电力系统稳态分析实验报告

合集下载

电力系统分析实验报告

电力系统分析实验报告

电力系统分析实验报告电力系统分析实验报告引言:电力系统是现代社会不可或缺的基础设施,它为我们的生活提供了稳定的电力供应。

为了确保电力系统的可靠性和安全性,对电力系统进行分析是非常重要的。

本实验旨在通过对电力系统的分析,探讨电力系统的性能和效能,以及可能存在的问题和改进措施。

一、电力系统的基本原理电力系统由发电厂、输电网和配电网组成。

发电厂负责将化学能、机械能等转化为电能,输电网将发电厂产生的电能输送到各个地区,配电网将电能供应给终端用户。

电力系统的基本原理是通过电压和电流的传输,实现电能的转换和分配。

二、电力系统的分析方法1. 潮流计算潮流计算是电力系统分析中最基本的方法之一。

通过潮流计算,可以确定电力系统中各节点的电压和电流分布情况,从而评估系统的稳定性和负载能力。

潮流计算需要考虑各个节点的功率平衡和电压平衡,以及各个元件的参数和状态。

2. 短路分析短路分析是评估电力系统安全性的重要手段。

通过短路分析,可以确定电力系统中各个节点和支路的短路电流,从而评估设备的额定容量和保护措施的有效性。

短路分析需要考虑系统的拓扑结构、设备参数和保护装置的动作特性。

3. 阻抗分析阻抗分析是评估电力系统稳定性和负载能力的重要方法。

通过阻抗分析,可以确定电力系统中各个节点和支路的阻抗,从而评估系统的电压稳定性和电力传输能力。

阻抗分析需要考虑系统的拓扑结构、设备参数和负载特性。

三、实验结果与讨论在本实验中,我们选取了一个具体的电力系统进行分析。

通过潮流计算,我们确定了系统中各个节点的电压和电流分布情况。

通过短路分析,我们评估了系统的安全性,并确定了保护装置的动作特性。

通过阻抗分析,我们评估了系统的稳定性和负载能力。

实验结果显示,系统中存在一些节点电压偏低的问题,可能会影响设备的正常运行。

为了解决这个问题,我们建议采取增加变压器容量、调整负载分配和优化配电网结构等措施。

此外,我们还发现系统中某些支路的短路电流超过了设备的额定容量,可能导致设备的损坏和安全事故。

电力各种实验报告

电力各种实验报告

一、实验目的本次实验旨在使学生掌握电力系统的基本原理和实验方法,提高学生的实际操作能力,加深对电力系统理论知识的理解。

通过实验,学生应能熟练操作电力系统实验设备,掌握电力系统稳态和暂态分析的基本方法,并能够分析实验结果,得出正确的结论。

二、实验内容1. 电力系统稳态分析实验(1)实验目的:掌握电力系统稳态分析的基本方法,了解电力系统稳态运行的特点。

(2)实验内容:测量电力系统中的电压、电流、功率等参数,分析电力系统稳态运行的特点。

(3)实验步骤:①接线:按照实验电路图,正确连接实验设备。

②调试:检查实验设备是否正常,调整实验参数。

③测量:测量电力系统中的电压、电流、功率等参数。

④数据分析:对实验数据进行处理和分析,得出实验结论。

2. 电力系统暂态分析实验(1)实验目的:掌握电力系统暂态分析的基本方法,了解电力系统暂态运行的特点。

(2)实验内容:测量电力系统在故障发生时的电压、电流、功率等参数,分析电力系统暂态运行的特点。

(3)实验步骤:①接线:按照实验电路图,正确连接实验设备。

②调试:检查实验设备是否正常,调整实验参数。

③模拟故障:模拟电力系统故障,测量故障发生时的电压、电流、功率等参数。

④数据分析:对实验数据进行处理和分析,得出实验结论。

3. 电力系统保护实验(1)实验目的:掌握电力系统保护的基本原理和实验方法,提高学生的实际操作能力。

(2)实验内容:学习电力系统保护的基本原理,了解不同保护装置的工作原理。

(3)实验步骤:①学习:学习电力系统保护的基本原理,了解不同保护装置的工作原理。

②实验:按照实验电路图,正确连接实验设备,进行保护实验。

③数据分析:对实验数据进行处理和分析,得出实验结论。

4. 电力系统仿真实验(1)实验目的:掌握电力系统仿真软件的使用方法,提高学生的实际操作能力。

(2)实验内容:使用电力系统仿真软件进行电力系统稳态和暂态分析。

(3)实验步骤:①学习:学习电力系统仿真软件的使用方法。

电力系统稳态分析实验报告.doc

电力系统稳态分析实验报告.doc

电力系统稳态分析实验报告.doc
实验一:强化震荡特性的理解
(1)实验目的:
利用Matlab软件对同步电动机单机振荡特性进行分析,深入了解振荡的特性以及振荡发生的原因,确立振荡的控制方法。

当同步电动机输出电网功率达到一定值时,受控系统将进入跳动状态。

此时,跳动调节系统中的跳动振荡器开始振动,主要受过电压和受电荷影响。

1)利用MATLAB软件模拟跳动可控同步电动机为一振荡系统。

2)搭建跳动系统并得到如下图所示的振动曲线。

2)利用模拟结果对振荡频率和振荡幅值进行观察。

(5)实验结果及分析:
通过实验观察,同步电动机单机振荡特性的真实情况比理论值要复杂得多。

跳动是一种不稳定特性,因此通常要在振荡阈值以下,首先保持电压稳定。

(6)结论:
通过本次实验,可得到同步电动机单机振荡特性的正确认识和深入了解,为控制跳动系统提供微小的措施和一种可能性。

系统稳定性分析实验报告

系统稳定性分析实验报告

系统稳定性分析实验报告系统稳定性分析实验报告一、引言系统稳定性是评估一个系统的重要指标,它关乎系统的可靠性、可用性和安全性。

本实验旨在通过对一个实际系统的稳定性分析,探讨系统在不同条件下的表现,并提出相应的改进措施。

二、实验背景本次实验选择了一个电力系统作为研究对象,该系统包括发电机、输电线路和用电设备。

电力系统的稳定性对于电力供应的连续性和质量至关重要,因此对其进行分析和改进具有重要意义。

三、实验方法1. 数据采集通过安装传感器和数据记录仪,我们获得了电力系统在不同工况下的运行数据,包括电压、电流、频率等参数。

2. 稳定性评估基于采集到的数据,我们使用统计学方法对电力系统的稳定性进行评估。

通过计算各个参数的均值、方差和波动性等指标,我们可以了解系统在不同时间段内的稳定性表现。

3. 系统优化根据稳定性评估的结果,我们将提出相应的系统优化措施。

例如,如果发现电压波动过大,我们可以考虑增加稳压器或改进输电线路的设计。

四、实验结果通过对电力系统的稳定性分析,我们得到了以下几个重要结果:1. 在高负荷情况下,电压波动明显增加,超出了正常范围。

这可能是由于输电线路的容量不足导致的。

因此,我们建议增加输电线路的容量,以提高系统的稳定性。

2. 在夏季高温天气下,电力系统的频率波动较大,可能会对用电设备的正常运行产生影响。

为了解决这个问题,我们建议在高温天气下增加发电机的容量,以提供足够的电力供应。

3. 在实验过程中,我们还发现了一些潜在的安全隐患,例如输电线路的老化和设备的过载。

这些问题可能会导致系统的不稳定和故障。

因此,我们建议进行定期的设备检修和维护,以确保系统的可靠性和安全性。

五、结论通过本次实验,我们对电力系统的稳定性进行了全面的分析,并提出了相应的改进措施。

实验结果表明,系统的稳定性对于电力供应的连续性和质量至关重要。

通过对系统进行优化和维护,我们可以提高系统的稳定性,确保电力供应的可靠性和安全性。

电力系统实验报告

电力系统实验报告

电力系统实验报告篇一:电力系统实验报告单机无穷大系统稳态实验:一、整理实验数据,说明单回路送电和双回路送电对电力系统稳定运行的影响,并对实验结果进行理论分析:实验数据如下:由实验数据,我们得到如下变化规律:(1)保证励磁不变的情况下,同一回路,随着有功输出的增加,回路上电流也在增加,这是因为输出功率P=UIcos Φ,机端电压不变所以电流随着功率的增加而增加;(2)励磁不变情况下,同一回路,随着输出功率的增大,首端电压减小,电压损耗也在减小,这是由于输出功率的增大会使发电机输出端电压降低,在功率流向为发电机到系统的情况下,即使电压虽好降低有由于电压降落的横向分量较小,所以电压降落近似为电压损耗;(3)出现电压降落为负的情况是因为系统倒送功率给发电机的原因。

单回路供电和双回路供电对电力系统稳定性均有一定的影响,其中双回路要稳定一些,单回路稳定性较差。

二、根据不同运行状态的线路首、末端和中间开关站的实验数据、分析、比较运行状态不同时,运行参数变化的特点和变化范围。

由实验数据,我们可以得到如下结论:(1)送出相同无功相同有功的情况下:单回路所需励磁电压比双回路多,线路电流大小相等,单回路的电压损耗比双回路多;(eg.P=1,Q=0.5时)(2)送出相同无功的条件下,双回路比单回路具有更好的静态稳定性,双回路能够输送的有功最大值要多于单回路;发生这些现象的原因是:双回路电抗比单回路小,所以所需的励磁电压小一些,电压损耗也要少一些,而线路电流由于系统电压不改变;此外,由于电抗越大,稳定性越差,所以单回路具有较好的稳定性。

三、思考题:1、影响简单系统静态稳定性的因素是哪些?答:由静稳系数SEq=EV/X,所以影响电力系统静态稳定性的因素主要是:系统元件电抗,系统电压大小,发电机电势以及扰动的大小。

2、提高电力系统静态稳定有哪些措施?答:提高静态稳定性的措施很多,但是根本性措施是缩短"电气距离"。

电力系统静态稳定、暂态稳定试验报告

电力系统静态稳定、暂态稳定试验报告

电力系统静态、暂态稳定实验报告一、实验目的1.了解和掌握对称稳定情况下,输电系统的各种运行状态与运行参数的数值变化范围; 2.通过实验加深对电力系统暂态稳定内容的理解3.通过实际操作,从实验中观察到系统失步现象和掌握正确处理的措施二、原理与说明实验用一次系统接线图如图1所示:图1.一次系统接线图实验中采用直流电动机来模拟原动机,原动机输出功率的大小,可通过给定直流电动机 的电枢电压来调节。

实验系统用标准小型三相同步发电机来模拟电力系统的同步发电机,虽 然其参数不能与大型发电机相似,但也可以看成是一种具有特殊参数的电力系统的发电机。

发电机的励磁系统可以用外加直流电源通过手动来调节,也可以切换到台上的微机励磁调节 器来实现自动调节。

实验台的输电线路是用多个接成链型的电抗线圈来模拟,其电抗值满足 相似条件。

“无穷大”母线就直接用实验室的交流电源,因为它是由实际电力系统供电的, 因此,它基本上符合“无穷大”母线的条件。

为了进行测量,实验台设置了测量系统,以测量各种电量(电流、电压、功率、频率)。

为了测量发电机转子与系统的相对位置角(功率角),在发电机轴上装设了闪光测角装置。

此外,台上还设置了模拟短路故障等控制设备。

电力系统静态稳定问题是指电力系统受到小干扰后,各发电机能否不失同步恢复到原来 稳定状态的能力。

在实验中测量单回路和双回路运行时,发电机不同出力情况下各节点的电 压值,并测出静态稳定极限数值记录在表格中。

电力系统暂态稳定问题是指电力系统受到较大的扰动之后,各发电机能否过渡到新的稳 定状态,继续保持同步运行的问题。

在各种扰动中以短路故障的扰动最为严重。

正常运行时发电机功率特性为:P1=(Eo X Uo )X sin 6 1/X1; 短路运行时发电机功率特性为:P2=(Eo X Uo )X sin b 2/X2; 故障切除发电机功率特性为:P3=(Eo X Uo )X sin 6 3/X3;对这三个公式进行比较,我们可以知道决定功率特性发生变化与阻抗和功角特性有关。

电力系统分析实验报告

电力系统分析实验报告

电力系统分析理论试验汇报一.单机—无穷大系统稳态运行试验(一)、试验目旳1.理解和掌握对称稳定状况下,输电系统旳多种运行状态与运行参数旳数值变化范围;2.理解和掌握输电系统稳态不对称运行旳条件;不对称度运行参数旳影响;不对称运行对发电机旳影响等。

(二)、原理与阐明电力系统稳态对称和不对称运行分析,除了包括许多理论概念之外,尚有某些重要旳“数值概念”。

为一条不一样电压等级旳输电线路,在经典运行方式下,用相对值表达旳电压损耗,电压降落等旳数值范围,是用于判断运行报表或监视控制系统测量值与否对旳旳参数根据。

因此,除了通过结合实际旳问题,让学生掌握此类“数值概念”外,试验也是一条很好旳、更为直观、易于形成深刻记忆旳手段之一。

试验用一次系统接线图如图2所示。

图2 一次系统接线图本试验系统是一种物理模型。

原动机采用直流电动机来模拟,当然,它们旳特性与大型原动机是不相似旳。

原动机输出功率旳大小,可通过给定直流电动机旳电枢电压来调整。

试验系统用原则小型三相似步发电机来模拟电力系统旳同步发电机,虽然其参数不能与大型发电机相似,但也可以当作是一种具有特殊参数旳电力系统旳发电机。

发电机旳励磁系统可以用外加直流电源通过手动来调整,也可以切换到台上旳微机励磁调整器来实现自动调整。

试验台旳输电线路是用多种接成链型旳电抗线圈来模拟,其电抗值满足相似条件。

“无穷大”母线就直接用试验室旳交流电源,由于它是由实际电力系统供电旳,因此,它基本上符合“无穷大”母线旳条件。

为了进行测量,试验台设置了测量系统,以测量多种电量(电流、电压、功率、频率)。

为了测量发电机转子与系统旳相对位置角(功率角),在发电机轴上装设了闪光测角装置。

此外,台上还设置了模拟短路故障等控制设备。

(三)、试验环节:1、开机环节:⑴进行冷检查,确定无误后启动发电机电源进行热检查,确定之后再进行下列环节;⑵启动励磁开关,励磁开机;⑶开机(手动调整励磁旋钮);⑷使发电机工作,并调整调速旋钮,使发电机旳功角指示器由一种角变成几种角(试验中旳功角指示器有四个角,表达电机为四极电机,p=2,额定转速为1500r/min ;8个角对应旳转速为1500r/min,当功角指示器旳几种角不稳定期,表达额定转速也许不小于或不不小于额定转速,此时应尽量调整调速器使转速为额定转速);⑸加励磁,调整机端电压与系统相似(本试验为380V);⑹进行投切操作,在操作时,由于有延误,因此应保留一种小余量,保证准时精确地投入系统;此时应调整原动机,当转动不太快,角度在0到5度时投入;2、关机环节:⑴调整调速器使输出功率(有功)P降为0;⑵调整励磁使励磁电流If降为0,虽然无功降为0;⑶此时会发既有功又增大了,因此应继续调整调速器使有功降为0;⑷解联(断开电机并网断路器);⑸调整励磁使电压U降为0;⑺调整调速器使转速降为0;⑻退出开机再关闭励磁。

实验实训报告电力

实验实训报告电力

一、实验目的1. 了解电力系统稳定性的基本概念和重要性。

2. 掌握电力系统稳定性的分析方法。

3. 通过实验实训,提高对电力系统稳定性的分析和处理能力。

二、实验背景电力系统稳定性是指电力系统在受到扰动后,能够保持正常运行状态的能力。

稳定性是电力系统安全、可靠运行的重要保证。

随着电力系统规模的不断扩大,稳定性问题日益突出。

因此,对电力系统稳定性进行分析和研究具有重要意义。

三、实验内容1. 电力系统稳定性基本概念2. 电力系统稳定性分析方法3. 电力系统稳定性仿真实验四、实验步骤1. 电力系统稳定性基本概念(1)定义:电力系统稳定性是指电力系统在受到扰动后,能够保持正常运行状态的能力。

(2)分类:电力系统稳定性可分为静态稳定性和动态稳定性。

(3)影响因素:电力系统稳定性受多种因素影响,如系统结构、负荷特性、控制策略等。

2. 电力系统稳定性分析方法(1)线性化方法:通过将非线性系统线性化,研究电力系统稳定性。

(2)数值方法:利用计算机仿真技术,对电力系统稳定性进行分析。

(3)频率响应法:通过分析电力系统频率响应特性,研究系统稳定性。

3. 电力系统稳定性仿真实验(1)实验平台:采用MATLAB/Simulink进行仿真实验。

(2)实验步骤:①搭建电力系统模型:根据实验要求,搭建相应的电力系统模型。

②设置扰动:对电力系统进行扰动,模拟实际运行中的故障情况。

③分析稳定性:通过观察系统响应,分析电力系统稳定性。

④优化控制策略:针对稳定性问题,优化控制策略,提高系统稳定性。

五、实验结果与分析1. 实验结果通过仿真实验,得到以下结果:(1)电力系统在受到扰动后,能够保持正常运行状态,说明系统具有一定的静态稳定性。

(2)在扰动后,系统响应时间较短,动态稳定性较好。

2. 分析(1)电力系统稳定性受多种因素影响,如系统结构、负荷特性、控制策略等。

(2)优化控制策略可以显著提高电力系统稳定性。

六、实验结论1. 通过本次实验,掌握了电力系统稳定性的基本概念和重要性。

电力系统实验报告

电力系统实验报告

电力系统实验报告篇一:电力系统实验报告单机无穷大系统稳态实验:一、整理实验数据,说明单回路送电和双回路送电对电力系统稳定运行的影响,并对实验结果进行理论分析:实验数据如下:由实验数据,我们得到如下变化规律:(1)保证励磁不变的情况下,同一回路,随着有功输出的增加,回路上电流也在增加,这是因为输出功率P=UIcos Φ,机端电压不变所以电流随着功率的增加而增加;(2)励磁不变情况下,同一回路,随着输出功率的增大,首端电压减小,电压损耗也在减小,这是由于输出功率的增大会使发电机输出端电压降低,在功率流向为发电机到系统的情况下,即使电压虽好降低有由于电压降落的横向分量较小,所以电压降落近似为电压损耗;(3)出现电压降落为负的情况是因为系统倒送功率给发电机的原因。

单回路供电和双回路供电对电力系统稳定性均有一定的影响,其中双回路要稳定一些,单回路稳定性较差。

二、根据不同运行状态的线路首、末端和中间开关站的实验数据、分析、比较运行状态不同时,运行参数变化的特点和变化范围。

由实验数据,我们可以得到如下结论:(1)送出相同无功相同有功的情况下:单回路所需励磁电压比双回路多,线路电流大小相等,单回路的电压损耗比双回路多;(eg.P=1,Q=0.5时)(2)送出相同无功的条件下,双回路比单回路具有更好的静态稳定性,双回路能够输送的有功最大值要多于单回路;发生这些现象的原因是:双回路电抗比单回路小,所以所需的励磁电压小一些,电压损耗也要少一些,而线路电流由于系统电压不改变;此外,由于电抗越大,稳定性越差,所以单回路具有较好的稳定性。

三、思考题:1、影响简单系统静态稳定性的因素是哪些?答:由静稳系数SEq=EV/X,所以影响电力系统静态稳定性的因素主要是:系统元件电抗,系统电压大小,发电机电势以及扰动的大小。

2、提高电力系统静态稳定有哪些措施?答:提高静态稳定性的措施很多,但是根本性措施是缩短"电气距离"。

电力系统稳态分析实验报告

电力系统稳态分析实验报告

竭诚为您提供优质文档/双击可除电力系统稳态分析实验报告篇一:南昌大学电力系统分析实验报告3南昌大学实验报告学生姓名:李开卷学号:6100312199专业班级:电力系统124班实验类型:□验证□综合■设计□创新实验日期:12.19实验成绩:一、实验项目名称电力系统故障分析计算二、实验目的:本实验通过对电力系统故障条件下的网络分析计算的计算机程序的编制和调试,获得进行简单不对称故障的计算机程序,使得在网络故障点已知的条件下,故障端口的电气量计算可以自行完成,即根据已知电力系统元件参数及故障点位置由计算程序运行完成该电力系统的故障分析。

通过实验教学加深学生对电力系统故障分析概念的理解,学会运用数学模型进行故障分析,掌握电力系统简单不对称故障的计算过程及其特点,熟悉各种常用应用软件,熟悉硬件设备的使用方法,加强编制调试计算机程序的能力,提高工程计算的能力,学习如何将理论知识和实际工程问题结合起来。

三、实验器材:计算机、软件(已安装,包括各类编程软件c语言、c++、Vb、Vc等、应用软件mATLAb等)、移动存储设备(学生自备,软盘、u盘等)四、实验步骤:编制调试电力系统故障分析的计算机程序。

程序要求根据已知的电力网的数学模型(元件正、负及零序主抗)及故障点位置,完成该电力系统的不对称故障计算,要求计算出故障点的基准相各序分量及其余项故障电压、电流。

1、熟悉电力系统称故障的计算方法,按照计算方法编制程序。

2、将事先编制好的电力系统故障计算的计算程序原代码由自备移动存储设备导入计算机。

3、在相应的编程环境下对程序进行组织调试。

4、应用计算例题验证程序的计算效果。

5、对调试正确的计算程序进行存储、打印。

6、完成本次实验的实验报告。

六、实验项目:如下图已知网络的正序主抗参数和电源的等值电势,输电线路x(0)=3x(1),变压器T-1和T-2为Yn,d接法,T-3为Y,d接法。

分别分析a点发生(b,c)两相短路接地和线路L-1在节点a侧(a)单相断线故障。

实验一电力系统暂态稳定性实验

实验一电力系统暂态稳定性实验

实验一电力系统暂态稳定性实验•一) 实验目的•1) 通过实验加深对电力系统暂态稳定内容的理解,使课堂理论教学与实践结合,提高学生的感性认识。

•2) 学生通过实际操作,从实验中观察到系统失步现象和掌握正确处理的措施。

•二)实验内容•发电机经双回线或单回线与“无穷大”电网联网运行时,线路上发生某种类型短路,测试短路类型和短路切除时间对系统暂态稳定的影响。

三)原理与说明本实验系统是一种物理模型。

原动机采用直流电动机来模拟,当然,它们的特性与大型原动机是不相似的。

原动机输出功率的大小,可通过给定直流电动机的电枢电压来调节。

实验系统用标准小型三相同步发电机来模拟电力系统的同步发电机,虽然其参数不能与大型发电机相似,但也可以看成是一种具有特殊参数的电力系统的发电机。

发电机的励磁系统可以用外加直流电源通过手动来调节,也可以切换到台上的微机励磁调节器来实现自动调节。

实验台的输电线路是用多个接成链型的电抗线圈来模拟,其电抗值满足相似条件。

“无穷大”母线就直接用实验室的交流电源,因为它是由实际电力系统供电的,因此,它基本上符合“无穷大”母线的条件。

•四)原始计算数据、所应用的公式•电力系统暂态稳定问题是指电力系统受到较大的扰动之后,各发电机能否继续保持同步运行的问题••正常运行时发电机功率特性为:P1=(Eo×Uo)×sinδ1/X1•短路运行时发电机功率特性为:P2=(Eo×Uo)×sinδ2/X2•故障切除时发电机功率特性为:P3=(Eo×Uo)×sinδ3/X3•五)实验项目与方法一)机组启动与建压及并网(1)检查调速器上“模拟调节”电位器指针是否指在0位置,如不在则应调到0位置;(2)合上操作电源开关,检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯熄。

调速器面板上数码管显示发电机频率,调速器上“微机正常”灯和“电源正常”灯亮;(3)把微机调速装置上的“微机方式自动/手动”按钮松开,合上“模拟方式”按钮使“模拟方式”黄灯亮;(4)按下“电源开关”按钮,此时顺时针缓慢旋转电位器,模拟控制量开始缓慢增加,直至原动机转速达到额定;(5)励磁调节器选择“微机它励”方式,励磁调节器选择恒Uf方式运行,再合上励磁开关;(6)调节“增磁”/“减磁”按钮使数码显示管上Ug参数为340,松开“灭磁”按钮,使发电机电压达到340V;(7)合上系统电压开关和线路开关QF1,QF3,检查系统电压接近额定值340V;(8)选择实验台上“同期方式”为“微机全自动同期”档;(9)然后按下“同期命令”按钮,等待微机自动并网。

单机-无穷大系统稳态运行实验、电力系统暂态稳定实验电力系统分析实验报告

单机-无穷大系统稳态运行实验、电力系统暂态稳定实验电力系统分析实验报告

单机—无穷大系统稳态运行实验一、实验目的1.了解和掌握对称稳定情况下,输电系统的各种运行状态与运行参数的数值变化范围;2.了解和掌握输电系统稳态不对称运行的条件;不对称对运行参数的影响;不对称运行对发电机的影响等。

二、原理与说明电力系统稳态对称和不对称运行分析,除了包含许多理论概念之外,还有一些重要的“数值概念”。

为一条不同电压等级的输电线路,在典型运行方式下,用相对值表示的电压损耗,电压降落等的数值范围,是用于判断运行报表或监视控制系统测量值是否正确的参数依据。

因此,除了通过结合实际的问题,让学生掌握此类“数值概念”外,实验也是一条很好的、更为直观、易于形成深刻记忆的手段之一。

实验用一次系统接线图如图2所示。

图2 一次系统接线图本实验系统是一种物理模型。

原动机采用直流电动机来模拟,当然,它们的特性与大型原动机是不相似的。

原动机输出功率的大小,可通过给定直流电动机的电枢电压来调节。

实验系统用标准小型三相同步发电机来模拟电力系统的同步发电机,虽然其参数不能与大型发电机相似,但也可以看成是一种具有特殊参数的电力系统的发电机。

发电机的励磁系统可以用外加直流电源通过手动来调节,也可以切换到台上的微机励磁调节器来实现自动调节。

实验台的输电线路是用多个接成链型的电抗线圈来模拟,其电抗值满足相似条件。

“无穷大”母线就直接用实验室的交流电源,因为它是由实际电力系统供电的,因此,它基本上符合“无穷大”母线的条件。

为了进行测量,实验台设置了测量系统,以测量各种电量(电流、电压、功率、频率)。

为了测量发电机转子与系统的相对位置角(功率角),在发电机轴上装设了闪光测角装置。

此外,台上还设置了模拟短路故障等控制设备。

三、实验项目和方法1.单回路稳态对称运行实验1.1实验操作步骤(1)检查与运行状态的调整①合上电源前,先检查各模拟仪表仪器的指针是否归零。

②合上状态开关QF2、QF6、QF4、QFS,使系统运行在单回路状态下;并检查个数字仪器仪表是否正常。

电力系统稳态实验报告

电力系统稳态实验报告

电力系统稳态潮流计算上机实验报告一、问题如下图所示的电力系统网络,分别用牛顿拉夫逊法、PQ解耦法、高斯赛德尔法、保留非线性法计算该电力系统的潮流。

发电机的参数如下,*表示任意值负荷参数如下,如上图所示的电力系统,可以看出,节点1、2、3是PQ节点,节点4是PV节点,而将节点5作为平衡节点。

根据问题所需,采用牛顿拉夫逊法、PQ解耦法、高斯赛德尔法、保留非线性法,通过对每次修正量的收敛判据的判断,得出整个电力系统的潮流,并分析这四种方法的收敛速度等等。

算法分析1.牛顿拉夫逊法节点5为平衡节点,不参加整个的迭代过程,节点1、2、3为PQ节点,节点4为PV 节点,计算修正方程中各量,进而得到修正量,判断修正量是否收敛,如果不收敛,迭代继续,如果收敛,算出PQ节点的电压幅值以及电压相角,得出PV节点的无功量以及电压相角,得出平衡节点的输出功率。

潮流方程的直角坐标形式,()()∑∑∈∈++-=ij j ij j ij i ij j ij j ij i i e B f G f f B e G e P()()∑∑∈∈+--=ij j ij j ij i ij j ij j ij i i e B f G e f B e G f Q直角坐标形式的修正方程式,11112n n n m n m -----∆⎡⎤⎡⎤∆⎡⎤⎢⎥⎢⎥∆=-⎢⎥⎢⎥⎢⎥∆⎣⎦⎢⎥⎢⎥∆⎣⎦⎣⎦PHN e Q M L f UR S修正方程式中的各量值的计算,()()][∑∑∈∈++--=∆ij j ij j ij i ij j ij j ij i is i e B f G f f B e G e p P()()][∑∑∈∈+---=∆ij j ij j ij i ij j ij j ij i is i e B f G e f B e G f Q Q)(2222i i is i f e U U +-=∆Jacobi 矩阵的元素计算,()()()ij i ij i i ijij j ij j ii i ii i jj iB e G f j i Q M G f B e B e G f j i e ∈-⎧≠∂∆⎪==⎨++-=∂⎪⎩∑()()()ij i ij i i ijij j ij j ii i ii i jj iG e B f j i Q L G e B f G e B f j i f ∈+⎧≠∂∆⎪==⎨--++=∂⎪⎩∑)()(202i j i j e e U R ijij i =≠⎩⎨⎧-=∂∆∂=)()(202i j i j f f U S ijij i =≠⎩⎨⎧-=∂∆∂=牛顿拉夫逊法潮流计算的流程图如下,2.PQ 解耦法如同牛顿拉夫逊法,快速解耦法的前提是,输电线路的阻抗要比电阻大得多,并且输电线路两端的电压相角相差不大,此时可利用PQ 快速解耦法,来计算整个电力系统网络的潮流。

电力公司实验报告

电力公司实验报告

实验名称:电力系统稳定性分析实验目的:1. 了解电力系统稳定性的基本概念和重要性。

2. 掌握电力系统稳定性分析方法。

3. 分析不同运行条件下的电力系统稳定性。

实验时间:2023年4月10日实验地点:电力公司实验室实验设备:1. 电力系统仿真软件2. 电力系统稳定器3. 数据采集仪4. 计算机及外围设备实验原理:电力系统稳定性是指电力系统在受到扰动后,能够恢复到稳定运行状态的能力。

电力系统稳定性分析是保障电力系统安全、可靠运行的重要手段。

本实验通过仿真软件对电力系统进行稳定性分析,验证不同运行条件下的系统稳定性。

实验步骤:1. 软件准备:启动电力系统仿真软件,设置仿真参数,包括系统拓扑结构、发电机参数、负荷参数等。

2. 仿真设置:设置仿真场景,包括正常运行、负荷增加、故障等情况。

3. 稳定性分析:运行仿真软件,观察系统在不同运行条件下的响应,分析系统稳定性。

4. 数据采集:使用数据采集仪采集仿真过程中的关键数据,如发电机功率、线路电流、电压等。

5. 结果分析:根据采集到的数据,分析系统在不同运行条件下的稳定性。

实验结果及分析:1. 正常运行条件下的稳定性分析在正常运行条件下,系统稳定运行。

仿真结果显示,发电机功率、线路电流、电压等参数均在允许范围内波动,系统稳定性良好。

2. 负荷增加条件下的稳定性分析当负荷增加时,系统稳定性受到一定影响。

仿真结果显示,发电机功率、线路电流、电压等参数波动较大,但均在允许范围内。

通过调整发电机出力、线路容量等措施,可以使系统恢复稳定运行。

3. 故障条件下的稳定性分析在故障条件下,系统稳定性受到严重影响。

仿真结果显示,发电机功率、线路电流、电压等参数波动较大,部分线路甚至出现过载现象。

为保障系统稳定性,需要迅速切除故障线路,调整发电机出力,提高线路容量等。

4. 系统稳定性改善措施针对系统稳定性问题,提出以下改善措施:(1)优化系统拓扑结构,提高线路容量;(2)加强设备维护,提高设备可靠性;(3)实施故障快速切除策略,降低故障影响;(4)采用先进的控制策略,提高系统调节能力。

电力系统静态稳定、暂态稳定实验报告

电力系统静态稳定、暂态稳定实验报告

电力系统静态、暂态稳定实验报告一、实验目的1.了解和掌握对称稳定情况下,输电系统的各种运行状态与运行参数的数值变化范围;2.通过实验加深对电力系统暂态稳定内容的理解3.通过实际操作,从实验中观察到系统失步现象和掌握正确处理的措施二、原理与说明实验用一次系统接线图如图1所示:图1。

一次系统接线图实验中采用直流电动机来模拟原动机,原动机输出功率的大小,可通过给定直流电动机的电枢电压来调节。

实验系统用标准小型三相同步发电机来模拟电力系统的同步发电机,虽然其参数不能与大型发电机相似,但也可以看成是一种具有特殊参数的电力系统的发电机。

发电机的励磁系统可以用外加直流电源通过手动来调节,也可以切换到台上的微机励磁调节器来实现自动调节。

实验台的输电线路是用多个接成链型的电抗线圈来模拟,其电抗值满足相似条件。

“无穷大”母线就直接用实验室的交流电源,因为它是由实际电力系统供电的,因此,它基本上符合“无穷大”母线的条件。

为了进行测量,实验台设置了测量系统,以测量各种电量(电流、电压、功率、频率)。

为了测量发电机转子与系统的相对位置角(功率角),在发电机轴上装设了闪光测角装置.此外,台上还设置了模拟短路故障等控制设备.电力系统静态稳定问题是指电力系统受到小干扰后,各发电机能否不失同步恢复到原来稳定状态的能力。

在实验中测量单回路和双回路运行时,发电机不同出力情况下各节点的电压值,并测出静态稳定极限数值记录在表格中.电力系统暂态稳定问题是指电力系统受到较大的扰动之后,各发电机能否过渡到新的稳定状态,继续保持同步运行的问题。

在各种扰动中以短路故障的扰动最为严重。

正常运行时发电机功率特性为:P1=(Eo×Uo)×sinδ1/X1;短路运行时发电机功率特性为:P2=(Eo×Uo)×sinδ2/X2;故障切除发电机功率特性为: P3=(Eo×Uo)×sinδ3/X3;对这三个公式进行比较,我们可以知道决定功率特性发生变化与阻抗和功角特性有关。

电力系统 暂态稳定分析实验报告 (实验三)

电力系统 暂态稳定分析实验报告 (实验三)

Beijing Jiaotong University 暂态稳定分析实验报告姓名:TYP班级:电气0906学号:09291183任课老师:吴俊勇指导老师:刘平竹实验日期:2012.5.29报告完成日期:2012.6.1一、实验目的(1)进一步认识电力系统暂态失稳过程,学会绘制摇摆曲线;(2)掌握影响电力系统暂态稳定的因素,掌握故障切除时间(角)对电力系统暂态稳定的影响;(3)掌握提高电力系统暂态稳定的方法。

二、实验内容(1)电力系统暂态失稳实验;(2)故障类型对电力系统暂态稳定的影响;(3)电力系统暂态稳定的影响因素实验。

三、实验使用工程文件及参数工程文件名:暂态稳定分析实验,输入参数(如图15-6):G1:300+j180MVA(PQ节点)变压器B1:Sn=360MVA,变比=18/242 KV,Uk%=14.3%,Pk=230KW,P0=150KW,I0/In=1%;变压器B2:Sn=360MVA,变比=220/18KV,Uk%=10.5%,Pk=128KW,P0=40.5KW,I0/In=3.5%;固定频率电源S:Un=18 KV(平衡节点);线路L1、L2:长度:100km,电阻:0.02Ω/km,电抗:0.3256Ω/km,电纳:2.74×10-6S/km。

四、实验方法和步骤1、电力系统暂态失稳实验打开名为“暂态稳定分析实验”的工程文件。

该工程中有一个双回线网络,并带有一个故障点,模拟电力系统发生故障后的暂态失稳现象。

网络结构图如图15-6所示,输入给定参数,完成实验系统建立。

图15-6 带故障点双回路网络结构图运行仿真,在输出图页上观察故障前系统稳定运行时的电压、电流波形,以及在发生故障后,系统失稳状态的电压、电流波形,并将电压电流波形记录到图15-7和图15-8(仿真时间:15秒;故障时刻:第5秒;故障持续时间:0.5秒;故障距离:50%;故障类型:三相短路)。

建立仿真模型如下图:各参数设定如下:同步发电机 三相双绕组变压器1线路1 线路2三相双绕组变压器2 固定频率电源仿真参数设置故障时间设置故障类型:三相短路(1)整体图:(2)故障出现前:(3)故障出现后系统失稳状态:(4)故障消除后:2、故障类型对电力系统暂态稳定的影响实验模型①中,在故障点设置不同类型短路,按表15-6运行仿真,观察结果,记录波形。

电力系统稳态分析实验报告

电力系统稳态分析实验报告

电力系统稳态分析实验报告篇一:电力系统稳态分析实验指导书电力系统稳态分析实验指导书目录实验一单机-无穷大系统稳态运行方式实验 ................................................ ........................................ 2 1.1 实验目的................................................. ................................................... ........................................... 2 1.2 原理说明................................................. ................................................... ........................................... 2 1.3 实验内容与步骤 ................................................ ................................................... ................................ 3 实验二电力系统潮流计算分析实验 ................................................ ....................................................... 6 2.1 实验目的................................................. ................................................... ........................................... 6 2.2 原理说明................................................. ................................................... ........................................... 6 2.3 实验内容与步骤 ................................................ ................................................... .. (6)I实验一单机-无穷大系统稳态运行方式实验1.1 实验目的1.熟悉远距离输电的线路基本结构和参数的测试方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力系统稳态分析实验报告篇一:电力系统稳态分析实验指导书电力系统稳态分析实验指导书目录实验一单机-无穷大系统稳态运行方式实验 ................................................ ........................................ 2 1.1 实验目的................................................. ................................................... ........................................... 2 1.2 原理说明................................................. ................................................... ........................................... 2 1.3 实验内容与步骤 ................................................ ................................................... ................................ 3 实验二电力系统潮流计算分析实验 ................................................ ....................................................... 6 2.1 实验目的................................................. ................................................... ........................................... 6 2.2 原理说明................................................. ................................................... ........................................... 6 2.3 实验内容与步骤 ................................................ ................................................... .. (6)I实验一单机-无穷大系统稳态运行方式实验1.1 实验目的1.熟悉远距离输电的线路基本结构和参数的测试方法。

2.掌握对称稳定工况下,输电系统的各种运行状态与运行参数的数值变化范围。

3.掌握输电系统稳态不对称运行的条件、参数和不对称运行对发电机的影响等。

1.2 原理说明单机-无穷大系统模型,是简单电力系统分析的最基本,最主要的研究对象。

本实验平台建立的是一种物理模型,如下图1-1所示。

图1-1 单机-无穷大系统示意图发电机组的原动机采用国标直流电动机模拟,但其特性与电厂的大型原动机并不相似。

发电机组并网运行后,输出有功功率的大小可以通过调节直流电动机的电枢电压来调节(具体操作必须严格按照调速器的正确安全操作步骤进行!可参考《微机调速装置基本操作实验》)。

发电机组的三相同步发电机采用的是工业现场标准的小型发电机,参数与大型同步发电机不相似,但可将其看作一种具有特殊参数的电力系统发电机。

实验平台给发电机提供了三种典型的励磁系统:手动励磁、常规励磁和微机励磁系统,可以通过实验台的转换开关切换(具体操作必须严格按照励磁调节装置的正确安全操作步骤进行!实验平台的输电线路是用多个接成链型的电抗线圈来模拟,其电抗值满足相似条件。

“无穷大系统”采用大功率三相自耦调压器,三相自耦调压器的容量远大于发电机的容量,可近似看作无穷大电源,并且通过调压器可以方便的模拟系统电压的波动。

实验平台提供的测量仪表可以方便的测量(电压,电流,功率,功率因数,频率)并可通过切换开关显示受端和送端的P,Q,cosΦ。

发电机组装设了功角测量装置,通过频闪灯可以直观,清晰的观测功角(使用前请仔细阅读附录一“功角指示装置原理说明”,注:由于功角指示的指针相对于频闪灯的发光静止,但实际是在高速运转,切勿用手触摸!),还可通过微机调速装置测来测量功角。

21.3 实验内容与步骤开电源前,调整实验台上的切换开关的位置,确保三个电压指示为同一相电压或线电压;发电机运行方式为并网运行;发电机励磁方式为常规励磁,他励;并网方式选择手动同期。

1.单、双回路稳态对称运行实验 1)发电机组自动准同期并网操作输电线路选择XL2和XL4(即QF2和QF4合闸),系统侧电压US=300V,发电机组启机,建压,通过可控线路单回路并网输电。

2)调节调速装置的增、减速键,调整发电机有功功率;调节常规励磁装置给定,改变发电机的电压,调整发电机无功功率,使输电系统处于不同的运行状态,为了方便实验数据的分析和比较,在调节过程中,保持cosΦ=0.8 US=300V 不变。

观察并记录线路首、末端的测量表计值及线路开关站的电压值,计算、分析和比较运行状态不同时,运行参数(电压损耗、电压降落、沿线电压变化、无功功率的方向等)变化的特点及数值范围,记录数据于表1-1中。

注:在调节功率过程中发电机组一旦出现失步问题,立即进行以下操作,使发电机恢复同步运行状态:操作微机调速装置上的“-”减速键,减少有功功率;增加常规励磁给定,提高发电机电势;单回路切换成双回路。

3)低发电机转速,并调节励磁,使得发电机发出的有功功率和无功功率接近于0,此时投入XL1和XL3(即QF1和QF3合闸),重复步骤(2),并将数据记录在表1-1中。

4)发电机组的解列和停机保持发电机组的P=0,Q=0,此时按下QF0分闸按钮,再按下控制柜上的灭磁按钮,按下微机调速装置的停止键,转速减小到0时,关闭原动机电源。

5)实验台和控制柜设备的断电操作依次断开实验台的“单相电源”、“三相电源”和“总电源”以及控制柜的“单相电源”、“三相电源”和“总电源”(空气开关向下扳至OFF)。

3压P1,Q1-送端功率; P2,Q2-受端功率; I-相平均电流; Usw-中间站电ΔU-电压损耗;ΔP-有功损耗;ΔQ-无功方向 2.单回路稳态非全相运行实验输送单回路稳态对称运行时相同的功率,此时设置发电机出口非全相运行(断开一相),观察并记录运行状态和参数变化情况。

⑴发电机组自动准同期并网操作实验步骤同实验内容⒈⑵单回路稳态非全相运行①微机保护定值整定:电流Ⅱ段“投入”,整定动作电流为2倍稳态运行时的动作电流,动作时间0.5秒,重合闸时间10秒;其它保护均退出。

②操作短路故障设置按钮,设置单相接地短路故障,设置短路持续时间为5秒。

③将短路故障投入,此时微机保护切除故障相,准备重合闸,即只有一回线路的两相在运行。

观察此状态下的三相电流、电压值,记录在表1-2中,将实验结果与实验1进行比较;(备注:由于实验台的有功功率表和无功功率表只能测量三相平衡状态下的有功功率和无功功率值,所以在非全相运行状态下,有功功率和无功功率值应从微机励磁装置中读出)。

④断相运行10秒后,重合闸成功,系统恢复到单回路稳态运行状态。

⑶发电机组的解列和停机以及实验台和控制柜设备的断电操作。

四、实验报告1.整理实验数据,说明单回路输电和双回路输电对电力系统稳定运行的影响,并对实验结果进行理论分析。

42.根据不同运行状态的线路首、末端和中间开关站的实验数据、分析、比较运行状态不同时,运行参数变化的特点和变化范围。

3.比较非全相运行实验的前、后实验数据,分析输电线路各运行参数的变化。

5篇二:南昌大学电力系统分析实验报告2南昌大学实验报告学生姓名:学号:专业班级:实验类型:□验证□综合■设计□创新实验日期: 12.7 实验成绩:一、实验项目名称电力系统短路计算实验二、实验目的与要求:目的:通过实验教学加深学生的基本概念,掌握电力系统的特点,使学生通过系统进行物理模拟和数学模拟,对系统进行电力系统计算和仿真实验,以达到理论联系实际的效果。

通过电子计算机对电力系统短路等计算的数学模拟,分析电力系统的故障计算方法、实现工程计算的功能。

提高处理电力系统工程计算问题的实际能力,以及实现对电力系统仿真的过程分析。

要求:l、使学生掌握对电力系统进行计算、仿真试验的方法,了解实验对电力系统分析研究的必要性和意义。

2、使学生掌握使用实验设备计算机和相关计算软件、编程语言。

3、应用电子计算机完成电力系统的短路计算。

4、应用电子计算机及相关软件对电力系统进行仿真。

三、主要仪器设备及耗材1.每组计算机1台、相关计算软件1套四、实验步骤1. 将事先编制好的形成电力网数学模型的计算程序原代码由自备移动存储设备导入计算机。

2. 在相应的编程环境下对程序进行组织调试。

3. 应用计算例题验证程序的计算效果。

4. 对调试正确的计算程序进行存储、打印。

5. 完成本次实验的实验报告。

五、实验数据及处理结果运行自行设计的程序,把结果与例题的计算结果相比较,验证所采用的短路电流计算方法及程序运行的正确性。

如果采用的是近似计算方法,还需分析由于近似所产生的误差是否在运行范围内。

实验程序:clear clc;z=[0.2i,inf,0.51i,inf;inf,4i,0.59i,inf;0.51i,0.59i,inf,1.43i;inf,inf,1.43i,inf];y=[0,0,0,0;0,0,0,0;0,0,0,0;0,0,0,0];f=4;Y=zeros(4,4);for(i=1:4),for(j=1:4),if i==jY(i,j)=Y(i,j)elseY(i,j)=-1.0/z(i,j)endendendfor (i=1:4),for(j=1:4),Y(i,i)=Y(i,i)+y(i,j)+1.0/z(i,j)endendZ=inv(Y);If=1/Z(f,f);disp(If);实验结果:If=0-0.48902i实验例题所给结果短路电流:If = - j0.4895,与程序运行结果在误差允许范围之内,故验证了该程序的正确性。

六、思考讨论题或体会或对改进实验的建议1. 理解课本上讲述的同步电机突然三相短路的物理分析。

答:同步电机稳态对称运行(包括稳态对称短路)时,电枢磁势大小不随时间变化,而在空间以同步速旋转,同转子没有相对运动,故不会在转子绕组中感应电流。

相关文档
最新文档