高一数学-苏教版全套

合集下载

苏教版高一数学必修1全套精美课件

苏教版高一数学必修1全套精美课件
苏教版高一数学必修1全套精美课 件
2.1 函数的概念和图像
苏教版高一数学必修1全套精美课 件
2.2 指数函数
苏教版高一数学必修1全套精美课 件
2.3 对数函数
苏教版高一数学必修1全套精美 课件目录
0002页 0054页 0114页 0183页 0211页 0240页
第一章 集合 1.2 子集 全集 补集 第二章 函数概念与基本初等函数 2.2 指数函数 2.4 幂函数 2.6 函数模型及其应用
第一章 集合
苏教版高一数学必修1全套精美课 件
1.1 集合的含义与表示
苏教版高一数学必修1全套精美课 件
1.2 子集 全集 补集
苏教版高一数学必修1全套精美课 件
1.3 交集 并集
苏教版高一数学必修1全套精美课 件
第二章 函数概念与基本初等函 数
苏教版高一数学必修1全套精美课 件
2.4 幂函数
苏教版高一数学必修1全套精美课 件
2.5 函数与方程
苏教版高一

高中数学苏教版教材目录(必修+选修)

高中数学苏教版教材目录(必修+选修)

苏教版-----------------------------------必修1-----------------------------------第1章集合1.1集合的含义及其表示1.2子集、全集、补集1.3交集、并集第2章函数2.1函数的概念2.1.1函数的概念和图象2.1.2函数的表示方法2.2函数的简单性质2.2.1函数的单调性2.2.2函数的奇偶性2.3映射的概念第3章指数函数、对数函数和幂函数3.1指数函数3.1.1分数指数幂3.1.2指数函数3.2对数函数3.2.1对数3.2.2对数函数3.3幂函数3.4函数的应用3.4.1函数与方程3.4.2函数模型及其应用-----------------------------------必修2-----------------------------------第1章立体几何初步1.1空间几何体1.1.1棱柱、棱锥和棱台1.1.2圆柱、圆锥、圆台和球1.1.3中心投影和平行投影1.1.4直观图画法1.2点、线、面之间的位置关系1.2.1平面的基本性质1.2.2空间两条直线的位置关系 1.平行直线2.异面直线1.2.3直线与平面的位置关系1.直线与平面平行2.直线与平面垂直1.2.4平面与平面的位置关系1.两平面平行2.平面垂直1.3空间几何体的表面积和体积1.3.1空间几何体的表面积1.3.2空间几何体的体积第2章平面解析几何初步2.1直线与方程2.1.1直线的斜率2.1.2直线的方程1.点斜式2.两点式3.一般式2.1.3两条直线的平行与垂直2.1.4两条直线的交点2.1.5平面上两点间的距离2.1.6点到直线的距离2.2圆与方程2.2.1圆的方程2.2.2直线与圆的位置关系2.2.3圆与圆的位置关系2.3空间直角坐标系2.3.1空间直角坐标系2.3.2空间两点间的距离-----------------------------------必修3-----------------------------------第1章算法初步1.1算法的意义1.2流程图1.2.1顺序结构1.2.2选择结构1.2.3循环结构1.3基本算法语句1.3.1赋值语句1.3.2输入、输出语句1.3.3条件语句1.3.4循环语句1.4算法案例第2章统计2.1抽样方法2.1.1简单随机抽样1.抽签法2.随机数表法2.1.2系统抽样2.1.3分层抽样2.2总体分布的估计2.2.1频率分布表2.2.2频率分布直方图与折线图2.2.3茎叶图2.3总体特征数的估计2.3.1平均数及其估计2.3.2方差与标准差2.4线性回归方程第3章概率3.1随机事件及其概率3.1.1随机现象3.1.2随机事件的概率3.2古典概型3.3几何概型3.4互斥事件-----------------------------------必修4-----------------------------------第1章三角函数1.1任意角、弧度1.1.1任意角1.1.2弧度制1.2任意角的三角函数1.2.1任意角的三角函数1.2.2同角三角函数关系1.2.3三角函数的诱导公式1.3三角函数的图象和性质1.3.1三角函数的周期性1.3.2三角函数的图象与性质1.3.3函数y=Asin(ωx+ψ)的图象1.3.4三角函数的应用第2章平面向量2.1向量的概念及表示2.2向量的线性运算2.2.1向量的加法2.2.2向量的减法2.2.3向量的数乘2.3向量的坐标表示2.3.1平面向量基本定理2.3.2平面向量的坐标运算2.4向量的数量积2.5向量的应用第3章三角恒等变换3.1两角和与差的三角函数3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切3.2二倍角的三角函数3.3几个三角恒等式-----------------------------------必修5-----------------------------------第1章解三角形1.1正弦定理1.2余弦定理1.3正弦定理、余弦定理的应用第2章数列2.1数列2.2等差数列2.2.1等差数列的概念2.2.2等差数列的通项公式2.2.3等差数列的前n项和2.3等比数列2.3.1等比数列的概念2.3.2等比数列的通项公式2.3.3等比数列的前n 项和第3章 不等式 3.1不等关系3.2一元二次不等式3.3二元一次不等式组与简单的线性规划问题3.3.1二元一次不等式表示的平面区域3.3.2二元一次不等式组表示的平面区域3.3.3简单的线性规划问题3.4基本不等式2b a ab +≤)0,0(≥≥b a 3.4.1基本不等式的证明3.4.2基本不等式的应用-----------------------------------选修1-1-----------------------------------1.1.1四种命题1.1.2充分条件和必要条件1.3.1量词1.3.2含有一个量词的命题的否定2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4.1抛物线的标准方程2.4.2抛物线的几何性质 的共同性质3.1.1平均变化率3.1.2瞬时变化率——导数3.2.1常见函数的导数3.2.2函数的和、差、积、商的导数3.3.1单调性3.3.2极大值和极小值3.3.3最大值和最小值-----------------------------------选修1-2-----------------------------------回归分析2.1.1合情推理2.1.2演绎推理2.1.3推理案例欣赏2.2.1直接证明2.2.2间接证明-----------------------------------选修2-1-----------------------------------1.1.1四种命题1.1.2充分条件和必要条件1.3.1量词1.3.2含有一个量词的命题的否定2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.6.1曲线与方程2.6.2求曲线的方程2.6.3曲线的交点3.1.1空间向量及其线性运算3.1.2共面向量定理3.1.3空间向量基本定理3.1.4空间向量的坐标表示3.1.5空间向量的数量积3.2.1直线的方向向量与平面的法向量3.2.2空间线面关系的判定3.2.3空间的角的计算-----------------------------------选修2-2-----------------------------------1.1.1平均变化率1.1.2瞬时变化率——导数1.2.1常见函数的导数1.2.2函数的和、差、积、商的导数1.2.3简单复合函数的导数1.3.1单调性1.3.2极大值和极小值1.3.3最大值和最小值1.5.1曲边梯形的面积1.5.2定积分1.5.3微积分基本定理2.1.1合情推理2.1.2演绎推理2.1.3推理案例欣赏2.2.1直接证明2.2.2间接证明-----------------------------------选修2-3-----------------------------------1.5.1二项式定理1.5.2二项式系数的性质及用2.3.1条件概率2.3.2事件的独立性2.5.1离散型随机变量的均值2.5.2离散型随机变量的方差与标准差-----------------------------------选修4-1-----------------------------------1.1 相似三角形的进一步认识1.1.1平行线分线段成比例定理1.1.2相似三角形1.2 圆的进一步认识1.2.1圆周角定理1.2.2圆的切线1.2.3圆中比例线段1.2.4圆内接四边形1.3 圆锥截线1.3.1球的性质1.3.2圆柱的截线1.3.3圆锥的截线学习总结报告-----------------------------------选修4-2-----------------------------------2.1 二阶矩阵与平面向量2.1.1矩阵的概念2.1.2二阶矩阵与平面列向量的乘法2.2 几种常见的平面变换2.2.1恒等变换2.2.2伸压变换2.2.3反射变换2.2.4旋转变换2.2.5投影变换2.2.6切变变换2.3 变换的复合与矩阵的乘法2.3.1矩阵乘法的概念2.3.2矩阵乘法的简单性质2.4 逆变换与逆矩阵2.4.1逆矩阵的概念2.4.2二阶矩阵与二元一次方程组2.5 特征值与特征向量2.6 矩阵的简单应用学习总结报告-----------------------------------选修4-4-----------------------------------4.1 直角坐标系4.1.1直角坐标系4.1.2极坐标系4.1.3球坐标系与柱坐标系4.2 曲线的极坐标方程4.2.1曲线的极坐标方程的意义4.2.2常见曲线的极坐标方程4.3 平面坐标系中几种常见变换4.3.1平面直角坐标系中的平移变换4.3.2平面直角坐标系中的伸缩变换4.4 参数方程4.4.1参数方程的意义4.4.2参数方程与普通方程的互化4.4.3参数方程的应用4.4.4平摆线与圆的渐开线学习总结报告-----------------------------------选修4-5-----------------------------------5.1 不等式的基本性质5.2 含有绝对值的不等式5.2.1含有绝对值的不等式的解法5.2.2含有绝对值的不等式的证明5.3 不等式的证明5.3.1比较法5.3.2综合法和分析法5.3.3反证法5.3.4放缩法5.4 几个著名的不等式5.4.1柯西不等式5.4.2排序不等式5.4.3算术-几何平均值不等式5.5 运用不等式求最大(小)值5.5.1运用算术-几何平均值不等式求最大(小)值5.5.2运用柯西不等式求最大(小)值5.6 运用数学归纳法证明不等式学习总结报告。

苏教版高中数学目录

苏教版高中数学目录

苏教版高中数学目录第一章集合与函数1.1 集合的概念与表示方法1.2 集合的运算1.3 表示函数的方法1.4 一些特殊函数的性质第二章数列与极限2.1 数列的概念与分类2.2 数列的通项公式与递推公式2.3 数列的性质2.4 数列的极限概念与判定方法2.5 无穷级数的概念与判定方法第三章函数的极限与连续3.1 函数的极限概念与性质3.2 函数的连续概念与性质3.3 连续函数的运算3.4 闭区间上连续函数的性质3.5 介值定理与零点定理第四章导数与微分4.1 导数的概念与计算方法4.2 导数的运算法则与中值定理4.3 函数的求导法则4.4 高阶导数与隐函数求导4.5 微分的概念与计算方法第五章定积分5.1 定积分的概念与基本性质5.2 定积分的计算方法5.3 定积分的应用5.4 反常积分第六章微积分应用6.1 几何应用6.2 物理应用6.3 经济学应用6.4 生物学应用6.5 工程学应用第七章常微分方程7.1 基本概念与解法7.2 可降解方程与一阶线性方程7.3 高阶微分方程7.4 变量分离与齐次方程7.5 参数方程与自由振动第八章矩阵与行列式8.1 矩阵的概念与运算8.2 矩阵的性质与逆矩阵的求法8.3 行列式的概念与性质8.4 行列式的计算方法第九章二次型9.1 二次型的概念与分类9.2 二次型的矩阵表示与标准型9.3 正交变换与规范形9.4 实二次型的矩阵分解第十章空间解析几何10.1 点、直线、平面的表示方法10.2 直线与平面的位置关系10.3 球、圆、柱、锥的表示方法10.4 空间曲面的表示方法10.5 空间向量的运算第十一章三角函数11.1 角度与弧度的概念与转换11.2 三角函数的定义与性质11.3 三角函数的基本公式11.4 三角函数的图像与性质11.5 三角函数的应用以上就是苏教版高中数学的目录,该教材内容包括了高一至高三的数学知识,涵盖了数学的各个分支,如集合与函数、数列与极限、函数的极限与连续、导数与微分、定积分、微积分应用、常微分方程、矩阵与行列式、二次型、空间解析几何和三角函数等。

苏教版高一数学必修1全册课件【完整版】

苏教版高一数学必修1全册课件【完整版】
苏教版高一数学必修1全册课件 【完整版】目录
0002页 0081页 0133页 0203页 0232页 0267页
第一章 集合 1.2 子集 全集 补集 2.1 函数的概念和图像 2.3 对数函数 2.5 函数与方程 探究案例 钢琴与指数曲线
第一章 集合
苏教版高一数学必修1全册课件【 完整版】
1.1 集合的含义与表示
苏教版高一数学必修1全册课件【 完整版】
2.1 函数的概念和图像
苏教版高一数学必修1全册课件【 完整版】
2.2 指数函数
苏教版高一数学必修1全册课件【 完整版】
2.3 对数函数
苏教版高一数学必修1全册课件【 完整版】
1.2 子集 全
1.3 交集 并集
苏教版高一数学必修1全册课件【 完整版】

苏教版高中数学教材必修1

苏教版高中数学教材必修1

苏教版高中数学教材必修1
第2章
函数概念与基本初等函数Ⅰ
2.1.3 函数的简单性质
数学理论
如果对于区间I内的任意两个值 如果对于区间 内的任意两个值x1,x2,当 内的任意两个值 x1<x2时,都有 1)>f(x2),那么就说 =f(x)在 都有f(x > ,那么就说y= 在 区间I上是单调减函数 称为 区间 上是单调减函数,I称为 =f(x)的单调减 上是单调减函数, 称为y= 的 区间. 区间. 如果函数y 在区间I上是单调增函数或 如果函数 =f(x)在区间 上是单调增函数或 在区间 单调减函数,那么就说函数 = 在区间 在区间I上具 单调减函数,那么就说函数y=f(x)在区间 上具 有单调性.单调增区间和单调减区间统称为单
调区间. 调区间.
苏教版高中数学教材必修1 第2章 函数概念与基本初等函数Ⅰ
2.1.3 函数的简单性质
例题讲解
例1
画出下列函数图象,并写出单调区间: 画出下列函数图象,并写出单调区间:
(1)y=- 2+2; =-x =- ; (2)y= = (3)y= =
1 x 1 x
(x≠0); ; +1 (x≠0) .
2.1.3 函数的简单性质
根据定义证明函数单调性的步骤: 根据定义证明函数单调性的步骤: ⑴取值;⑵作差变形;⑶定号;⑷判断. 取值; 作差变形; 定号; 判断.
苏教版高中数学教材必修1
第2章
函数概念与基本初等函数Ⅰ
2.1.3 函数的简单性质
课堂训练
练习: 练习: 1.证明f(x)=- x 在定义域上是减函数. .证明 =- 在定义域上是减函数.
2.若函数 若函数f(x)=kx+b在R上为增函数,则( 上为增函数, 若函数 在 上为增函数 A.k≥0,b∈R ∈ C.k≤0,b∈R ∈

苏教版 高中数学必修第一册 子集、全集、补集 课件1

苏教版 高中数学必修第一册  子集、全集、补集 课件1
【方法总结】集合相等的应用方法 根据两个集合相等求集合的待定字母,一般是从集合中元素对应相等来建立方程(或方程组),要注意将对应相等 的情况分类列全,最后还需要将方程(方程组)的解代入原集合检验,对不符合题意的解要舍去.
2.已知集合的包含关系求参数的值(或范围) 例 4 已知集合A={x|-2≤x≤5},B={ (2)若A B,求实数m的取值范围.
(2)要使A⊆C,只需a<3即可.所以a的取值范围为{a|a<3}.
(4)对于集合A,B,C,如果A⫋B,B⫋C,那么___A_⫋_C___.
用韦恩图表示非空集合的基本关系
(1)A⊆B表示为: 或 (2)A⫋B表示为:
(3)A=B表示为:
3.补集 (1)定义:设 A⊆ S,由 S中不属于A 的所有元素组成的集合称为 S 的子集 A 的补集,记为∁ SA(读作“A 在 S 中的补集”). (2)符号表示 ∁ SA={x|x∈S,且 x A} .
(2)把集合 A 在数轴上表示出来(如图), ∵U=R,∴∁UA={x|x<-1,或 x≥2}.
已知全集 U=R,集合 M={x|x<-2 或 x≥2},则∁UM =________. 解析:把集合 M 在数轴上画出来(如图),
由数轴知∁UM={x|-2≤x<2}. 答案:{x|-2≤x<2}
1.由集合相等求参数 例 3 已知集合A={a,a+b,a+2b},B={a,ac,ac2},若A=B,求c的值.
(2)如果A⊆B,并且__A_≠_B____.那么集合A称为集合B的真子集,记为__A_⫋_B____或B
⊋A.读作“A真包含于B”或“B真包含A”.
2.子集、真子集的性质 (1)任意集合A都是它自身的_子__集___,即A⊆A. (2)空集是任意一个集合A的子集,即__∅_⊆_A____. (3)对于集合A,B,C,如果A⊆B,B⊆C,那么__A_⊆__C___.

苏教版高中数学教材目录(附教学进度)

苏教版高中数学教材目录(附教学进度)

苏教版高中数学教材内容平面的基本性质第7 章概率数学 1 (高一下6)空间两条直线的位置关系第1 章集合7.1 随机事件及其概率直线与平面的位置关系(高一上1)7.2 古典概型平面与平面的位置关系1.1 集合的含义及其表示7.3 几何概型1.2 子集、全集、补集第4 章平面解析几何初步7.4 互斥事件及其发生的概率1.3 交集、并集(高二上1)数学 44.1 直线与方程第8 章三角函数第2 章函数概念与基本初等函数(高一上3)直线的斜率(高一上2)8.1 任意角、弧度直线的方程2.1 函数的概念和图象8.2 任意角的三角函数两条直线的平行与垂直函数的概念和图象两条直线的交点8.3 三角函数的图象和性质函数的表示方法平面上两点间的距离函数的简单性质点到直线的距离第9 章平面向量映射的概念4.2 圆与方程(高一上4)2.2 指数函数9.1 向量的概念及表示圆的方程分数指数幂直线与圆的位置关系9.2 向量的线性运算指数函数圆与圆的位置关系9.3 向量的坐标表示2.3 对数函数 4.3 空间直角坐标系9.4 向量的数量积对数空间直角坐标系9.5 向量的应用对数函数空间两点间的距离2.4 幂函数第10 章三角恒等变换2.5 函数与方程数学 3 (高一上5)二次函数与一元二次方程第5 章算法初步10.1 两角和与差的三角函数(高一下4)10.2 二倍角的三角函数用二分法求方程的近似解2.6 函数模型及其应用 5.1 算法的意义10.3 几个三角恒等式5.2 流程图数学2 5.3 基本算法语句数学 5第3 章立体几何初步 5.4 算法案例第11 章解三角形3.1 空间几何体(高一下1)棱柱、棱锥和棱台第6 章统计11.1 正弦定理(高一下5)11.2 余弦定理圆柱、圆锥、圆台和球中心投影和平行投影6.1 抽样方法11.3 正弦定理、余弦定理的应用直观图画法6.2 总体分布的估计空间图形的展开图6.3 总体特征数的估计第12 章数列柱、锥、台、球的体积6.4 线性回归方程(高一下2)3.2 点、线、面之间的位置关系12.1 等差数列112.2 等比数列1.2 独立性检验第1 章导数及其应用12.3 数列的进一步认识1.3 线性回归分析1.1 导数的概念1.4 聚类分析1.2 导数的运算第13 章不等式第2 章推理与证明1.3 导数在研究函数中的应用(高一下3)(高二上5)1.4 导数在实际生活中的应用13.1 不等关系2.1 合情推理与演绎推理1.5 定积分13.2 一元二次不等式2.2 直接证明与间接证明13.3 二元一次不等式组与简单的2.3 公理化思想第2 章推理与证明线性规划问题2.1 合情推理与演绎推理13.4 基本不等式第 3 章数系的扩充与复数的引2.2 直接证明与间接证明入2.3 数学归纳法选修系列 1 (高二上6)2.4 公理化思想1-1 3.1 数系的扩充第1 章常用逻辑用语3.2 复数的四则运算第3 章数系的扩充与复数的引入(高二上2)3.3 复数的几何意义6.1 数系的扩充1.1 命题及其关系3.2 复数的四则运算1.2 简单的逻辑联结词第4 章框图3.3 复数的几何意义1.3 全称量词与存在量词4.1 流程图5.2 结构图2-3第2 章圆锥曲线与方程第1 章计数原理(高二上3)选修系列 2 1.1 两个基本原理2.1 圆锥曲线2-1 1.2 排列2.2 椭圆第1 章常用逻辑用语1.3 组合2.3 双曲线1.1 命题及其关系1.4 计数应用题2.4 抛物线1.2 简单的逻辑连接词1.5 二项式定理2.5 圆锥曲线与方程1.3 全称量词与存在量词第2 章概率第2 章圆锥曲线与方程2.1 随机变量及其概率分布第3 章导数及其应用2.1 圆锥曲线2.2 超几何分布(高二上4)2.2 椭圆2.3 独立性3.1 导数的概念2.3 双曲线2.4 二项分布3.2 导数的运算2.4 抛物线2.5 离散型随机变量的均值与方差3.3 导数在研究函数中的应用2.5 圆锥曲线的统一定义2.6 正态分布3.4 导数在实际生活中的应用2.6 曲线与方程第3 章统计案例第3 章空间向量与立体几何3.1 假设检验1-2 3.1 空间向量及其运算3.2 独立性检验第1 章统计案例3.2 空间向量的应用3.3 线性回归分析1.1 假设检验2-2 4.4 聚类分析。

苏教版高中数学教材目录

苏教版高中数学教材目录

苏教版高中数学教材目录高中数学的学习对于学生的逻辑思维和综合能力的培养起着至关重要的作用。

苏教版高中数学教材以其科学的编排和丰富的内容,为学生提供了系统而全面的数学知识体系。

必修一:集合与函数概念在这一模块中,学生首先接触到集合的概念,包括集合的表示方法、集合间的关系以及集合的运算等。

接着,引入函数的概念,学习函数的定义、函数的表示法以及函数的基本性质,如单调性、奇偶性等。

通过具体的函数实例,如一次函数、二次函数等,加深对函数的理解和应用。

必修二:立体几何初步、平面解析几何初步立体几何初步部分,学生将学习空间几何体的结构特征、表面积和体积的计算。

平面解析几何初步则涵盖了直线与方程、圆与方程等内容,通过建立坐标系,将几何问题转化为代数问题进行求解,培养学生的数形结合思想。

必修三:算法初步、统计、概率算法初步让学生了解算法的概念、程序框图以及基本的算法语句,为后续学习计算机编程打下基础。

统计部分主要包括随机抽样、用样本估计总体、变量间的相关关系等。

概率部分则介绍了随机事件的概率、古典概型、几何概型等基本概率模型。

必修四:三角函数、平面向量、三角恒等变换三角函数是这一模块的重点,学生学习正弦函数、余弦函数、正切函数的图像和性质,以及三角函数的诱导公式、和差角公式等。

平面向量部分包括向量的概念、线性运算、数量积等内容。

三角恒等变换则是对三角函数公式的进一步推导和应用。

必修五:解三角形、数列、不等式解三角形部分,学生运用正弦定理、余弦定理解决三角形中的边和角的问题。

数列章节中,学习等差数列、等比数列的通项公式、前 n项和公式以及数列的递推关系。

不等式主要涉及一元二次不等式、基本不等式等内容,培养学生的不等式求解和应用能力。

选修 1-1:常用逻辑用语、圆锥曲线与方程、导数及其应用常用逻辑用语介绍命题、充分条件、必要条件等概念。

圆锥曲线与方程深入研究椭圆、双曲线、抛物线的标准方程和几何性质。

导数及其应用部分,学生学习导数的概念、导数的运算以及导数在研究函数单调性、极值、最值等方面的应用。

高一数学-苏教版全套

高一数学-苏教版全套

高一数学-苏教版(全套) 一 任意角的三角函数教学目标:(1)理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算.(2)掌握任意角的正弦、余弦、正切的意义,并会利用单位圆中的三角函数线表示正弦、余弦和正切.(3)了解任意角的余切、正割、余割的定义. (4)掌握同角三角函数的基本关系式:1cot tan ,tan cos sin ,1cos sin 22===+ααααααα(5)掌握正弦、余弦的诱导公式.教学重点:正弦、余弦、正切的意义, 同角三角函数的基本关系式. 教学难点:任意角的概念, 诱导公式. 课时分配:约12课时.第一课时 角的概念的推广(1)一.引入:(1)课本第三页引例;(2)自行车轮的转动等实例.二.新课:(一)概念:正角、负角、零角;第?象限的角;终边相同的角. (二)符号:φϕθγβα,,,,,等.(三)关于集合: S={ββ|=α+k ×360º,k ∈Z }第二课时 角的概念的推广(2)一. 复习、作业讲评.二. 新课:(一)课本第6页例3:写出与下列各角终边相同的角的集合S,并把S 中适合不等式 -360º≤β<720º的元素β写出来:(1)60º (2)-21º (3)363º14ˊ(二)习题4.1 .5(1)已知α是锐角,那么2α是 ( ) (A)第一象限角. (B)第二象限角.(C)小于180º的角. (D)不大于直角的角.第三课时 弧度制(1)一. 新课:(一)概念:角度制, 1弧度的角,弧度制.(二)公式:rl=α(三)换算:1.把角度换成弧度.360º=2πrad180º=πrad1º=rad rad 001745.0180≈π2. 把弧度换成角度.2πrad=360ºπrad = 180º 1rad=815730.57180'=≈⎪⎭⎫ ⎝⎛π(四)例题:例1. 把67º18´化成弧度例2. 把rad π53化成度例3.利用弧度制证明扇形面积公式S=lR 21,其中l 是扇形的弧长,R 是圆的半径.例4.计算:(1)4sin π (2)5.1tan第四课时 弧度制(2)一. 复习:上节课所讲的概念、公式. 二. 新课:例题:例5.将下列各角化成0到2π的角加上2kπ(k ∈Z)的形式:(1)π319(2) -315º例6.求图中公路弯道处弧AB 的长l (精确到1m.图中长度单位:m)例7.半径为1的圆上有两点A,B 若AMB 的长=2,求弓形AMB 的面积.第六课时 任意角的三角函数(2)一. 复习:二. 新课:(一)概念:(1)三角函数;αααtan ,cos ,sin 的定义域.(2)诱导公式一:终边相同的角的同一三角函数值相等.(3)αααtan ,cos ,sin 三个三角函数值在各个象限的符号.(二)例题:课本例2(特殊角的三角函数值),例3. 例4.第七课时任意角的三角函数(3)一. 复习:二. 新课:例5.求下列三角函数值:(1) 011480sin ' (2) 49cos π (3) )611tan(π-例6.(1)若632πθπ≤≤-,确定θsin 的范围;(2) 若30º≤θ≤120º,确定tan θ的范围.例7.分别根据下列条件,写出角的取值范围.(1) 23cos <θ; (2)1tan ->θ第八课时 同角三角函数的基本关系式(1)一.复习、引入:三角函数的定义.二.新课:(一)公式:.1cot tan ,tan cos sin ,1cos sin 22===+ααααααα(二)例1.已知54sin =α,并且α是第二象限角,求αααcot ,tan ,cos 的值.例2. 已知178cos -=α,求ααtan ,sin 的值.例3.已知αtan 为非零实数,用αtan 表示ααcos ,sin .第九课时 同角三角函数的基本关系式(2)一. 复习公式,讲评作业.二. 新课:例4.化简 440sin 12-例5.求证xxx x cos sin 1sin 1cos +=-例6.求征ααααααααcot tan cos sin 2cot cos tan sin 22+=⋅+⋅+⋅例7.已知231cos sin -=+θθ (0<θ<π),求sin θ、cos θ三. 练习:课本第27页练习5、6,补充练习(1)化简: 40cos 40sin 21-(2)已知αααααtan 2sin 1sin 1sin 1sin 1-=+---+,试确定等式成立的角α的集合第十课时 正弦、余弦的诱导公式(1)一. 复习引入:(1)任意角的三角函数的定义;(2)公式(一);(3)单位圆中的三角函数线 二. 新课:(1)分析推导公式(二):ααααcos )180cos(sin )180sin(-=+-=+公式(三):ααααcos )cos(sin )sin(=--=-(2)例1.求下列三角函数值:(1) 225cos ; (2)π1011sin .例2.求下列三角函数值:)3sin()1(π-; (2))21240cos('- .例3.化简:)180cos()180sin()360sin()180cos(αααα--⋅--+⋅+第十一课时 正弦、余弦的诱导公式(2)一. 复习引入:公式(一)、(二)、(三)二. 新课:(1).公式(四)ααααcos )180cos(sin )180sin(=-=-公式(五)ααααcos )360cos(sin )360sin(=--=-(2)例4.求下列三角函数值:①)51150cos('- ;②π611sin .例5.求下列三角函数值:① 519cos ;②)317sin(π-.例6.化简:)sin()3sin()cos()cos()2sin(πααπαπαπαπ----+-第十二课时 正弦、余弦的诱导公式(3)一. 复习引入:(一) 求值:(1))840sin(570cos )1260sin(315sin -+-(2))6102sin()63sin()62sin()6sin(ππππππππ++++(二) 证明:απααπαπαπαπsin 1)sin()3sin()cos()cos()2sin(-=----+-二. 新课:例1.已知:3tan =α ,求:)2sin()cos(4)sin(3)cos(2απααπαπ-+-+--的值.例2.已知53sin -=α,且α是第四象限角,求)]5sin()3[cos(tan απαπα+--的值.例3化简:)2cos()2sin(])12(sin[])12(sin[παπαπαπαn n n n -++-+++ (n ∈Z )第十四课时两角和与差的正弦、余弦、正切(1)一.教学目的:1.了解并能记住平面内两点间距离公式;2.理解平面内两点间距离公式的由来;3.渗透和强化转化的数学思想、数形结合的思想。

苏教版高中数学必修1教案5篇

苏教版高中数学必修1教案5篇

苏教版高中数学必修1教案5篇苏教版高中数学必修1教案5篇教案是以系统方法为指导。

教案把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。

下面小编给大家带来关于苏教版高中数学必修1教案,方便大家学习苏教版高中数学必修1教案1教学目标:(1) 了解集合、元素的概念,体会集合中元素的三个特征;(2) 理解元素与集合的属于和不属于关系;(3) 掌握常用数集及其记法;教学重点:掌握集合的基本概念;教学难点:元素与集合的关系;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念--集合(宣布课题),即是一些研究对象的总体。

阅读课本P2-P3内容二、新课教学(一)集合的有关概念1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

2. 一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

3. 思考1:判断以下元素的全体是否组成集合,并说明理由:(1) 大于3小于11的偶数;(2) 我国的小河流;(3) 非负奇数;(4) 方程的解;(5) 某校2023级新生;(6) 血压很高的人;(7) 著名的数学家;(8) 平面直角坐标系内所有第三象限的点(9) 全班成绩好的学生。

对学生的解答予以讨论、点评,进而讲解下面的问题。

4. 关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

苏教版高中数学教材目录

苏教版高中数学教材目录

2.3 离散型随机变量的均值与方差 2.4 正态分布 第三章统计案例 3.1 回归分析的基本思想及其初步应用 3.2 独立性检验的基本思想及其初步应用
必修一 第一章集合 1.1 集合的含义及其表示 1.2 子集、全集、补集 1.3 交集、并集 第二章函数 2.1 函数的概念和图象 2.2 指数函数 2.3 对数函数 2.4 幂函数 2.5 函数与方程 2.6 函数模型及其应用 必修二 第一章立体几何初步 1.1 空间几何体 1.2 点、线、面之间的位置关系 1.3 空间几何体的表面积和体积 第二章平面解析几何初步 2.1 直线与方程 2.2 圆与方程 2.3 空间直角坐标系 必修三 第一章算法初步 1.1 算法的含义 1.2 流程图 1.3 基本算法语句 1.4 算法案例 第二章统计 2.1 抽样方法 2.2 总体分布的估计 2.3 总体特征数的估计 2.4 线性回归方程 第三章概率 3.1 随机事件及其概率 3.2 古典概型 3.3 几何概型 3.4 互斥事件 必修四 第一章三角函数 1.1 任意角、弧度 1.2 任意角的三角函数 1.3 三角函数的图象与性质 第二章平面向量 2.1 向量的概念与表示
第三章数系的扩充与复数的引入 3.1 数系的扩充和复数的概念 3.2 复数代数形式的四则运算 第四章框图 4.1 流程图 4.2 结构图 选修 2-1 第一章常用逻辑用语 1.1 命题及其关系 1.2 充分条件与必要条件 1.3 简单的逻辑联结词 1.4 全称量词与存在量词 第二章圆锥曲线与方程 2.1 曲线与方程 2.2 椭圆 2.3 双曲线 2.4 抛物线 第三章空间向量与立体几何 3.1 空 1.1 变化率与导数 1.2 导数的计算 1.3 导数在研究函数中的应用 1.4 生活中的优化问题举例 1.5 定积分的概念 1.6 微积分的基本定理 1.7 微积分的简单应用 第二章推理与证明 2.1 合情推理与演绎推理 2.2 直接证明与间接证明 2.3 数学归纳法 第三章数系的扩充与复数的引入 3.1 数系的扩充和复数的概念 3.2 复数代数形式的四则运算 选修 2-3 第一章计数原理 1.1 分类加法技术原理与分步乘法计数原理 1.2 排列与组合 1.3 二项式定理 第二章随机变量及其分布 2.1 离散型随机变量及其分布列 2.2 二项分布及其应用

苏教版高中数学目录

苏教版高中数学目录

苏教版高中数学目录篇一:苏教版高中数学教材目录必修一第一章集合1.1集合的含义及其表示1.2子集、全集、补集1.3交集、并集第二章函数2.1函数的概念和图象2.2指数函数2.3对数函数2.4幂函数2.5函数与方程2.6函数模型及其应用必修二第一章立体几何初步1.1空间几何体1.2点、线、面之间的位置关系1.3空间几何体的表面积和体积第二章平面解析几何初步2.1直线与方程2.2圆与方程2.3空间直角坐标系必修三第一章算法初步1.1算法的含义1.2流程图1.3基本算法语句1.4算法案例第二章统计2.1抽样方法2.2总体分布的估计2.3总体特征数的估计2.4线性回归方程第三章概率3.1随机事件及其概率3.2古典概型3.3几何概型3.4互斥事件第一章三角函数1.1任意角、弧度1.2任意角的三角函数1.3三角函数的图象与性质第二章平面向量2.1向量的概念与表示2.2向量的线性运算2.3向量的坐标表示2.4向量的数量积2.5向量的应用第三章三角恒等变换3.1两角和与差的三角函数3.2二倍角的三角函数3.3几个三角恒等式必修五第一章解三角形1.1正弦定理1.2余弦定理1.3正弦定理、余弦定理的应用2.1数列2.2等差数列2.3等比数列第三章3.1不等关系3.2一元二次不等式 3.3二元一次不等式组与简单线性规划3.4《基本不等式》选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生活中的优化问题举例选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分的基本定理1.7微积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算选修2-3第一章计数原理1.1分类加法技术原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用篇二:苏教版高中数学目录数学1第1章集合1.1集合的含义及其表示1.2子集、全集、补集1.3交集、并集第2章函数概念与基本初等函数Ⅰ2.1函数的概念和图象函数的概念和图象函数的表示方法函数的简单性质映射的概念2.2指数函数分数指数幂指数函数2.3对数函数对数对数函数 2.4幂函数2.5函数与方程二次函数与一元二次方程用二分法求方程的近似解 2.6函数模型及其应用数学2第3章立体几何初步 3.1空间几何体棱柱、棱锥和棱台圆柱、圆锥、圆台和球中心投影和平行投影直观图画法空间图形的展开图柱、锥、台、球的体积3.2点、线、面之间的位置关系平面的基本性质空间两条直线(来自: 小龙文档网:苏教版高中数学目录)的位置关系直线与平面的位置关系平面与平面的位置关系第4章平面解析几何初步 4.1直线与方程直线的斜率直线的方程两条直线的平行与垂直两条直线的交点平面上两点间的距离点到直线的距离 4.2圆与方程圆的方程直线与圆的位置关系圆与圆的位置关系 4.3空间直角坐标系空间直角坐标系空间两点间的距离数学3第5章算法初步 5.1算法的意义 5.2流程图5.3基本算法语句 5.4算法案例第6章统计6.1抽样方法6.2总体分布的估计 6.3总体特征数的估计 6.4线性回归方程第7章概率7.1随机事件及其概率 7.2古典概型 7.3几何概型7.4互斥事件及其发生的概率数学4第8章三角函数 8.1任意角、弧度8.2任意角的三角函数8.3三角函数的图象和性质第9章平面向量 9.1向量的概念及表示 9.2向量的线性运算 9.3向量的坐标表示 9.4向量的数量积 9.5向量的应用第10章三角恒等变换 10.1两角和与差的三角函数 10.2二倍角的三角函数 10.3几个三角恒等式数学5第11章解三角形 11.1正弦定理 11.2余弦定理11.3正弦定理、余弦定理的应用第12章数列 12.1等差数列 12.2等比数列12.3数列的进一步认识第13章不等式 13.1不等关系113.2一元二次不等式13.3二元一次不等式组与简单的线性规2.3双曲线 2.4抛物线划问题13.4基本不等式选修系列1 1-1第1章常用逻辑用语 1.1命题及其关系1.2简单的逻辑联结词 1.3全称量词与存在量词第2章圆锥曲线与方程 2.1圆锥曲线 2.2椭圆 2.3双曲线 2.4抛物线2.5圆锥曲线与方程第3章导数及其应用 3.1导数的概念3.2导数的运算3.3导数在研究函数中的应用 3.4导数在实际生活中的应用1-2第1章统计案例 1.1假设检验 1.2独立性检验 1.3线性回归分析 1.4聚类分析第2章推理与证明2.1合情推理与演绎推理 2.2直接证明与间接证明 2.3公理化思想第3章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算 3.3复数的几何意义第4章框图4.1流程图 5.2结构图选修系列2 2-1第1章常用逻辑用语 1.1命题及其关系1.2简单的逻辑连接词 1.3全称量词与存在量词第2章圆锥曲线与方程 2.1圆锥曲线 2.2椭圆2.5圆锥曲线的统一定义 2.6曲线与方程第3章空间向量与立体几何 3.1空间向量及其运算 3.2空间向量的应用 2-2第1章导数及其应用 1.1导数的概念 1.2导数的运算1.3导数在研究函数中的应用 1.4导数在实际生活中的应用1.5定积分第2章推理与证明2.1合情推理与演绎推理 2.2直接证明与间接证明 2.3数学归纳法 2.4公理化思想第3章数系的扩充与复数的引入 6.1数系的扩充3.2复数的四则运算 3.3复数的几何意义 2-3第1章计数原理 1.1两个基本原理 1.2排列 1.3组合1.4计数应用题 1.5二项式定理第2章概率2.1随机变量及其概率分布 2.2超几何分布 2.3独立性2.4二项分布2.5离散型随机变量的均值与方差2.6正态分布第3章统计案例 3.1假设检验 3.2独立性检验 3.3线性回归分析4.4聚类分析2篇三:苏教版高中数学目录(苏教版)高中数学目录高中数学必修教材目录必修一必修二必修三必修四必修五高中数学选修教材目录选修1-1选修1-2选修2-1选修2-2选修。

苏教版(2019)高中数学必修第一册课程目录与教学计划表

苏教版(2019)高中数学必修第一册课程目录与教学计划表

苏教版(2019)高中数学必修第一册课程目录与教学计划表
教材课本目录是一本书的纲领,是教与学的路线图。

不管是做教学计划、实施教学活动,还是做学习计划、复习安排、工作总结,都离不开目录。

目录是一本书的知识框架,要做到心中有书、胸有成竹,就从目录开始吧!
课程目录教学计划、进度、课时安排
必修第一册
第1章集合
1.1 集合的概念与表示
1.2 子集、全集、补集
1.3 交集、并集
本章综合与测试
第2章常用逻辑用语
2.1 命题、定理、定义
2.2 充分条件、必要条件、冲要条件
2.3 全称量词命题与存在量词命题
本章综合与测试
第3章不等式
3.1 不等式的基本性质
3.2 基本不等式
3.3 从函数观点看一元二次方程和一元二次
不等式
本章综合与测试
第4章指数与对数
4.1 指数
4.2 对数
本章综合与测试
第5章函数概念与性质
5.1 函数的概念和图象
5.2 函数的表示方法
5.3 函数的单调性
5.4 函数的奇偶性
本章综合与测试
第6章幂函数、指数函数和对数函数6.1 幂函数
6.2 指数函数
6.3 对数函数
本章综合与测试
第7章三角函数
7.1 角与弧度
7.2 三角函数概念
7.3 三角函数的图象和性质
7.4 三角函数应用
本章综合与测试
第8章函数应用
8.1 二分法与求方程近似解
8.2 函数与数学模型
本章综合与测试
本册综合。

苏教版高中数学必修1全册课时作业及答案

苏教版高中数学必修1全册课时作业及答案

苏教版高中数学必修1 全册课时作业目录1.1第1课时集合的含义1.1第2课时集合的表示1.2子集、全集、补集1.3交集、并集2.1.1函数的概念和图象2.1.2习题课2.1.2函数的表示方法2.1.3习题课2.1.3第1课时函数的单调性2.1.3第2课时函数的最大(小)值2.1.3第3课时奇偶性的概念2.1.3第4课时奇偶性的应用2.1.4映射的概念2.2.1函数的单调性(一)2.2.1函数的单调性(二)2.2.1分数指数幂2.2.2 习题课2.2.2习题课2.2.2函数的奇偶性2.2.2指数函数(一)2.2.2指数函数(二)2.2习题课2.3.1第1课时对数的概念2.3.1第2课时对数运算2.3.2习题课2.3.2对数函数(一)2.3.2对数函数(二)2.3映射的概念2.4幂函数2.5.1函数的零点2.5.2用二分法求方程的近似解2.5习题课2.6习题课2.6函数模型及其应用3.1.1分数指数幂3.1.2指数函数(一)3.1.2指数函数(二)3.1习题课3.2.1第1课时对数(一)3.2.1第2课时对数(二)3.2.2对数函数(一)3.2.2对数函数(二)3.2习题课3.3幂函数3.4.1习题课3.4.1第1课时函数的零点3.4.1第2课时用二分法求方程的近似解3.4.2习题课3.4.2函数模型及其应用第1章集合§1.1集合的含义及其表示第1课时集合的含义课时目标 1.通过实例了解集合的含义,并掌握集合中元素的三个特性.2.体会元素与集合间的“从属关系”.3.记住常用数集的表示符号并会应用.1.一般地,一定范围内某些确定的、不同的对象的全体构成一个________.集合中的每一个对象称为该集合的________,简称______.2.集合通常用________________表示,用____________________表示集合中的元素.3.如果a是集合A的元素,就说a________集合A,记作a____A,读作“a______A”,如果a不是集合A的元素,就说a__________A,记作a____A,读作“a________A”.4.集合中的元素具有________、________、________三种性质.5.实数集、有理数集、整数集、自然数集、正整数集分别用字母____、____、____、____、____或______来表示.一、填空题1.下列语句能确定是一个集合的是________.(填序号)①著名的科学家;②留长发的女生;③2010年广州亚运会比赛项目;④视力差的男生.2.集合A只含有元素a,则下列各式正确的是________.(填序号)①0∈A;②a∉A;③a∈A;④a=A.3.已知M中有三个元素可以作为某一个三角形的边长,则此三角形一定不是________.(填序号)①直角三角形;②锐角三角形;③钝角三角形;④等腰三角形.4.由a2,2-a,4组成一个集合A,A中含有3个元素,则实数a的取值可以是________.(填序号)①1;②-2;③6;④2.5.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m的值为________.6.由实数x、-x、|x|、x2及-3x3所组成的集合,最多含有________个元素.7.由下列对象组成的集体属于集合的是________.(填序号)①不超过π的正整数;②本班中成绩好的同学;③高一数学课本中所有的简单题;④平方后等于自身的数.8.集合A中含有三个元素0,1,x,且x2∈A,则实数x的值为________.9.用符号“∈”或“∉”填空-2______R,-3______Q,-1_______N,π______Z.二、解答题10.判断下列说法是否正确?并说明理由.(1)参加2010年广州亚运会的所有国家构成一个集合; (2)未来世界的高科技产品构成一个集合;(3)1,0.5,32,12组成的集合含有四个元素;(4)高一(三)班个子高的同学构成一个集合.11.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求a .能力提升 12.设P 、Q 为两个非空实数集合,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P +Q 中元素的个数是多少?13.设A为实数集,且满足条件:若a∈A,则11-a∈A (a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.1.考查对象能否构成一个集合,就是要看是否有一个确定的特征(或标准),能确定一个个体是否属于这个总体,如果有,能构成集合,如果没有,就不能构成集合.2.集合中元素的三个性质(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于不属于这个集合是确定的.要么是该集合中的元素要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b,c与由元素b,a,c组成的集合是相等的集合.这个性质通常用来判断两个集合的关系.第1章集合§1.1集合的含义及其表示第1课时集合的含义知识梳理1.集合元素元 2.大写拉丁字母A,B,C…小写拉丁字母a,b,c,… 3.属于∈属于不属于∉不属于4.确定性互异性无序性 5.R Q Z N N*N+作业设计1.③解析①、②、④都因无法确定其构成集合的标准而不能构成集合.2.③解析由题意知A中只有一个元素a,∴0∉A,a∈A,元素a与集合A的关系不应用“=”.3.④解析集合M的三个元素是互不相同的,所以作为某一个三角形的边长,三边是互不相等的.4.③解析因A中含有3个元素,即a2,2-a,4互不相等,将各项中的数值代入验证知填③. 5.3解析由2∈A可知:若m=2,则m2-3m+2=0,这与m2-3m+2≠0相矛盾;若m2-3m+2=2,则m=0或m=3,当m=0时,与m≠0相矛盾,当m=3时,此时集合A={0,3,2},符合题意.6.2解析 因为|x |=±x ,x 2=|x |,-3x 3=-x ,所以不论x 取何值,最多只能写成两种形式:x 、-x ,故集合中最多含有2个元素. 7.①④解析 ①④中的标准明确,②③中的标准不明确.故答案为①④. 8.-1解析 当x =0,1,-1时,都有x 2∈A ,但考虑到集合元素的互异性,x ≠0,x ≠1,故答案为-1.9.∈ ∈ ∉ ∉10.解 (1)正确.因为参加2010年广州亚运会的国家是确定的,明确的. (2)不正确.因为高科技产品的标准不确定.(3)不正确.对一个集合,它的元素必须是互异的,由于0.5=12,在这个集合中只能作为一元素,故这个集合含有三个元素. (4)不正确,因为个子高没有明确的标准. 11.解 由-3∈A ,可得-3=a -2或-3=2a 2+5a ,∴a =-1或a =-32.则当a =-1时,a -2=-3,2a 2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去.当a =-32时,a -2=-72,2a 2+5a =-3,∴a =-32.12.解 ∵当a =0时,b 依次取1,2,6,得a +b 的值分别为1,2,6; 当a =2时,b 依次取1,2,6,得a +b 的值分别为3,4,8; 当a =5时,b 依次取1,2,6,得a +b 的值分别为6,7,11.由集合元素的互异性知P +Q 中元素为1,2,3,4,6,7,8,11共8个.13.证明 (1)若a ∈A ,则11-a∈A .又∵2∈A ,∴11-2=-1∈A .∵-1∈A ,∴11--1=12∈A .∵12∈A ,∴11-12=2∈A . ∴A 中另外两个元素为-1,12.(2)若A 为单元素集,则a =11-a,即a 2-a +1=0,方程无解.∴a ≠11-a,∴A 不可能为单元素集.第2课时 集合的表示课时目标 1.掌握集合的两种表示方法(列举法、描述法).2.能够运用集合的两种表示方法表示一些简单集合.1.列举法将集合的元素____________出来,并用花括号“{ }”括起来表示集合的方法叫做列举法.2.两个集合相等如果两个集合所含的元素____________,那么称这两个集合相等. 3.描述法将集合的所有元素都具有的______(满足的______)表示出来,写成{x |p (x )}的形式. 4.集合的分类(1)有限集:含有________元素的集合称为有限集. (2)无限集:含有________元素的集合称为无限集. (3)空集:不含任何元素的集合称为空集,记作____.一、填空题1.集合{x ∈N +|x -3<2}用列举法可表示为___________________________________. 2.集合{(x ,y )|y =2x -1}表示________.(填序号) ①方程y =2x -1; ②点(x ,y );③平面直角坐标系中的所有点组成的集合; ④函数y =2x -1图象上的所有点组成的集合.3.将集合⎩⎪⎨⎪⎧x ,y |⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x +y =52x -y =1表示成列举法为______________.4.用列举法表示集合{x |x 2-2x +1=0}为________.5.已知集合A ={x ∈N |-3≤x ≤3},则有________.(填序号) ①-1∈A ;②0∈A ;③3∈A ;④2∈A .6.方程组⎩⎪⎨⎪⎧x +y =3x -y =-1的解集不可表示为________.①{(x ,y )|⎩⎪⎨⎪⎧x +y =3x -y =-1};②{(x ,y )|⎩⎪⎨⎪⎧x =1y =2};③{1,2};④{(1,2)}.7.用列举法表示集合A ={x |x ∈Z ,86-x∈N }=______________________________.8.下列各组集合中,满足P =Q 的为________.(填序号) ①P ={(1,2)},Q ={(2,1)}; ②P ={1,2,3},Q ={3,1,2};③P ={(x ,y )|y =x -1,x ∈R },Q ={y |y =x -1,x ∈R }.9.下列各组中的两个集合M 和N ,表示同一集合的是________.(填序号) ①M ={π},N ={3.141 59}; ②M ={2,3},N ={(2,3)};③M ={x |-1<x ≤1,x ∈N },N ={1};④M ={1,3,π},N ={π,1,|-3|}. 二、解答题10.用适当的方法表示下列集合①方程x (x 2+2x +1)=0的解集;②在自然数集内,小于1 000的奇数构成的集合; ③不等式x -2>6的解的集合;④大于0.5且不大于6的自然数的全体构成的集合.11.已知集合A ={x |y =x 2+3},B ={y |y =x 2+3},C ={(x ,y )|y =x 2+3},它们三个集合相等吗?试说明理由.能力提升12.下列集合中,不同于另外三个集合的是________.①{x |x =1};②{y |(y -1)2=0};③{x =1};④{1}.13.已知集合M ={x |x =k 2+14,k ∈Z },N ={x |x =k 4+12,k ∈Z },若x 0∈M ,则x 0与N 的关系是____________________________________________________.1.在用列举法表示集合时应注意:①元素间用分隔号“,”;②元素不重复;③元素无顺序;④列举法可表示有限集,也可以表示无限集,若元素个数比较少用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示. 2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合、还是其他形式?(2)元素具有怎样的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.第2课时 集合的表示知识梳理1.一一列举 2.完全相同 3.性质 条件 4.(1)有限个 (2)无限个 (3)∅ 作业设计 1.{1,2,3,4}解析 {x ∈N +|x -3<2}={x ∈N +|x <5}={1,2,3,4}. 2.④解析 集合{(x ,y )|y =2x -1}的代表元素是(x ,y ),x ,y 满足的关系式为y =2x -1,因此集合表示的是满足关系式y =2x -1的点组成的集合. 3.{(2,3)}解析 解方程组⎩⎪⎨⎪⎧x +y =5,2x -y =1.得⎩⎪⎨⎪⎧x =2,y =3.所以答案为{(2,3)}.4.{1}解析 方程x 2-2x +1=0可化简为(x -1)2=0, ∴x 1=x 2=1,故方程x 2-2x +1=0的解集为{1}. 5.② 6.③解析 方程组的集合中最多含有一个元素,且元素是一对有序实数对,故③不符合. 7.{5,4,2,-2}解析 ∵x ∈Z ,86-x∈N ,∴6-x =1,2,4,8.此时x =5,4,2,-2,即A ={5,4,2,-2}. 8.②解析 ①中P 、Q 表示的是不同的两点坐标;②中P =Q ;③中P 表示的是点集,Q 表示的是数集. 9.④解析 只有④中M 和N 的元素相等,故答案为④.10.解 ①∵方程x (x 2+2x +1)=0的解为0和-1, ∴解集为{0,-1};②{x |x =2n +1,且x <1 000,n ∈N }; ③{x |x >8};④{1,2,3,4,5,6}.11.解 因为三个集合中代表的元素性质互不相同,所以它们是互不相同的集合.理由如下:集合A 中代表的元素是x ,满足条件y =x 2+3中的x ∈R ,所以A =R ; 集合B 中代表的元素是y ,满足条件y =x 2+3中y 的取值范围是y ≥3, 所以B ={y |y ≥3}.集合C 中代表的元素是(x ,y ),这是个点集,这些点在抛物线y =x 2+3上,所以C ={P |P是抛物线y =x 2+3上的点}. 12.③解析 由集合的含义知{x |x =1}={y |(y -1)2=0} ={1},而集合{x =1}表示由方程x =1组成的集合. 13.x 0∈N解析 M ={x |x =2k +14,k ∈Z },N ={x |x =k +24,k ∈Z },∵2k +1(k ∈Z )是一个奇数,k +2(k ∈Z )是一个整数, ∴x 0∈M 时,一定有x 0∈N .§1.2子集、全集、补集课时目标 1.理解子集、真子集的意义,会判断两集合的关系.2.理解全集与补集的意义,能正确运用补集的符号.3.会求集合的补集,并能运用Venn图及补集知识解决有关问题.1.子集如果集合A的__________元素都是集合B的元素(若a∈A则a∈B),那么集合A称为集合B的________,记作______或______.任何一个集合是它本身的______,即A⊆A. 2.如果A⊆B,并且A≠B,那么集合A称为集合B的________,记为______或(______).3.______是任何集合的子集,______是任何非空集合的真子集.4.补集设A⊆S,由S中不属于A的所有元素组成的集合称为S的子集A的______,记为______(读作“A在S中的补集”),即∁S A={x|x∈S,且x∉A}.5.全集如果集合S包含我们所要研究的各个集合,这时S可以看做一个______,全集通常记作U.集合A相对于全集U的补集用Venn图可表示为一、填空题1.集合P={x|y=x+1},集合Q={y|y=x-1},则P与Q的关系是________.2.满足条件{1,2}M⊆{1,2,3,4,5}的集合M的个数是________.3.已知集合U={1,3,5,7,9},A={1,5,7},则∁U A=________.4.已知全集U=R,集合M={x|x2-4≤0},则∁U M=________.5.下列正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的Venn图是_____________________________.6.集合M={x|x=3k-2,k∈Z},P={y|y=3n+1,n∈Z},S={z|z=6m+1,m∈Z}之间的关系是________.7.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________. 8.设全集U={x|x<9且x∈N},A={2,4,6},B={0,1,2,3,4,5,6},则∁U A=________,∁U B=______,∁B A=________.9.已知全集U,A B,则∁U A与∁U B的关系是____________________.二、解答题10.设全集U={x∈N*|x<8},A={1,3,5,7},B={2,4,5}.(1)求∁U(A∪B),∁U(A∩B);(2)求(∁U A)∪(∁U B),(∁U A)∩(∁U B);(3)由上面的练习,你能得出什么结论?请结事Venn图进行分析.11.已知集合A={1,3,x},B={1,x2},设集合U=A,求∁U B.能力提升12.设全集是数集U={2,3,a2+2a-3},已知A={b,2},∁U A={5},求实数a,b的值.13.已知集合A={x|1<ax<2},B={x|-1<x<1},求满足A⊆B的实数a的取值范围.1.子集概念的多角度理解(1)“A是B的子集”的含义是:集合A中的任何一个元素都是集合B的元素,即由任意x∈A能推出x∈B.(2)不能把“A⊆B”理解成“A是B中部分元素组成的集合”,因为当A=∅时,A⊆B,但A中不含任何元素;又当A=B时,也有A⊆B,但A中含有B中的所有元素,这两种情况都有A⊆B.2.∁U A的数学意义包括两个方面:首先必须具备A⊆U;其次是定义∁U A={x|x∈U,且x∉A},补集是集合间的运算关系.3.补集思想做题时“正难则反”策略运用的是补集思想,即已知全集U,求子集A,若直接求A困难,可先求∁U A,再由∁U(∁U A)=A求A.§1.2子集、全集、补集知识梳理1.任意一个子集A⊆B B⊇A子集 2.真子集A B B A3.空集空集 4.补集∁S A 5.全集作业设计1.P Q解析∵P={x|y=x+1}={x|x≥-1},Q={y|y≥0},∴P Q.2.7解析M中含三个元素的个数为3,M中含四个元素的个数也是3,M中含5个元素的个数只有1个,因此符合题意的共7个.3.{3,9}解析在集合U中,去掉1,5,7,剩下的元素构成∁U A.4.{x|x<-2或x>2}解析∵M={x|-2≤x≤2},∴∁U M={x|x<-2或x>2}.5.②解析由N={-1,0},知N M.6.S P=M解析运用整数的性质方便求解.集合M、P表示成被3整除余1的整数集,集合S表示成被6整除余1的整数集.7.-3解析∵∁U A={1,2},∴A={0,3},故m=-3.8.{0,1,3,5,7,8} {7,8} {0,1,3,5}解析由题意得U={0,1,2,3,4,5,6,7,8},用Venn图表示出U,A,B,易得∁U A={0,1,3,5,7,8},∁U B={7,8},∁B A={0,1,3,5}.9.∁U B∁U A解析画Venn图,观察可知∁U B∁U A.10.解 (1)∵U ={x ∈N *|x <8}={1,2,3,4,5,6,7},A ∪B ={1,2,3,4,5,7},A ∩B ={5},∴∁U (A ∪B )={6},∁U (A ∩B )={1,2,3,4,67}.(2)∵∁U A ={2,4,6},∁U B ={1,3,6,7},∴(∁U A )∪(∁U B )={1,2,3,4,6,7},(∁U A )∩(∁U B )={6}.(3)∁U (A ∪B )=(∁U A )∩(∁U B )(如左下图);∁U (A ∩B )=(∁U A )∪(∁U B )(如右下图).11.解 因为B ⊆A ,因而x 2=3或x 2=x .①若x 2=3,则x =± 3.当x =3时,A ={1,3,3},B ={1,3},此时∁U B ={3};当x =-3时,A ={1,3,-3},B ={1,3},U =A ={1,3,-3},此时∁U B ={-3}.②若x 2=x ,则x =0或x =1. 当x =1时,A 中元素x 与1相同,B 中元素x 2与1也相同,不符合元素的互异性,故x ≠1; 当x =0时,A ={1,3,0},B ={1,0},U =A ={1,3,0},从而∁U B ={3}. 综上所述,∁U B ={3}或{-3}或{3}. 12.解 ∵∁U A ={5},∴5∈U 且5∉A .又b ∈A ,∴b ∈U ,由此得⎩⎪⎨⎪⎧a 2+2a -3=5,b =3.解得⎩⎪⎨⎪⎧a =2,b =3或⎩⎪⎨⎪⎧a =-4,b =3经检验都符合题意.13.解 (1)当a =0时,A =∅,满足A ⊆B .(2)当a >0时,A ={x |1a <x <2a}.又∵B ={x |-1<x <1},A ⊆B ,∴⎩⎪⎨⎪⎧1a ≥-1,2a ≤1,∴a ≥2.(3)当a <0时,A ={x |2a <x <1a}.∵A ⊆B ,∴⎩⎪⎨⎪⎧2a ≥-1,1a ≤1,∴a ≤-2.综上所述,a =0或a ≥2或a ≤-2.§1.3交集、并集课时目标 1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.2.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.1.交集(1)定义:一般地,由____________________元素构成的集合,称为集合A与B的交集,记作________.(2)交集的符号语言表示为A∩B=__________.(3)交集的图形语言表示为下图中的阴影部分:(4)性质:A∩B=______,A∩A=____,A∩∅=____,A∩B=A⇔______.2.并集(1)定义:一般地,________________________的元素构成的集合,称为集合A与B的并集,记作______.(2)并集的符号语言表示为A∪B=______________.(3)并集的图形语言(即Venn图)表示为图中的阴影部分:(4)性质:A∪B=______,A∪A=____,A∪∅=____,A∪B=A⇔______,A____A∪B,A∩B____A∪B.一、填空题1.若集合A={0,1,2,3},B={1,2,4},则集合A∪B=________.2.集合A={x|-1≤x≤2},B={x|x<1},则A∩B=________.3.若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员},集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是________.①A⊆B;②B⊆C;③A∩B=C;④B∪C=A.4.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N=________. 5.设集合A={5,2a},集合B={a,b},若A∩B={2},则a+b等于________.6.集合M={1,2,3,4,5},集合N={1,3,5},则下列关系正确的是________.①N∈M;②M∪N=M;③M∩N=M;④M>N.7.设集合A={-3,0,1},B={t2-t+1}.若A∪B=A,则t=________.8.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________. 9.设集合A={x|-1≤x≤2},B={x|-1<x≤4},C={x|-3<x<2}且集合A∩(B∪C)={x|a≤x≤b},则a=______,b=______.二、解答题10.已知方程x2+px+q=0的两个不相等实根分别为α,β,集合A={α,β},B={2,4,5,6},C={1,2,3,4},A∩C=A,A∩B=∅.求p,q的值.11.设集合A={-2},B={x|ax+1=0,a∈R},若A∩B=B,求a的值.能力提升12.定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为________.13.设U={1,2,3},M,N是U的子集,若M∩N={1,3},则称(M,N)为一个“理想配集”,求符合此条件的“理想配集”的个数(规定(M,N)与(N,M)不同).1.对并集、交集概念全方面的感悟(1)对于并集,要注意其中“或”的意义,“或”与通常所说的“非此即彼”有原则性的区别,它们是“相容”的.“x∈A,或x∈B”这一条件,包括下列三种情况:x∈A但x∉B;x∈B但x∉A;x∈A且x∈B.因此,A∪B是由所有至少属于A、B两者之一的元素组成的集合.(2)A∩B中的元素是“所有”属于集合A且属于集合B的元素,而不是部分,特别地,当集合A和集合B没有公共元素时,不能说A与B没有交集,而是A∩B=∅.2.集合的交、并运算中的注意事项(1)对于元素个数有限的集合,可直接根据集合的“交”、“并”定义求解,但要注意集合元素的互异性.(2)对于元素个数无限的集合,进行交、并运算时,可借助数轴,利用数轴分析法求解,但要注意端点值取到与否.拓展交集与并集的运算性质,除了教材中介绍的以外,还有A⊆B⇔A∪B=B,A⊆B⇔A ∩B =A .这种转化在做题时体现了化归与转化的思想方法,十分有效.§1.3 交集、并集知识梳理 1.(1)所有属于集合A 且属于集合B 的 A ∩B (2){x |x ∈A ,且x ∈B } (4)B ∩A A ∅ A ⊆B 2.(1)由所有属于集合A 或属于集合B A ∪B (2){x |x ∈A ,或x ∈B } (4)B ∪A A A B ⊆A ⊆ ⊆ 作业设计1.{0,1,2,3,4} 2.{x |-1≤x <1}解析 由交集定义得{x |-1≤x ≤2}∩{x |x <1}={x |-1≤x <1}. 3.④解析 参加北京奥运会比赛的男运动员与参加北京奥运会比赛的女运动员构成了参加北京奥运会比赛的所有运动员,因此A =B ∪C . 4.{(3,-1)}解析 M 、N 中的元素是平面上的点,M ∩N 是集合,并且其中元素也是点,解⎩⎪⎨⎪⎧x +y =2,x -y =4,得⎩⎪⎨⎪⎧x =3,y =-1.5.3解析 依题意,由A ∩B ={2}知2a =2, 所以,a =1,b =2,a +b =3. 6.②解析 ∵N M ,∴M ∪N =M . 7.0或1解析 由A ∪B =A 知B ⊆A , ∴t 2-t +1=-3①或t 2-t +1=0②或t 2-t +1=1③①无解;②无解;③t =0或t =1. 8.1解析 ∵3∈B ,由于a 2+4≥4,∴a +2=3,即a =1. 9.-1 2解析 ∵B ∪C ={x |-3<x ≤4},∴A (B ∪C ), ∴A ∩(B ∪C )=A ,由题意{x |a ≤x ≤b }={x |-1≤x ≤2}, ∴a =-1,b =2.10.解 由A ∩C =A ,A ∩B =∅,可得:A ={1,3},即方程x 2+px +q =0的两个实根为1,3.∴⎩⎪⎨⎪⎧1+3=-p 1×3=q ,∴⎩⎪⎨⎪⎧p =-4q =3.11.解 ∵A ∩B =B ,∴B ⊆A .∵A ={-2}≠∅,∴B =∅或B ≠∅.当B =∅时,方程ax +1=0无解,此时a =0.当B ≠∅时,此时a ≠0,则B ={-1a},∴-1a ∈A ,即有-1a =-2,得a =12.综上,得a =0或a =12.12.6解析 x 的取值为1,2,y 的取值为0,2,∵z =xy ,∴z 的取值为0,2,4,所以2+4=6. 13.解 符合条件的理想配集有 ①M ={1,3},N ={1,3}. ②M ={1,3},N ={1,2,3}. ③M ={1,2,3},N ={1,3}. 共3个.第2章 函数 §2.1 函数的概念 2.1.1 函数的概念和图象课时目标 1.理解函数的概念,明确函数的三要素.2.能正确使用区间表示数集,表示简单函数的定义域、值域.3.会求一些简单函数的定义域、值域.1.一般地,设A ,B 是两个非空的数集,如果按某种对应法则f ,对集合A 中的每一个元素x ,在集合B 中都有惟一的元素y 和它对应,那么这样的对应叫做从A 到B 的一个________,通常记为y =f(x),x ∈A.其中,所有的输入值x 组成的集合A 叫做函数y =f(x)的________. 2.若A 是函数y =f(x)的定义域,则对于A 中的每一个x ,都有一个输出值y 与之对应.我们将所有输出值y 组成的集合称为函数的________. 3.函数的三要素是指函数的定义域、值域、对应法则.一、填空题1.对于函数y =f(x),以下说法正确的有________个. ①y 是x 的函数;②对于不同的x ,y 的值也不同;③f(a)表示当x =a 时函数f(x)的值,是一个常量; ④f(x)一定可以用一个具体的式子表示出来.2.设集合M ={x|0≤x≤2},N ={y|0≤y≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的有________.3.下列各组函数中,表示同一个函数的是________.①y =x -1和y =x 2-1x +1;②y =x 0和y =1;③f(x)=x 2和g(x)=(x +1)2;④f(x)=x 2x 和g(x)=xx2. 4.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为y =2x 2-1,值域为{1,7}的“孪生函数”共有________个. 5.函数y =1-x +x 的定义域为________. 6.函数y =x +1的值域为________.7.已知两个函数f(x)和g(x)的定义域和值域都是{1,2,3},其定义如下表:x 1 2 3 f(x) 2 3 1x 1 2 3 g(x) 1 3 2x 1 2 3 g[f(x)]填写后面表格,其三个数依次为:________.8.如果函数f(x)满足:对任意实数a ,b 都有f(a +b)=f(a)f(b),且f(1)=1,则f 2f 1+f 3f 2+f 4f 3+f 5f 4+…+f 2 011f 2 010=________. 9.已知函数f(x)=2x -3,x ∈{x ∈N |1≤x ≤5},则函数f (x )的值域为________.10.若函数f (x )的定义域是[0,1],则函数f (2x )+f (x +23)的定义域为________.二、解答题11.已知函数f (1-x1+x)=x ,求f (2)的值.能力提升12.如图,该曲线表示一人骑自行车离家的距离与时间的关系.骑车者9时离开家,15时回家.根据这个曲线图,请你回答下列问题:(1)最初到达离家最远的地方是什么时间?离家多远? (2)何时开始第一次休息?休息多长时间? (3)第一次休息时,离家多远?(4)11:00到12:00他骑了多少千米?(5)他在9:00~10:00和10:00~10:30的平均速度分别是多少? (6)他在哪段时间里停止前进并休息用午餐?13.如图,某灌溉渠的横断面是等腰梯形,底宽为2 m,渠深为1.8 m,斜坡的倾斜角是45°.(临界状态不考虑)(1)试将横断面中水的面积A(m2)表示成水深h(m)的函数;(2)确定函数的定义域和值域;(3)画出函数的图象.1.函数的判定判定一个对应法则是否为函数,关键是看对于数集A中的任一个值,按照对应法则所对应数集B中的值是否唯一确定,如果唯一确定,就是一个函数,否则就不是一个函数.2.由函数式求函数值,及由函数值求x,只要认清楚对应法则,然后对号入座就可以解决问题.3.求函数定义域的原则:①当f(x)以表格形式给出时,其定义域指表格中的x的集合;②当f(x)以图象形式给出时,由图象范围决定;③当f(x)以解析式给出时,其定义域由使解析式有意义的x的集合构成;④在实际问题中,函数的定义域由实际问题的意义确定.第2章函数概念与基本初等函数Ⅰ§2.1函数的概念和图象2.1.1 函数的概念和图象知识梳理1.函数定义域 2.值域作业设计1.2解析①、③正确;②不对,如f(x)=x2,当x=±1时y=1;④不对,f(x)不一定可以用一个具体的式子表示出来,如南极上空臭氧空洞的面积随时间的变化情况就不能用一个具体的式子来表示. 2.②③解析 ①的定义域不是集合M ;②能;③能;④与函数的定义矛盾. 3.④解析 ①中的函数定义域不同;②中y =x 0的x 不能取0;③中两函数的对应法则不同. 4.9解析 由2x 2-1=1,2x 2-1=7得x 的值为1,-1,2,-2,定义域为两个元素的集合有4个,定义域为3个元素的集合有4个,定义域为4个元素的集合有1个,因此共有9个“孪生函数”. 5.{x|0≤x≤1}解析 由题意可知⎩⎪⎨⎪⎧1-x≥0,x≥0,解得0≤x≤1.6.[0,+∞) 7.3 2 1解析 g[f(1)]=g(2)=3,g[f(2)]=g(3)=2,g[f(3)]=g(1)=1. 8.2 010解析 由f(a +b)=f(a)f(b),令b =1,∵f(1)=1,∴f(a+1)=f(a),即f a +1f a=1,由a 是任意实数,所以当a 取1,2,3,…,2 010时,得f 2f 1=f 3f 2=…=f 2 011f 2 010=1.故答案为2 010.9.{-1,1,3,5,7}解析 ∵x=1,2,3,4,5,∴f(x)=2x -3=-1,1,3,5,7.10.[0,13]解析 由⎩⎪⎨⎪⎧0≤2x≤1,0≤x+23≤1,得⎩⎪⎨⎪⎧0≤x≤12,-23≤x≤13,即x∈[0,13].11.解 由1-x 1+x =2,解得x =-13,所以f(2)=-13.12.解 (1)最初到达离家最远的地方的时间是12时,离家30千米. (2)10:30开始第一次休息,休息了半小时. (3)第一次休息时,离家17千米. (4)11:00至12:00他骑了13千米.(5)9:00~10:00的平均速度是10千米/时;10:00~10:30的平均速度是14千米/时.(6)从12时到13时停止前进,并休息用午餐较为符合实际情形.13.解 (1)由已知,横断面为等腰梯形,下底为2 m ,上底为(2+2h)m ,高为h m ,∴水的面积A =[2+2+2h ]h 2=h 2+2h(m 2).(2)定义域为{h|0<h<1.8}.值域由二次函数A=h2+2h(0<h<1.8)求得.由函数A=h2+2h=(h+1)2-1的图象可知,在区间(0,1.8)上函数值随自变量的增大而增大,∴0<A<6.84.故值域为{A|0<A<6.84}.(3)函数图象如下确定.由于A=(h+1)2-1,对称轴为直线h=-1,顶点坐标为(-1,-1),且图象过(0,0)和(-2,0)两点,又考虑到0<h<1.8,∴A=h2+2h的图象仅是抛物线的一部分,如下图所示.2.1.2 函数的表示方法课时目标 1.掌握函数的三种表示方法——解析法、图象法、列表法.2.在实际情境中,会根据不同的需要选择恰当方法表示函数.1.函数的三种表示法(1)列表法:用列表来表示两个变量之间函数关系的方法. (2)解析法:用等式来表示两个变量之间函数关系的方法. (3)图象法:用图象表示两个变量之间函数关系的方法. 2.分段函数在定义域内不同部分上,有不同的解析表达式,像这样的函数通常叫做分段函数.一、填空题1.一个面积为100 cm 2的等腰梯形,上底长为x cm ,下底长为上底长的3倍,则把它的高y 表示成x 的函数为________.2.一水池有2个进水口,1个出水口,进出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则正确论断的个数是________.3.如果f (1x )=x1-x,则当x ≠0时,f (x )=________.4.已知f (x )=2x +3,g (x +2)=f (x ),则g (x )=__________________________________. 5.已知f (x )=⎩⎪⎨⎪⎧ x -5 x ≥6f x +2x <6,则f (3)=_________________________________. 6.已知f (x )=⎩⎪⎨⎪⎧x -3 x ≥9f [f x +4] x <9,则f (7)=________________________________.7.一个弹簧不挂物体时长12 cm ,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例.如果挂上3 kg 物体后弹簧总长是13.5 cm ,则弹簧总长y (cm)与所挂物体质量x (kg)之间的函数关系式为________________________________.8.已知函数y =f (x )满足f (x )=2f (1x)+x ,则f (x )的解析式为____________.9.已知f (x )是一次函数,若f (f (x ))=4x +8,则f (x )的解析式为________. 二、解答题 10.已知二次函数f (x )满足f (0)=f (4),且f (x )=0的两根平方和为10,图象过(0,3)点,求f (x )的解析式.11.画出函数f (x )=-x 2+2x +3的图象,并根据图象回答下列问题: (1)比较f (0)、f (1)、f (3)的大小;(2)若x 1<x 2<1,比较f (x 1)与f (x 2)的大小; (3)求函数f (x )的值域.能力提升12.在交通拥挤及事故多发地段,为了确保交通安全,规定在此地段内,车距d 是车速v (公里/小时)的平方与车身长S (米)的积的正比例函数,且最小车距不得小于车身长的一半.现假定车速为50公里/小时,车距恰好等于车身长,试写出d 关于v 的函数关系式(其中S 为常数).13.设f (x )是R 上的函数,且满足f (0)=1,并且对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1),求f (x )的解析式.1.如何作函数的图象一般地,作函数图象主要有三步:列表、描点、连线.作图象时一般应先确定函数的定义域,再在定义域内化简函数解析式(可能有的要表示为分段函数),再列表描出图象,并在画图象的同时注意一些关键点,如与坐标轴的交点、分段函数的区间端点等. 2.如何求函数的解析式求函数的解析式的关键是理解对应法则f 的本质与特点(对应法则就是对自变量进行对应处理的操作方法,与用什么字母表示无关),应用适当的方法,注意有的函数要注明定义域.主要方法有:代入法、待定系数法、换元法、解方程组法(消元法). 3.分段函数是一个函数而非几个函数.分段函数的定义域是各段上“定义域”的并集,其值域是各段上“值域”的并集. 分段函数的图象应分段来作,特别注意各段的自变量取区间端点处时函数的取值情况,以决定这些点的实虚情况.2.1.2 函数的表示方法作业设计1.y =50x(x>0)解析 由x +3x2·y=100,得2xy =100.∴y =50x (x>0).2.1解析 由题意可知在0点到3点这段时间,每小时进水量为2,即2个进水口同时进水且不出水,所以①正确;从丙图可知3点到4点水量减少了1,所以应该是有一个进水口进水,同时出水口也出水,故②错;当两个进水口同时进水,出水口也同时出水时,水量保持不变,也可由题干中的“至少打开一个水口”知③错.3.1x -1解析 令1x =t ,则x =1t ,代入f(1x )=x1-x,则有f(t)=1t 1-1t=1t -1.4.2x -1解析 由已知得:g(x +2)=2x +3, 令t =x +2,则x =t -2, 代入g(x +2)=2x +3,则有g(t)=2(t -2)+3=2t -1. 5.2解析 ∵3<6,∴f(3)=f(3+2)=f(5)=f(5+2)=f(7)=7-5=2. 6.6解析 ∵7<9,∴f(7)=f[f(7+4)]=f[f(11)]=f(11-3)=f(8). 又∵8<9,∴f(8)=f[f(12)]=f(9)=9-3=6. 即f(7)=6.7.y =12x +12解析 设所求函数解析式为y =kx +12,把x =3,y =13.5代入,得13.5=3k +12,k =12. 所以所求的函数解析式为y =12x +12.8.f(x)=-x 2+23x(x≠0)解析 ∵f(x)=2f(1x)+x ,①∴将x 换成1x ,得f(1x )=2f(x)+1x .②由①②消去f(1x ),得f(x)=-23x -x3,即f(x)=-x 2+23x (x≠0).9.f(x)=2x +83或f(x)=-2x -8解析 设f(x)=ax +b(a≠0),则f(f(x))=f(ax +b)=a 2x +ab +b.∴⎩⎪⎨⎪⎧a 2=4ab +b =8,解得⎩⎪⎨⎪⎧a =2b =83或⎩⎪⎨⎪⎧a =-2b =-8.10.解 设f(x)=ax 2+bx +c(a≠0). 由f(0)=f(4)知⎩⎪⎨⎪⎧f 0=c ,f 4=16a +4b +c ,f 0=f 4,得4a +b =0.①又图象过(0,3)点, 所以c =3.②设f(x)=0的两实根为x 1,x 2,则x 1+x 2=-b a ,x 1·x 2=ca.所以x 21+x 22=(x 1+x 2)2-2x 1x 2=(-b a )2-2·c a=10.即b 2-2ac =10a 2.③由①②③得a =1,b =-4,c =3.所以f(x)=x 2-4x +3.11.解 因为函数f(x)=-x 2+2x +3的定义域为R ,列表:x … -2 -1 0 1 2 3 4 …y … -5 0 3 4 3 0 -5…连线,描点,得函数图象如图:(1)根据图象,容易发现f (0)=3, f (1)=4,f (3)=0, 所以f (3)<f (0)<f (1).(2)根据图象,容易发现当x 1<x 2<1时,有f (x 1)<f (x 2).(3)根据图象,可以看出函数的图象是以(1,4)为顶点,开口向下的抛物线,因此,函数的值域为(-∞,4].12.解 根据题意可得d =kv 2S .∵v =50时,d =S ,代入d =kv 2S 中,解得k =12 500.∴d =12 500v 2S .当d =S2时,可解得v =25 2.∴d =⎩⎪⎨⎪⎧S 2 0≤v <25212 500v 2S v ≥252.13.解 因为对任意实数x ,y ,有 f (x -y )=f (x )-y (2x -y +1), 所以令y =x ,有f (0)=f (x )-x (2x -x +1),即f (0)=f (x )-x (x +1).又f (0)=1,∴f (x )=x (x +1)+1=x 2+x +1.。

【2020年】2020年苏教版高中数学必修一(全册)精品教案汇总

【2020年】2020年苏教版高中数学必修一(全册)精品教案汇总

【推荐】2020年苏教版高中数学必修一(全册)精品教案汇总1.1 集合的含义及其表示教学目标:1.使学生理解集合的含义, 知道常用集合及其记法;2.使学生初步了解“属于”关系和集合相等的意义, 初步了解有限集、无限集、空集的意义;3.使学生初步掌握集合的表示方法, 并能正确地表示一些简单的集合.教学重点:集合的含义及表示方法.教学过程:一、问题情境 1.情境.新生自我介绍:介绍家庭、原毕业学校、班级. 2.问题.在介绍的过程中, 常常涉及像“家庭”、“学校”、“班级”、“男生”、“女生”等概念, 这些概念与“学生×××”相比, 它们有什么共同的特征?二、学生活动 1.介绍自己;2.列举生活中的集合实例;3.分析、概括各集合实例的共同特征. 三、数学建构1.集合的含义:一般地, 一定范围内不同的...、确定的...对象的全体组成一个集合.构成集合的每一个个体都叫做集合的一个元素.个体与群体群体是由个体组成2.元素与集合的关系及符号表示:属于∈, 不属于∉.3.集合的表示方法: 另集合一般可用大写的拉丁字母简记为“集合A 、集合B ”.4.常用数集的记法:自然数集N, 正整数集N*, 整数集Z, 有理数集Q, 实数集R . 5.有限集, 无限集与空集. 6.有关集合知识的历史简介. 四、数学运用 1.例题.例1 表示出下列集合:(1)中国的直辖市;(2)中国国旗上的颜色. 小结:集合的确定性和无序性 例2 准确表示出下列集合: (1)方程x 2―2x -3=0的解集; (2)不等式2-x <0的解集; (3)不等式组2+3511x x >⎧⎨->⎩-的解集;(4)不等式组⎩⎨⎧2x -1≤-33x +1≥0的解集.解:略.小结:(1)集合的表示方法——列举法与描述法;(2)集合的分类——有限集⑴, 无限集⑵与⑶, 空集⑷ 例3 将下列用描述法表示的集合改为列举法表示: (1){(x , y )| x +y = 3, x ∈N , y ∈N } (2){(x , y )| y = x 2-1, |x |≤2, x ∈Z } (3){y | x +y = 3, x ∈N , y ∈N } (4){ x ∈R | x 3-2x 2+x =0} 小结:常用数集的记法与作用.列举法描述法图示法自然语言描述 如{15的正整数约数}数学语言描述 规范格式为{x |p (x )}例4 完成下列各题:(1)若集合A={ x|ax+1=0}=∅, 求实数a的值;(2)若-3∈{ a-3, 2a-1, a2-4}, 求实数a.小结:集合与元素之间的关系.2.练习:(1)用列举法表示下列集合:①{ x|x+1=0};②{ x|x为15的正约数};③{ x|x为不大于10的正偶数};④{(x, y)|x+y=2且x-2y=4};⑤{(x, y)|x∈{1, 2}, y∈{1, 3}};⑥{(x, y)|3x+2y=16, x∈N, y∈N}.(2)用描述法表示下列集合:①奇数的集合;②正偶数的集合;③{1, 4, 7, 10, 13}五、回顾小结(1)集合的概念——集合、元素、属于、不属于、有限集、无限集、空集;(2)集合的表示——列举法、描述法以及Venn图;(3)集合的元素与元素的个数;(4)常用数集的记法.六、作业课本第7页练习3, 4两题.1.2 子集、全集、补集(1)教学目标:1.使学生进一步理解集合的含义, 了解集合之间的包含关系, 理解掌握子集的概念;2.理解子集、真子集的概念和意义;3.了解两个集合之间的相等关系, 能准确地判定两个集合之间的包含关系.教学重点:子集含义及表示方法;教学难点:子集关系的判定.教学过程:一、问题情境 1.情境.将下列用描述法表示的集合改为用列举法表示:A ={x |x 2≤0},B ={ x |x =(-1)n +(-1)n +1, n ∈Z};C ={ x |x 2-x -2=0},D ={ x |-1≤x ≤2, x ∈Z}2.问题.集合A 与B 有什么关系? 集合C 与D 有什么关系? 二、学生活动1.列举出与C 与D 之间具有相类似关系的两个集合; 2.总结出子集的定义;3.分析、概括两集合相等和真包含的关系的判定. 三、数学建构1.子集的含义:一般地, 如果集合A 的任一个元素都是集合B 的元素, (即 若a ∈A 则a ∈B ), 则称集合A 为集合B 的子集, 记为A ⊆B 或B ⊇A .读作集合A 包含于集合B 或集合B 包含集合A .用数学符号表示为:若a ∈A 都有a ∈B , 则有A ⊆B 或B ⊇A . (1)注意子集的符号与元素与集合之间的关系符号的区别: 元素与集合的关系及符号表示:属于∈, 不属于∉; 集合与集合的关系及符号表示:包含于⊆.(2)注意关于子集的一个规定:规定空集∅是任何集合的子集.理解规定 的合理性.(3)思考:A ⊆B 和B ⊆A 能否同时成立? (4)集合A 与A 之间是否有子集关系? 2.真子集的定义:(1)A ⊆B 包含两层含义:即A =B 或A 是B 的真子集.元素与集合是个体与群体的关系, 群体是由个体组成;子集是小集体与大集体的关系.(2)真子集的wenn图表示(3)A=B的判定(4)A是B的真子集的判定四、数学运用例1 (1)写出集合{a, b}的所有子集;(2)写出集合{1, 2, 3}的所有子集;{1, 3}⊂≠{1, 2, 3}, {3}⊂≠{1, 2, 3},小结:对于一个有限集而言, 写出它的子集时, 每一个元素都有且只有两种可能:取到或没取到.故当集合的元素为n个时, 子集的个数为2n.例2 写出N, Z, Q, R的包含关系, 并用Venn图表示.例3 设集合A={-1, 1}, 集合B={x|x2-2ax+b=0}, 若B≠∅, B⊆A, 求a, b的值.小结:集合中的分类讨论.练习:1.用适当的符号填空.(1)a_{a};(2)d_{a, b, c};(3){a}_{a, b, c};(4){a, b}_{b, a};(5){3, 5}_{1, 3, 5, 7};(6){2, 4, 6, 8}_{2, 8};(7)∅_{1, 2, 3}, (8){x|-1<x<4}__{x|x-5<0} 2.写出满足条件{a}⊆M{a, b, c, d}的集合M.3.已知集合P = {x | x2+x-6=0}, 集合Q = {x | ax+1=0}, 满足Q P, 求a所取的一切值.4.已知集合A={x|x=k+12, k∈Z}, 集合B={x|x=2k+1, k∈Z}, 集合C={x|x=12k+, k∈Z}, 试判断集合A、B、C的关系.五、回顾小结1.子集、真子集及对概念的理解;2.会用Venn图示及数轴来解决集合问题.六、作业教材P10习题1, 2, 5.1.2 子集、全集、补集(2)教学目标:1.使学生进一步理解集合及子集的意义, 了解全集、补集的概念;2.能在给定的全集及其一个子集的基础上, 求该子集的补集;3.培养学生利用数学知识将日常问题数学化, 培养学生观察、分析、归纳等能力.教学重点:补集的含义及求法.教学重点:补集性质的理解.教学过程:一、问题情境1.情境.(1)复习子集的概念;(2)说出集合{1, 2, 3}的所有子集.2.问题.相对于集合{1, 2, 3}而言, 集合{1}与集合{2, 3}有何关系呢?二、学生活动1.分析、归纳出全集与补集的概念;2.列举生活中全集与补集的实例.三、数学建构1.补集的概念:设A⊆S, 由S中不属于A的所有元素组成的集合称为S的子集A的补集, 记为S A(读作“A在S中的补集”), 即SA={ x|x∈S, 且x∉A },SA可用右图表示.2.全集的含义:如果集合S包含我们研究的各个集合, 这时S可以看作一个全集, 全集通常记作U.3.常用数集的记法:自然数集N, 正整数集N*, 整数集Z, 有理数集Q, 实数集R .则无理数集可表示为RQ .四、数学运用 1.例题.例1 已知全集S =Z, 集合A ={x |x =2k , k ∈Z}, B ={ x |x =2k +1, k ∈Z}, 分别写出集合A , B 的补集∁S A 和∁S B .例2 不等式组⎩⎨⎧2x -1>13x -6≤0的解集为A , S =R, 试求A 及SA , 并把它们表示在数轴上.例3 已知全集S ={1, 2, 3, 4, 5}, A ={ x ∈S |x 2-5qx +4=0}. (1)若SA =S , 求q 的取值范围; (2)若SA 中有四个元素, 求SA 和q 的值; (3)若A 中仅有两个元素, 求SA 和q 的值.2.练习: (1)SA 在S 中的补集等于什么?即S(SA )= .(2)若S =Z, A ={ x |x =2k , k ∈Z}, B ={ x |x =2k +1, k ∈Z}, 则SA= ,SB = .(3)S∅= , S S = .五、回顾小结1.全集与补集的概念;2.任一集合对于全集而言, 其任意子集与其补集一一对应. 六、作业教材第10页习题3, 4.1.3 交集、并集教学目标:1.理解交集、并集的概念, 掌握交集、并集的性质;2.理解掌握区间与集合的关系, 并能应用它们解决一些简单的问题.A ∪BABA ∪B教学重点:理解交集、并集的概念. 教学难点:灵活运用它们解决一些简单的问题.教学过程:一、情景设置1.复习巩固:子集、全集、补集的概念及其性质. 2.用列举法表示下列集合:(1)A ={ x |x 3-x 2-2x =0};(2)B ={ x |(x +2)(x +1)(x -2)=0}. 思考:集合A 与B 之间有包含关系么?用图示如何反映集合A 与B 之间的关系呢? 二、学生活动 1.观察与思考; 2.完成下列各题.(1)用wenn 图表示集合A ={-1, 0, 2}, B ={-2, -1, 2}, C ={-1, 2}之间的关系.(2)用数轴表示集合A ={x |x ≤3}, B ={ x |x >0 }, C ={x |0<x ≤3}之间的关系. 三、数学建构 1.交集的概念.一般地, 由所有属于集合A 且属于集合B 的元素构成的集合, 称为A 与B 的交集, 记为A ∩B (读作“A 交B ”), 即A ∩B ={ x |x ∈A 且x ∈B }2.并集的概念.一般地, 由所有属于集合A 或属于集合B 的元素构成的集合, 称为A 与B 的并集, 记为A ∪B (读作“A 并B ”), 即A ∪B ={ x |x ∈A 或x ∈B }3.交、并集的性质.ABA ∩BA∩B=B∩A, A∩∅=∅, A∩A=A, A∩B⊆A, A∩B⊆B,若A∩B=A, 则A⊆B, 反之, 若A⊆B, 则A∩B=A.即A⊆B⇔A∩B=A.A∪B=B∪A, A∪∅=A, A∪A=A, A⊆A∪B, B⊆A∪B,若A∪B=B, 则A⊆B, 反之, 若A⊆B, 则A∩B=B.即A⊆B⇔A∩B=B.思考:集合A={x |-1<x≤3}, B={y |1≤y<5}, 集合A与集合B能进行交、并的计算呢?4.区间的概念.一般地, 由所有属于实数a到实数b(a<b)之间的所有实数构成的集合, 可表示成一个区间, a、b叫做区间的端点.考虑到端点, 区间被分为开区间、闭区间或半开半闭区间.5.区间与集合的对应关系.[a, b]={x | a≤x≤b}, (a, b)={x | a<x<b},[a, b)={x | a≤x<b}, (a, b]={x | a<x≤b},(a, +∞)={x | x>a }, (-∞, b)={x | x<b},(-∞, +∞)=R.四、数学运用1.例题.例1 (1)设A={-1, 0, 1}, B={0, 1, 2, 3}, 求A∩B和A∪B.(2)已知A∪B={-1, 0, 1, 2, 3}, A∩B={-1, 1}, 其中A={-1, 0, 1}, 求集合B.(3)已知A={( x, y)| x+y=2}, B={( x, y)| x-y=4}, 求集合A∩B.(4)已知元素(1, 2)∈A∩B, A={( x, y)| y2=ax+b}, B={( x, y)| x2-ay-b=0}, 求a, b的值并求A∩B.例2 学校举办了排球赛, 某班45名学生中有12名同学参赛.后来又举办了田径赛, 这个班有20名同学参赛.已知两项都参赛的有6名同学.两项比赛中, 这个班共有多少名同学没有参加过比赛?例3 (1)设A=(0, +∞), B=(-∞, 1], 求A∩B和A∪B.(2)设A=(0, 1], B={0}, 求A∪B.2.练习:(1)若A={x |2x2+3ax+2=0}, B={x |2x2+x+b=0}, A∩ B={0, 5}, 求a与A∪B.(2)交集与并集的运算性质.五、回顾小结交集和并集的概念和性质;区间的表示及其与集合的关系.六、作业教材第13页习题2, 3, 5, 7.2.1.1 函数的概念和图象(1)教学目标:1.通过现实生活中丰富的实例, 让学生了解函数概念产生的背景, 进一步体会函数是描述变量之间的依赖关系的重要数学模型, 在此基础上学习用集合与对应的语言来刻画函数的概念, 掌握函数是特殊的数集之间的对应;2.了解构成函数的要素, 理解函数的定义域、值域的定义, 会求一些简单函数的定义域和值域;3.通过教学, 逐步培养学生由具体逐步过渡到符号化, 代数式化, 并能对以往学习过的知识进行理性化思考, 对事物间的联系的一种数学化的思考.教学重点:两集合间用对应来描述函数的概念;求基本函数的定义域和值域.教学过程:一、问题情境1.情境.正方形的边长为a, 则正方形的周长为 , 面积为.2.问题.在初中, 我们曾认识利用函数来描述两个变量之间的关系, 如何定义函数?常见的函数模型有哪些?如图, A (-2, 0), B (2, 0), 点C 在直线y =2上移动.则△ABC 的面积S 与点C 的横坐标x 之间的变化关系如何表达?面积S 是C 的横坐标x 的函数么?二、学生活动1.复述初中所学函数的概念;2.阅读课本23页的问题(1)、(2)、(3), 并分别说出对其理解; 3.举出生活中的实例, 进一步说明函数的对应本质. 三、数学建构1.用集合的语言分别阐述23页的问题(1)、(2)、(3); 问题1 某城市在某一天24小时内的气温变化情况如下图所示, 试根据函数图象回答下列问题:(1)这一变化过程中, 有哪几个变量?(2)这几个变量的范围分别是多少? 问题2 略.问题3 略(详见23页).2.函数:一般地, 设A 、B 是两个非空的数集, 如果按某种对应法则f , 对于集合A 中的每一个元素x , 在集合B 中都有惟一的元素y 和它对应, 这样的对应叫做从A 到B 的一个函数, 通常记为y =f (x ), x ∈A .其中, 所有输入值x 组成的集合A 叫做函数y =f (x )的定义域.(1)函数作为一种数学模型, 主要用于刻画两个变量之间的关系; (2)函数的本质是一种对应;(3)对应法则f 可以是一个数学表达式, 也可是一个图形或是一个表格(4)对应是建立在A 、B 两个非空的数集之间.可以是有限集, 当然也就可以是单元集, 如f (x )=2x , (x =0).3.函数y =f (x )的定义域:(1)每一个函数都有它的定义域, 定义域是函数的生命线;(2)给定函数时要指明函数的定义域, 对于用解析式表示的集合, 如果没 有指明定义域, 那么就认为定义域为一切实数.四、数学运用例1.判断下列对应是否为集合A 到 B 的函数:(1)A ={1, 2, 3, 4, 5}, B ={2, 4, 6, 8, 10}, f :x →2x ; (2)A ={1, 2, 3, 4, 5}, B ={0, 2, 4, 6, 8}, f :x →2x ; (3)A ={1, 2, 3, 4, 5}, B =N , f :x →2x . 练习:判断下列对应是否为函数: (1)x →2x, x ≠0, x ∈R ;(2)x →y , 这里y 2=x , x ∈N , y ∈R . 例2 求下列函数的定义域:(1)f (x )=x -1;(2)g(x )=x +1+1x.例3 下列各组函数中, 是否表示同一函数?为什么? A .y =x 与y =(x )2; B .y =x 2与y =3x 3;C .y =2x -1(x ∈R)与y =2t -1(t ∈R);D .y =x +2·x -2与y =x 2-4 练习:课本26页练习1~4, 6. 五、回顾小结1.生活中两个相关变量的刻画→函数→对应(A →B ) 2.函数的对应本质; 3.函数的对应法则和定义域. 六、作业:课堂作业:课本31页习题2.1(1)第1, 2两题.2.1.1 函数的概念和图象(2)教学目标:1.进一步理解用集合与对应的语言来刻画的函数的概念, 进一步理解函数的本质是数集之间的对应;2.进一步熟悉与理解函数的定义域、值域的定义, 会利用函数的定义域与对应法则判定有关函数是否为同一函数;函数的本质是对应, 但并非所有的对应都是函数,一个必须是建立在两个非空数集间的对应,二是对应只能是单值对应.判断两个函数是否为同一函数, 一看对应法则,二看定义域.3.通过教学, 进一步培养学生由具体逐步过渡到符号化, 代数式化, 并能对以往学习过的知识进行理性化思考, 对事物间的联系的一种数学化的思考.教学重点:用对应来进一步刻画函数;求基本函数的定义域和值域.教学过程:一、问题情境1.情境.复述函数及函数的定义域的概念.2.问题.概念中集合A为函数的定义域, 集合B的作用是什么呢?二、学生活动1.理解函数的值域的概念;2.能利用观察法求简单函数的值域;3.探求简单的复合函数f(f(x))的定义域与值域.三、数学建构1.函数的值域:(1)按照对应法则f, 对于A中所有x的值的对应输出值组成的集合称之为函数的值域;(2)值域是集合B的子集.2.x→ g(x)⇒ f(x) → f(g(x)), 其中g(x)的值域即为f(g(x))的定义域;四、数学运用(一)例题.例1 已知函数f (x)=x2+2x, 求f (-2), f (-1), f (0), f (1).例2 根据不同条件, 分别求函数f(x)=(x-1)2+1的值域.(1)x∈{-1, 0, 1, 2, 3};(2)x∈R;(3)x∈[-1, 3];(4)x∈(-1, 2];(5)x∈(-1, 1).例3 求下列函数的值域:①y;②y.例4 已知函数f(x)与g(x)分别由下表给出:分别求f (f (1)), f (g (2)), g(f (3)), g (g (4))的值.(二)练习.(1)求下列函数的值域:①y=2-x2;②y=3-|x|.(2)已知函数f(x)=3x2-5x+2, 求f(3)、f(-2)、f(a)、f(a+1).(3)已知函数f(x)=2x+1, g(x)=x2-2x+2, 试分别求出g(f(x))和f(g(x))的值域, 比较一下, 看有什么发现.(4)已知函数y=f(x)的定义域为[-1, 2], 求f(x)+f(-x)的定义域.(5)已知f(x)的定义域为[-2, 2], 求f(2x), f(x2+1)的定义域.五、回顾小结函数的对应本质, 函数的定义域与值域;利用分解的思想研究复合函数.六、作业课本P31-5, 8, 9.2.1.2 函数的表示方法(1)教学目标:1.进一步理解函数的概念, 了解函数表示的多样性, 能熟练掌握函数的三种不同的表示方法;2.在理解掌握函数的三种表示方法基础上, 了解函数不同表示法的优缺点, 针对具体问题能合理地选择表示方法;3.通过教学, 培养学生重要的数学思想方法——分类思想方法.教学重点:函数的表示. 教学难点:针对具体问题合理选择表示方法.教学过程:一、问题情境 1. 情境.下表的对应关系能否表示一个函数:2.问题.如何表示一个函数呢? 二、学生活动1.阅读课本掌握函数的三种常用表示方法; 2.比较三种表示法之间的优缺点. 3.完成练习 三、数学建构 1.函数的表示方法: 2.三种不同方法的优缺点:3.三种不同方法的相互转化:能用解析式表示的, 一般都能列出符合条件的表、画出符合条件的图, 反之亦然;列表法也能通过图形来表示.四、数学运用 (一)例题例1 购买某种饮料x 听, 所需钱数为y 元.若每听2元, 试分别用解析法、列表法、图象法将y 表示成x (x ∈{1, 2, 3, 4})的函数, 并指出该函数的值域.列表法—用列表来表示两个变量之间函数关系的方法 解析法—用等式来表示两个变量之间函数关系的方法 图象法—用图象来表示两个变量之间函数关系的方法跟踪练习:某公司将进货单价为8元一个的商品按10元一个销售, 每天可卖出100个, 若这种商品的销售价每个上涨1元, 则销售量就减少10个.(1)列表:(2)图象: (3)解析式:将条件变换成:“某公司将进货单价为8元一个 的商品按10元一个销售, 每天可卖出110个”例2 如图, 是一个二次函数的图象的一部分, 试根据图象 中的有关数据, 求出函数f (x )的解析式及其定义域.(二)练习:1.1 nmile(海里)约为1854m, 根据这一关系, 写出米数y 关于海里数x 的函数解析式. 2.用长为30cm 的铁丝围成矩形, 试将矩形的面积S (cm 2)表示为矩形一边长x (cm)的函数, 并画出函数的图象.3.已知f(x )是一次函数, 且图象经过(1, 0)和(-2, 3)两点, 求f (x )的解析式. 4.已知f (x )是一次函数, 且f (f (x ))=9x -4, 求f (x )的解析式. 五、回顾小结1.函数表示的多样性;2.函数不同表示方法之间的联系性; 3.待定系数法求函数的解析式. 六、作业课堂作业:课本35页习题1, 4, 5.2.1.2 函数的表示方法(2)教学目标:1.进一步理解函数的表示方法的多样性, 理解分段函数的表示, 能根据实际问题列出符合题意的分段函数;2.能较为准确地作出分段函数的图象;3.通过教学, 进一步培养学生由具体逐步过渡到符号化, 代数式化, 并能对以往学习过的知识进行理性化思考, 对事物间的联系的一种数学化的思考.教学重点:分段函数的图象、定义域和值域.教学过程:一、问题情境1.情境.复习函数的表示方法;已知A={1, 2, 3, 4}, B={1, 3, 5}, 试写出从集合A到集合B的两个函数.2.问题.函数f(x)=|x|与f(x)=x是同一函数么?区别在什么地方?二、学生活动1.画出函数f(x)=|x|的图象;2.根据实际情况, 能准确地写出分段函数的表达式.三、数学建构1.分段函数:在定义域内不同的部分上, 有不同的解析表达式的函数通常叫做分段函数.(1)分段函数是一个函数, 而不是几个函数;(2)分段函数的定义域是几部分的并;(3)定义域的不同部分不能有相交部分;(4)分段函数的图象可能是一条连续但不平滑的曲线, 也可能是由几条曲线共同组成;(5)分段函数的图象未必是不连续, 不连续的图象表示的函数也不一定是分段函数, 如反比例函数的图象;(6)分段函数是生活中最常见的函数.四、数学运用1.例题.例1 某市出租汽车收费标准如下:在3km 以内(含3km)路程按起步价7元收费, 超过3km 以外的路程按2.4元/km 收费.试写出收费额关于路程的函数解析式.例2 如图, 梯形OABC 各顶点的坐标分别为O (0, 0), A (6, 0), B (4, 2), C (2, 2).一条与y 轴平行的动直线l 从O 点开始作平行移动, 到A 点为止.设直线l 与x 轴的交点为M , OM =x , 记梯形被直线l 截得的在l 左侧的图形的面积为y .求函数y =f(x )的解析式、定义域、值域.例3 将函数f (x )= | x +1|+| x -2|表示成分段函数的形式, 并画出其图象, 根据图象指出函数f (x )的值域.2.练习:练习1:课本35页第7题, 36页第9题. 练习2:(1)画出函数f (x )= 的图象.(2)若f (x )= 求f (-1), f (0), f(2), f (f (-1)), f (f (0)), f (f (12))的值.(3)试比较函数f (x )=|x +1|+|x |与g (x )=|2x +1|是否为同一函数.(4)定义[x ]表示不大于x 的最大整数, 试作出函数f (x )=[x ] (x ∈[-1, 3))的图象.并将其表示成分段函数.练习3:如图, 点P 在边长为2的正方形边上按A →B →C →D →A 的方向移动, 试将AP 表示成移动的距离x 的函数.五、回顾小结分段函数的表示→分段函数的定义域→分段函数的图象; 含绝对值的函数常与分段函数有关; 利用对称变换构造函数的图象. 六、作业课堂作业:课本35页习题第3题, 36页第10, 12题;课后探究:已知函数f (x )=2x -1(x ∈R ), 试作出函数f (|x |), |f (x )|的图象.x 2-1,x ≥0, 2x +1,x <0. x -1 (x ≥0)1-x (x <0)BC P2.2 函数的简单性质(1)教学目标:1.在初中学习一次函数、二次函数的性质的基础上, 进一步感知函数的单调性, 并能结合图形, 认识函数的单调性;2.通过函数的单调性的教学, 渗透数形结合的数学思想, 并对学生进行初步的辩证唯物论的教育;3.通过函数的单调性的教学, 让学生学会理性地认识与描述生活中的增长、递减等现象.教学重点:用图象直观地认识函数的单调性, 并利用函数的单调性求函数的值域.教学过程:一、问题情境如图(课本37页图2-2-1), 是气温θ关于时间t 的函数, 记为θ=f (t ), 观察这个函数的图象, 说出气温在哪些时间段内是逐渐升高的或是下降的?问题:怎样用数学语言刻画上述时间段内“随时间的增大气温逐渐升高”这一特征? 二、学生活动1.结合图2―2―1, 说出该市一天气温的变化情况;2.回忆初中所学的有关函数的性质, 并画图予以说明;3.结合右侧四幅图, 解释函数的单调性. 三、数学建构 1.增函数与减函数:一般地, 设函数y =f (x )的定义域为A , 区间I ⊆A .)))如果对于区间I 内的任意两个值x 1, x 2, 当x 1<x 2时, 都有f (x 1)<f (x 2), 那么就说y =f (x )在区间I 是单调增函数, 区间I 称为y =f (x )的单调增区间.如果对于区间I 内的任意两个值x 1, x 2, 当x 1<x 2时, 都有f (x 1)>f (x 2), 那么就说y =f (x )在区间I 是单调减函数, 区间I 称为y =f (x )的单调减区间.2.函数的单调性与单调区间:如果函数y =f (x )在区间I 是单调增函数或单调减函数, 那么就说函数y =f (x )在区间I 上具有单调性.单调增区间与单调减区间统称为单调区间.注:一般所说的函数的单调性, 就是要指出函数的单调区间, 并说明在区间上是单调增函数还是单调减函数.四、数学运用例1 画出下列函数的图象, 结合图象说出函数的单调性.1.y =x 2+2x -12.y =2x例2 求证:函数f (x )=-1x-1在区间(-∞, 0)上是单调增函数.练习:说出下列函数的单调性并证明. 1.y =-x 2+2 2.y =2x+1五、回顾小结利用图形, 感知函数的单调性→给出单调性的严格意义上的定义→证明一个函数的单调性.六、作业课堂作业:课本44页1, 3两题.2.2 函数的简单性质(2)教学目标:1.进一步理解函数的单调性, 能利用函数的单调性结合函数的图象, 求出有关函数的最小值与最大值, 并能准确地表示有关函数的值域;2.通过函数的单调性的教学, 让学生在感性认知的基础上学会理性地认识与描述生活中的增长、递减等现象.教学重点:利用函数的单调性求函数的值域.教学过程:一、问题情境1.情境.(1)复述函数的单调性定义;(2)表述常见函数的单调性.2.问题.结合函数的图象说出该天的气温变化范围.二、学生活动1.研究函数的最值;2.利用函数的单调性的改变, 找出函数取最值的情况;三、数学建构1.函数的值域与函数的最大值、最小值:一般地, 设y=f(x)的定义域为A.若存在x0∈A, 使得对任意x∈A, f(x)≤f(x0)恒成立, 则称f(x0)为y=f(x)的最大值, 记为y max=f(x0).若存在定值x0∈A, 使得对任意x∈A, f(x)≥f(x0)恒成立, 则称f(x0)为y=f(x)的最小值, 记为y min=f(x0).注:(1)函数的最大值、最小值分别对应函数图象上的最高点和最低点, 典型的例子就是二次函数y=ax2+bx-c(a≠0), 当a>0时, 函数有最小值;当a<0时, 函数有最大值.(2)利用函数的单调性, 并结合函数的图象求函数的值域或函数的最值是求函数的值域或函数的最值的常用方法.2.函数的最值与单调性之间的关系:已知函数y=f(x)的定义域是[a, b], a<c<b.当x∈[a, c]时, f(x)是单调增函数;当x ∈[c , b ] 时, f (x )是单调减函数.则f (x )在x =c 时取得最大值.反之, 当x ∈[a , c ]时, f (x )是单调减函数;当x ∈[c , b ] 时, f (x )是单调增函数.则f (x )在x =c 时取得最小值.四、数学运用例1 求出下列函数的最小值:(1)y =x 2-2x ;(2)y =1x, x ∈[1, 3].变式:(1)将y =x 2-2x 的定义域变为(0, 3]或[1, 3]或[-2, 3], 再求最值. (2)将y =1x的定义域变为(-2, -1], (0, 3]结果如何?跟踪练习:求f (x )=-x 2+2x 在[0, 10]上的最大值和最小值.例2 已知函数y =f (x )的定义域为[a , b ], a <c <b .当x ∈[a , c ]时, f (x )是单调增函数;当x ∈[c , b ]时, f (x )是单调减函数.试证明f (x )在x =c 时取得最大值.变式:已知函数y =f (x )的定义域为[a , b ], a <c <b .当x ∈[a , c ]时, f (x )是单调减函数;当x ∈[c , b ]时, f (x )是单调增函数.试证明f (x )在x =c 时取得最小值.例3 求函数f (x )=x 2-2ax 在[0, 4]上的最小值.练习:如图, 已知函数y =f (x )的定义域为[-4, 7], 根据图象, 说出它的最大值与最小值.求下列函数的值域: (1)yx ∈[0, 3];(2) y =11x -, x ∈[2, 6];(3)y(4)y =11(1)x x --.五、回顾小结利用图形, 感知函数的单调性→证明一个函数的单调性→确定一个函数的最值→确定一个函数的值域.六、作业课堂作业:课本40页第3题, 44页第3题.2.2 函数的简单性质(3)教学目标:1.进一步认识函数的性质, 从形与数两个方面引导学生理解掌握函数奇偶性的概念, 能准确地判断所给函数的奇偶性;2.通过函数的奇偶性概念的教学, 揭示函数奇偶性概念的形成过程, 培养学生观察、归纳、抽象的能力, 培养学生从特殊到一般的概括能力, 并渗透数形结合的数学思想方法;3.引导学生从生活中的对称联想到数学中的对称, 师生共同探讨、研究, 从代数的角度给予严密的代数形式表达、推理, 培养学生严谨、认真、科学的探究精神.教学重点:函数奇偶性的概念及函数奇偶性的判断. 教学难点:函数奇偶性的概念的理解与证明.教学过程:一、问题情境 1.情境.复习函数的单调性的概念及运用.教师小结:函数的单调性从代数的角度严谨地刻画了函数的图象在某范围内的变化情况, 便于我们正确地画出相关函数的图象, 以便我们进一步地从整体的角度, 直观而又形象地反映出函数的性质.在画函数的图象的时候, 我们有时还要注意一个问题, 就是对称(见P41).2.问题.观察函数y =x 2和y =1x(x ≠0)的图象, 从对称的角度你发现了什么?二、学生活动1.画出函数y =x 2和y =1x(x ≠0)的图象2.利用折纸的方法验证函数y =x 2图象的对称性。

苏教版高一数学必修1全册课件【完整版】PPT文档264页

苏教版高一数学必修1全册课件【完整版】PPT文档264页

苏教版高一数学必修1全册课件【完 整版】
6、法律的基础有两个,而且只有两个……公平和实用。——伯克 7、有两种和平的暴力,那就是法律和礼节。——歌德
8、法律就是秩序,有好的法律才有好的秩序。——亚里士多德 9、上帝把法律和公平凑合在一起,可是人类却把它拆开。——查·科尔顿 10、一切法律都是无用的,因为好人用不着它们,而坏人又不会因为它们而变得规矩起来。——德谟耶克斯
பைடு நூலகம் 31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学-苏教版(全套) 一 任意角的三角函数教学目标:(1)理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算.(2)掌握任意角的正弦、余弦、正切的意义,并会利用单位圆中的三角函数线表示正弦、余弦和正切.(3)了解任意角的余切、正割、余割的定义. (4)掌握同角三角函数的基本关系式:1cot tan ,tan cos sin ,1cos sin 22===+ααααααα(5)掌握正弦、余弦的诱导公式.教学重点:正弦、余弦、正切的意义, 同角三角函数的基本关系式. 教学难点:任意角的概念, 诱导公式. 课时分配:约12课时.第一课时 角的概念的推广(1)一.引入:(1)课本第三页引例;(2)自行车轮的转动等实例.二.新课:(一)概念:正角、负角、零角;第?象限的角;终边相同的角. (二)符号:φϕθγβα,,,,,等.(三)关于集合: S={ββ|=α+k ×360º,k ∈Z }第二课时 角的概念的推广(2)一. 复习、作业讲评.二. 新课:(一)课本第6页例3:写出与下列各角终边相同的角的集合S,并把S 中适合不等式 -360º≤β<720º的元素β写出来:(1)60º (2)-21º (3)363º14ˊ(二)习题4.1 .5(1)已知α是锐角,那么2α是 ( ) (A)第一象限角. (B)第二象限角.(C)小于180º的角. (D)不大于直角的角.第三课时 弧度制(1)一. 新课:(一)概念:角度制, 1弧度的角,弧度制.(二)公式:rl=α(三)换算:1.把角度换成弧度.360º=2πrad180º=πrad1º=rad rad 001745.0180≈π2. 把弧度换成角度.2πrad=360ºπrad = 180º 1rad=815730.57180'=≈⎪⎭⎫ ⎝⎛π(四)例题:例1. 把67º18´化成弧度例2. 把rad π53化成度例3.利用弧度制证明扇形面积公式S=lR 21,其中l 是扇形的弧长,R 是圆的半径.例4.计算:(1)4sin π (2)5.1tan第四课时 弧度制(2)一. 复习:上节课所讲的概念、公式. 二. 新课:例题:例5.将下列各角化成0到2π的角加上2kπ(k ∈Z)的形式:(1)π319(2) -315º例6.求图中公路弯道处弧AB 的长l (精确到1m.图中长度单位:m)例7.半径为1的圆上有两点A,B 若AMB 的长=2,求弓形AMB 的面积.第六课时 任意角的三角函数(2)一. 复习:二. 新课:(一)概念:(1)三角函数;αααtan ,cos ,sin 的定义域.(2)诱导公式一:终边相同的角的同一三角函数值相等.(3)αααtan ,cos ,sin 三个三角函数值在各个象限的符号.(二)例题:课本例2(特殊角的三角函数值),例3. 例4.第七课时任意角的三角函数(3)一. 复习:二. 新课:例5.求下列三角函数值:(1) 011480sin ' (2) 49cos π (3) )611tan(π-例6.(1)若632πθπ≤≤-,确定θsin 的范围;(2) 若30º≤θ≤120º,确定tan θ的范围.例7.分别根据下列条件,写出角的取值范围.(1) 23cos <θ; (2)1tan ->θ第八课时 同角三角函数的基本关系式(1)一.复习、引入:三角函数的定义.二.新课:(一)公式:.1cot tan ,tan cos sin ,1cos sin 22===+ααααααα(二)例1.已知54sin =α,并且α是第二象限角,求αααcot ,tan ,cos 的值.例2. 已知178cos -=α,求ααtan ,sin 的值.例3.已知αtan 为非零实数,用αtan 表示ααcos ,sin .第九课时 同角三角函数的基本关系式(2)一. 复习公式,讲评作业.二. 新课:例4.化简 440sin 12-例5.求证xxx x cos sin 1sin 1cos +=-例6.求征ααααααααcot tan cos sin 2cot cos tan sin 22+=⋅+⋅+⋅例7.已知231cos sin -=+θθ (0<θ<π),求sin θ、cos θ三. 练习:课本第27页练习5、6,补充练习(1)化简: 40cos 40sin 21-(2)已知αααααtan 2sin 1sin 1sin 1sin 1-=+---+,试确定等式成立的角α的集合第十课时 正弦、余弦的诱导公式(1)一. 复习引入:(1)任意角的三角函数的定义;(2)公式(一);(3)单位圆中的三角函数线 二. 新课:(1)分析推导公式(二):ααααcos )180cos(sin )180sin(-=+-=+公式(三):ααααcos )cos(sin )sin(=--=-(2)例1.求下列三角函数值:(1) 225cos ; (2)π1011sin .例2.求下列三角函数值:)3sin()1(π-; (2))21240cos('- .例3.化简:)180cos()180sin()360sin()180cos(αααα--⋅--+⋅+第十一课时 正弦、余弦的诱导公式(2)一. 复习引入:公式(一)、(二)、(三)二. 新课:(1).公式(四)ααααcos )180cos(sin )180sin(=-=-公式(五)ααααcos )360cos(sin )360sin(=--=-(2)例4.求下列三角函数值:①)51150cos('- ;②π611sin .例5.求下列三角函数值:① 519cos ;②)317sin(π-.例6.化简:)sin()3sin()cos()cos()2sin(πααπαπαπαπ----+-第十二课时 正弦、余弦的诱导公式(3)一. 复习引入:(一) 求值:(1))840sin(570cos )1260sin(315sin -+-(2))6102sin()63sin()62sin()6sin(ππππππππ++++(二) 证明:απααπαπαπαπsin 1)sin()3sin()cos()cos()2sin(-=----+-二. 新课:例1.已知:3tan =α ,求:)2sin()cos(4)sin(3)cos(2απααπαπ-+-+--的值.例2.已知53sin -=α,且α是第四象限角,求)]5sin()3[cos(tan απαπα+--的值.例3化简:)2cos()2sin(])12(sin[])12(sin[παπαπαπαn n n n -++-+++ (n ∈Z )第十四课时两角和与差的正弦、余弦、正切(1)一.教学目的:1.了解并能记住平面内两点间距离公式;2.理解平面内两点间距离公式的由来;3.渗透和强化转化的数学思想、数形结合的思想。

二、教学过程:(一)思考题:1.如果A、B是x轴上两点,C、D是y轴上两点,它们的坐标分别是x A、x B、y C、y D,怎样求AB和CD?2.如果直线n平行于y轴,直线m平行于x轴,A、B是m上两点,其横坐标分别是x A、x B,D是n上两点,其纵坐标分别是y C、y D怎样求AB和CD?A0 B3.11,y1)P2(x2,y2),如何求线段P1P2的长度呢?yP4.两点间的距离公式是什么?(二)例题1.已知两点A(-1,5),B(4,-7),求AB。

(三)小结(四)作业阅读课本,复习、预习到36页矩形框止第十五课时 两角和与差的正弦、余弦、正切(2)一.教学目的:1.了解两角和的余弦公式的推导;能正确运用两角和的余弦公式进行简单三角函数式的化简、求值和恒等式变形;2.培养利用旧知识推导、论证新知识的能力、进行数学交流,获得数学知识的能力。

二. 教学过程: (一) 导入(二) 公式推导(三) 例题讲解1.利用和(差)公式,求750的余弦值。

2.已知sin ),23,(,43cos ),,2(,32ππββππαα∈-=∈=求cos()βα+的值。

(四) 小结 (五) 作业 P40习题 4.6 ex1(求cos()βα+),ex2(2)(4),ex3(6),ex8(1)第十六课时 两角和与差的正弦、余弦、正切(3)一. 教学目的:1. 能由两角和的余弦公式推导出两角差的余弦公式,并了解这两个公式的内在联系;2. 能正确运用两角和(差)的余弦公式,进行简单三角函数的化简,求值和恒等式变形。

二. 教学过程: (一) 复习导入 求cos150的值。

(二) 推导公式 (三) 例题讲解1. 求cos150+cos750的值。

2. 已知)2,0(,1010cos ),2,0(,55sin πββπαα∈=∈=,求cos()βα+的值。

3. 求证cosx+sinx=)4cos(2π-x4. *已知⎪⎪⎩⎪⎪⎨⎧=+=+54cos cos 53sin sin βαβα求cos()βα-的值。

第十七课时 两角和与差的正弦、余弦、正切(4)一.教学目的:1. 了解两角和与差的正弦公式推导;2. 了解公式的推导过程中的变换思想和整体思想方法;3. 掌握两角和与的正弦公式,并会运用它们进行有关计算、化简。

二.教学过程:(一) 复习导入 (二) 公式推导 (三) 例题讲解1. 利用和差公式求150、750的正弦.2. 已知)sin(),23,(,43cos ),,2(,32sin βαππββππαα-∈-=∈=求。

3.求证)6sin(2sin 3cos απαα+=+4.化简)54sin()36cos()54cos()36sin(0000αααα-++-+(四) 小结 (五) 作业 P38练习:1. 已知:135cos ,1715sin -==βα,且βα,都是第二象限角,求βα+9sin 的值。

第十八课时 两角和与差的正弦、余弦、正切(5)一. 教学目的:1. 了解两角和差正切公式推导,进一步熟悉化切为弦,化弦为切解答有关三角函数问题的转化思想方法。

2. 掌握两角和与差的正切公式,并能运用它们进行有关正切问题的计算、化简与证明。

二. 教学过程(一) 复习导入 (二) 公式推导 (三) 例题讲解1. 利用和差公式求150、750的正切;2. 计算:(1)000000030tan 75tan 175tan 30tan )2(;18tan 42tan 118tan 42tan +--+3. 计算015tan 115tan 1-+的值;4. 计算)30tan()60tan(1)30tan()60tan(0000αααα++++-+的值;(四) 练习1. 求cot1050的值;2.计算075cot 115tan 1+-的值。

相关文档
最新文档