实验四.哈夫曼编码的贪心算法设计
贪心算法构造哈夫曼树
软件02 1311611006 张松彬利用贪心算法构造哈夫曼树及输出对应的哈夫曼编码问题简述:两路合并最佳模式的贪心算法主要思想如下:(1)设w={w0,w1,......wn-1}是一组权值,以每个权值作为根结点值,构造n棵只有根的二叉树(2)选择两根结点权值最小的树,作为左右子树构造一棵新二叉树,新树根的权值是两棵子树根权值之和(3)重复(2),直到合并成一颗二叉树为一、实验目的(1)了解贪心算法和哈夫曼树的定义(2)掌握贪心法的设计思想并能熟练运用(3)设计贪心算法求解哈夫曼树(4)设计测试数据,写出程序文档二、实验内容(1)设计二叉树结点数据结构,编程实现对用户输入的一组权值构造哈夫曼树(2)设计函数,先序遍历输出哈夫曼树各结点3)设计函数,按树形输出哈夫曼树代码:#include <stdio.h>#include <string.h>#include <time.h>#include <stdlib.h>typedef struct Node{ //定义树结构int data;struct Node *leftchild;struct Node *rightchild;}Tree;typedef struct Data{ //定义字符及其对应的频率的结构int data;//字符对应的频率是随机产生的char c;};void Initiate(Tree **root);//初始化节点函数int getMin(struct Data a[],int n);//得到a中数值(频率)最小的数void toLength(char s[],int k);//设置有k个空格的串svoid set(struct Data a[],struct Data b[]);//初始化a,且将a备份至bchar getC(int x,struct Data a[]);//得到a中频率为x对应的字符void prin(struct Data a[]);//输出初始化后的字符及对应的频率int n;void main(){//srand((unsigned)time(NULL));Tree *root=NULL,*left=NULL,*right=NULL,*p=NULL; int min,num;int k=30,j,m;struct Data a[100];struct Data b[100];int i;char s[100]={'\0'},s1[100]={'\0'};char c;set(a,b);prin(a);Initiate(&root);Initiate(&left);Initiate(&right);Initiate(&p);//设置最底层的左节点min=getMin(a,n);left->data=min;left->leftchild=NULL;left->rightchild=NULL;//设置最底层的右节点min=getMin(a,n-1);right->data=min;right->leftchild=NULL;right->rightchild=NULL;root->data=left->data+right->data;Initiate(&root->leftchild);Initiate(&root->rightchild);//将设置好的左右节点插入到root中root->leftchild=left;root->rightchild=right;for(i=0;i<n-2;i++){min=getMin(a,n-2-i);Initiate(&left);Initiate(&right);if(min<root->data)//权值小的作为左节点{left->data=min;left->leftchild=NULL;left->rightchild=NULL;p->data=min+root->data;Initiate(&p->leftchild);Initiate(&p->rightchild);p->leftchild=left;p->rightchild=root;root=p;}else{right->data=min;right->leftchild=NULL;right->rightchild=NULL;p->data=min+root->data;Initiate(&p->leftchild);Initiate(&p->rightchild);p->leftchild=root;p->rightchild=right;root=p;}Initiate(&p);}num=n-1;p=root;printf("哈夫曼树如下图:\n");while(num){if(num==n-1){for(j=0;j<k-3;j++)printf(" ");printf("%d\n",root->data);}for(j=0;j<k-4;j++)printf(" ");printf("/ \\\n");for(j=0;j<k-5;j++)printf(" ");printf("%d",root->leftchild->data);printf(" %d\n",root->rightchild->data);if(root->leftchild->leftchild!=NULL){root=root->leftchild;k=k-2;}else{root=root->rightchild;k=k+3;}num--;}num=n-1;Initiate(&root);root=p;printf("各字符对应的编码如下:\n");while(num){if(root->leftchild->leftchild==NULL){strcpy(s1,s);m=root->leftchild->data;c=getC(m,b);printf("%c 【%d】:%s\n",c,m,strcat(s1,"0"));}if(root->rightchild->leftchild==NULL){strcpy(s1,s);m=root->rightchild->data;c=getC(m,b);printf("%c 【%d】:%s\n",c,m,strcat(s1,"1"));}if(root->leftchild->leftchild!=NULL){strcat(s,"0");root=root->leftchild;}if(root->rightchild->leftchild!=NULL){strcat(s,"1");root=root->rightchild;}num--;}}int getMin(struct Data a[],int n){int i,t;for(i=1;i<n;i++){if(a[i].data<a[0].data){t=a[i].data;a[i].data=a[0].data;a[0].data=t;}}t=a[0].data;for(i=0;i<n-1;i++){a[i]=a[i+1];}return t;}void toLength(char s[],int k){int i=0;for(;i<k;i++)strcat(s," ");}void Initiate(Tree **root){*root=(Tree *)malloc(sizeof(Tree));(*root)->leftchild=NULL;(*root)->rightchild=NULL;}void set(struct Data a[],struct Data b[]) {int i;srand((unsigned)time(NULL));n=rand()%10+2;for(i=0;i<n;i++){a[i].data=rand()%100+1;a[i].c=i+97;b[i].data=a[i].data;b[i].c=a[i].c;if(i>=0&&a[i].data==a[i-1].data)i--;}}char getC(int x,struct Data b[]){int i;for(i=0;i<n;i++){if(b[i].data==x){break;}}return b[i].c;}void prin(struct Data a[]){int i;printf("字符\t出现的频率\n");for(i=0;i<n;i++){printf("%c\t %d\n",a[i].c,a[i].data);}}。
实验三.哈夫曼编码的贪心算法设计
实验四 哈夫曼编码的贪心算法设计(4学时)[实验目的]1. 根据算法设计需要,掌握哈夫曼编码的二叉树结构表示方法;2. 编程实现哈夫曼编译码器;3. 掌握贪心算法的一般设计方法。
实验目的和要求(1)了解前缀编码的概念,理解数据压缩的基本方法;(2)掌握最优子结构性质的证明方法;(3)掌握贪心法的设计思想并能熟练运用(4)证明哈夫曼树满足最优子结构性质;(5)设计贪心算法求解哈夫曼编码方案;(6)设计测试数据,写出程序文档。
实验内容设需要编码的字符集为{d 1, d 2, …, dn },它们出现的频率为 {w 1, w 2, …, wn },应用哈夫曼树构造最短的不等长编码方案。
核心源代码#include <stdio.h>#include <stdlib.h>#include <string.h>typedef struct{unsigned int weight; //用来存放各个结点的权值unsigned int parent,LChild,RChild; //指向双亲、孩子结点的指针} HTNode, *HuffmanTree; //动态分配数组,存储哈夫曼树typedef char *HuffmanCode; //动态分配数组,存储哈夫曼编码∑=ji k k a//选择两个parent为0,且weight最小的结点s1和s2 void Select(HuffmanTree *ht,int n,int *s1,int *s2){int i,min;for(i=1; i<=n; i++){if((*ht)[i].parent==0){min=i;break;}}for(i=1; i<=n; i++){if((*ht)[i].parent==0){if((*ht)[i].weight<(*ht)[min].weight)min=i;}}*s1=min;for(i=1; i<=n; i++){if((*ht)[i].parent==0 && i!=(*s1)){min=i;break;}}for(i=1; i<=n; i++){if((*ht)[i].parent==0 && i!=(*s1)){if((*ht)[i].weight<(*ht)[min].weight)min=i;}}*s2=min;}//构造哈夫曼树ht,w存放已知的n个权值void CrtHuffmanTree(HuffmanTree *ht,int *w,int n) {int m,i,s1,s2;m=2*n-1; //总共的结点数*ht=(HuffmanTree)malloc((m+1)*sizeof(HTNode));for(i=1; i<=n; i++) //1--n号存放叶子结点,初始化{(*ht)[i].weight=w[i];(*ht)[i].LChild=0;(*ht)[i].parent=0;(*ht)[i].RChild=0;}for(i=n+1; i<=m; i++) //非叶子结点的初始化{(*ht)[i].weight=0;(*ht)[i].LChild=0;(*ht)[i].parent=0;(*ht)[i].RChild=0;}printf("\n哈夫曼树为: \n");for(i=n+1; i<=m; i++) //创建非叶子结点,建哈夫曼树{ //在(*ht)[1]~(*ht)[i-1]的范围内选择两个parent为0且weight最小的结点,其序号分别赋值给s1、s2 Select(ht,i-1,&s1,&s2);(*ht)[s1].parent=i;(*ht)[s2].parent=i;(*ht)[i].LChild=s1;(*ht)[i].RChild=s2;(*ht)[i].weight=(*ht)[s1].weight+(*ht)[s2].weight;printf("%d (%d, %d)\n",(*ht)[i].weight,(*ht)[s1].weight,(*ht)[s2].weight);}printf("\n");}//从叶子结点到根,逆向求每个叶子结点对应的哈夫曼编码void CrtHuffmanCode(HuffmanTree *ht, HuffmanCode *hc, int n){char *cd; //定义的存放编码的空间int a[100];int i,start,p,w=0;unsigned int c;hc=(HuffmanCode *)malloc((n+1)*sizeof(char *)); //分配n个编码的头指针cd=(char *)malloc(n*sizeof(char)); //分配求当前编码的工作空间cd[n-1]='\0'; //从右向左逐位存放编码,首先存放编码结束符for(i=1; i<=n; i++) //求n个叶子结点对应的哈夫曼编码{a[i]=0;start=n-1; //起始指针位置在最右边for(c=i,p=(*ht)[i].parent; p!=0; c=p,p=(*ht)[p].parent) //从叶子到根结点求编码{if( (*ht)[p].LChild==c){cd[--start]='1'; //左分支标1a[i]++;}else{cd[--start]='0'; //右分支标0a[i]++;}}hc[i]=(char *)malloc((n-start)*sizeof(char)); //为第i个编码分配空间strcpy(hc[i],&cd[start]); //将cd复制编码到hc}free(cd);for(i=1; i<=n; i++)printf(" 权值为%d的哈夫曼编码为:%s\n",(*ht)[i].weight,hc[i]);for(i=1; i<=n; i++)w+=(*ht)[i].weight*a[i];printf(" 带权路径为:%d\n",w);}void main(){HuffmanTree HT;HuffmanCode HC;int *w,i,n,wei;printf("**哈夫曼编码**\n" );printf("请输入结点个数:" );scanf("%d",&n);w=(int *)malloc((n+1)*sizeof(int)); printf("\n输入这%d个元素的权值:\n",n); for(i=1; i<=n; i++){printf("%d: ",i);fflush(stdin);scanf("%d",&wei);w[i]=wei;}CrtHuffmanTree(&HT,w,n); CrtHuffmanCode(&HT,&HC,n);}实验结果实验体会哈夫曼编码算法:每次将集合中两个权值最小的二叉树合并成一棵新二叉树,n-1次合并后,成为最终的一棵哈夫曼树。
贪心算法流程图
贪心算法流程图贪心算法是一种在每一步选择中都采取当前状态下最优决策的算法,以期望能够获得全局最优解。
在实际应用中,贪心算法通常用来解决最优化问题,比如最小生成树、哈夫曼编码等。
贪心算法的流程图可以帮助我们更直观地理解其工作原理和实现过程。
首先,我们来看一下贪心算法的流程图。
在图中,首先我们需要确定问题的解空间,然后根据问题的特点选择合适的贪心策略。
接着,我们需要确定每一步的最优选择,并且不断更新当前状态,直到达到最优解或者无法继续优化为止。
在实际应用中,贪心算法的流程图可以根据具体问题的特点进行调整和优化。
下面我们以一个简单的例子来说明贪心算法的流程图。
假设现在有一组活动,每个活动都有一个开始时间和结束时间,我们希望安排尽可能多的活动,使得它们之间不会相互冲突。
这个问题可以用贪心算法来解决。
首先,我们需要对活动按照结束时间进行排序,然后从第一个活动开始,依次检查每个活动的开始时间是否晚于上一个活动的结束时间。
如果是,则将该活动加入最优解集合中,并更新当前状态。
如果不是,则将该活动舍弃。
通过这样的贪心策略,我们可以得到安排最多活动的最优解。
整个流程可以用一个简单的流程图来表示,从而更直观地理解贪心算法的工作原理。
贪心算法的流程图不仅可以帮助我们理解算法的实现过程,还可以指导我们在实际应用中进行调整和优化。
通过对问题解空间的划分和贪心策略的选择,我们可以更快地找到最优解,提高算法的效率和性能。
总之,贪心算法的流程图是我们理解和应用贪心算法的重要工具,它可以帮助我们更直观地理解算法的工作原理,指导我们进行问题求解和算法优化。
希望通过本文的介绍,读者能对贪心算法有一个更深入的理解,并在实际应用中取得更好的效果。
哈弗曼树编码实验报告
一、实验目的(1)了解前缀编码的概念,理解数据压缩的基本方法;(2)掌握最优子结构性质的证明方法;(3)掌握贪心法的设计思想并能熟练运用。
二、实验原理(1)证明哈夫曼树满足最优子结构性质;证明:设C为一给定的字母表,其中每个字母c∈C都定义有频度f[c]。
设x和y是C中具有最低频度的两个字母。
并设D为字母表移去x和y,再加上新字符z后的字母表,D=C-{x,y}∪{z};如C一样为D 定义f,其中f[z]=f[x]+f[y]。
设T为表示字母表D上最优前缀编码的任意一棵树。
那么,将T中的叶子节点z替换成具有x和y孩子的内部节点所得到的树T,表示字母表C上的一个最优前缀编码。
(2)设计贪心算法求解哈夫曼编码方案;解:哈夫曼编码是以贪心法为基础的,可以从最优子结构中求得问题的解。
所以,需要从一个问题中选出一个当前最优的解,再把这些解加起来就是最终问题的解。
可以构造一个优先队列priority_queue,每次求解子问题的解时,从优先级队列priority_queue中选取频率最小的两个字母(x、y)进行合并得到一个新的结点z,把x与y从优先级队列priority_queue中弹出,把压入到优先级队列priority_queue中。
如此反复进行,直到优先级队列priority_queue中只有一个元素(根节点)为止。
(3)设计测试数据,写出程序文档。
表四:表二中各元素的哈夫曼编码三、实验设备1台PC及VISUAL C++6.0软件四、代码#include <iostream>#include <queue>#include <vector>#include <iomanip>#include <string>#include<cctype>using namespace std;structcodeInformation{double priority;charcodeName;intlchild,rchild,parent;bool test;bool operator < (constcodeInformation& x) const {return !(priority<x.priority);} };bool check(vector<codeInformation>qa,const char c){for (int i=0 ;i<(int)(qa.size());i++){if(qa[i].codeName==c) return true;} return false;}voidaline(char c,int n){for (int i=0;i<n;i++)cout<<c;}intInputElement(vector<codeInformation>* Harffcode,priority_queue<codeInformation>* pq) {int i=1,j=1;codeInformation wk;while(i){aline('-',80);cout<<"请输入第"<<j<<"个元素的字符名称(Ascll码):"<<flush;cin>>wk.codeName;while(check(* Harffcode,wk.codeName)){cout<<"字符已存在,请输入一个其他的字符:";cin>>wk.codeName;}cout<<"请输入第"<<j<<"个元素的概率(权值):"<<flush;cin>>wk.priority;wk.lchild=wk.rchild=wk.parent=-1;wk.test=false;Harffcode->push_back(wk);pq->push(wk);j++;cout<<"1…………继续输入下一个元素信息!"<<endl;cout<<"2…………已完成输入,并开始构造哈夫曼树!"<<endl;cin>>i;if (i==2) i=0;}int count=1;j=Harffcode->size();int selectElement(vector<codeInformation>*,priority_queue<codeInformation>*);for (int k=j;k<2*j-1;k++){aline('*',80);cout<<"第"<<count<<"次合并:"<<endl;int i1=selectElement(Harffcode,pq);int i2=selectElement(Harffcode,pq);(*Harffcode)[i1].parent=(*Harffcode)[i2].parent=k;wk.lchild=wk.rchild=wk.parent=-1;wk.codeName='#';(*Harffcode).push_back(wk);wk.priority=(*Harffcode)[k].priority=(*Harffcode)[i1].priority+(*Harffcode)[i2].priority;(*Harffcode)[k].lchild=i1;(*Harffcode)[k].rchild=i2;wk.test=false;pq->push(wk); c ount++;cout<<"所合成的节点名称:#(虚节点)\t"<<"概率(权值):"<<(*Harffcode)[k].priority<<endl;}aline('*',80);return j;}voidshowChar(const char c){if(isspace(c))cout<<"#";cout<<c;}int selectElement(vector<codeInformation>*Harffcode,priority_queue<codeInformation>*qurgh){for (int i=0;i<(int)(*Harffcode).size();i++){if (((*Harffcode)[i].priority==(*qurgh).top().priority)&&((*Harffcode)[i].test==false)){cout<<"所选择的节点的信息:"<<"频率(权值):"<<setw(5)<<(*qurgh).top().priority<<"\t 名为:";showChar((*qurgh).top().codeName);cout<<endl;(*qurgh).pop();(*Harffcode)[i].test=true;return i;}}}voidhuffmanCode(vector<codeInformation>Harffcode,int n){for (int i1=0;i1<(int)Harffcode.size();i1++){cout<<"array["<<i1<<"]的概率(权值):"<<Harffcode[i1].priority<<"\t"<<"名为:";showChar(Harffcode[i1].codeName);cout<<"\t父节点的数组下标索引值:"<<Harffcode[i1].parent<<endl;}aline('&',80);for (int i=0;i<n;i++){string s=" "; int j=i;while(Harffcode[j].parent>=0){if (Harffcode[Harffcode[j].parent].lchild==j) s=s+"0";else s=s+"1";j=Harffcode[j].parent;}cout<<"\n概率(权值)为:"<<setw(8)<<Harffcode[i].priority<<" 名为:";showChar(Harffcode[i].codeName);cout<<"的符号的编码是:";for (int i=s.length();i>0;i--)cout<<s[i-1];}}voidchoise(){cout<<endl;aline('+',80);cout<<"\n1……………………继续使用该程序"<<endl;cout<<"2……………………退出系统"<<endl;}void welcome(){cout<<"\n"<<setw(56)<<"欢迎使用哈夫曼编码简易系统\n"<<endl;}int main(){welcome();system("color d1");int i=1,n;vector<codeInformation>huffTree; priority_queue<codeInformation>qpTree;while(i!=2){n=InputElement(&huffTree,&qpTree);huffmanCode(huffTree, n);choise();cin>>i;huffTree.clear();while(qpTree.empty()) qpTree.pop();}return 0;}五、实验过程原始记录( 测试数据、图表、计算等)程序测试结果及分析:图(2)输入第一组测试数据开始输入第一组测试数据,该组数据信息如表一所示。
数据结构实验哈夫曼树编码
实验四哈夫曼树编码一、实验目的1、掌握哈夫曼树的一般算法;2、掌握用哈夫曼树对字符串进行编码;3、掌握通过哈夫曼树对字符编码进行译码得过程。
二、实验基本要求1、设计数据结构;2、设计编码算法;3、分析时间复杂度和空间复杂度三、程序实现此程序中包含六个函数:Select()、HuffmanTree()、BianMa()、BianMa2()、YiMa()、Sum(),其功能及实现过程如下:#include <iostream.h>struct element//哈夫曼树结点类型{int weight;int lchild,rchild,parent;};struct Char//字符编码表信息{char node;int weight;char code[20];};void Select(element hT[],int &i1,int &i2,int k)//在hT[]中查找最小值及次小值{int min1=9999,min2=9999;i1=i2=0;for(int i=0;i<k;i++)if(hT[i].parent==-1)if(hT[i].weight<min1){min2=min1;i2=i1;min1=hT[i].weight;i1=i;}else if(hT[i].weight<min2){min2=hT[i].weight;i2=i;}}void HuffmanTree(element huffTree[],Char zifuma[],int n) //构建哈夫曼树{int i,k,i1,i2;for(i=0;i<2*n-1;i++) //初始化{huffTree[i].parent=-1;huffTree[i].lchild=-1;huffTree[i].rchild=-1;}for(i=0;i<n;i++) //构造n棵只含有根结点的二叉树huffTree[i].weight=zifuma[i].weight;for(k=n;k<2*n-1;k++) //n-1次合并{Select(huffTree,i1,i2,k); //在huffTree中找权值最小的两个结点i1和i2huffTree[i1].parent=k; //将i1和i2合并,则i1和i2的双亲是khuffTree[i2].parent=k;huffTree[k].weight=huffTree[i1].weight+huffTree[i2].weight;huffTree[k].lchild=i1;huffTree[k].rchild=i2;}}void BianMa(element huffTree[],Char zifuma[],int n)//根据哈夫曼树编码{int i,m,k,j,l;char temp[20];if(n==1){ zifuma[0].code[0]='0';zifuma[0].code[1]=0;}else {for(i=0;i<n;i++){j=0;k=huffTree[i].parent;l=i;while(k!=-1){if(huffTree[k].lchild==l)temp[j++]='0';else temp[j++]='1';l=k;k=huffTree[k].parent;}k=j-1;for(m=0;m<j;m++)zifuma[i].code[m]=temp[k--];zifuma[i].code[m]=0;}}void BianMa2(Char zifuma[],char zifu[],char bianma[],int n)//根据编码表对字符串编码{int i,j,k,m;i=k=0;while(zifu[i]){for(j=0;j<n;j++)if(zifu[i]==zifuma[j].node){m=0;while(zifuma[j].code[m])bianma[k++]=zifuma[j].code[m++];}i++;}bianma[k]=0;}void YiMa(element huffTree[],Char zifuma[],char bianma[],char yima[],int n)//根据编号的码元译成字符串{int i,j,k;i=j=0;if(n==1)while(bianma[i++])yima[j++]=zifuma[0].node;else{while(bianma[i]){k=2*(n-1);while(!(huffTree[k].lchild==-1&&huffTree[k].rchild==-1))if(bianma[i++]=='0')k=huffTree[k].lchild;elsek=huffTree[k].rchild;yima[j++]=zifuma[k].node;}}yima[j]=0;}void Sum(char zifu[],Char bianma[],int &n)//计算字符串中字符种类的个数及其出现次数{i=j=0;while(zifu[i]){for(int k=0;k<j;k++)if(bianma[k].node==zifu[i]){bianma[k].weight++;break;}if(k==j){bianma[j].node=zifu[i];bianma[j++].weight=1;}i++;}n=j;}void main(){int n,i;char a[50],b[200],c[50];element huffTree[100];Char w[50];cout<<"请输入需要编码的字符串:\n";cin.getline(a,49);Sum(a,w,n);cout<<"该字符串中共有"<<n<<"类字符。
哈夫曼编码贪心算法
哈夫曼编码贪心算法
一、哈夫曼编码
哈夫曼编码(Huffman Coding)是一种著名的数据压缩算法,也称作霍夫曼编码,由美国信息论家杰弗里·哈夫曼在1952年提出[1]。
哈夫曼编码可以有效地将资料压缩至最小,它的原理是将资料中出现频率最高的字元编码为最短的码字,而出现频率低的字元编码为较长的码字,从而显著提高了信息的保密性和容量。
二、贪心算法
贪心算法(Greedy Algorithm)是一种计算机算法,它试图找到一种满足条件的最佳解决方案,通常每一步都是做出在当前状态下最佳的选择,而不考虑将来可能发生的结果。
哈夫曼编码贪心算法是利用贪心算法来实现哈夫曼编码的。
该算法的步骤如下:
1. 首先统计出每一个字符出现的次数,并以此建立森林。
森林
中的每一棵树都用一个节点表示,每个节点的数值为字符出现的次数。
2. 从森林中挑选出两个出现次数最少的字符,将它们作为左右
子树合成一颗新的树,新树的根节点的数值为两个孩子节点的和。
3. 将新树加入森林中,并删除左右子树对应的原节点。
4. 重复上述步骤,直到森林中只剩一颗树,这颗树就是哈夫曼树。
5. 从哈夫曼树根节点出发,逐层往下搜索,左子节点编码为“0”,右子节点编码为“1”,最终得到每个字符的哈夫曼编码。
贪心算法设计与应用
实验报告课程算法设计与分析实验实验名称贪心算法设计与应用第 1 页一、实验目的理解贪心算法的基本原理,掌握贪心算法设计的基本方法及其应用;二、实验内容(一)Huffman编码和译码问题:1.问题描述给定n个字符在文件中的出现频率,利用Huffman树进行Huffman编码和译码。
设计一个程序实现:1.输入含n(n<=10)个字符的字符集S以及S中各个字符在文件中的出现频率,建立相应的Huffman树,求出S中各个字符的Huffman编码。
2.输入一个由S中的字符组成的序列L,求L的Huffman 编码。
3. 输入一个二进制位串B,对B进行Huffman译码,输出对应的字符序列;若不能译码,则输出无解信息。
提示:对应10 个字符的Huffman树的节点个数<211。
2.测试数据Inputn=5字符集合S={a, b, c, d, e},对应的频率分别为a: 20b: 7c: 10d: 4e: 18字符序列L=ebcca二进制位串B=01100111010010OutputS中各个字符的Huffman编码:(设Huffman树中左孩子的权<=右孩子的权)a: 11b: 010c: 00d: 011e: 10L的Huffman 编码:10010000011B对应的字符序列: dcaeeb若输入的B=01111101001,则无解(二) 加油问题(Problem Set 1702):1.问题描述一个旅行家想驾驶汽车从城市A到城市B(设出发时油箱是空的)。
给定两个城市之间的距离dis、汽车油箱的容量c、每升汽油能行驶的距离d、沿途油站数n、油站i离出发点的距离d[i]以及该站每升汽油的价格p[i],i=1,2,…,n。
设d[1]=0<d[2]<…<d[n]。
要花最少的油费从城市A到城市B,在每个加油站应加多少油,最少花费为多少?2.具体要求Input输入的第一行是一个正整数k,表示测试例个数。
贪心算法实现Huffman编码
算法分析与设计实验报告第次实验附录:完整代码#include <iostream>#include <string>#include<stdio.h>#include <time.h>#include <iomanip>#include <vector>#include<algorithm>using namespace std;class Huffman{public:char elementChar;//节点元素int weight;//权重char s;//哈夫曼编码Huffman* parent;//父节点Huffman* leftChild;//左孩子Huffman* rightChild;//右孩子public:Huffman();Huffman(char a, int weight);bool operator < (const Huffman &m)const { return weight < m.weight;} };Huffman::Huffman(){this->s = ' ';this->elementChar = '*';//非叶子节点this->parent = this->leftChild = this->rightChild = NULL;}Huffman::Huffman(char a, int weight):elementChar(a),weight(weight) {this->s = ' ';this->elementChar = '*';//非叶子节点this->parent = this->leftChild = this->rightChild = NULL;}//递归输出哈夫曼值void huffmanCode(Huffman & h){if(h.leftChild == NULL && h.rightChild == NULL){//如果是叶子节点,输出器哈夫曼编码string s;Huffman temp = h;while(temp.parent != NULL){s = temp.s + s;temp = *temp.parent;}cout << h.elementChar << "的哈夫曼编码是:" << s << endl; return;}//左孩子huffmanCode(*h.leftChild);//右孩子huffmanCode(*h.rightChild);}int main(){int l,p=0;double q=0.0;clock_t start,end,over;start=clock();end=clock();over=end-start;start=clock();string huffmanStr;cout << "请输入一串字符序列:" << endl;cin >> huffmanStr;//得到字符串信息int i=0,j,n,m[100],h,k=0;char cha[100];n = huffmanStr.length();cout << "字符串总共有字符" << n << "个" << endl;for(int i = 0; i < n; i++){j = 0; h = 0;while(huffmanStr[i] != huffmanStr[j])j++;if(j == i){cha[k] = huffmanStr[i];cout << "字符" << cha[k] << "出现";}//如果j !=i 则略过此次循环elsecontinue;for(j = i; j < n; j++){if(huffmanStr[i] == huffmanStr[j])h++;}cout << h << "次" << endl;m[k] = h;k++;}//哈夫曼编码Huffman huffmanTemp;vector < Huffman > huffmanQueue;//初始化队列for(int i = 0; i < k; i++){huffmanTemp.elementChar = cha[i];huffmanTemp.weight = m[i];huffmanQueue.push_back(huffmanTemp);}//得到哈夫曼树所有节点int huffmanQueue_index = 0;sort(huffmanQueue.begin(), huffmanQueue.end());while(huffmanQueue.size() < 2 * k - 1){//合成最小两个节点的父节点huffmanTemp.weight = huffmanQueue[huffmanQueue_index].weight + huffmanQueue[huffmanQueue_index + 1].weight;huffmanQueue[huffmanQueue_index].s = '0';huffmanQueue[huffmanQueue_index + 1].s = '1';huffmanTemp.elementChar = '*';//将父节点加入队列huffmanQueue.push_back(huffmanTemp);sort(huffmanQueue.begin(), huffmanQueue.end());huffmanQueue_index += 2;}//把所有节点构造成哈夫曼树int step = 0;//步长while(step + 2 < 2 * k){for(int j = step + 1; j <= huffmanQueue.size(); j++){if(huffmanQueue[j].elementChar == '*' && huffmanQueue[j].leftChild == NULL && (huffmanQueue[j].weight == huffmanQueue[step].weight + huffmanQueue[step+1].weight)){huffmanQueue[j].leftChild = &huffmanQueue[step];huffmanQueue[j].rightChild = &huffmanQueue[step+1];huffmanQueue[step].parent = huffmanQueue[step+1].parent = &huffmanQueue[j]; break;}}step += 2;}//序列最后一个元素,即哈弗曼树最顶端的节点huffmanTemp = huffmanQueue.back();huffmanCode(huffmanTemp);for(l=0;l<1000000000;l++)p=p+l;end=clock();printf("The time is %6.3f",(double)(end-start-over)/CLK_TCK);return 0;}。
哈夫曼编码的贪心算法时间复杂度
哈夫曼编码的贪心算法时间复杂度哈夫曼编码的贪心算法时间复杂度在信息技术领域中,哈夫曼编码是一种被广泛应用的数据压缩技术,它利用了贪心算法的思想来设计。
贪心算法是一种在每一步都选择当前状态下最优解的方法,从而希望通过一系列局部最优解达到全局最优解。
在哈夫曼编码中,这个想法被巧妙地运用,从而有效地实现了数据的高效压缩和解压缩。
哈夫曼编码是由大名鼎鼎的大卫·哈夫曼(David A. Huffman)在1952年提出的,它通过将频率最高的字符赋予最短的编码,最低的字符赋予最长的编码,从而实现了对数据的高效压缩。
这种编码技术在通信领域、存储领域和计算机科学领域都有着广泛的应用,是一种非常重要的数据处理技术。
在哈夫曼编码的实现过程中,贪心算法的时间复杂度是非常重要的。
时间复杂度是用来衡量算法所需时间的数量级,通常使用大O记号(O(n))来表示。
对于哈夫曼编码的贪心算法来说,其时间复杂度主要取决于以下几个步骤:1. 需要对数据进行统计,以获取每个字符出现的频率。
这个步骤的时间复杂度是O(n),其中n表示字符的数量。
在实际应用中,这个步骤通常由哈希表或统计排序来实现,因此时间复杂度可以控制在O(n)的数量级。
2. 接下来,需要构建哈夫曼树。
哈夫曼树是一种特殊的二叉树,它的构建过程需要将频率最低的两个节点合并成一个新的节点,然后再对新节点进行排序。
这个过程会持续n-1次,直到所有节点都被合并到一棵树中。
构建哈夫曼树的时间复杂度是O(nlogn),其中n表示字符的数量。
3. 根据哈夫曼树生成每个字符的编码。
这个过程涉及到对哈夫曼树进行遍历,并记录下每个字符对应的编码。
由于哈夫曼树的特性,每个字符的编码可以通过从根节点到叶子节点的路径来得到。
这个步骤的时间复杂度是O(n),因为对于每个字符都需要进行一次遍历。
哈夫曼编码的贪心算法时间复杂度主要由构建哈夫曼树的步骤决定,为O(nlogn)。
这意味着在实际应用中,哈夫曼编码的运行时间随着字符数量的增加而增加,并且增长速度为nlogn的数量级。
贪心算法程序设计
贪心算法程序设计贪心算法程序设计1. 什么是贪心算法贪心算法(Greedy Algorithm)是一种常见的算法思想,它在每一步选择中都采取当前状态下的最优选择,从而希望最终达到全局最优解。
贪心算法的核心思想是局部最优解能导致全局最优解。
2. 贪心算法的基本步骤贪心算法的基本步骤如下:1. 定义问题的优化目标。
2. 将问题分解成子问题。
3. 选择当前最优的子问题解,将子问题的解合并成原问题的解。
4. 检查是否达到了问题的优化目标,如果没有达到,则回到第二步,继续寻找下一个最优子问题解。
5. 在所有子问题解合并成原问题解后,得到问题的最优解。
3. 贪心算法的应用场景贪心算法的应用非常广泛,几乎可以用于解决各种优化问题。
以下几个常见的应用场景:1. 零钱找零问题:给定一定面额的纸币和硬币,如何找零使得所需纸币和硬币的数量最小?2. 区间调度问题:给定一些活动的开始时间和结束时间,如何安排活动使得可以办理的活动数量最大?3. 背包问题:给定一些具有重量和价值的物品,如何选择物品使得背包的总价值最大?4. 最小树问题:给定一个带权无向图,如何找到一棵树,使得它的边权之和最小?5. 哈夫曼编码问题:给定一组字符和相应的频率,如何构造一个满足最低编码长度限制的二进制编码?4. 贪心算法的优缺点贪心算法的优点是简单、高效,可以快速得到一个近似最优解。
而且对于一些问题,贪心算法能够得到全局最优解。
贪心算法的缺点在于它不一定能够得到全局最优解,因为在每一步只考虑局部最优解,无法回溯到之前的选择。
5. 贪心算法的程序设计在使用贪心算法进行程序设计时,通常需要以下几个步骤:1. 定义问题的优化目标。
2. 将问题分解成子问题,并设计子问题的解决方案。
3. 设计贪心选择策略,选择局部最优解。
4. 设计贪心算法的递推或迭代公式。
5. 判断贪心算法是否能够得到全局最优解。
6. 编写程序实现贪心算法。
6.贪心算法是一种常见的算法思想,它在每一步选择中都采取当前状态下的最优选择,从而希望最终达到全局最优解。
哈夫曼编解码算法设计
哈夫曼编解码算法设计1.引言1.1 概述概述部分将对哈夫曼编解码算法进行简要介绍,包括该算法的产生背景、主要特点以及应用领域等方面的内容。
哈夫曼编解码算法是一种基于权重分布的压缩算法,它通过对输入的数据流进行编码和解码来实现数据的压缩和恢复。
该算法由大卫·哈夫曼(David A. Huffman)于1952年提出,是一种被广泛应用于信息论和数据压缩领域的有效算法。
该算法的主要特点是根据输入数据的权重分布构建一棵哈夫曼树,通过不等长的编码方式来表示输入数据中出现频率较高的字符或数据块。
编码时,出现频率较高的字符使用较短的二进制编码,而出现频率较低的字符则使用较长的二进制编码,以此来实现数据的压缩效果。
哈夫曼编码算法在数据压缩领域有着广泛的应用。
由于压缩后的数据长度较短,可以大大节省存储空间和传输带宽,因此被广泛应用于各种数据传输和存储场景中,如文件压缩、图像压缩、语音压缩等。
此外,哈夫曼编码算法的设计思想也对后续的数据压缩算法提供了重要的借鉴和参考价值。
本文将详细介绍哈夫曼编码算法的原理、设计与实现,并通过实例和实验验证算法的性能和效果。
通过对哈夫曼编码算法的研究与分析,可以更好地理解该算法的优势和不足,并为后续的算法改进和优化提供参考。
最后,本文将总结哈夫曼编码算法的主要特点和应用场景,并对未来的研究方向提出展望。
1.2 文章结构文章结构部分主要介绍本文的各个部分以及每个部分的内容安排。
在本文中,共包含引言、正文和结论三个部分。
引言部分主要介绍了整篇文章的背景和目的。
在概述部分,简要说明了哈夫曼编解码算法的概念和作用,以及该算法在通信领域的重要性。
然后,文章结构部分具体说明了本文的组织结构,以便读者能够清晰地了解文章的整体脉络。
正文部分是本文的主体,分为两个部分:哈夫曼编码算法原理和哈夫曼编码算法设计与实现。
在哈夫曼编码算法原理部分,将详细介绍哈夫曼编码算法的基本原理,包括频率统计、构建哈夫曼树和生成哈夫曼编码等步骤。
贪心算法-哈弗曼编码、汽车加油问题
1.问题描述哈夫曼编码(贪心策略)——要求给出算法思想、编码程序和译码程序,对样本数据“哈夫曼编码实验数据.dat”,要求提交符号的具体编码以及编码后的文件。
2.求解问题的贪心算法描述压缩数据由以下步骤组成:a)检查字符在数据中的出现频率。
b)构建哈夫曼树。
c)创建哈夫曼编码表。
d)生成压缩后结果,由一个文件头和压缩后的数据组成。
3.算法实现的关键技巧1.最小堆两种基本操作:插入新元素,抽取最小元素。
(1)插入新元素:把该元素放在二叉树的末端,然后从该新元素开始,向根节点方向进行交换,直到它到达最终位置。
(2)抽取最小元素:把根节点取走。
然后把二叉树的末端节点放到根节点上,然而把该节点向子结点反复交换,直到它到达最终位置。
2. 构建哈夫曼树:a)把所有出现的字符作为一个节点(单节点树),把这些树组装成最小堆;b)从该优先级队列中连续抽取两个频率最小的树分别作为左子树,右子树,将他们合并成一棵树(频率=两棵树频率之和),然后把这棵树插回队列中。
c)重复步骤b,每次合并都将使优先级队列的尺寸减小1,直到最后队列中只剩一棵树为止,就是我们需要的哈夫曼树。
3.压缩数据: 遍历输入的文本,对每个字符,根据编码表依次把当前字符的编码写入到编码结果中去。
File Header(文件头):unsigned int size; 被编码的文本长度(字符数);unsigned char freqs[ NUM_CHARS ]; 字符频率表compressed; (Bits: 压缩后的数据);4.贪心选择性质&最优子结构性质证明:即证明最优前缀码问题具有弹性选择性质和最优子结构性质.(1)贪心选择性质设C是编码字符集,C中字符c的频率为f(c)。
又设x,y是C中具有最小频率的两个字符,则存在C的最优前缀码使x,y具有相同码长且仅最后一位编码不同。
证明:设二叉树T表示C的任意一个最优前缀码。
对C左适当修改得到T“,使得在新树中,x和y是最深叶子且为兄弟。
哈夫曼编码的贪心算法时间复杂度
哈夫曼编码是一种广泛应用于数据压缩领域的编码方式,而哈夫曼编码的贪心算法是实现这一编码方式的重要方法之一。
在本文中,我将深入探讨哈夫曼编码及其贪心算法的时间复杂度,并就此展开全面评估。
让我们简要回顾一下哈夫曼编码的基本概念。
哈夫曼编码是一种变长编码方式,通过将出现频率高的字符用较短的编码表示,而将出现频率低的字符用较长的编码表示,从而实现数据的有效压缩。
在这一编码方式中,贪心算法被广泛应用于构建哈夫曼树,以实现最优编码方案的选择。
那么,接下来我们将重点关注哈夫曼编码的贪心算法时间复杂度。
哈夫曼编码的贪心算法的时间复杂度主要取决于两个方面:构建哈夫曼树的时间复杂度和编码字符串的时间复杂度。
让我们来看构建哈夫曼树的时间复杂度。
在哈夫曼编码的贪心算法中,构建哈夫曼树的时间复杂度主要取决于构建最小堆(或最大堆)以及合并节点的操作。
在构建最小堆的过程中,需要对所有字符按照其频率进行排序,并将其依次插入最小堆中,这一操作的时间复杂度为O(nlogn)。
而在合并节点的过程中,需要不断从最小堆中取出两个频率最小的节点,并将其合并为一个新节点,然后再将新节点插入最小堆中,这一操作需要进行n-1次,所以合并节点的时间复杂度为O(nlogn)。
构建哈夫曼树的时间复杂度为O(nlogn)。
我们来看编码字符串的时间复杂度。
在使用哈夫曼编码对字符串进行编码时,需要根据构建好的哈夫曼树来进行编码,这一过程的时间复杂度主要取决于字符串的长度和哈夫曼树的深度。
由于哈夫曼树是一个二叉树,所以在最坏情况下,编码一个字符的时间复杂度为O(n),其中n为哈夫曼树的深度。
编码字符串的时间复杂度为O(kn),其中k 为字符串的长度。
哈夫曼编码的贪心算法的时间复杂度主要包括构建哈夫曼树的时间复杂度和编码字符串的时间复杂度,其中构建哈夫曼树的时间复杂度为O(nlogn),编码字符串的时间复杂度为O(kn)。
哈夫曼编码的贪心算法的时间复杂度为O(nlogn+kn)。
贪心法求哈夫曼编码
实验题目:设需要编码的字符集为{d1, d2, …, dn},它们出现的频率为{w1, w2, …, wn},应用哈夫曼树构造最短的不等长编码方案。
实验目的:(1)了解前缀编码的概念,理解数据压缩的基本方法;(2)掌握最优子结构性质的证明方法;(3)掌握贪心法的设计思想并能熟练运用。
实验内容:实验代码:#include <iostream>using namespace std;/** 霍夫曼树结构*/class HuffmanTree{public:unsigned int Weight, Parent, lChild, rChild;};typedef char **HuffmanCode;/** 从结点集合中选出权值最小的两个结点* 将值分别赋给s1和s2*/void Select(HuffmanTree* HT,int Count,int *s2,int *s1){unsigned int temp1=0;unsigned int temp2=0;unsigned int temp3;for(int i=1;i<=Count;i++){if(HT[i].Parent==0){if(temp1==0){temp1=HT[i].Weight;(*s1)=i;}else{if(temp2==0){temp2=HT[i].Weight;(*s2)=i;if(temp2<temp1){temp3=temp2;temp2=temp1;temp1=temp3;temp3=(*s2);(*s2)=(*s1);(*s1)=temp3;}}else{if(HT[i].Weight<temp1){temp2=temp1;temp1=HT[i].Weight;(*s2)=(*s1);(*s1)=i;}if(HT[i].Weight>temp1&&HT[i].Weight<temp2){temp2=HT[i].Weight;(*s2)=i;}}}}}}/** 霍夫曼编码函数*/void HuffmanCoding(HuffmanTree * HT,HuffmanCode * HC,int *Weight,int Count){int i;int s1,s2;int TotalLength;char* cd;unsigned int c;unsigned int f;int start;if(Count<=1) return;TotalLength=Count*2-1;HT = new HuffmanTree[(TotalLength+1)*sizeof(HuffmanTree)];for(i=1;i<=Count;i++){HT[i].Parent=0;HT[i].rChild=0;HT[i].lChild=0;HT[i].Weight=(*Weight);Weight++;}for(i=Count+1;i<=TotalLength;i++){HT[i].Weight=0;HT[i].Parent=0;HT[i].lChild=0;HT[i].rChild=0;}//建造霍夫曼树for(i=Count+1;i<=TotalLength;++i){Select(HT, i-1, &s1, &s2);HT[s1].Parent = i;HT[s2].Parent = i;HT[i].lChild = s1;HT[i].rChild = s2;HT[i].Weight = HT[s1].Weight + HT[s2].Weight;}//输出霍夫曼编码(*HC)=(HuffmanCode)malloc((Count+1)*sizeof(char*));cd = new char[Count*sizeof(char)];cd[Count-1]='\0';for(i=1;i<=Count;++i){start=Count-1;for(c = i,f = HT[i].Parent; f != 0; c = f, f = HT[f].Parent){if(HT[f].lChild == c)cd[--start]='0';elsecd[--start]='1';(*HC)[i] = new char [(Count-start)*sizeof(char)];strcpy((*HC)[i], &cd[start]);}}delete [] HT;delete [] cd;}/** 在字符串中查找某个字符* 如果找到,则返回其位置*/int LookFor(char *str, char letter, int count){int i;for(i=0;i<count;i++){if(str[i]==letter) return i;}return -1;}void OutputWeight(char *Data,int Length,char **WhatLetter,int **Weight,int *Count){int i;char* Letter = new char[Length];int* LetterCount = new int[Length];int AllCount=0;int Index;int Sum=0;float Persent=0;for(i=0;i<Length;i++){if(i==0){Letter[0]=Data[i];LetterCount[0]=1;AllCount++;}else{Index=LookFor(Letter,Data[i],AllCount);if(Index==-1){Letter[AllCount]=Data[i];LetterCount[AllCount]=1;AllCount++;}else{LetterCount[Index]++;}}}for(i=0;i<AllCount;i++){Sum=Sum+LetterCount[i];}(*Weight) = new int[AllCount];(*WhatLetter) = new char[AllCount];for(i=0;i<AllCount;i++){Persent=(float)LetterCount[i]/(float)Sum;(*Weight)[i]=(int)(100*Persent);(*WhatLetter)[i]=Letter[i];}(*Count)=AllCount;delete [] Letter;delete [] LetterCount;}int main(){HuffmanTree * HT = NULL;HuffmanCode HC;char Data[100];char *WhatLetter;int *Weight;int Count;cout<<"请输入一行文本数据:"<<endl;cin>>Data;cout<<endl;OutputWeight(Data,strlen(Data),&WhatLetter,&Weight,&Count); HuffmanCoding(HT, &HC, Weight, Count);cout<<"字符出现频率编码结果"<<endl;for(int i = 0; i<Count; i++){cout<<WhatLetter[i]<<" ";cout<<Weight[i]<<"%\t";cout<<HC[i+1]<<endl;}cout<<endl;system("pause");return 0;}实验结果截图:哈夫曼算法描述:(1)初始化:将初始森林的各根结点(双亲)和左右孩子指针置为-1;(2)输入叶子权:叶子在向量T的前n个分量中,构成初始森林的n个根结点;(3)合并:对森林中的树进行n-1次合并,共产生n-1个新结点,依次放入向量T的第i 个分量(n<=i<=m-1)中,每次合并的步骤是:a、在当前森林的所有结点中,选取具有最小权值和次小权值的两个结点,分别用p1和p2记住这两个根节点在向量T中的下标;b、将根为T[p1]和T[p2]的两棵树合并,使其成为新结点T[i]的左右孩子,得到一棵以新结点T[i]为根的二叉树若取pi为叶结点的权,取编码长度li为叶结点的路径长度,则∑ pi ⨯li最小的问题就是带权路径长度最小的哈夫曼树的构造问题。
哈夫曼编码(贪心算法)
哈夫曼编码(贪⼼算法)
1.哈夫曼编码
根据字符在⽂件中出现的频率,⽤⼆进制串表⽰各字符的最佳编码⽅式
2.基本思想
1)所有字符均作为叶⼦节点放⼊⼀个树集合T
2)字符的使⽤频率作为权值
3)贪⼼策略:每次从树集合T中取出没有双亲且权值最⼩的两棵树作为左右⼦树构造⼀棵新树放回树集合T中,直到T中只剩下⼀棵树4)特点:以⾃底向上的⽅式通过n-1次合并构建出⼀棵树;权值越⼤的叶⼦离根越远
3.算法设计
1.定义⼀个树的结构体,包含权值、双亲(节点编号)、左孩⼦(节点编号)、右孩⼦(节点编号)、表⽰的字符
2.定义⼀个编码的结构体,包括储存编码的数组和编码开始的下标
时间复杂度
O(n2)
代码实现
未完待续。
实验三.哈夫曼编码的贪心算法设计
实验四 哈夫曼编码的贪心算法设计(4学时)[实验目的]1. 根据算法设计需要,掌握哈夫曼编码的二叉树结构表示方法;2. 编程实现哈夫曼编译码器;3. 掌握贪心算法的一般设计方法。
实验目的和要求(1)了解前缀编码的概念,理解数据压缩的基本方法;(2)掌握最优子结构性质的证明方法;(3)掌握贪心法的设计思想并能熟练运用(4)证明哈夫曼树满足最优子结构性质;(5)设计贪心算法求解哈夫曼编码方案;(6)设计测试数据,写出程序文档。
实验内容设需要编码的字符集为{d 1, d 2, …, dn },它们出现的频率为{w 1, w 2, …, wn },应用哈夫曼树构造最短的不等长编码方案。
核心源代码#include <>#include <>#include <>typedef struct{unsigned int weight; arent==0){min=i;break;}}for(i=1; i<=n; i++) ∑=j i k k a{if((*ht)[i].parent==0){if((*ht)[i].weight<(*ht)[min].weight)min=i;}}*s1=min;for(i=1; i<=n; i++){if((*ht)[i].parent==0 && i!=(*s1)){min=i;break;}}for(i=1; i<=n; i++){if((*ht)[i].parent==0 && i!=(*s1)){if((*ht)[i].weight<(*ht)[min].weight)min=i;}}*s2=min;}eight=w[i];(*ht)[i].LChild=0;(*ht)[i].parent=0;(*ht)[i].RChild=0;}for(i=n+1; i<=m; i++) eight=0;(*ht)[i].LChild=0;(*ht)[i].parent=0;(*ht)[i].RChild=0;}printf("\n哈夫曼树为: \n");for(i=n+1; i<=m; i++) arent=i;(*ht)[s2].parent=i;(*ht)[i].LChild=s1;(*ht)[i].RChild=s2;(*ht)[i].weight=(*ht)[s1].weight+(*ht)[s2].weight;printf("%d (%d, %d)\n",(*ht)[i].weight,(*ht)[s1].weight,(*ht)[s2].weight); }printf("\n");}arent; p!=0; c=p,p=(*ht)[p].parent) Child==c){cd[--start]='1'; eight,hc[i]);for(i=1; i<=n; i++)w+=(*ht)[i].weight*a[i];printf(" 带权路径为:%d\n",w);}void main(){HuffmanTree HT;HuffmanCode HC;int *w,i,n,wei;printf("**哈夫曼编码**\n" );printf("请输入结点个数:" );scanf("%d",&n);w=(int *)malloc((n+1)*sizeof(int));printf("\n输入这%d个元素的权值:\n",n);for(i=1; i<=n; i++){printf("%d: ",i);fflush(stdin);scanf("%d",&wei);w[i]=wei;}CrtHuffmanTree(&HT,w,n); CrtHuffmanCode(&HT,&HC,n);}实验结果实验体会哈夫曼编码算法:每次将集合中两个权值最小的二叉树合并成一棵新二叉树,n-1次合并后,成为最终的一棵哈夫曼树。
算法设计哈夫曼编码
if(h->element==NULL){
printf("out of space");
exit(-1);
}
h->element[0].f=-1;
for(i=1;i<=n;i++){
pushPrioQueue(h,tree[i]);//入队列
}
return h;
}
/*功能:用于生成哈夫曼树*/
huffman ctrHuffmanTree(int n){
while(encoding[j]!='\0'){
i=M;//从根开始遍历,至到叶子结点
while(tree[i].lchild!=-1 ||tree[i].rchild!=-1){
if(encoding[j]=='1'){
i=tree[i].rchild;//指向右孩子
}
else
{
i=tree[i].lchild;//左孩子
break;
}
}
ch=s[i];
}
printf("\n\n");
//输入编码,输出字符串
printf("input the binary string to deencoding:");
gets(encoding);
j=0;
//源码为:
printf("源码为");
puts(encoding);
printf("解码结果为:");
int m=2*n-1;//1~n存储叶子结点,n+1~m存储树的n-1个内部结点
huffman tree=(huffman)malloc(sizeof(huffmanNode)*(m+1));//用于存储哈夫曼树各结点
贪心算法
max vi xi
i 1
n
于是,背包问题归结为寻找一个满足约束条 件式,并使目标函数式达到最大的解向量X=(x1, x2, …, xn)。
至少有三种看似合理的贪心策略: (1)选择价值最大的物品,因为这可以尽可能快 地增加背包的总价值。但是,虽然每一步选择获得 了背包价值的极大增长,但背包容量却可能消耗得 太快,使得装入背包的物品个数减少,从而不能保 证目标函数达到最大。 (2)选择重量最轻的物品,因为这可以装入尽可 能多的物品,从而增加背包的总价值。但是,虽然 每一步选择使背包的容量消耗得慢了,但背包的价 值却没能保证迅速增长,从而不能保证目标函数达 到最大。 (3)选择单位重量价值最大的物品,在背包价值 增长和背包容量消耗两者之间寻找平衡。
算法
main( ) { int i,j,n,GZ,A; int B[8]={0,100,50,20,10,5,2,1},S[8]; input(n); for(i=1;i<=n;i++) { input(GZ); for(j=1,j<=7;j++) { A=GZ/B[j]; S[j]=S[j]+A; GZ=GZ-A*B[j];} } for(i=1;i<=7;i++) print(B[i], “----”, S[i]); }
∞ b 4 0 a 8 h ∞ 4 b 4 0 a 8 h 8 11 7 11 7
8 ∞ i 6 1 2
∞ c
7
∞ d 14 9 e ∞ 10
4 g ∞
2
f ∞
(a)
8 ∞ i 6 1 g ∞ 2 4 f ∞ ∞ c 7 ∞ d 14 9 e ∞ 10 2
贪心法求解活动安排问题的关键是如何选择贪心策略,使 得按照一定的顺序选择相容活动,并能安排尽量多的活动。至 少有两种看似合理的贪心策略: (1)最早开始时间:这样可以增大资源的利用率。 (2)最早结束时间:这样可以使下一个活动尽早开始。
贪心算法
顾名思义,贪心算法总是作出在当前看来最好的选择。
也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。
当然,希望贪心算法得到的最终结果也是整体最优的。
虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。
如单源最短路经问题,最小生成树问题等。
在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。
活动安排问题就是要在所给的活动集合中选出最大的相容活动子集合,是可以用贪心算法有效求解的很好例子。
该问题要求高效地安排一系列争用某一公共资源的活动。
贪心算法提供了一个简单、漂亮的方法使得尽可能多的活动能兼容地使用公共资源。
设有n个活动的集合E={1,2,…,n},其中每个活动都要求使用同一资源,如演讲会场等,而在同一时间内只有一个活动能使用这一资源。
每个活动i都有一个要求使用该资源的起始时间si和一个结束时间fi,且si <fi 。
如果选择了活动i,则它在半开时间区间[si, fi)内占用资源。
若区间[si, fi)与区间[sj, fj)不相交,则称活动i与活动j是相容的。
也就是说,当si≥fj或sj≥fi时,活动i与活动j相容。
template<class Type>void GreedySelector(int n, Type s[], Type f[], bool A[]){A[1]=true;int j=1;for (int i=2;i<=n;i++) {if (s[i]>=f[j]) { A[i]=true; j=i; }else A[i]=false;}}由于输入的活动以其完成时间的非减序排列,所以算法greedySelector每次总是选择具有最早完成时间的相容活动加入集合A中。
直观上,按这种方法选择相容活动为未安排活动留下尽可能多的时间。
也就是说,该算法的贪心选择的意义是使剩余的可安排时间段极大化,以便安排尽可能多的相容活动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四 哈夫曼编码的贪心算法设计(4学时)
[实验目的]
1. 根据算法设计需要,掌握哈夫曼编码的二叉树结构表示方法;
2. 编程实现哈夫曼编译码器;
3. 掌握贪心算法的一般设计方法。
实验目的和要求
(1)了解前缀编码的概念,理解数据压缩的基本方法;
(2)掌握最优子结构性质的证明方法;
(3)掌握贪心法的设计思想并能熟练运用
(4)证明哈夫曼树满足最优子结构性质;
(5)设计贪心算法求解哈夫曼编码方案;
(6)设计测试数据,写出程序文档。
实验内容
设需要编码的字符集为{d 1, d 2, …, dn },它们出现的频率为 {w 1, w 2, …, wn },应用哈夫曼树构造最短的不等长编码方案。
核心源代码
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef struct
{
unsigned int weight; //用来存放各个结点的权值
unsigned int parent,LChild,RChild; //指向双亲、孩子结点的指针
} HTNode, *HuffmanTree; //动态分配数组,存储哈夫曼树
∑=j
i k k a
typedef char *HuffmanCode; //动态分配数组,存储哈夫曼编码//选择两个parent为0,且weight最小的结点s1和s2
void Select(HuffmanTree *ht,int n,int *s1,int *s2)
{
int i,min;
for(i=1; i<=n; i++)
{
if((*ht)[i].parent==0)
{
min=i;
break;
}
}
for(i=1; i<=n; i++)
{
if((*ht)[i].parent==0)
{
if((*ht)[i].weight<(*ht)[min].weight)
min=i;
}
}
*s1=min;
for(i=1; i<=n; i++)
{
if((*ht)[i].parent==0 && i!=(*s1))
{
min=i;
break;
}
}
for(i=1; i<=n; i++)
{
if((*ht)[i].parent==0 && i!=(*s1))
{
if((*ht)[i].weight<(*ht)[min].weight)
min=i;
}
}
*s2=min;
}
//构造哈夫曼树ht,w存放已知的n个权值
void CrtHuffmanTree(HuffmanTree *ht,int *w,int n) {
int m,i,s1,s2;
m=2*n-1; //总共的结点数
*ht=(HuffmanTree)malloc((m+1)*sizeof(HTNode));
for(i=1; i<=n; i++) //1--n号存放叶子结点,初始化
{
(*ht)[i].weight=w[i];
(*ht)[i].LChild=0;
(*ht)[i].parent=0;
(*ht)[i].RChild=0;
}
for(i=n+1; i<=m; i++) //非叶子结点的初始化
{
(*ht)[i].weight=0;
(*ht)[i].LChild=0;
(*ht)[i].parent=0;
(*ht)[i].RChild=0;
}
printf("\n哈夫曼树为: \n");
for(i=n+1; i<=m; i++) //创建非叶子结点,建哈夫曼树
{ //在(*ht)[1]~(*ht)[i-1]的范围内选择两个parent为0且weight最小的结点,其序号分别赋值给s1、s2 Select(ht,i-1,&s1,&s2);
(*ht)[s1].parent=i;
(*ht)[s2].parent=i;
(*ht)[i].LChild=s1;
(*ht)[i].RChild=s2;
(*ht)[i].weight=(*ht)[s1].weight+(*ht)[s2].weight;
printf("%d (%d, %d)\n",(*ht)[i].weight,(*ht)[s1].weight,(*ht)[s2].weight); }
printf("\n");
}
//从叶子结点到根,逆向求每个叶子结点对应的哈夫曼编码
void CrtHuffmanCode(HuffmanTree *ht, HuffmanCode *hc, int n)
{
char *cd; //定义的存放编码的空间
int a[100];
int i,start,p,w=0;
unsigned int c;
hc=(HuffmanCode *)malloc((n+1)*sizeof(char *)); //分配n个编码的头指针cd=(char *)malloc(n*sizeof(char)); //分配求当前编码的工作空间
cd[n-1]='\0'; //从右向左逐位存放编码,首先存放编码结束符
for(i=1; i<=n; i++) //求n个叶子结点对应的哈夫曼编码
{
a[i]=0;
start=n-1; //起始指针位置在最右边
for(c=i,p=(*ht)[i].parent; p!=0; c=p,p=(*ht)[p].parent) //从叶子到根结点求编码{
if( (*ht)[p].LChild==c)
{
cd[--start]='1'; //左分支标1
a[i]++;
}
else
{
cd[--start]='0'; //右分支标0
a[i]++;
}
}
hc[i]=(char *)malloc((n-start)*sizeof(char)); //为第i个编码分配空间
strcpy(hc[i],&cd[start]); //将cd复制编码到hc
}
free(cd);
for(i=1; i<=n; i++)
printf(" 权值为%d的哈夫曼编码为:%s\n",(*ht)[i].weight,hc[i]);
for(i=1; i<=n; i++)
w+=(*ht)[i].weight*a[i];
printf(" 带权路径为:%d\n",w);
. }
void main()
{
HuffmanTree HT;
HuffmanCode HC;
int *w,i,n,wei;
printf("**哈夫曼编码**\n" );
printf("请输入结点个数:" );
scanf("%d",&n);
w=(int *)malloc((n+1)*sizeof(int));
printf("\n输入这%d个元素的权值:\n",n);
for(i=1; i<=n; i++)
{
printf("%d: ",i);
fflush(stdin);
scanf("%d",&wei);
w[i]=wei;
}
CrtHuffmanTree(&HT,w,n);
CrtHuffmanCode(&HT,&HC,n);
}
实验结果
.
实验体会
哈夫曼编码算法:每次将集合中两个权值最小的二叉树合并成一棵新二叉树,n-1次合并后,成为最终的一棵哈夫曼树。
这既是贪心法的思想:从某一个最初状态出发,根据当前的局部最优策略,以满足约束方程为条件,以使目标函数最快(或最慢)为原则,在候选集合中进行一系列的选择,以便尽快构成问题的可行解。
每次选择两个权值最小的二叉树时,规定了较小的为左子树。