ia o En i e rn n tt t fTe h o o y,Xi n 7 0 3 a 1 0 2,Ch n ) a ia
室 温热成像 系统 研 究 的基 础上 , 红 外 图像 伪 彩 色编码 进 行 了研 究 , 出一种 新 的伪 彩 色编码 方 对 提
法 , 自动 阂值 法 。利 用 自动 阂值 法 可 以在 室 温环 境 下 , 目标 的 温 度 及 其 分 布 进 行 测 量 。在 即 对
T MS 2 C 2 2和F GA 室温热 成像 系统 中对提 出的 方 法进 行 了验证 。 30 6 0 P 实验 结果 表 明 , 方法 可使 该
红 外 图像层 次分 明 , 易分辨 出不 同的 温度 区域 。 容 关键 词 : 热 成像 系统 ; 彩 色编码 ; 伪 自动 阈值 ; 温度 分布
CT图像伪彩基础
宇航:星际探险照片处理
地图绘制
Thank You
f (x, y) 傅 里 叶 变 换
滤波器1
傅里叶反变换
进一步处理
滤波器2
彩
色
傅里叶反变换
进一ห้องสมุดไป่ตู้处理
显
示
器
滤波器3
傅里叶反变换
三基色分量频域变换流程图
进一步处理
伪彩色的应用
生物、医学:细胞分析,染色体分类,血球分类,X光片分析,CT
物理、化学:晶体分析,谱分析
环境保护:水质及大气污染调查 地质:资源勘探,地图绘制 海洋:河流分布,水利及水害调查 公安:指纹识别,人像鉴定
第4代CT扫描机 在第3代的基础上发展起来的,其探测器形成一个环形阵列,扫描时
探测器静止不动,X线球管在探测器阵列圈内旋转扫描,这种结构消除了 探测器故障引起的环形伪影。
CT机概述 主要构成(第三代)
扫描床
具有垂直运动控制系统和水平纵向运动控制系统
扫描架
重要组成部分,上面装有X线球管、滤线器、准直器、参考 探测器、探测器及各种电子线路能做旋转、前后倾斜运动
第2代CT机 第1台扫描机Delta 50在1974年12月由俄亥俄核子公司推出。它有2
行探测器,每行3个。1975年3月EMI公司推出带有30个探测器的扫描机。 当探测器数量增加1 0倍时,扫描速度几乎提高10倍。
第3代CT扫描机 第3代CT扫描机有一种完全新型的结构。平移运动已经被取消,探
测器安装的扇形角度已扩大到全身横面,并将300~1000个探测器依次 排列在一个扇形区域内。
for j=1:n if I(i,j)<=c/4
R(i,j)=0; G(i,j)=4*I(i,j); B(i,j)=c; else if I(i,j)<=c/2
伪彩色图像处理
伪彩色处理技术:
--把灰度图像变成彩色图像或把一种彩色图 像变成另一种彩 色分布的图像
人眼分辨图像: 灰度图像:灰度级介于十几到二十几级之间 彩色图像:彩色分辨能力却可达到灰度分辨
能力的百倍以上,能达几百种甚 至上千种
✓ 灰度分层法伪彩色处理举例1
用颜色突出降雨水平 图a:图像的强度值直接与降雨相对应,目测困难
图b:蓝色表示低降雨量,红色表示高降雨量 图c和图d更加清楚
➢ 灰度变换法伪彩色处理
原理:利用变换法对灰度图像进行伪彩色处理,所形成的 彩色比较丰富它依据的原理是三基色原理,每一种彩 色可由红绿蓝三基色按适当比例来合成
f(x,y)
TR(·) TG(·) TB(·)
R(x,y) G(x,y) B(x,y)
✓ 典型的灰度伪彩色变换
R
G
B
✓ 灰度变换法伪彩色处理举例
➢ 频域伪彩色处理
滤波
FFT-1
R 附加处理
FFT
滤波
FFT-1
附加处FT-1 附加处理
可见光 彩色图像
红外图像
融合图像
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§4.5 图像的伪彩色处理[3]
前面讨论的均是单色图像的增强处理。
由于人眼只能区分出由黑到白的十多种到二十多种不同的灰度级,而人眼对彩色的分辨可以达到几百种甚至上千种。
所谓伪彩色处理,就是将图像中的黑白灰度级变成不同的彩色,如果分层越多,人眼所能提取的信息也多,从而达到图像增强的效果。
这是一种视觉效果明显,又不太复杂的图像增强技术。
伪色彩图像处理技术不仅适用于航空摄影和遥感图片,也可用于x 光片及云图的判读方面。
可以用pc 机去做,也可用硬件设备来实现。
4.5.1 灰度分层法伪彩色处理
let 原始黑白图像的灰度范围为
0(,)f x y L ≤≤
用灰度等级把该灰度范围分为段:
1k +k 01230,,,,, 0() ()k k l l l l l l l L == 黑,白
映射每一段灰度成一种颜色,映射关系为
1(,) ((,); 1,2,,)i i i g x y c l f x y l i k −=≤≤=
这里为输出的伪色彩图像;为灰度在(,)g x y i c []1,i i l l −中时所映射成的
彩色。
经过这种映射处理后,原始黑白图像就变成了伪色彩图像。
若原始图像的灰度分布遍及上述个灰度段,则伪彩色图
像就具有种彩色。
(,)f x y (,)g x y (,)f x y k (,)g x y k
例、MATLAB中的灰度分层法彩色图像的实现
% Gray slice 灰度分层法彩色图像处理
clc;
% I=imread('nego4024.tif');
% I=imread('moon.tif');
I=imread('m83.tif');
imshow(I);
title('original image')
X=grayslice(I,16);
% GRAYSLICE Create indexed image from intensity image by thresholding. % X=GRAYSLICE(I,N) thresholds the intensity image I using
% threshold values 1/n, 2/n, ..., (n-1)/n, returning an indexed
% image in X.
figure,imshow(X,hot(16));
% HOT(M) returns an M-by-3 matrix containing a "hot" colormap.
% HOT, Black-red-yellow-white color map,by itself, is the same
% length as the current colormap.
title('gray slice image')
4.5.2 灰度变换法的彩色处理
依据三基色原理:每一彩色由红、绿、蓝三基色适当按比例合成。
利用变换法对黑白图像进行伪彩色处理表达式:
{}{}{}(,)(,)(,)(,)(,)(,)R G B R x y T f x y G x y T f x y B x y T f x y =⎫
⎪
=⎬
⎪=⎭
其中(,)R x y ,,(,)G x y (,)B x y 分别表示伪彩色中三基色分量的数值;为处理前图像的灰度值;,,表示三基色与原灰度值的变换关系。
(,)f x y R T G T B T (,)f x y 所以,变换法的实现过程:对输入图像的灰度值实行三种独立的变换
{}{}{},,R G B T T T i i i ,得到对应的红、绿、蓝三基色。
然后,根据要求场合不同,
可以用这三基色量对应的电平值控制图像显示器的红、绿、蓝三色电子枪,得到伪彩色图像的显示输出;or 用三基色值对应的电平值作为彩色硬拷贝机的三基色输入,得到伪彩色图像的硬拷贝(如彩色胶片、或彩色照片)。
4.5.3 频域伪彩色处理
在频域伪彩色处理中,伪彩色图像的彩色取决于黑白图像的空间频率。
据此,可将原始图像(黑白)中我们感兴趣的空间频率成分以某种特定的彩色来表示。
设计三种不同滤波功能的滤波器,对原始黑白图像进行滤波,三个滤波器的输出经过适当处理,作为彩色输出设备的红、绿、蓝三基色输入,最后输出按原始黑白图像的频率分布形成的伪彩色图像。
空间频域处理的框图
1(,)11R
f x ⎯⎯黑白
y G B filter FFT FFT filter FFT filter FFT −−−→
→⎯⎯→
⎯→→→
→⎯⎯→→
→
⎯⎯→
低通
带通
快速傅氏
变换
高通
附加处理附加处理彩色输出附加处理其中附加处理指直方图均衡化、反转等。
4.5.4 彩色图像的伪彩色处理
在某些场合下,需要把自然彩色图像变成伪彩色图像。
处理形式为:
3
3
1
11222331
1122233g f g f g f g g g f f f R R G G B B R G B R G B αβγαβγαβγαβγαβγαβγ⎡⎤⎡⎤⎡⎤
⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥
⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦
⎣⎦⎡⎤
⎢⎥
⎢⎥⎢⎥⎣
⎦
,,为处理后的伪彩色图像的三基色分量;,,为原始图像的三基色分量;为彩色变换矩阵,根据需要选定。
用途:⒈ 为了引起特殊关注,把自然彩色图像变成伪彩色图像; ⒉ 为了突出某些图像细节内容,可把其变成人眼敏感的彩色。
4.5.5 多光谱图像的伪彩色处理――遥感学中常用
多光谱图像就是用不同波段的光束形成同一物体的图像。
利用多光谱图像直接的配合分析,可以较方便地区分我们感兴趣景物信息。
经常采用一种技术是伪彩色合成,即将同一景物的多光谱图像合成为一幅图像,所合成的图像一般采用伪彩色图像的形式输出。
多光谱的伪彩色处理,可用下式表示:
{}{}{}12121212,,,,,,,,,,,,g R n g G n g B n n g g g R G B R T f f f G T f f f B T f f f f f f i R G B T T T ⎫
=⎪⎪
=⎬
⎪
=⎪⎭
为景物第波段的图像;
,,分别为所形成的伪彩色图像红、绿、蓝三基色分量;,,分别为红、绿、蓝三基色变换关系。
MATLAB 函数imfilter 对一幅真彩色(三维数据)图像使用二维滤波器进行滤波,相当于使用一个两维滤波器对数据的每一个平面单独进行滤波。
例2、使用均值滤波器对真彩图像的每一个颜色平面进行滤波[2]。
rgb=imread('peppers.png'); h=ones(5,5)/25; rgb2=imfilter(rgb,h);
% B = IMFILTER(A,H) filters the multidimensional array A with the
% multidimensional filter H. A can be logical or it can be a nonsparse numeric % array of any class and dimension. The result, B, has the same size and class as % A.
subplot(1,2,1),imshow(rgb); title('original image')
subplot(1,2,2),imshow(rgb2); title('color-filtered image')。