教材习题参考答案-第三章自由基聚合.doc
第三章自由基聚合习题
第三章自由基聚合一、填空题1.聚合速率与引发剂浓度的1/2次方成正比是的结果;若,则聚合速率与引发剂浓度成一次方关系。
2.自由基聚合和缩聚反应中,分别用和来表示聚合反应进行的深度。
3.聚氯乙烯的自由基聚合过程中,控制聚合度的方法是。
4..自由基聚合的基元反应包括-----------------、-----------------、-----------------、-----------------基元反应,推导自由基聚合反应微分方程式,用了三个基本假定,分别是--------------、------------------------、-------------。
5..衡量自由基聚合引发剂的活性可用-----------------、-----------------为标准,通常引发剂的引发效率f小于1,产生的原因是-----------------和-----------------。
6.自由基聚合的机理特征是-----------------、-----------------、-----------------。
二、选择题1. 下列单体中哪一种最容易进行阳离子聚合反应:()A.CH2=CH2B.CH2=CHCl C.CH2=CHOCH3D.CH2=CHNO22.能采用阴离子、阳离子、自由基聚合的单体是:A. MMA ;B. St ;C. 异丁烯;D. 丙烯腈3.在苯乙烯自由基聚合体系中加入少量正丁硫醇(Cs=21)的目的是:A.终止聚合反应;B.调节分子量;C.调节聚合物的端基结构4. 在高压聚乙烯(LDPE)中存在乙基、丁基短支链,其起因是:A.分子内链转移;B. 分子间链转移;C.向单体的链转移5. 聚乙烯醇的单体是()A.乙烯醇;B.乙醛;C.醋酸乙烯酯。
第三章__自由基聚合
第三章自由基聚合思考题下列烯类单体适用于何种机理聚合自由基聚合、阳离子聚合还是阴离子聚合并说明原因。
(1)CH2——CHCl (2)CH2=CCl2 (3)CH2=CHCN (4)CH2=C(CN)2(5)CH2=CHCH3 (6)CH2=C(CH3)2 (7)CH2=CHC6H5(8)CF2=CF2 (9)CH2=C(CN)COOR (10)CH2=C(CH3)-CH =CH2答可以通过列表说明各单体的聚合机理,如下表:思考题下列单体能否进行自由基聚合,并说明原因。
(1)CH2=C(C6H5)2(2)CH3CH=CHCOOCH3(3)CH2=C(CH3)C2H5(4)ClCH=CHCl (5)CH2=CHOCOCH3 (6)CH2=C(CH3)COOCH3(7)CH3CH=CHCH3 (8)CF2=CFCl答 (1) CH2=C(C6H5)2不能进行自由基聚合,因为l,1-双取代的取代基空间位阻大,只形成二聚体。
(2) CH3CH=CHCOOCH3不能进行自由基聚合,因为1,2-双取代,单体结构对称,空间阻碍大。
(3) CH2=C(CH3)C2H5不能进行自由基聚合,两个取代基均为供电基团,只能进行阳离子聚合。
(4)ClCH=CHCl不能进行自由基聚合,因为1,2-双取代,单体结构对称,空间阻碍大。
(5)CH2=CHOCOCH3能进行自由基聚合,因为-COCH3为吸电子基团,利于自由基聚合。
(6) CH2=C(CH3)COOCH3能进行自由基聚合,因为l,1-双取代,极化程度大,甲基体积小,为供电子基团,而-COOCH3为吸电子基团,共轭效应使自由基稳定。
(7) CH3CH=CHCH3不能进行自由基聚合,因为1,2-双取代,单体结构对称空间阻碍大。
(8) CF2=CFCl能进行自由基聚合,F原子体积小,Cl有弱吸电子作用。
思考题为什么说传统自由基聚合的机理特征是慢引发、快增长、速终止在聚合过程中,聚合物的聚合度、转化率,聚合产物中的物种变化趋向如何答自由基聚合机理由链引发、链增长、链终止等基元反应组成,链引发是形成单体自由基(活性种)的反应,引发剂引发由2步反应组成,第一步为引发剂分解,形成初级自由基,第二步为初级自由基与单体加成,形成单体自由基。
第三章 自由基共聚合
第三章自由基共聚合习题参考答案1. 解释下列名词:(1)均聚合与共聚合,均聚物与共聚物(2)均缩聚、混缩聚、共缩聚(3)共聚组成与序列结构(4)无规共聚物、无规预聚物与无规立构聚合物(5)共聚物、共混物、互穿网络解答:(1)在链式聚合中,由一种单体进行聚合的反应称为均聚合,所得产物称为均聚物。
由两种或两种以上单体共同参与聚合的反应称为共聚合,产物称为共聚物。
(2)均缩聚:在逐步聚合中,将只有一种单体参加的反应。
混缩聚:两种带有不同官能团的单体共同参与的反应。
共缩聚:在均缩聚中加入第二单体或在混缩聚中加入第三甚至第四单体进行的缩聚反应。
(3)共聚物组成:共聚物中各种单体的含量。
序列结构:不同单体在大分子链上的相互连接情况。
(4)无规共聚物:参加共聚的单体在大分子链上无规排列,在主链上呈随机分布,没有一种单体能在分子链上形成单独的较长链段。
无规预聚物:预聚物中可进一步反应官能团的数目、大小、位置不清楚。
无规立构聚合物:聚合物中各结构单元的立体结构呈现无序状态。
(5)共聚物:两种或两种以上单体共同参与聚合,以化学键相互连接的聚合物。
共混物:指通过物理的方法将聚合物与其它的物质(其它聚合物、充填剂、增塑剂等)混合到一起的物质。
互穿网络:各聚合物均各自独立交联(可以是化学交联,也可以是物理交联),形成有某种程度互穿的网络。
2. 无规、交替、嵌段、接枝共聚物的序列结构有何差异?解答:以二元共聚为例:①无规共聚物:两种单体M1、M2在大分子链上无规排列,两单体在主链上呈随机分布,没有一种单体能在分子链上形成单独的较长链段。
②交替共聚物:两种单体M1、M2在大分子链上严格相间排列。
③嵌段共聚物:由较长的M1链段和较长的M2链段间隔排列形成大分子链。
④接枝共聚物:主链由一种单体组成,支链则由另一种单体组成。
3. 对下列共聚反应的产物进行命名:(1)丁二烯(75%)与苯乙烯(25%)进行无规共聚(2)马来酸酐与乙酸2-氯烯丙基酯进行交替共聚(3)苯乙烯-异戊二烯-苯乙烯依次进行嵌段共聚(4)苯乙烯在聚丁二烯上进行接枝共聚(5)苯乙烯与丙烯腈的无规共聚物在聚丁二烯上进行接枝共聚(6)苯乙烯在丁二烯(75%)与苯乙烯(25%)的无规共聚物上进行接枝共聚解答:(1)丁二烯-r-苯乙烯无规共聚物(2) 马来酸酐-alt-乙酸2-氯烯丙基酯交替共聚物 (3) 苯乙烯-b-异戊二烯-b-苯乙烯三嵌段共聚物 (4) 丁二烯-g-苯乙烯接枝共聚物(5) 丁二烯-g-(苯乙烯-r-丙烯腈)接枝共聚物 (6) (丁二烯-r-苯乙烯)-g-苯乙烯接枝共聚物4.试用动力学和统计两种方法来推导二元共聚物组成微分方程(式7-11)。
自由基聚合习题参考答案
自由基聚合习题参考答案自由基聚合习题参考答案自由基聚合是有机化学中的一个重要概念,它描述了自由基分子之间的反应,从而形成更大的分子。
在这个过程中,自由基通过共享电子来形成新的键,从而产生新的化合物。
下面是一些关于自由基聚合的习题以及参考答案。
1. 请问自由基聚合的反应类型是什么?答:自由基聚合是一种链反应,其中自由基通过不断的反应形成更多的自由基,从而加速反应速率。
2. 自由基聚合的反应中,哪种分子作为起始物质?答:在自由基聚合反应中,起始物质通常是一种含有活性氢原子的化合物,例如甲烷、乙烷等。
3. 请问自由基聚合反应中,哪种分子作为引发剂?答:在自由基聚合反应中,引发剂通常是一种能够产生自由基的化合物,例如过氧化苯甲酰、过氧化苯乙酰等。
4. 请问自由基聚合反应中,哪种分子作为链传递剂?答:在自由基聚合反应中,链传递剂通常是一种能够与自由基反应并终止链反应的化合物,例如二苯基二硫醚、二苯基二硒醚等。
5. 自由基聚合反应的机理是什么?答:自由基聚合反应的机理可以分为三个步骤:起始、传递和终止。
起始步骤中,引发剂产生自由基;传递步骤中,自由基与起始物质反应生成新的自由基;终止步骤中,自由基与链传递剂反应从而终止链反应。
6. 自由基聚合反应中,如何选择引发剂和链传递剂?答:选择引发剂和链传递剂的关键是要考虑它们的活性和选择性。
引发剂应具有足够的活性来产生自由基,而链传递剂应具有足够的选择性来终止链反应。
7. 自由基聚合反应的应用有哪些?答:自由基聚合反应在有机合成中有广泛的应用。
例如,聚合物的合成、药物的合成等都可以通过自由基聚合反应来实现。
8. 请问自由基聚合反应中的自由基会引起哪些副反应?答:自由基聚合反应中的自由基可能会引起副反应,例如氧化、聚合物链的断裂等。
因此,在自由基聚合反应中需要注意反应条件的选择,以减少副反应的发生。
总结起来,自由基聚合是一种重要的有机反应,它描述了自由基分子之间的反应过程。
自由基聚合习题参考答案
第3章自由基聚合-习题参考答案1、判断下列单体能否进行自由基聚合并说明理由H2C CHCl H2C CH H2C CCl2H2C CH2H2C CH2C CHCN H2C C(CN)2H2C CHCH3F2C CF2ClHC CHClH2C CCH3COOCH3H2C CCNCOOCH3HC CHOC COO答:(1)可以。
Cl原子的诱导效应为吸电性,共轭效应为供电性两者相抵,电子效应微弱,只能自由基聚合。
(2)可以。
为具有共轭体系的取代基。
(3)可以。
结构不对称,极化程度高,能自由基聚合。
(4)可以。
结构对称,无诱导效应共轭效应,较难自由基聚合。
(5)不能。
1,1—二苯基乙烯,二个苯基具有很强的共轭稳定作用,形成的稳定自由基不能进一步反应。
(6)可以。
吸电子单取代基。
(7)不可以。
1,1双强吸电子能力取代基。
(8)不可以。
甲基为弱供电子取代基。
(9)可以。
氟原子半径较小,位阻效应可以忽略不计。
(10)不可以。
由于位阻效应,及结构对称,极化程度低,难自由基聚合(11)可以。
1,1-双取代。
(12)可以。
1,1-双取代吸电子基团。
(13) 不可以。
1,2-双取代,空间位阻。
但可进行自由基共聚。
2、试比较自由基聚合与缩聚反应的特点。
答:自由基聚合:(1)由链引发,链增长,链终止等基元反应组成,其速率常数和活化能均不等,链引发最慢是控制步骤。
(2)单体加到少量活性种上,使链迅速增长。
单体-单体,单体-聚合物,聚合物-聚合物之间均不能反应。
(3)只有链增长才是聚合度增加,从一聚体增加到高聚物,时间极短,中间不能暂停。
聚合一开始就有高聚物产生。
(4)在聚合过程中,单体逐渐减少,转化率相应增加(5)延长聚合时间,转化率提高,分子量变化较小。
(6)反应产物由单体,聚合物,微量活性种组成。
(7)微量苯酚等阻聚剂可消灭活性种,使聚合终止。
缩聚反应:(1)不能区分出链引发,链增长,链终止,各部分反应速率和活化能基本相同。
潘祖仁《高分子化学》课后习题及详解(自由基聚合)【圣才出品】
第3章自由基聚合(一)思考题1.烯类单体加聚有下列规律:①单取代和1,1-双取代烯类容易聚合,而1,2-双取代烯类难聚;②大部分烯类单体能自由基聚合,而能离子聚合的烯类单体却较少。
试说明原因。
答:①单取代烯类容易聚合是因为单取代基降低了双键对称性,改变其极性,从而提高单体参加聚合反应的能力。
1,1-双取代烯类在同一个碳原子上有两个取代基,促使极化,易于聚合,但若取代基体积较大,则只形成二聚体。
1,2-双取代烯由于位阻效应,加上结构对称,极化程度低,一般都难均聚,或只形成二聚体。
②乙烯基单体中,C=Cπ键兼有均裂和异裂倾向,因此有可能进行自由基或离子聚合。
自由基呈中性,对π键的进攻和对自由基增长中的稳定作用并无严格的要求,几乎各种取代基对自由基都有一定的共振稳定作用。
所以大部分烯类单体能以自由基聚合。
而只有个别带强烈供电基团和吸电基团的烯类单体及共轭烯类单体可进行离子聚合。
2.下列烯类单体适用于何种机理聚合?自由基聚合、阳离子聚合还是阴离子聚合?并说明原因。
答:CH2=CHCl:适合自由基聚合,-Cl是吸电子基团,也有共轭效应,但均较弱。
CH2=CCl2:自由基及阴离子聚合,两个-Cl使诱导效应增强。
CH2=CHCN:自由基及阴离子聚合,-CN为吸电子基团,并有共轭效应,使自由基、阴离子活性种稳定。
CH2=C(CN)2:阴离子聚合,两个吸电子基团-CN,使吸电子倾向过强,不能进行自由基聚合。
CH2=CHCH3:配位聚合,甲基(CH3)供电性弱。
CH2=C(CH3)2:阳离子聚合,两个甲基有利于双键电子云密度的增加和阳离子的进攻。
CH2=CHC6H5:三种机理均可,共轭体系中电子流动性较大,易诱导极化。
CF2=CF2:自由基聚合,对称结构,但氟原子半径小。
CH2=C(CN)COOR:阴离子聚合,取代基为两个吸电子基(CN及COOR),基团的吸电性过强,只能进行阴离子聚合。
CH2=C(CH3)-CH=CH2:三种机理均可,共轭体系电子流动性大,易诱导极化。
3 习题参考答案
高分子第三章习题参考答案思考题2、下列烯类单体适于何种机理聚合:自由基聚合,阳离子聚合或阴离子聚合?并说明理由。
CH2=CHCl,CH2=CCl2,CH2=CHCN,CH2=C(CN)2,CH2=CHCH3,CH2=C(CH3)2,CH2=CHC5H6,CF2=CF2,CH2=C(CN)COOCH3,CH2=C(CH3)-CH=CH2参考答案:CH2=CHCl:适于自由基聚合,Cl原子是吸电子基团,也有共轭效应,但较弱。
CH2=CCl2:适于自由基聚合,Cl原子是吸电子基团。
CH2=CHCN:适于自由基聚合和阴离子聚合,CN是强吸电子基团,并有共轭效应。
CH2=C(CN)2:适于自由基聚合和阴离子聚合,CN是强吸电子基团。
CH2=CHCH3:适于阳离子聚合,CH3是供电子基团,CH3是与双键有超共额轭效应。
CH2=C(CH3)2:适于阳离子聚合,CH3是供电子基团,CH3是与双键有超共轭效应。
CH2=CHC5H6和CH2=C(CH3)-CH=CH2:均可进行自由基聚合、阳离子聚合和阴离子聚合。
因为共轭体系π电子的容易极化和流动。
CF2=CF2:适于自由基聚合。
F原子体积小,结构对称。
CH2=C(CN)COOCH:适合阴离子和自由基聚合,两个吸电子基,并兼有共轭效应。
3、判别下列单体能否进行自由基聚合,并说明理由。
CH2=C(C5H6)2,ClCH=CHCl,CH2=C(CH3)C2H5,CH3CH=CHCH3,CH2=C(CH3)COOCH3,CH2=CHOCOCH3,CH3 CH=CHCOCH3参考答案:CH2=C(C5H6)2不能通过自由基聚合形成高分子量聚合物。
因为取带基空间阻碍大,形成高分子键时张力也大,故只能形成二聚体。
ClCH=CHCl不能通过自由基聚合形成高分子量聚合物。
因为单体结构对称,1,2-而取代基造成较大空间阻碍。
CH2=C(CH3)C2H5不能通过自由基聚合形成高分子量聚合物。
高分子化学潘祖仁习题答案自由基聚合
第三章自由基聚合习题1、举例说明自由基聚合时取代基的位阻效应、共轭效应、电负性、氢键与溶剂化对单体聚合热的影响。
2、什么就是聚合上限温度、平衡单体浓度?根据表3-3数据计算丁二烯、苯乙烯40、80O C自由基聚合时的平衡单体浓度。
3、什么就是自由基聚合、阳离子聚合与阴离子聚合?4、下列单体适合于何种机理聚合:自由基聚合,阳离子聚合或阴离子聚合?并说明理由。
CH2=CHCl, CH2=CCl2,CH2=CHCN,CH2=C(CN)2, CH2=CHCH3, CH2=C(CH3)2, CH2=CHC6H5, CF2=CF2, CH2=C(CN)COOR,CH2=C(CH3)-CH=CH2。
5、判断下列烯类单体能否进行自由基聚合,并说明理由。
CH2=C(C6H5)2, ClCH=CHCl, CH2=C(CH3)C2H5, CH3CH=CHCH3,CH2=C(CH3)COOCH3,CH2=CHOCOCH3,CH3CH=CHCOOCH3。
6、对下列实验现象进行讨论:(1)乙烯、乙烯的一元取代物、乙烯的1,1-二元取代物一般都能聚合,但乙烯的1,2-取代物除个别外一般不能聚合。
(2)大部分烯类单体能按自由基机理聚合,只有少部分单体能按离子型机理聚合。
(3)带有π-π共轭体系的单体可以按自由基、阳离子与阴离子机理进行聚合。
7、以偶氮二异丁腈为引发剂,写出苯乙烯、醋酸乙烯酯与甲基丙烯酸甲酯自由基聚合历程中各基元反应。
8、对于双基终止的自由基聚合反应,每一大分子含有1、30个引发剂残基。
假定无链转移反应,试计算歧化终止与偶合终止的相对量。
9、在自由基聚合中,为什么聚合物链中单体单元大部分按头尾方式连接?10、自由基聚合时,单体转化率与聚合物相对分子质量随时间的变化有何特征?与聚合机理有何关系?11、自由基聚合常用的引发方式有几种?举例说明其特点。
12、写出下列常用引发剂的分子式与分解反应式。
其中哪些就是水溶性引发剂,哪些就是油溶性引发剂,使用场所有何不同?(1)偶氮二异丁腈,偶氮二异庚腈。
高分子化学-潘祖仁-习题答案-自由基聚合
⾼分⼦化学-潘祖仁-习题答案-⾃由基聚合第三章⾃由基聚合习题1.举例说明⾃由基聚合时取代基的位阻效应、共轭效应、电负性、氢键和溶剂化对单体聚合热的影响。
2.什么是聚合上限温度、平衡单体浓度根据表3-3数据计算丁⼆烯、苯⼄烯40、80O C⾃由基聚合时的平衡单体浓度。
3.什么是⾃由基聚合、阳离⼦聚合和阴离⼦聚合4.下列单体适合于何种机理聚合:⾃由基聚合,阳离⼦聚合或阴离⼦聚合并说明理由。
CH2=CHCl,CH2=CCl2,CH2=CHCN,CH2=C(CN)2,CH2=CHCH3,CH2=C(CH3)2, CH2=CHC6H5, CF2=CF2,CH2=C(CN)COOR,CH2=C(CH3)-CH=CH2。
5.判断下列烯类单体能否进⾏⾃由基聚合,并说明理由。
CH2=C(C6H5)2, ClCH=CHCl, CH2=C(CH3)C2H5, CH3CH=CHCH3,CH2=C(CH3)COOCH3,CH2=CHOCOCH3,CH3CH=CHCOOCH3。
6.对下列实验现象进⾏讨论:(1)⼄烯、⼄烯的⼀元取代物、⼄烯的1,1-⼆元取代物⼀般都能聚合,但⼄烯的1,2-取代物除个别外⼀般不能聚合。
(2)⼤部分烯类单体能按⾃由基机理聚合,只有少部分单体能按离⼦型机理聚合。
(3)带有π-π共轭体系的单体可以按⾃由基、阳离⼦和阴离⼦机理进⾏聚合。
7.以偶氮⼆异丁腈为引发剂,写出苯⼄烯、醋酸⼄烯酯和甲基丙烯酸甲酯⾃由基聚合历程中各基元反应。
8.对于双基终⽌的⾃由基聚合反应,每⼀⼤分⼦含有个引发剂残基。
假定⽆链转移反应,试计算歧化终⽌与偶合终⽌的相对量。
9.在⾃由基聚合中,为什么聚合物链中单体单元⼤部分按头尾⽅式连接10.⾃由基聚合时,单体转化率与聚合物相对分⼦质量随时间的变化有何特征与聚合机理有何关系11.⾃由基聚合常⽤的引发⽅式有⼏种举例说明其特点。
12.写出下列常⽤引发剂的分⼦式和分解反应式。
其中哪些是⽔溶性引发剂,哪些是油溶性引发剂,使⽤场所有何不同(1)偶氮⼆异丁腈,偶氮⼆异庚腈。
自由基聚合习题参考答案
自由基聚合习题参考答案自由基聚合习题参考答案自由基聚合是有机化学中的一个重要概念,它描述了自由基反应中自由基之间的结合过程。
在这篇文章中,我们将讨论一些与自由基聚合相关的习题,并给出参考答案。
习题一:请给出以下反应的自由基聚合产物。
反应:CH3CH2CH2CH2Br + CH3CH2CH2CH2Br → ?答案:在该反应中,两个溴代烷分子中的溴原子将被自由基取代。
因此,产物将是一个由四个乙基基团组成的烷烃,即正丁烷(CH3CH2CH2CH3)。
习题二:请给出以下反应的自由基聚合产物。
反应:CH3CH2CH2CH2Br + CH3CH2CH2CH2OH → ?答案:在该反应中,溴代烷和醇反应会生成一个自由基,然后这个自由基会与另一个溴代烷发生自由基取代反应。
因此,产物将是一个由两个乙基基团和一个羟基组成的化合物,即正丁醇(CH3CH2CH2CH2OH)。
习题三:请给出以下反应的自由基聚合产物。
反应:CH3CH2CH2CH2Br + CH3CH2CH2CH2CH2Br → ?答案:在该反应中,两个溴代烷分子中的溴原子将被自由基取代。
因此,产物将是一个由五个乙基基团组成的烷烃,即正戊烷(CH3CH2CH2CH2CH3)。
习题四:请给出以下反应的自由基聚合产物。
反应:CH3CH2CH2CH2Br + CH3CH2CH2CH2CH2OH → ?答案:在该反应中,溴代烷和醇反应会生成一个自由基,然后这个自由基会与另一个溴代烷发生自由基取代反应。
因此,产物将是一个由四个乙基基团和一个羟基组成的化合物,即正戊醇(CH3CH2CH2CH2CH2OH)。
习题五:请给出以下反应的自由基聚合产物。
反应:CH3CH2CH2CH2Br + CH3CH2CH2CH2CH2Br + CH3CH2CH2CH2CH2OH → ?答案:在该反应中,溴代烷和醇反应会生成一个自由基,然后这个自由基会与另外两个溴代烷发生自由基取代反应。
因此,产物将是一个由六个乙基基团和一个羟基组成的化合物,即正己醇(CH3CH2CH2CH2CH2CH2OH)。
第三章 自由基习题
ln k d 33.936 15116/ T
Ed=8.314×15116=125.7kJ/mol
当t=40℃=313.15K时
kd exp(15116 / 313 .15 + 33.936 ) 5.95× 10 7
t1/ 2
ln2 323.6h 7 × 5.95 10
21
(1)聚合速率:当T从50℃→60℃
k 2 / k 1 e E / RT 2 / e E / RT 1 e
E
(
1
1 T1
)
R T2
k2 / k1 e
90.4103 1 1 ( ) 8.31 273+60 273+50
2.75
当T从80℃→90℃
k2 / k1 e
1 1 0.8 4.38 106 12 2 2 ln 145 ( ) ( 4 . 0 10 ) t 7 2 7.0 10
得 t=94h
超过了引发剂半衰期, [I]随时间而变化
14
(2)如果[I]随时间而变化:
ln [M ] [ M ]0
t
0
kp( fk d kt
(3)已知过氧化二碳酸二异丙酯半衰期为10hr和1hr时的
分解温度分别为45和61℃, 代入得: A=6.6×103 B=19.9
logt1/2=A/(56+273) –B=0.302
∴56℃半衰期t1/2=2.0h
10
5. 过氧化二乙基的一级分解速率常数为: 1.0×1014exp(-146.5kJ/RT) 在什么温度范围内使用财有效? 解析: 常用自由基引发剂分解速率常数为 ① 10-4~10-6S-1 ② t1/2=2~2 1/ 2 Rp k p ( ) [ I ] [M ] kt
第3章自由基聚合习题参考答案
第3章自由基聚合-习题参考答案1、判断下列单体能否进行自由基聚合?并说明理由H2C CHCl H2C CH H2C CCl2H2C CH2H2C CH2C CHCN H2C C(CN)2H2C CHCH3F2C CF2ClHC CHClH2C CCH3COOCH3H2C CCNCOOCH3HC CHOC COO答:(1)可以。
Cl原子的诱导效应为吸电性,共轭效应为供电性两者相抵,电子效应微弱,只能自由基聚合。
(2)可以。
为具有共轭体系的取代基。
(3)可以。
结构不对称,极化程度高,能自由基聚合。
(4)可以。
结构对称,无诱导效应共轭效应,较难自由基聚合。
(5)不能。
1,1—二苯基乙烯,二个苯基具有很强的共轭稳定作用,形成的稳定自由基不能进一步反应。
(6)可以。
吸电子单取代基。
(7)不可以。
1,1双强吸电子能力取代基。
(8)不可以。
甲基为弱供电子取代基。
(9)可以。
氟原子半径较小,位阻效应可以忽略不计。
(10)不可以。
由于位阻效应,及结构对称,极化程度低,难自由基聚合(11)可以。
1,1-双取代。
(12)可以。
1,1-双取代吸电子基团。
(13) 不可以。
1,2-双取代,空间位阻。
但可进行自由基共聚。
2、试比较自由基聚合与缩聚反应的特点。
答:自由基聚合:(1)由链引发,链增长,链终止等基元反应组成,其速率常数和活化能均不等,链引发最慢是控制步骤。
(2)单体加到少量活性种上,使链迅速增长。
单体-单体,单体-聚合物,聚合物-聚合物之间均不能反应。
(3)只有链增长才是聚合度增加,从一聚体增加到高聚物,时间极短,中间不能暂停。
聚合一开始就有高聚物产生。
(4)在聚合过程中,单体逐渐减少,转化率相应增加(5)延长聚合时间,转化率提高,分子量变化较小。
(6)反应产物由单体,聚合物,微量活性种组成。
(7)微量苯酚等阻聚剂可消灭活性种,使聚合终止。
缩聚反应:(1)不能区分出链引发,链增长,链终止,各部分反应速率和活化能基本相同。
高分子第三章习题
第三章自由基聚合2、60℃过氧化二碳酸二乙基己酯在某溶剂中分解,用碘量法测定不同时间的残留引发剂浓度,数据如下,计算分解速率速率常数和半衰期。
解:引发剂分解属于一级反应,故-d[I]/dt=kd[I] 积分得ln[I]/[I]0=-kdt,以ln[I]/[I]0对t作图,所得直线的斜率为-kd。
3、在甲苯中不同浓度下测定偶氮二异丁腈的分解速率常数,数据如下,求分解活化能。
再求40℃和80℃下的半衰期,判断在这两温度下聚合是否有效。
解:引发剂分解速率常数与温度的关系遵守Arrhenius 经验式:kd=Ade-Ed/RT ln kd=lnAd-Ed/RT在不同温度下,测定一引发剂的分解速率常数,作ln kd—1/T图,呈一直线。
由截距可求得指前因子Ad,而根据斜率可求出分解活化能Ed。
ln kd=34.175-15191/T斜率K=-Ed/R 则 Ed=-K×R = -(-15191)×8.314 =126298JlnAd=34.175当T=313K时, kd=5.8×10-7s-1 t1/2=0.693/kd=1.2×106s =331h当T=353K时 t1/2=1.35h4、引发剂半衰期与温度的关系式中的常数A、B与指前因子、活化能有什么关系?文献经常报道半衰期为1h和10h的温度,这有什么方便之处?过氧化二碳酸二异丙酯半衰期为1h和10h的温度分别为61℃和45℃,试求A、B值和56℃的半衰期。
列方程组容易解此题5.过氧化二乙基的一级分解速率常数为1.0×1014exp(-146.5kJ/RT),在什么温度范围使用才有效?解:引发剂的半衰期在1-10h内使用时,引发剂较为有效由于kd=ln2/t1/2,根据题意kd= 1.0×1014exp(-146.5kJ/RT),6、苯乙烯溶液浓度为0.20mol·L-1,过氧类引发剂浓度为4.0×10-3 mol·L-1,在60℃下聚合,如引发剂半衰期为44h,引发剂效率f=0.80,kp=145L·mol-1·s-1,kt=7.0×107L·mol-1·s-1,欲达到50%转化率,需多长时间?解:不考虑[I]变化时,引发剂的半衰期为t1/2=44h,则用引发剂引发时,聚合速率方程为:积分得:(绿色的)当转化率为50%时,在计算时,假定引发剂的浓度不随时间变化而变化;实际上引发剂随时间增加而减少。
第三章自由基聚合
8、苯乙烯溶液浓度0.20 mol.L-1,过氧类引发剂浓度为4.010-3mol.L-1,在60℃下聚合,如引发剂半衰期44h,引发剂效率f=0.80,kp=145 L.(mol.s)-1,kt=7.0107L.(mol.s)-1,欲达到50%转化率,需多长时间?
9、过氧化二苯甲酰引发某单体聚合的动力学方程为:Rp=kP[M](fkd/kt)1/2[I]1/2,假定各基元反应的速率常数和f都与转化率无关,[M]0=2mol.L-1,[I]=0.01mol.L-1,极限转化率为10%。若保持聚合时间不变,欲将最终转化率从10%提高到20%,试求:
2.6410-6
1.1610-5
3.7810-5
6、引发剂半衰期与温度的关系式中的常数A、B与指前因子、活化能有什么关系?文献经常报道半衰期为1h和10h的温度,这有什么方便之处?过氧化二碳酸二异丙酯半衰期为1h和10h的温度分别为61℃和45℃,试求A、B值和56℃的半衰期。
7、过氧化二乙基的一级分解速率常数为1.0×1014exp(-146.5kJ/RT),在什么温度范围使用才有效?
17、用过氧化二苯甲酰作引发剂,苯乙烯在60℃下进行本体聚合,试计算链引发、向引发剂转移、向单体转移三部分在聚合度倒数中所占的百分比。对聚合有何影响?
计算时用下列数据:[I]=0.04 mol.L-1,f=0.8;kd=2.010-6s-1,kp=176 L.(mol.s)-1,kt=3.6107L.(mol.s)-1,(60℃)=0.887 g.mL-1,CI=0.05;CM=0.8510-4。
第三章自由基共聚习题
1 何谓竞聚率?它有何物理意义?
2 说明两种单体进行理想共聚、恒比共聚和交替共聚的 必要条件。 3 苯乙烯(M1)与丁二烯(M2)进行自由基共聚, r1=0.64, r2=1.38。已知苯乙烯和丁二烯的均聚链增长速 率常数分别为49和25 l/mol.s,求: (1)共聚时的反应速率常数 (2)比较两种单体和两种自由基的反应活性大小 (3)做出此共聚反应的F1-f1曲线 (4)要制备组成均一的共聚物需要采用什么措施?
8
9解: 设共聚物组成为:
[ CH2 CH ] [ CH m C6H5 Cl CH CH CH2 ] n
则每m个苯乙烯链节内含有8m个C原子,每n个氯丁二烯 链节内含4n个C原子和n个氯原子: 所以 C%=(8m+4n)12/(104m+88.5n) Cl%=35.5n/(104m+88.5n) 将已知的Cl%和C%代入上式中,即可求得m/n之比。即共 聚物两种链节的摩尔比,结果如下:
6
5解: r1=1.68 r2=0.23 M1=62.5 M2=86 要合成含氯乙烯重量分数为80%的氯-醋共聚物,此中含氯乙 烯摩尔分数F1=0.846,按共聚物组成微分方程计算,相应的 f1=0.75 在该共聚反应中,氯乙烯活性大于醋酸乙烯,所以随着反应 进行,剩余物料中氯乙烯比例下降,f1逐渐下降。所以要合 成氯乙烯80%(重量比)可采用f1=0.75的配比投料,过程补 加氯乙烯单体以维持体系中单体配比保持在0.75。
4
1解: 竞聚率是单体链增长和共聚链增长速率常数之比。即 r1=k11/k12它表征两单体的相对活性,根据r值可估算两单体 共聚的可能性和判断共聚物的组成情况。 2解: (1)r1r2=1时可进行理想共聚,此时k11/k12=k21/k22,活性 链对单体无选择性。如丁二烯(r1=1.39)和苯乙烯(r2=0.78) r1r2=1.08属于此类。此时F1=f1 (2)r1<1 r2<1 可进行有恒比点的共聚,在恒比点有 F1=f1=(1-r2)/(2-r1-r2) 如苯乙烯(r1=0.41) 丙烯腈 (r2=0.04) (3) r1<<1, r2<<1, 或r1=r2=0时 交替共聚 此时F1=1/2 如马来酸酐(r1=0.04) 苯乙烯(r2=0.015)
高分子化学_余木火_第三章 自由基聚合习题
第三章自由基聚合_习题1、下列烯类单体能否进行自由基聚合?并解释原因。
CH2=C(C6H5)2CH2=C(CH3)C2H5 CH3CH=CHCH3C l CH=CHC lCF2=CF2 CH2=C(CH3)COOCH3CH2=CHCOOCH3 CH2=CHCNCH2=C(CH3)CH=CH2、以偶氮二异丁腈为引发剂,写出醋酸乙烯酯聚合历程中各基元反应式。
3、PVA的单体是什么?写出其聚合反应式。
4、试写出氯乙烯以偶氮二异庚腈为引发剂聚合时的各个基元反应。
5、甲基丙烯酸甲酯聚合时,歧化终止的百分比与温度的依赖性如下表所示:计算:(a)歧化终止与偶合终止的活化能差值;(b)偶合终止为90%时的温度。
6、如果某引发剂的半衰期为4 hr,那么反应12 hr后,引发剂还剩余多少(百分比)没有分解?7、写出下列常用引发剂的分子式和分解反应式。
偶氮二异丁腈,偶氮二异庚腈,过氧化二苯甲酰,过氧化二碳酸二(2-乙基己酯),异丙苯过氧化氢,过氧化羧酸叔丁酯,过硫酸钾-亚硫酸盐体系,过氧化氢-亚铁盐体系8、苯乙烯在苯中以过氧化二苯甲酰为引发剂、80℃下进行聚合反应。
已知:k d=2.5×10-4S-1,E d=124.3kJ·mol-1,试求60℃的k d值和引发剂的半衰期。
9、直接光引发和加光引发剂的光引发有什么不同?10、据报道,过氧化二乙基的一级分解速率常数为1.0×1014e-35000cal/RT s-1,试预测这种引发剂的使用温度范围。
11、在稳态状态下,如果[M×]=1×10-11mol/L,那么在30、60、90分钟后,[M×]分别等于多少?12、何为自动加速作用?其出现的根本原因是什么?13、阻聚作用与缓聚作用的定义,常见阻聚剂有哪几种类型?它们的阻聚机理有什么不同?14、单体溶液浓度为0.20 mol/L,过氧化物引发剂浓度为4.0×10-3 mol/L,在60℃下加热聚合,问需多长时间能达到50%的转化率?计算时采用如下数据:k p=145 L/mol×s,k t=7.0×107 L/mol×s,f=1,引发剂半衰期为44 hr。
陕师大高分子化学第三章自由基聚合试题答案
1. 数均分子量为1×105的聚乙酸乙烯酯水解得到聚乙烯醇。
聚乙烯醇用高碘酸氧化,断开1,2-二醇键后得到的聚乙烯醇的平均聚合度Xn=200。
计算聚乙酸乙烯酯中首-首连接的百分数(假定聚乙酸乙烯酯水解前后的聚合度不变)。
答案:聚乙酸乙烯酯或聚乙烯醇的聚合度Xn=(105/86)≈1162.8(3分)根据断开1,2-二醇键后得到的聚乙烯醇的平均聚合度Xn=200,可知,其中首-首相连的个数=(1162.8/200)-1≈4.882(3分)即1162.8个连接中,有4.882个单体以首-首相连,所以首-首连接的百分数=(4.882/1162.8)*100%≈0.41%(3分)1. 甲基丙烯酸甲酯在50℃下用偶氮二异丁腈引发聚合,已知该条件下,链终止既有偶合终止,又有歧化终止 ,生成聚合物经实验测定引发剂片断数目与聚合物分子数目之比为 1.25׃1,请问在此聚合反应中偶合终止和歧化终止各占多少?参考答案:设偶合终止消耗的引发剂片断数目为x,岐化终止消耗的引发剂片断数目为y。
根据自由基聚合反应终止特点得: x + y=1.25 ①x/2 + y=1 ②x =0.5, y=0.75 (4分)偶合终止所占比例0.5/1.25=40% (2分)歧化终止所占比例0.75/1.25=60% (2分)2. 苯乙烯以二叔丁基过氧化物为引发剂,苯为溶剂,在60℃下进行聚合。
已知:[M]=1.0 mol L-1, [I]=0.01 mol L-1, R i=4.0×10-11 mol L-1 s -1, R p=1.5×10-7 mol L-1 s -1, C m=8.0×10-5, C i =3.2×10-4, C s=2.3×10-6, 60℃下苯和苯乙烯的密度分别为0.839 g ml-1和0.887 g ml-1, 假定苯乙烯-苯体系为理想溶液, 试求fk d, 动力学链长和平均聚合度.参考答案:由R i=2fk d[I]可求得:fk d= R i/2[I]=4×10-11/2×0.01=2.0×10-910-11 S-1 (2分)动力学链长为ν= R p/R i=1.5×10-7/4×10-11=3750 (2分)因为υ=k p2[M]2/2k t R p[S]=(1-104/887)×839/78=9.5 mol L-1(2分)所以1/X n=1/2ν+Cm+ C I[I]/ [M]+ C S[S]/ [M]=1/3750×2+8.0×10-5+3.2×10-4×0.01/1.0+2.3×10-6×9.5/1.0=2.43×10-4 (2分)平均聚合度Xn≈4195(2分)1. 以二特丁基过氧化物为引发剂,在60℃下研究苯乙烯在苯中的聚合反应,苯乙烯浓度为1.0 mol dm-3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教材习题参考答案第三章自由基聚合思考题1.烯类单体家具有下列规律: ①单取代和1,1-双取代烯类容易聚合, 而1,2-双取代烯类难聚合;②大部分烯类单体能自由基聚合,而能离子聚合的烯类单体却很少,试说明原因。
2. 下列烯类单体适于何种机理聚合?自由基聚合、阳离子聚合还是阴离子聚合?并说明原因。
CH2=CHCl CH2=CCl2CH2=CHCN CH2=C(CN)2CH2=CHCH3CH2=C(CH3)2CH2=CH C6H5CF2=CF2CH2=C(CN)COOR CH2=C(CH3)-CH=CH2答:CH2=CHCl:适合自由基聚合,Cl原子是吸电子基团,也有共轭效应,但均较弱。
CH2=CCl2:自由基及阴离子聚合,两个吸电子基团。
CH2=CHCN:自由基及阴离子聚合,CN为吸电子基团。
CH2=C(CN)2:阴离子聚合,两个吸电子基团(CN)。
CH2=CHCH3:配位聚合,甲基(CH3)供电性弱。
CH2=CHC6H5:三种机理均可,共轭体系。
CF2=CF2:自由基聚合,对称结构,但氟原子半径小。
CH2=C(CN)COOR:阴离子聚合,取代基为两个吸电子基(CN及COOR)CH2=C(CH3)-CH=CH2:三种机理均可,共轭体系。
3. 下列单体能否进行自由基聚合,并说明原因。
CH2=C(C6H5)2ClCH=CHCl CH2=C(CH3)C2H5CH3CH=CHCH3CH2=CHOCOCH3CH2=C(CH3)COOCH3CH3CH=CHCOOCH3CF2=CFCl答:CH2=C(C6H5)2:不能,两个苯基取代基位阻大小。
ClCH=CHCl:不能,对称结构。
CH2=C(CH3)C2H5:不能,二个推电子基,只能进行阳离子聚合。
CH3CH=CHCH3:不能,结构对称。
CH2=CHOCOCH3:醋酸乙烯酯,能,吸电子基团。
CH2=C(CH3)COOCH3:甲基丙烯酸甲酯,能。
CH3CH=CHCOOCH3:不能,1,2双取代,位阻效应。
CF2=CFCl:能,结构不对称,F原子小。
第三章自由基聚合计算题1. 甲基丙烯酸甲酯进行聚合,试由和来计算77℃、127℃、177℃、227℃时的平衡单体浓度,从热力学上判断聚合能否正常进行。
解:由教材P64上表3-3中查得:甲基丙烯酸甲酯=-56.5kJ/mol,=-117.2J/mol K平衡单体浓度:T=77℃=350.15K, 4.94*10-3mol/LT=127℃=400.15K,0.0558mol/LT=177℃=450.15K,0.368mol/LT=227℃=500.15K, 1.664mol/L从热力学上判断,甲基丙烯酸甲酯在77℃、127℃、177℃下可以聚合,在227℃上难以聚合。
因为在227℃时平衡单体浓度较大。
2. 60℃过氧化二碳酸二环己酯在某溶剂中分解,用碘量法测定不同时间的残留引发剂浓度,数据如下,试计算分解速率常数(s-1)和半衰期(h)。
时间/h00.20.71.2 1.7DCPD浓度/(mol•L-1)0.07540.06600.04840.03340.0288解:过氧化二碳酸二环己酯的分解反应为一级反应,引发剂浓度变化与反应时间的关系为:通过以对t作图,利用最小二乘法进行回归得一条直线,斜率为-k d。
得到:k d=0.589h-1=1.636*10-4s-1半衰期:3. 在甲苯中不同温度下测定偶氮二异丁腈的分解速率常数,数据如下,求分解活化能。
再求40℃和80℃下的半衰期,判断在这两温度下聚合是否有效。
温度/℃5060.569.5分解速率常数/s-12.64⨯10-6 1.16⨯10-53.78⨯10-5解:分解速率常数、温度和活化能之间存在下列关系:,以对作图,斜率为,截距为。
采用最小二乘分法进行回归,得:E d=8.314*15116=125674.4=125.7kJ/mol当t=40℃=313.15K时当t=80℃=353.15K时以此可见,在40℃下聚合时引发剂的半衰期太长,聚合无效,而在80℃下聚合是有效的。
4. .引发剂的半衰期与温度之间的关系式中的常数A,B与指前因子、活化能有什么关系?文献经常报道半衰期为1h和10h的温度,这有什么方便之处?过氧化二碳酸二异丙酯半衰期为1h和10h的温度分别为61℃和45℃,试求A,B值和56℃的半衰期。
解:t1/2=0.693/k d k d=A d exp(-E d/RT)lg t1/2=lg0.693-lgA d+E d/RTlge联立:lg t1/2=A/T-B得:A= (E d/R)lge B= lgA d- lg0.693对于过氧化二碳酸二异丙酯Lg10=A/318.2-B ①Lg1=A/334.2-B②解之得A=6646.4 B=19.896. 苯乙烯溶液浓度0.20 mol•L-1, 过氧类引发剂浓度为4.0⨯10-3mol•L-1, 在60℃下聚合,如引发剂半衰期44h, 引发剂效率f=0.80,k p=145 L•(mol•s)-1,k t=7.0⨯107 L•(mol•s)-1, 欲达到50%转化率,需多长时间?解:当引发剂浓度随时间不变时:7. 过氧化二苯甲酰引发某单体聚合的动力学方程为:R p=k P[M](f k d/k t)1/2[I]1/2,假定各基元反应的速率常数和f都与转化率无关,[M]0=2 mol•L-1,[I]=0.01 mol•L-1,极限转化率为10%。
若保持聚合时间不变,欲将最终转化率从10%提高到20%,试求:(1)[M]0增加或降低多少倍?(2)[I]0增加或降低多少倍?[I]0改变后,聚合速率和聚合度有何变化?(3)如果热引发或光引发聚合,应该增加或降低聚合温度?E d、E p、E t分别为124、32 和8 kJ•mol-1。
解:(题意有修改)低转化率下聚合动力学方程:令(1)当聚合时间固定时,C与单体初始浓度无关,故当聚合时间一定时,改变不改变转化率。
(2)当其它条件一定时,改变,则有:,即引发剂浓度增加到4.51倍时,聚合转化率可以从10%增加到20%。
由于聚合速率,故增加到4.51倍时,增加2.12倍。
聚合度,故增加到4.51倍时,下降到原来0.471。
即聚合度下降到原来的1/2.12。
(3)引发剂引发时,体系的总活化能为:热引发聚合的活化能与引发剂引发的活化能相比,相当或稍大,温度对聚合速率的影响与引发剂引发相当,要使聚合速率增大,需增加聚合温度。
光引发聚合时,反应的活化能如下:上式中无项,聚合活化能很低,温度对聚合速率的影响很小,甚至在较低的温度下也能聚合,所以无需增加聚合温度8.以过氧化二苯甲酰做引发剂,苯乙烯聚合时各基元反应活化能为E d=125kJ·mol-1,E p=32.6kJ·mol-1,E t=10kJ·mol-1,试比较50℃增至60℃以及从80℃增至到90℃聚合速率与聚合度有何变化。
光引发的情况又如何?解:1)50℃~60℃时速率常数变化1111=E32.6125.61090.4/2222p d tE E E KJ mol+-=+⨯-⨯=总122735032327360333T KT K=+==+=23190.411exp() 2.968.310323333KK-=⨯-=⨯80℃~90℃时速率常数变化212.34KK=2)50℃~60℃时Xn变化1111=E32.6125.61035.2/2222np t dXE E E KJ mol--=-⨯-⨯=-2251135.211exp()0.6758.310323333nnX KKX--==⨯-=⨯80℃~90℃时Xn 变化2251135.211exp ()0.7198.310353363n n X K K X --==⨯-=⨯ 3) 光引发时50℃~60℃时速率常数及Xn 变化0d E =1132.61027.522p t E E E =-=-⨯=nR X E E =50℃~60℃时22112111exp () 1.39n P P n X R E R R T T X ==⨯-=80℃~90℃时22112111exp () 1.30n P P n X R E R R T T X ==⨯-=9. 以过氧化二苯甲酰为引发剂,在60℃进行苯乙烯聚合动力学研究,数据如下:a. 60℃苯乙烯的密度为0.887 g •cm -3;b. 引发剂用量为单体重的0.109%;c. R p =0.255⨯10-4 mol •(L •s)-1;d.聚合度=2460;e. f =0.80;f. 自由基寿命=0.82 s 。
试求k d 、k p 、k t ,建立三常数的数量级概念,比较 [M]和[M •]的大小,比较R I 、R p 、R t 的大小。
解:偶合终止:C=0.77,歧化终止:D=0.23。
>>可见,k t>>k p,但[M]>>[M•],因此R p>>R t;所以可以得到高分子量的聚合物。
R d10-8k d10-6[M] 8.53R p10-5k p102[M·] 1.382×10-8 R t10-8k t10711.对于双基终止的自由基聚合物,每一大分子含有1.30个引发剂残基,假设无链转移发生,试计算歧化终止与偶合终止的相对分子量。
解:活性链数目为X,偶合终止的X c,则歧化反应的为X—Xc根据终止后引发剂残基数相等X=【Xc/2+(X—Xc)】·1.30化简:Xc/X = 2 – 2/1.3Xc/X = 0.46偶合46% 歧化54%12. 以过氧化特丁基作引发剂,60℃时苯乙烯在苯中进行溶液聚合,苯乙烯浓度为1.0 mol•L-1,过氧化物浓度为0.01mol•L-1,初期引发速率和聚合速率分别为4.0⨯10-11和1.5⨯10-7 mol•(L•s) -1。
苯乙烯-苯为理想体系,计算(f k d)、初期聚合度、初期动力学链长和聚合度,求由过氧化物分解所产生的自由基平均要转移几次,分子量分布宽度如何?计算时采用下列数据:C M=8.0⨯10-5,C I=3.2⨯10-4,C S=2.3⨯10-6,60℃下苯乙烯密度为0.887 g•ml-1,苯的密度0.839 g•ml-1。
解:[M]=1.0mol/L[I]=0.01mol/L60℃,苯乙烯偶合终止占77%,歧化终止占23%。
若无链转移,若同时发生单体、引发剂和溶剂转移,则按下式计算:13. 按上题制得的聚苯乙烯分子量很高,常加入正丁硫醇(C S=21(该题虽不是作业,但因为与12题有关,所以也附上答案)60℃,某单体由某引发剂引发本体聚合,[M]=8.3 mol•L-1,聚合速率与数均聚合度有如下关系:R p/ mol•(L•s)-10.51.02.05.0115 83555503331317592358解:14.聚氯乙烯的分子量为什么与引发剂浓度无关而仅与决定于聚合物温度?向氯乙烯单体链转移C M 与温度的关系如下; C M=12.5exp(30.5/RT),试求40℃,50℃,55℃,60℃下的聚氯乙烯平均聚合度。