金属塑性变形与断裂
金属材料的延性断裂和脆性断裂
⾦属材料的延性断裂和脆性断裂
:2008-11-3 10:52:04 ⽔箱⽹消息:
根据⾦属材料断裂前塑性变形量的⼤⼩,断裂可分为延性断裂和脆性断裂两种形式。
1、延性断裂断裂过程是:⾦属材料在载荷作⽤下,⾸先发⽣弹性变形。
当载荷继续增加到某⼀数值,材料即发⽣屈服,产⽣塑性变形。
继续加⼤载荷,⾦属将进⼀步变形,继⽽发⽣断裂⼝或微空隙。
这些断裂⼝或微空隙⼀经形成,便在随后的加载过程中逐步汇合起来,形成宏观裂纹。
宏观裂纹发展到⼀定尺⼨后,扩展⽽导致最后断裂。
延性断裂的裂⼝呈纤维状,⾊泽灰暗边缘有剪切唇,裂⼝附近有宏观的塑性变形。
2、脆性断裂应⼒低于材料的设计应⼒和没有显著塑性变形情况下,⾦属结构发⽣瞬时、突然破坏的断裂(裂纹扩展速度可达1500-2000m/s),称脆性断裂。
脆性断裂的裂⼝平整,与正应⼒垂直,没有可以觉察到的塑性变形,断⼝有⾦属光泽。
金属断裂机理
金属断裂机理
金属断裂是指金属材料在外力作用下发生破裂或断裂的过程。
金属的断裂机理主要包括以下几种:
1. 脆性断裂:脆性断裂是指金属材料在受到外力作用下几乎没有可见的塑性变形就突然破裂。
脆性断裂主要由金属的晶体结构和缺陷引起,如晶界的弱化、镍效应等。
常见的脆性断裂包括贝氏体断裂、冷脆断裂等。
2. 韧性断裂:韧性断裂是指金属材料在受到外力作用下先经历一定的可见塑性变形,然后发生破裂。
韧性断裂主要由金属的晶体结构、析出物和晶界等因素影响。
常见的韧性断裂模式包括韧突型断裂、韧性断裂等。
3. 疲劳断裂:疲劳断裂是指金属材料在长时间受到周期性应力作用下发生的破裂。
疲劳断裂主要由金属的晶间滑移、晶界变形和微观裂纹的扩展等因素引起。
疲劳断裂常发生在受振动或循环应力作用下的金属构件中。
4. 腐蚀断裂:腐蚀断裂是指金属材料在受到腐蚀介质作用下发生的破裂。
腐蚀断裂主要由金属与环境介质之间的电化学反应引起,如应力腐蚀断裂、氢脆断裂等。
总之,金属断裂机理是一个复杂的过程,受到多种因素的综合影响。
为了提高金属材料的断裂强度和韧性,需要通过合理的合金设计、热处理和表面处理等方法来改善金属的断裂性能。
大学材料科学基础第八章材料的变形与断裂(1)
六方晶系则需画图判定。
滑移系数量与金属的塑性 滑移系代表了晶体滑移时可能采取的空间取向,晶 体中滑移系数量越多,滑移时可能采取的空间取向就 越多,滑移就越容易进行,金属的塑性便越好。 面 心 立 方 金 属 : Cu,Al,Au,Ag,,Ni,γ-Fe, 奥氏体钢,体心立方金属α-Fe,铁素体,Mo,Nb的 塑性很好,而密排六方金属Mg,Zr,Be,Zn的塑性 则较差。当然滑移系数量并不是决定金属塑性高低唯 一的因素,合金的成分、强度的高低、加工硬化的能 力等也会影响到金属的塑性。试验表明,奥氏体钢的 塑性要优于铁素体钢。
金属拉伸曲线分析。 1 弹性变形阶段:ζ-ε呈直线关系。
(弹)塑性变形阶段: ζ-ε不遵循虎克定律
2 均匀塑性变形阶段:屈服阶段:ε增加,ζ基本保 持不变, ζ-ε呈非线性关系。 3 颈缩阶段(局部变形阶段):变形集中在局部区 域。 4 断裂阶段:从颈缩到断裂。
拉伸试验可以得到以下强度指标和塑性指标:
拉伸条件下滑移系上分切应力的计算。
(c)2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning ™ is a trademark used herein under license.
θ-滑移面法线与拉伸轴的夹角
4 力轴作用在任意方向
二、孪晶(孪生)变形
孪生也是金属塑性变形的一种形式,一般情况下, 金属晶体优先以滑移的方式进行塑性变形,但是当滑 移难以进行时,塑性变形就会以生成孪晶的方式进行, 称为孪生。例如滑移系较少的密排六方晶格金属,当 处于硬取向时,滑移系难以开动,就常以孪生方式进 行变形。滑移系较多的fcc、bcc结构的金属一般不发 生孪生变形,但在极低的温度下变形或是形变速度极 快时,也会以孪生的方式进行塑性变形。 定义:晶体在难以进行滑移时而发生的另一种塑 性变形方式,其特点是变形以晶体整体切变的形式 进行而不是沿滑移系发生相对位移。
焊接材料的塑性变形与断裂机理
焊接材料的塑性变形与断裂机理焊接是一种常见的金属加工方法,通过高温加热和冷却过程将两个或多个金属材料连接在一起。
在焊接过程中,焊接材料的塑性变形和断裂机理是非常重要的因素,它们直接影响着焊接接头的质量和性能。
首先,我们来探讨焊接材料的塑性变形机理。
塑性变形是指金属材料在受到外力作用下发生的可逆形变过程。
在焊接过程中,焊接材料会受到焊接电弧或热源的加热,从而达到熔化温度。
一旦焊接材料熔化,它就会变得可塑性,可以通过外力进行塑性变形。
焊接材料的塑性变形主要是通过热塑性变形和冷塑性变形来实现的。
热塑性变形是指焊接材料在高温下受到外力作用时发生的塑性变形。
在焊接过程中,焊接材料受到焊接电弧或热源的加热,使其达到熔化温度,然后通过焊接工具施加的外力进行塑性变形。
热塑性变形的优点是能够使焊接接头的形状更加精确,缺点是容易产生热裂纹和变形。
冷塑性变形是指焊接材料在冷却过程中受到外力作用时发生的塑性变形。
在焊接过程中,焊接材料在熔化后会迅速冷却,形成焊缝。
在冷却过程中,焊接材料会受到外力的作用,使其发生塑性变形。
冷塑性变形的优点是能够增加焊接接头的强度和硬度,缺点是容易产生冷裂纹和变形。
除了塑性变形,焊接材料的断裂机理也是非常重要的。
断裂机理是指焊接材料在受到外力作用下发生破裂的过程。
在焊接过程中,焊接材料会受到焊接电弧或热源的加热和冷却过程的影响,从而产生内部应力。
如果这些内部应力超过了焊接材料的强度极限,就会导致焊接接头的断裂。
焊接材料的断裂机理主要有两种,一种是脆性断裂,另一种是韧性断裂。
脆性断裂是指焊接材料在受到外力作用下迅速破裂的过程。
脆性断裂的特点是断口平整,没有明显的塑性变形。
脆性断裂主要是由于焊接材料中存在的缺陷或内部应力引起的。
韧性断裂是指焊接材料在受到外力作用下发生延展性破裂的过程。
韧性断裂的特点是断口不平整,有明显的塑性变形。
韧性断裂主要是由于焊接材料中的晶粒细化和断口韧化等因素引起的。
综上所述,焊接材料的塑性变形和断裂机理是影响焊接接头质量和性能的重要因素。
谈塑性变形与断裂的关系
谈塑性变形与断裂的关系----------------------塑性变形是断裂的基础,断裂是塑性变形的最终结果。
0 引言塑性变形指的是永不可恢复的变形,其具体的机制包括位错滑移、孪生、晶界滑动、扩散性蠕变。
其中一般情况下位错滑移起主要作用,孪生多发生在低温、高应变速率时滑移系少的材料中,而晶界滑动与扩散性蠕变一般在高温下发生。
断裂指材料在应力的作用下分离两个或多个部分的现象。
如若有上文四种机制的作用,我们便可认为材料发生了塑性变形,因此,讨论塑性变形与断裂的关系就可转化为讨论各种不同断裂的机理与塑性变形机制的关系,以明确塑性变形在断裂中的作用,阐明他们之间的必然联系。
本文核心论点为:塑性变形是断裂的基础,断裂是塑性变形的必然结果。
接下来讨论以下从八个具有不同断裂机理的断裂,以阐明塑性变形与断裂的关系,论证塑性变形是断裂的基础,断裂是塑性变形的最终结果。
1延性断裂延性断裂是指在断裂过程中,塑性变形起主导作用的断裂形式,包括切离和微孔聚集型断裂。
首先来看切离断裂,单晶体在拉伸塑性变形中只有一个滑移系统开动(如hcp中只沿基面滑移的情况),试样将沿着滑移面分离,对于多晶体,多滑移系统同时动作,协调变形,试样将经过均匀变形和颈缩等阶段,变形至颈部截面积为零时断裂,形成尖锥状的断口。
切离断裂是位错无限发展的结果,位错运动贯穿切离断裂的始终,没有位错不断滑移,就不可能发生切离断裂。
由微孔的形核、长大聚合而导致的断裂叫做微孔聚集型断裂,微孔形成的机制共有三种,分别为空位扩散机制、强化相脱粘机制与强化相碎裂机制。
空位的形成是由于位错割阶的非保守运动而产生的,空位的扩散聚集成为微孔,其过程是通过位错的运动。
而强化相脱粘机制与强化相碎裂机制是由于强化相在材料中阻碍滑移,使得强化相前方位错塞积,应力集中,当应力大于强化相强度或者强化相与基体的结合强度时,就导致了强化相本身的折断或者脱离,也即在此处产生了微孔。
而微孔的长大与连接也是塑性变形的结果:微孔间的材料形成“内颈缩”并随位错运动越来越细,内颈缩断裂,使得微孔与最近微孔相连,微孔不断聚合导致裂纹扩展,最终断裂。
第六章金属的塑性变形和断裂分析
1、单相固溶体的塑性变形:
塑变方式基本上与纯金属多晶体的变形相同, 但:
1.1产生固溶强化:由于溶质原子存在使强度、 硬度增高,塑性、韧性下降的现象;
原因:
①发生晶格畸变;
②形成柯氏气团:溶质原子在位错线附近的偏聚, 如图6-26所示;柯氏气团对位错有钉扎作用, 使位错运动的阻力增大;
a)溶质原子大于溶剂原子的置换固溶体; b)溶质原子小于溶剂原子的置换固溶体; c)间隙固溶体;
④fcc晶体孪生变形的示意过程,如图6-21所示; ⑤孪生时可听到声音; ⑥孪生对总变形量贡献不大;
⑦孪生的特点: 使一部分晶体发生了均匀的切变; 引起了晶体取向的变化; 不会改变晶体的点阵类型; 所需的切应力比滑移大许多倍; 在光学显微镜下观察到的是条带状;
第三节 多晶体的塑性变形
孪晶:以孪晶面为对称面而处于镜面对称位置的 一对晶体叫做孪晶(双晶),如图6-20所示;
说明: ①孪生是晶体塑变的另一种方式;
②孪生经常发生在:不易产生滑移的金属中、 某些金属滑移困难时、变形速度大时;
③孪生面和孪生方向: 例如:fcc:孪生面{111},孪生方向为
〈112〉; bcc: 孪生面{112},孪生方向为〈111〉
σ S—e
S — e:真应力真应变曲线
σ—ε
颈
σ—ε:工程应力应变曲线
缩
ε
工程应力—应变曲线中“颈缩”现 象掩盖了 “加工硬化”
3、弹性变形: 定义:金属受力发生变形,当外力去除,立即 恢复原状的变形,叫做弹性变形; 实质:利用双原子作用力模型解释: 仅原子间距发生微小的弹性变化,无显微组织 的变化; 特点:①变形是可逆的;
2.1滑移带:
高锰钢中的滑移带,500X
金属断裂的微观机理与典型形貌
金属断裂的微观机理与典型形貌金属断裂是指金属材料在受到应力作用下发生破裂现象。
金属断裂的微观机理和典型形貌是金属材料断裂过程中所呈现出的微观变化和破裂形态。
本文将从金属断裂的微观机理和典型形貌两个方面进行探讨。
一、金属断裂的微观机理在金属断裂的微观机理中,主要涉及到晶体的变形、晶界滑移和裂纹扩展等过程。
1. 晶体的变形金属材料的断裂是由于晶体内部发生了塑性变形。
当金属受到外力作用时,晶体内的原子会发生位移和重排,导致晶体的形状发生变化。
晶体的变形过程中,会产生位错,即晶格中的原子出现错位。
位错的运动和积累是金属材料塑性变形和断裂的基础。
2. 晶界滑移金属材料由多个晶粒组成,晶粒之间存在晶界。
晶界是晶粒内部晶格的不连续区域。
当金属受到应力作用时,晶界处的原子会沿着晶界面滑移,从而使晶粒发生形变。
晶界滑移是金属材料塑性变形和断裂的重要机制之一。
3. 裂纹扩展裂纹是金属材料中的缺陷,是断裂的起始点。
当金属受到应力作用时,应力集中在裂纹处,导致裂纹的扩展。
裂纹扩展的机理主要包括塑性扩展和脆性扩展两种形式。
塑性扩展是指裂纹周围发生塑性变形,裂纹沿着塑性区域扩展;脆性扩展是指裂纹周围没有发生塑性变形,裂纹直接沿着晶体的晶面或晶界扩展。
二、金属断裂的典型形貌金属断裂的典型形貌是指金属材料断裂后所呈现出的形态特征。
根据金属断裂的不同性质和机理,金属材料的断裂形貌可以分为韧性断裂、脆性断裂和疲劳断裂等。
1. 韧性断裂韧性断裂是指金属材料在受到较大应力时,发生大量的塑性变形和能量吸收,最终以拉伸断裂为主。
韧性断裂的断口面平滑,有明显的塑性变形迹象,断口两侧呈现出韧带状的纹理。
韧性断裂通常发生在具有良好延展性的金属材料中,如钢材、铝合金等。
2. 脆性断裂脆性断裂是指金属材料在受到较小应力时,发生较少的塑性变形和能量吸收,最终以断裂为主。
脆性断裂的断口面光洁平整,没有明显的塑性变形迹象,断口两侧呈现出晶粒状的纹理。
脆性断裂通常发生在具有较低延展性的金属材料中,如铸铁、高碳钢等。
第2章 塑性变形与断裂
[Physical Metallurgy]
[Physical Metallurgy]
3.当点1在所示的标准极射赤面三角形内时,图 4.5,滑移将在(111)面上沿[ 101]晶向发生。 4. 当加载轴到达点2时,在共轭滑移系上的分 切应力,变成与一次滑移系上的相等。 5. 从理论上讲,自点2开始,一次滑移系与共 轭滑移二者都应该起作用,而加载轴线应该 由点2向 方向运动。
[Physical Metallurgy]
[Physical Metallurgy]
三、分切应变 1.分切应变表达式
z
到长度 l1 图4.8(b)。若 λ 0 为切变前滑移方向与晶
考虑起始长度为 l0 的体元(图4.8(a)),切变
体轴线的夹角,λ1为切变后滑移方向与晶体轴线的夹 l1 sin λ0 sin x0 角,则 (4.2) = = l 0 sin λ1 sin x1
[Physical Metallurgy]
l
若总变形△l微小,如△l=0.001l0,则完全可以近似 地认为l与初始值l0相同,此时的总应变ε为 :
ε =
∫ dε
=
l l0
∫
l0 + Δ l
l0
Δl dl = = 0 . 001 (4.7) l0
在弹性变形的问题中可用这种方法计算应变。
[Physical Metallurgy]
[Physical Metallurgy]
(3)当强化速率开始下降时就开始了第三阶段 的变形。第三阶段的变形过程是最复杂的,在 这一阶段中起主要作用的是一些新型的位错之 间的相互作用。
[Physical Metallurgy]
四、塑性变形的其他形式 1.塑性变形引起晶体被“扭折” (1)拉伸或压缩时大应变的几何效应也能影响变形形 式,这种行为在密排六方金属或其他具有少量滑移系 的晶体中尤为常见。 讨论密排六方晶体的压缩试验,晶体取向如图4.9 (a)所示。由于 cos ϕ = 0 ,在(0001)滑移面上的 分切应力为零,因而不能产生滑移方式的变形。若两 排位错导致了如图所示那样型式的局部弯曲,则晶体 被“扭折”。
金属材料受力后会弯曲或断裂
金属材料受力后会弯曲或断裂金属材料是一类常见的工程材料,广泛应用于建筑、航空、汽车制造等领域。
在使用过程中,金属材料会承受各种外部力的作用,如拉力、压力、弯曲力等。
然而,这些力的作用会导致金属材料发生变形,甚至出现弯曲或断裂的情况。
本文将针对金属材料在受力后发生弯曲或断裂的原因以及相应的预防措施进行探讨。
首先,金属材料在受力后发生弯曲的原因有多种。
主要原因之一是金属材料的内部结构造成的。
金属材料的内部由晶粒组成,晶粒与晶粒之间通过晶界连接着。
当外力作用到金属材料上时,晶粒之间的晶界可能发生滑移或移位,导致材料整体发生塑性变形。
这种滑移和移位会导致材料内部产生应力集中区域,从而造成金属材料整体弯曲。
此外,金属材料的晶粒尺寸和材料的纯度也会影响金属材料的强度和塑性,进而影响材料在受力后的弯曲情况。
其次,金属材料在受力后出现断裂的原因也有多方面。
一方面,金属材料的强度不足可能导致断裂。
当外力作用到金属材料上超过材料的强度极限时,金属材料就会发生破裂。
此外,金属材料的内部存在缺陷也可能导致断裂。
缺陷包括气孔、夹杂物、裂纹等,这些缺陷会导致材料内部应力集中,从而引起断裂。
此外,金属材料的应力集中也可能导致断裂。
当外力作用到金属材料上时,如果材料表面存在缺口或切口等形状不良的部分,外力就会在这些部分产生应力集中,进而引发断裂。
对于金属材料在受力后弯曲或断裂的情况,我们应该采取相应的预防措施。
首先,正确选择金属材料是非常重要的。
对于不同场合的应用,需要选择适合强度和塑性的金属材料,以免在受力下出现过度弯曲或断裂。
其次,合理设计金属结构也是关键。
在设计过程中,应该避免金属结构出现应力集中的部位,适当增加支撑或加强结构刚度等方式来预防弯曲或断裂。
此外,采用适当的材料处理方法也能有效预防金属材料受力后弯曲或断裂。
比如,通过热处理可以改善金属材料的强度和塑性,进而提高金属材料的抗弯曲和抗断裂能力。
此外,加强金属材料的监测和检测也是重要的一环。
金属学及热处理课后习题答案解析第六章
⾦属学及热处理课后习题答案解析第六章第六章⾦属及合⾦的塑性变形和断裂2)求出屈服载荷下的取向因⼦,作出取向因⼦和屈服应⼒的关系曲线,说明取向因⼦对屈服应⼒的影响。
答:1)需临界临界分切应⼒的计算公式:τk=σs cosφcosλ,σs为屈服强度=屈服载荷/截⾯积需要注意的是:在拉伸试验时,滑移⾯受⼤⼩相等,⽅向相反的⼀对轴向⼒的作⽤。
当载荷与法线夹⾓φ为钝⾓时,则按φ的补⾓做余弦计算。
2)c osφcosλ称作取向因⼦,由表中σs和cosφcosλ的数值可以看出,随着取向因⼦的增⼤,屈服应⼒逐渐减⼩。
cosφcosλ的最⼤值是φ、λ均为45度时,数值为0.5,此时σs为最⼩值,⾦属最易发⽣滑移,这种取向称为软取向。
当外⼒与滑移⾯平⾏(φ=90°)或垂直(λ=90°)时,cosφcosλ为0,则⽆论τk数值如何,σs均为⽆穷⼤,表⽰晶体在此情况下根本⽆法滑移,这种取向称为硬取向。
6-2 画出铜晶体的⼀个晶胞,在晶胞上指出:1)发⽣滑移的⼀个滑移⾯2)在这⼀晶⾯上发⽣滑移的⼀个⽅向3)滑移⾯上的原⼦密度与{001}等其他晶⾯相⽐有何差别4)沿滑移⽅向的原⼦间距与其他⽅向有何差别。
答:解答此题⾸先要知道铜在室温时的晶体结构是⾯⼼⽴⽅。
1)发⽣滑移的滑移⾯通常是晶体的密排⾯,也就是原⼦密度最⼤的晶⾯。
在⾯⼼⽴⽅晶格中的密排⾯是{111}晶⾯。
2)发⽣滑移的滑移⽅向通常是晶体的密排⽅向,也就是原⼦密度最⼤的晶向,在{111}晶⾯中的密排⽅向<110>晶向。
3){111}晶⾯的原⼦密度为原⼦密度最⼤的晶⾯,其值为2.3/a2,{001}晶⾯的原⼦密度为1.5/a24)滑移⽅向通常是晶体的密排⽅向,也就是原⼦密度⾼于其他晶向,原⼦排列紧密,原⼦间距⼩于其他晶向,其值为1.414/a。
6-3 假定有⼀铜单晶体,其表⾯恰好平⾏于晶体的(001)晶⾯,若在[001]晶向施加应⼒,使该晶体在所有可能的滑移⾯上滑移,并在上述晶⾯上产⽣相应的滑移线,试预计在表⾯上可能看到的滑移线形貌。
金属及合金的塑性变形与断裂PPT课件
03
02
延性断裂的断口呈纤维状,色泽灰暗,表面 有明显的塑性变形。
04Biblioteka 脆性断裂:材料在断裂前几乎没有塑性变 形,断裂突然发生。
脆性断裂的断口呈结晶状,色泽光亮,没 有明显的塑性变形。
05
06
脆性断裂多发生在脆性材料中,如玻璃、 陶瓷等。
疲劳断裂与环境断裂
疲劳断裂:材料在循环载荷作用下发 生的断裂现象。
THANKS.
塑性变形机制
滑移
金属晶体在切应力作用下,晶体的一 部分相对于另一部分沿一定的晶面和 一定的晶向相对移动的现象。
孪生
金属晶体在切应力作用下,沿一定的 晶面和一定的晶向发生切变的现象。
晶界滑移
在多晶体金属中,晶界在切应力作用 下发生相对移动的现象。
晶界滑移与位错交互作用
晶界滑移与位错运动之间的相互作用, 影响金属的塑性变形行为。
金属及合金的塑性变形与断裂 涉及到材料科学、物理学、力 学等多个学科领域,开展跨学 科研究有助于深入理解其内在 机制,推动相关领域的发展。
通过实验与计算模拟相结合的 方法,可以更全面地揭示金属 及合金的塑性变形与断裂行为 ,为实际应用提供更准确的指 导。
将智能化与自动化技术应用于 金属及合金的塑性变形与断裂 研究中,可以提高研究效率, 降低实验成本,为实际生产提 供有力支持。
屈服准则
描述材料开始进入塑性变形的应力条件 。例如,Tresca和Von Mises屈服准则。
VS
应力-应变关系
描述金属或合金在塑性变形过程中应力与 应变之间的关系,通常呈现非线性特征。
加工硬化与软化现象
加工硬化
随着塑性变形的增加,金属或合金的强度和 硬度提高,但延展性和韧性下降的现象。
材料科学基础复习提纲(下)
材料科学基础(下)复习提纲第六章 金属与合金的塑性变形与断裂1、常温和低温下金属塑性变形的两种主要方式为( )和 ( )。
2、体心、面心、密排六方晶格金属的主要滑移系,详见表6-2。
解释体心立方的金属的塑性为什么比面心立方金属差?3、了解施密特定律,并会做相应的计算(见第六章作业)4、晶体的滑移的实质(是位错在切应力的作用下沿着滑移面逐步移动的结果)。
了解位错的交割和塞积对金属的力学性能的影响。
5、掌握塑性变形对金属组织和性能的影响。
第七章 金属及合金的回复与再结晶1、了解回复过程的组织结构和性能的变化?2、了解再结晶过程的组织结构和性能的变化?3、从金属学角度,金属的热加工和冷加工是如何划分的? 第八章 扩散1、固态下原子扩散的机制主要有哪两种?扩散的本质原因是什么?2、掌握扩散第二定律的误差函数解,并会做相应计算。
(见作业题型)3、了解影响扩散的因素。
第九章 钢的热处理原理 1、钢的奥氏体化过程? 2、钢在冷却过程中的转变。
高温转变⎪⎩⎪⎨⎧︒︒︒,托氏体,索氏体,珠光体C C C A 550~600600~650650~1 解释珠光体、索氏体和托氏体的力学性能与片间距的关系。
(详见P246)中温转变⎩⎨⎧︒,下贝氏体,上贝氏体S M C ~350350~600 了解下贝氏体的力学性能及生产方式(详见P261)低温转变 {下,马氏体转变、,快冷至f S C M M V V ≥(1) 什么是马氏体?马氏体的晶体结构、组织形态、性能特点? (2) 马氏体转变的特点?3、淬火钢的回火转变过程?(一)~(五)P268~272,淬火钢回火时力学性能的变化?4、了解第一类和第二类回火脆性及解决办法? 第十章 钢的热处理工艺1、了解退火和正火的目的?各种退火工艺的目的和适用对象。
正火工艺适用的四个主要方面。
2、淬火的加热温度的选择?原因?淬火常用的介质有哪几种?淬火常用方法?3、什么是淬透性、淬硬性?它们的差别?(详见P289)4、低温、中温、高温回火各获得什么组织?其性能有何特征?5、了解感应加热表面淬火的工作原理?淬硬层深度与电流频率的关系?5、渗碳的适用材料、主要方法、渗碳温度及渗碳介质?渗氮的适用材料、主要方法、渗氮温度及渗氮介质?第十一章 工业用钢1、 合金元素在钢里的存在方式?合金元素对铁-渗碳体相图的影响?合金元素对钢热处理过程的影响?2、 什么时回火稳定性和二次硬化?3、 造成金属腐蚀的原因?耐磨钢耐磨的原因?耐热钢的抗氧化型和热强性? 第十二章 铸铁1、 铸铁石墨化过程?铸铁的组织?影响铸铁石墨化的因素? 第十三章 有色金属及其合金1、 铝合金的分类及铝合金的强化方法?(重点掌握铝合金的沉淀强化P384)2、 铜合金的分类?黄铜的力学性能与含锌量的关系?锡青铜的力学性能与含锡量的关系。
第六章 金属材料性能与塑性变形
???
减震
恒力碟簧支吊架
第二节 弹性变形
1.2.5 滞弹性
(1)突然加载OA,产生瞬时应 变Oa ,而后产生附加应变Ah (2)快速卸载Be,产生瞬时应 变He 而后产生附加应变eO
滞弹性
在弹性范围内快速加载或卸载后,随时间延长产生附 加弹性应变的现象。
产生原因:可能与金属中点缺陷的移动有关。 在仪表和精密机械中,选用重要传感元件的材料时,需要考虑滞弹性问题。
P 载 荷 (N)
b
e p Pp s
(MPa) k
Pk
0
lk b (低碳钢的拉伸力-伸长曲线)
l
lu
l伸长 0 (mm)
p
b
k
u
(低碳钢的应力-应变曲线)
k
(%)
低碳钢的应力-应变曲线 (M Pa) b k
a
a′
0a段 aa ′段 a ′b段
弹性变形 阶段 塑性变形 阶段
但是,通常拉开n分之一个原子间距就发生了塑性变形——塑性变 形机理取代弹性变形
第二节 弹性变形
1.2.2 胡克定律
(一) 简单应力状态的胡克定律 1.单向拉伸
y
y
2.剪切和扭转
x z y
E
y
E
(1-1)
G
E G 3.E、G的关系 2(1 )
断口特征
第一节 应力-应变曲线
1.1.1 脆性材料的拉伸性能
在拉伸时只产生弹性变形,不产生或产生微量的塑性变形 强度高、塑性差的材料:玻璃、陶瓷、高强钢、铸铁
材料完全脆性的- 曲线
弹性变形阶段 应力-应变成正比
E G
金属的塑性变形和断裂分析课件
腐蚀速率
金属腐蚀的速度,通常以单位 时间内腐蚀的深度或质量损失
表示。
腐蚀防护采用涂层、电镀、缓来自剂等措 施来减缓金属的腐蚀速率。
提高金属抗疲劳和抗腐蚀的方法
材料选择
选择具有优异抗疲劳和抗腐蚀 性能的材料,如不锈钢、钛合
金等。
表面处理
采用喷涂、电镀、化学镀等表 面处理技术,提高金属表面的 耐腐蚀性能。
金属的塑性变形和断 裂分析课件
目录
CONTENTS
• 金属的塑性变形 • 金属的断裂分析 • 金属的塑性和韧性 • 金属的强度和硬度 • 金属的疲劳和腐蚀
01 金属的塑性变形
塑性变形的定义
塑性变形:金属在受到外力作用 时,发生的不可逆的形状变化。
塑性变形是一种不可逆的永久变 形,即使外力撤去,也无法恢复
温度
温度对金属的塑性变形有显著影响,温度升高, 金属的塑性增加,更容易发生塑性变形。
应变速率
应变速率越快,金属的塑性越差;应变速率越慢 ,金属的塑性越好。这是因为应变速率快时,金 属内部的应变硬化速度跟不上应变速率,导致金 属容易发生断裂。
02 金属的断裂分析
断裂的定义和分类
总结词
断裂是金属材料在受力过程中发生的永久性结构变化,通常表现为突然的开裂或分离。
强度和硬度在一定程度上可以相互转换,但转换公式因材料和测试方法 而异。
强度和硬度的关系对于材料的选择和应用具有重要的指导意义,例如在 机械零件的设计和制造中,需要根据零件的工作条件和要求合理选择材 料的强度和硬度。
05 金属的疲劳和腐蚀
金属的疲劳
疲劳定义
金属在循环应力作用下 ,经过一段时间后发生
提高金属塑性和韧性的方法
合金化
金属及合金的塑性变形与断裂
晶粒。
工业纯铁在塑性变形前后的组织变化
(a) 正火态
(b) 变形40%
(c) 变形80%
5%冷变形纯铝中的位错网
塑性变形对金属组织的影响
晶粒拉长,纤维组织 → 各向异性 (沿纤维方向的强度、塑性最大)
变形10% 100×
变形80% 纤维组织
100×
变形40% 100×
工业纯铁 不同变形度 的显微组织
2.位错的增殖
位错增值模型.swf 螺位错双交滑移增殖模型.swf
3.位错的交割与塞积
位错在障碍物前的塞积
位错:AB 、CD (固定不动)
mn⊥b2
位错
当两条位错线交割时,每条位错线上都可能出 现长度相当于另一条位错线b的割阶,这就增加
了位错长度,是位错能量升高,是变形所需的
总能量升高; 另外,当割阶垂直于滑移面时, 此割阶有阻止位错运动的作用,会使晶体进一 步滑移的抗力增加,这是加工硬化的主要原因。
量和分布有关。第二相
可以是纯金属、固溶体
或化合物,工业合金中
第二相多数是化合物。
+钛合金(固溶体第二相)
当在晶内呈颗粒状弥散分布时,第二相颗粒越细, 分布越均匀,合金的强度、硬度越高,塑性、韧性 略有下降,这种强化方法称弥散强化或沉淀强化。 弥散强化的原因是由于硬的颗粒不易被切变,因而 阻碍了位错的运动,提高了变形抗力。
固溶强化的实质是溶质原子与位错的弹性交互作用阻碍了位错 的运动。即溶质原子与位错弹性交互作用的结果,如下图所示,使 溶质原子趋于聚集在位错的周围,以减小畸变,使系统更加稳定, 此即称为柯氏(cotrell)气团。显然,柯氏气团对位错有“钉扎”作用。 为了使位错挣脱气团而运动,必须施加更大的外力。因此,固溶体 合金的塑性变形抗力要高于纯金属。
金属材料的塑性变形与断裂机理
金属材料的塑性变形与断裂机理金属材料是广泛应用于工业和制造领域的重要材料之一。
塑性变形和断裂机理是金属材料力学行为的基本特征,对于理解金属材料的性能和改善其工程应用具有重要意义。
本文将从塑性变形和断裂机理两个方面进行论述,以帮助读者更好地理解金属材料的性质和行为。
一、塑性变形机理1.1 密排层错结构金属材料中晶体的构造对其塑性变形性能具有重要影响。
密排层错结构是金属材料中晶体排列的一种常见结构。
该结构可以使晶体在受力时发生滑移,从而引发材料的塑性变形。
滑移过程中,晶体内的原子相互滑动,使材料发生变形,从而增加其塑性。
1.2 双曲面交错结构双曲面交错结构是另一种常见的金属材料晶体排列方式。
在受力作用下,晶体发生双曲面滑移,从而引起材料的塑性变形。
该结构可以增加晶体滑移的方向,提高材料的塑性。
1.3 变形机制金属材料的塑性变形机制主要包括滑移、孪晶形成和机械孪生等。
滑移是晶体中原子相互滑动引起的变形机制,主要通过滑移面和滑移方向来确定滑移产生的位置。
孪晶形成是在某些条件下晶体内部形成镜像结构,从而产生变形。
机械孪生是晶体中发生变形所产生的一种特殊形态。
二、断裂机理2.1 断裂类型金属材料的断裂类型包括韧性断裂、脆性断裂和疲劳断裂。
韧性断裂是材料发生延性断裂,即在承受一定载荷后,材料仍能继续变形;脆性断裂是材料在承受载荷后突然断裂,变形能力较差;疲劳断裂是材料在长时间重复加载的作用下产生的断裂现象。
2.2 断裂因素金属材料的断裂受到多种因素的影响,主要包括应力、环境和缺陷等。
应力是导致材料发生断裂的最主要因素,当应力超过材料的承受能力时,断裂就会发生。
环境因素如温度、湿度等也会对金属材料的断裂行为产生影响。
此外,材料内部的缺陷如裂纹、夹杂等也会加速材料的断裂。
2.3 断裂表征方法断裂行为的表征对于评估材料的性能具有重要意义。
常见的断裂表征方法包括断口形貌观察、断口分析和断裂韧性测试等。
通过观察断口形貌可以了解材料的断裂模式,进一步深入分析可以推测断裂的原因。
金属的断裂条件及断口
金属的断裂条件及断口金属在外加载荷的作用下,当应力达到材料的断裂强度时,发生断裂。
断裂是裂纹发生和发展的过程。
1. 断裂的类型根据断裂前金属材料产生塑性变形量的大小,可分为韧性断裂和脆性断裂。
韧性断裂:断裂前产生较大的塑性变形,断口呈暗灰色的纤维状。
脆性断裂:断裂前没有明显的塑性变形,断口平齐,呈光亮的结晶状。
韧性断裂与脆性断裂过程的显著区别是裂纹扩散的情况不同。
韧性断裂和脆性断裂只是相对的概念,在实际载荷下,不同的材料都有可能发生脆性断裂;同一种材料又由于温度、应力、环境等条件的不同,会出现不同的断裂。
2. 断裂的方式根据断裂面的取向可分为正断和切断。
正断:断口的宏观断裂面与最大正应力方向垂直,一般为脆断,也可能韧断。
切断:断口的宏观断裂面与最大正应力方向呈45°,为韧断。
3. 断裂的形式裂纹扩散的途径可分为穿晶断裂和晶间断裂。
穿晶断裂:裂纹穿过晶粒内部,韧断也可为脆断。
晶间断裂:裂纹穿越晶粒本身,脆断。
机器零件断裂后不仅完全丧失服役能力,而且还可能造成不应有的经济损失及伤亡事故。
断裂是机器零件最危险的失效形式。
按断裂前是否产生塑性变形和裂纹扩展路径做如下分类。
韧性断裂的特征是断裂前发生明显的宏观塑性变形,用肉眼或低倍显微镜观察时,断口呈暗灰色纤维状,有大量塑性变形的痕迹。
脆性断裂则相反,断裂前从宏观来看无明显塑性变形积累,断口平齐而发亮,常呈人字纹或放射花样。
宏观脆性断裂是一种危险的突然事故。
脆性断裂前无宏观塑性变形,又往往没有其他预兆,一旦开裂后,裂纹迅速扩展,造成严重的破坏及人身事故。
因而对于使用有可能产生脆断的零件,必须从脆断的角度计算其承载能力,并且应充分估计过载的可能性。
. 金属材料产生脆性断裂的条件(1)温度任何一种断裂都具有两个强度指标,屈服强度和表征裂纹失稳扩散的临界断裂强度。
温度高,原子运动热能大,位错源释放出位错,移动吸收能量;温度低反之。
(2)缺陷材料韧性裂纹尖端应力大,韧性好发生屈服,产生塑性变形,限制裂纹进一步扩散。
金属断口机理及分析
名词解释延性断裂:金属材料在过载负荷的作用下,局部发生明显的宏观塑性变形后断裂。
蠕变:金属长时间在恒应力,恒温作用下,慢慢产生塑性变形的现象。
准解理断裂:断口形态与解理断口相似,但具有较大塑性变形(变形量大于解理断裂、小于延性断裂)是一种脆性穿晶断口沿晶断裂:裂纹沿着晶界扩展的方式发生的断裂。
解理断裂:在正应力作用下沿解理面发生的穿晶脆断。
应力腐蚀断裂:拉应力和腐蚀介质联合作用的低应力脆断疲劳辉纹:显微观察疲劳断口时,断口上细小的,相互平行的具有规则间距的,与裂纹扩展方向垂直的显微条纹。
正断:断面取向与最大正应力相垂直(解理断裂、平面应变条件下的断裂)韧性:材料从变形到断裂过程中吸收能量的大小,是材料强度和塑性的综合反映。
冲击韧性:冲击过程中材料吸收的功除以断的面积。
位向腐蚀坑技术:利用材料腐蚀后的几何形状与晶面指数之间的关系研究晶体取向,分析断裂机理或断裂过程。
河流花样:解理台阶及局部塑性变形形成的撕裂脊线所组成的条纹。
其形状类似地图上的河流。
断口萃取复型:利用AC 纸将断口上夹杂物或第二相质点萃取下来做电子衍射分析确定这些质点的晶体结构。
氢脆:金属材料由于受到含氢气氛的作用而引起的低应力脆断。
卵形韧窝:大韧窝在长大过程中与小韧窝交截产生的。
等轴韧窝:拉伸正应力作用下形成的圆形微坑。
均匀分布于断口表面,显微洞孔沿空间三维方向均匀长大。
第一章断裂的分类及特点1.根据宏观现象分:脆性断裂和延伸断裂。
脆性断裂裂纹源:材料表面、内部的缺陷、微裂纹;断口:平齐、与正应力相垂直 ,人字纹或放射花纹。
延性断裂裂纹源:孔穴的形成和合并;断口:三区,无光泽的纤维状,剪切面断裂、与拉伸轴线成45º .2.根据断裂扩展途分:穿晶断裂与沿晶断裂。
穿晶断裂:裂纹穿过晶粒内部、可能为脆性断裂也可 能是延性断裂; 沿晶断裂:裂纹沿着晶界扩展,多属脆断。
应力腐蚀断口,氢脆断口。
3根据微观断裂的机制上分:韧窝、解理(及准解理)、沿晶和疲劳断裂 4根据断面的宏观取向与最大正应力的交角分:正断、切断正断:断面取向与最大正应力相垂直(解理断裂、平面应变条件下的断裂) 切断:断面取向与最大切应力相一致,与最大应力成45º交角(平面应力条件下的撕裂) 根据裂纹尖端应力分布的不同,主要可分为三类裂纹变形: 裂纹张开型、边缘滑开型(正向滑开型)、侧向滑开型(撒开型)裂纹尺寸与断裂强度的关系Kic :材料的断裂韧性,反映材料抗脆性断裂的物理常量(不同于应力强度因子,与K 准则相似)a Y K c c πσ⋅=1:断裂应力(剩余强度) a :裂纹深度(长度) Y :形状系数(与试样几何形状、载荷条件、裂纹位置有关) 脆性材料K 准则:KI 是由载荷及裂纹体的形状和尺寸决定的量,是表征裂纹尖端应力场强度的计算量; KIC 是材料固有的机械性能参量,是表示材料抵抗脆断能力的试验量第二章裂纹源位置的判别方法: T 型法(脆断判别主裂纹),分差法(脆断判别主裂纹),变形法(韧断判别主裂纹),氧化法(环境断裂判别主裂纹),贝纹线法(适用于疲劳断裂判别主裂纹)。
复合材料和金属材料的他们失效形式的差异
复合材料和金属材料的他们失效形式的差异复合材料和金属材料的失效形式存在明显的差异。
在金属材料中,常见的失效形式包括塑性变形、断裂、疲劳、腐蚀等。
而在复合材料中,常见的失效形式则包括层间剥离、纤维断裂、热失效、湿度吸收引起的膨胀等。
金属材料的塑性变形和断裂是由于材料受力时发生原子结构的
变化,导致材料出现塑性变形或破裂。
而疲劳则是由于材料在重复受力下发生微观损伤,累积到一定程度导致破裂。
腐蚀则是由于材料表面与周围环境中的化学物质发生反应,导致材料出现腐蚀破坏。
复合材料的失效形式则主要与纤维和基质之间的粘结性能有关。
层间剥离是由于纤维与基质之间的粘结不足,导致两者分离。
纤维断裂则是由于纤维在受力下发生破裂。
热失效则是由于复合材料在高温下材料性能发生变化。
湿度吸收引起的膨胀则是由于复合材料吸收水分后导致材料膨胀,进而影响材料性能。
因此,针对不同材料的失效形式,需要采取相应的预防和修复措施,以保证材料的可靠性和寿命。
- 1 -。
金属材料的断裂和断裂韧性
4.1 脆性断裂
➢ 断裂前无明显塑变,吸收能量少,裂纹扩展速度快,几近
音速,后果严重。
➢ 断裂面与正应力垂直,断口平齐光亮,呈放射状或结
➢ρ=8a0/π,为Griffith公式。
➢ρ<8a0/π,用Griffith公式。
线弹性条件下的断裂韧性
►研究带有裂纹的线弹性体,假定裂纹尖端应
力仍服从虎克定律。
►玻璃和陶瓷:理想的弹性体 ►金属:裂纹尖端塑性区尺寸远小于裂纹长度
。
►Griffith—Orowan:能量理论 ►Irwin:应力场强度因子理论
走向 沿晶断裂 裂纹沿晶界扩展
断裂 机理
解理断裂 无明显塑性变形,沿解理面分离,穿晶断裂
微孔聚集 沿晶界微孔聚合,沿晶断裂 型断裂 在晶内微孔聚合,穿晶断裂
解理型断口
微孔聚合型断口
沿晶断裂
穿晶断裂
a沿晶脆断 b 穿晶/解理 断裂 c 准解理断 d 微孔聚集
4.4 断裂力学与断裂韧度
断裂-低于许用应力
韧窝形状取决于应力状态;
临界或失稳状态时,KI记作KIC或KC。
介于解理断裂和韧窝断裂之间一种过渡断裂形式。
金属、高分子:塑性变形功 p ,Orowan修正公式:
沿大间距密排结晶面发生解理破坏,断口光滑,无特征判定裂纹源。 KC KIC 的区别
弹性应变能
微孔成核源:第二相粒子。
陶瓷:几乎或完全不能发生滑移,无塑性。
和高温的复合作用在晶界造成损伤。 例:钢的高温回火脆性是微量有害元素P,Sb,As,Sn等偏
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属塑性变形与断裂集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)
金属材料塑性变形与断裂的关系
摘要:金属的断裂是指金属材料在变形超过其塑性极限而呈现完全分开的状态。
材料受力时,原子相对位置发生了改变,当局部变形量超过一定限度时,原于间结合力遭受破坏,使其出现了裂纹,裂纹经过扩展而使金属断开。
任何断裂都是由裂纹形成和裂纹扩展两个过程组成的,而裂纹形成则是塑性变形的结果。
金属塑性的好坏表明了它抑制断裂能力的高低。
关键词:塑性变形解理断裂准解理断裂沿晶断裂冷脆疲劳应力腐蚀
氢脆高温断裂
一、解理断裂与塑变的关系
解理断裂在主应力作用下,材料由于原子键的破断而产生的沿着某一晶面的快速破断过程。
解理断裂的的产生条件是位错滑移必须遇到阻力,且位错滑移聚集到一定程度。
断裂面沿一定的晶面发生,这个平面叫做解理面。
解理台阶是沿两个高度不同的平行解理面上扩展的解理裂纹相交时形成的。
形成过程有两种方式:通过解理裂纹与螺型位错相交形成;通过二次解理或撕裂形成。
第一种,当解理裂纹与螺型位错相遇时,便形成一个台阶,裂纹继续向前扩展,与许多螺型位错相交便形成众多台阶,他们沿裂纹前端滑动而相互交汇,同号台阶相互汇合长大,异号台阶相互抵消,当汇合台阶足够大的时候便在电镜下观察为河流状花样。
第二种,二次解理是指在解理裂纹扩展的两个互相平行解理面间距较小时产生的,但若解理裂纹的上下两个面间距远大于一个原子间距时,两解理裂纹之间的金属会产生较大的塑性变形,结果由于塑性撕裂而形成台阶,称为撕裂棱晶界。
舌状花样是由于解理裂纹沿孪晶界扩散留下的舌头状凹坑或凸台。
从宏观上看,解理断裂没有塑性变形,但从微观上看解理裂纹是以塑性变形为先导的,尽管变形量很小。
解理断裂是塑性变形严重受阻,应力集中非常严重的一种断裂。
二、准解理断裂与塑变的关系
准解理断裂介于解理断裂和韧窝断裂之间,它是两种机制的混合。
产生原因:
(1)、从材料方面考虑,必为淬火加低温回火的组织,回火温度低,易产生此类断裂。
(2)、构件的工作温度与钢材的脆性转折温度基本相同。
(3)、构件的薄弱环节处处于平面应变状态。
(4)、材料的尺寸比较粗大。
(5)、回火马氏体组织的缺陷,如碳化物在回火时的定向析出。
准解理断裂往往开始是因为碳化物,析出物或者夹杂物在外力作用下产生裂纹,然后沿某一晶面解理扩展,之后以塑性变形方式撕裂,其断裂面上显现有较大的塑性变形,特征是断口上存在由于几个地方的小裂纹分别扩展相遇发生塑性撕裂而形成的撕裂岭。
准解理断裂面不是一
个严格准确的解理面,有人认为准解理断裂是解理和微孔聚合的混合机制
准解理与解理的共同点:都是穿晶断裂;有小解理面;有台阶或撕裂棱及河流状花样。
不同点:准解理小刻面不是晶体学解理面;真正解理裂纹常源于晶界,而准解理裂纹则常源于晶内硬质点,形成从晶内某点发源的放射状河流花样。
三、沿晶断裂与塑变的关系
沿晶断裂是指裂纹在晶界上形成并沿晶界扩展的断裂形式。
在多晶体变形中,晶界起协调相邻晶粒变形的作用。
但当晶界收到损伤,其变形能力被削弱,不足以协调相邻晶粒的变形时,便形成境界开裂。
产生沿晶断裂一般有如下原因:( 1 ) 晶界上存在有脆性沉淀相; (2 ) 杂质和合金元素在晶界偏析,致使晶界弱化;(3 ) 热应力作用;(4)环境引起的沿晶蚀用;(5)晶界有弥散相析出。
沿晶断裂的过程包括裂纹的形成与扩展。
沿晶断裂是与塑性变形密切相关的,当晶界受损的材料受力变形时,晶内的运动位错受阻于晶界,在晶界处造成应力集中,当集中应力达到境界强度时,变将晶界挤裂。
这个集中应力与位错塞积群中的位错数目和滑移带长度有关,因此沿晶断裂强度与晶粒尺寸符合Hall-Petch关系。
四、延性断裂与塑变的关系
延性断裂:伴随明显塑性变形而形成延性断口(断裂面与拉应力垂直或倾斜,其上具有细小的凹凸,呈纤维状)的断裂。
延性断裂一般包括纯剪切变形断裂、韧窝断裂、蠕变断裂等。
金属材料在载荷作用
下,首先发生弹性变形。
当载荷继续增加到某一数值,材料即发生屈服,产生塑性变形。
继续加大载荷,金属将进一步变形,继而发生断裂口或微空隙。
这些断裂口或微空隙一经形成,便在随后的加载过程中逐步汇合起来,形成宏观裂纹。
宏观裂纹发展到一定尺寸后,扩展而导致最后断裂。
延性断裂的裂口呈纤维状,色泽灰暗边缘有剪切唇,裂口附近有宏观的塑性变形。
五、疲劳与塑变的关系
金属疲劳过程的应力状态和应变状态决定了金属材料的组织和性能的变化规律。
在静载单向拉升的变形条件下,金属在宏观上呈现均匀变形,滑移线沿金属试样表面均匀分布,只有在较大变形量时,变形才集中于试样某一局部区域。
在交变荷载作用下,当应力超过该材料的疲劳极限(小于屈服点)时,应力循环达到一定次数后,通过金相显微镜和X-射线的实验观察,可以发现在试样表面上应力水平较高的区域或较软的部位,产生了集中滑移,形成了式样的不均匀塑性形变。
这种不均匀的塑性变形形成了通常所说的表面挤出峰和挤入槽。
挤出峰和挤入槽是金属弱化部位滑移层见无规则滑移构成的滑移带。
挤入槽构成了试样的表面裂纹。
金属的疲劳断裂过程可以分为疲劳裂纹的形成、疲劳裂纹的扩展和瞬时断裂三个阶段。
疲劳宏观上是脆性的,微观上是塑性的,是局部的塑性变形导致的断裂
在交变载荷作用下,金属表面将产生滑移线,随着循环次数增加,滑移线逐渐变粗而形成滑移带的独特结构与静载荷条件下的不同,它的
分布极不均匀,随着塑性应变的增大,滑移带数目不是在所有的晶面上平均增加,只是其中个别滑移带逐渐变宽而成为粗大的滑移带,在金相显微镜下,可以明显看到这些滑移带。
由滑移引起的疲劳裂纹,可以认为是驻留滑移带上的挤入和挤出现象的结果。
在交变荷载的继续作用下,挤入部分向滑移带纵深扩展,从而形成最初的疲劳裂纹,然后裂纹沿滑移带方向扩展,并穿过晶粒,直至转化成宏观裂纹。
六、应力腐蚀开裂与塑变的关系
应力腐蚀是指在拉应力作用下,金属在腐蚀介质中引起的破坏。
这种腐蚀一般均穿过晶粒,即所谓穿晶腐蚀。
应力腐蚀由残余或外加应力导致的应变和腐蚀联合作用产生的材料破坏过程。
应力腐蚀导致材料的断裂称为应力腐蚀断裂.
应力腐蚀开裂有以下特点
(1)造成应力腐蚀破坏的应力是静应力,远低于材料的屈服强度,而且一般是拉伸应力
(2)应力腐蚀造成的破坏,是脆性断裂,断裂前没有明星的塑性变形
(3)纯金属一般不发生应力腐蚀,只有在特定的合金成分与特定的介质相结合时才会造成应力腐蚀
(4)应力腐蚀的裂纹多起源于表面坑蚀处
常见应力腐蚀的机理是:零件或构件在应力和腐蚀介质作用下,破坏的表面和未破坏的表面分别形成阳极和阴极,阳极处的金属成为离子而
被溶解,产生电流流向阴极。
由于阳极面积比阴极的小得多,阳极的电流密度很大,进一步腐蚀已破坏的表面。
加上拉应力的作用,破坏处逐渐形成裂纹,裂纹随时间逐渐扩展直到断裂。
这种裂纹不仅可以沿着金属晶粒边界发展,而且还能穿过晶粒发展。
在应力作用下表面钝化膜破坏是由于临近裂纹顶端处容易产生局部塑性变形而形成滑移台阶所致。
七、氢脆与塑变的关系
氢脆是在应力和过量的氢共同作用下使金属材料塑性,韧性下降,在钢内部形成细小的裂纹现象。
并认为氢使微观塑变局部化,造成滞后塑变,降低屈服应力导致脆性。
氢脆通常表现为应力作用下的延迟断裂现象。
延迟断裂现象的产生是由于零件内部的氢向应力集中的部位扩散聚集,应力集中部位的金属缺陷多(原子点阵错位、空穴等)。
氢扩散到这些缺陷处,氢原子变成氢分子,产生巨大的压力,这个压力与材料内部的残留应力及材料受的外加应力,组成一个合力,当这合力超过材料的屈服强度,就会导致断裂发生。
氢脆的发生有一定的温度条件,当形变速率一定时,在稍高温度下,氢原子的扩散速度可以跟的上位错运动时,便以气团形式,伴随着位错运动,越来越多的聚集裂纹顶端塑性区,使该地区脆化。
八、高温断裂与塑变的关系
在高温短时载荷作用下,材料的塑性增加。
但在高温长时载荷作用下,材料的塑性却显着降低,缺口敏感性增加,往往呈现脆性断裂特
征。
高温下的断裂是以扩散为主的蠕变断裂。
蠕变是指金属材料在恒应力长期作用下发生的塑性变形现象。