第三章 刚体力学基础

合集下载

第三章刚体力学基础

第三章刚体力学基础
(1)轴通过棒的一端并与棒垂直轴。z
(2)轴通过棒的中心并与棒垂直;
dm
解:
J
r 2dm
dm dx m dx
o x dx
x
l
J l x2 m dx 1 m x3 l J 1 ml2
0l
3l 0
3
L
JC
2 L
x 2dx
mL2
/ 12
A
C
2
L/2
B
L/2
x
注:同一刚体,相对不同的转轴,转动惯量是不同的。
J ,r
质点A
T1 mg sin maA
质点B
mg T2 maB
滑轮(刚体) T2r T1r J
( T2 T2,T1 T1)
联系量 aA aB r
联立求解可得T1 、T2、 aA、 aB、
A
B
FN
T1 FR T1 mg T2
T2 m1g
为什么此时T1 ≠ T2 ?
mg
3、 平行轴定理与垂直轴定理
J11 J1 J2 2
ω
则B轮的转动惯量
J2
1 2 2
J1
n1 n2 n2
J1
20.0kg m2
(2)系统在啮合过程中机械能的变化为.
E
1 2
J1
J2
12
1 2
J112
1.32
104
J
质点的运动规律和刚体定轴转动规律的对比(一)
速度 加速度
质点v的运d动r
a
dt dv
dt
质量m, 力F
第一节 刚体运动的描述
一. 刚体
内部任意两点的距离在运动过程中始终保持不变的物 体,即运动过程中不发生形变的物体。

理论力学第三章刚体力学

理论力学第三章刚体力学
d dt
线量和角量的对应
dr
dr v dt
d
d dt
dv a dt
d dt
6.欧勒角
1).欧勒角 章动 角 自转 角 Z轴位置由 θ,φ角决 定 进动 角
节线ON
0 0 2 0 2
2).欧勒运动学方程
在直角坐标系
x i y j z k
理 论 力 学
第三章 刚体运动
概述
1.刚体是一个理想模型,它可以看作是一种特
殊的质点组,这个质点组中任何两个质点之间
的距离不变.这使得问题大为简化,使我们能 更详细地研究它的运动性质,得到的结果对实 际问题很有用。 2.一般刚体的自由度为6.如果刚体运动受到约束, 自由度相应减少.
3.刚体的两种基本运动
刚体上任一点p的坐标分别为
v r ra a ra 而在系 a xy z r r ( r b a a b ra ) rb ra (rb ra )

r ra ra
2
drci (rci mi Jc ) dt i 1 n (e) (rci Fi ) Mc
n
i 1
简表为:
d Mc Jc dt
(6个方程正好确定刚体的6个独立变量)
刚体的动量矩 (角动量) n n ) 简表为: J J c J ci (ri mi vi ) rc mvc (rci mi vci
三.刚体的平衡
刚体平衡条件

(e) Fi 0
n i
n (e) Fi ) 0 (rci Mc i 1

第三章-刚体力学基础

第三章-刚体力学基础

薄板对Z轴的转动惯量 J Z =
对X轴的转动惯量 J X
对Y轴的转动惯量 JY
Z
垂直轴定理
JZ JX JY
O
yi
Y
xi
ri
X
JZ miri2 mi xi2 mi yi2 Jx J y
五 刚体定轴转动的转动定律的应用
例1、一个质量为M、半径为R的定
滑轮(当作均匀圆盘)上面绕有细绳, 绳的一端固定在滑轮边上,另一端挂
分析: 由 每分钟150转 可知
0
t
2 150
60
5
rad
/ s
而已知 r=0.2m t=30s ω=0
可由公式求相应的物理量
解: (1) 0 0 5 (rad / s2 )
t
30
6
负号表示角加速度方向与角速度方向相反
(飞轮做匀减速转动)
2 02 2
(5 )2 2 ( )
末位置:
Ek
1 2
J 2
l
由刚体定轴转动的动能定理
1 mgl sin 1 J 2 0
2
2
mgl sin 3g sin
J
l
M
1 mgl cos
2
3g cos
J
1 ml2
2l
3
dm dl
gdm
(用机械能守恒定律解) 假设棒在水平位置时的重力势能为零势能
0 1 J2 (mg l sin ) O
动。最初棒静止在水平位置,求它由此下摆角时的
角加速度和角速度。(分别用动能定理和机械能守
恒定律求解)
解: (用动能定理解)
重力对轴的力矩为
M 1 mgl cos(M
O

刚体和流体

刚体和流体

y
角动量的方向: 位矢和动量的矢积方向. 特例: 如果质点绕参考点O作圆周运动
v p
O
L = r p = mv r
注意: 1.角动量与所取的惯性系有关. 2.角动量与参考点O的位置有关.
v r
第三章 刚体力学基础
质点对定轴的角动量
v v v v v L = r × p = r × mv
L = mvr = mr 2ω = Jω
(原点O在棒的左端点)
第三章 刚体力学基础
例题2: 一质量为m, 半径为R的均匀圆盘, 求通过盘中心并与 盘面垂直的轴的转动惯量. 解: dm = σdS = σ 2 π rdr
J = ∫ r dm = 2 πσ ∫ r dr
2
3
J = 2πσ ∫ r dr
3
R
R
r O
dr
πσ R 1 2 = = mR 2 2
v v v 加速度: 合外力矩: M z = ∑ ri × Fi v v v v v M z = ∑ ∆mi ri × aiτ + ∑ ∆mi ri × ain
v第三章v刚体力学基础 v ai = aiτ + ain
v 2 v v v v v 其中: ri × ain = 0 ri × aiτ = ri aiτ sin 90°k = ri β k v v 2 M z = ∑ ∆mi ri β 转动惯量 J v v 转动定律: M z = Jβ
θ ( rad) 角位移: ∆θ , dθ dθ −1 ( rad ⋅ s ) 方向右旋 ω= dt v
第三章 刚体力学基础
线速度与角速度之间的关系
r v v v dv d ω v v dr a= = ×r +ω× dt dt dt v 2 v = β reτ + ω ren

大学物理第三章刚体力学基础习题答案

大学物理第三章刚体力学基础习题答案

方向竖直向下
3-15 由角动量守恒得
mul J mvl 1 1 2 1 2 2 mu m v J 因弹性碰撞,系统机械能守恒: 2 2 2 1 1 2 2 又: J M 2l Ml 12 3 6mu M 3m u 联立可得: v M 3m l M 3m
2 2 2 1 mv l [m( l ) M l 2 ] 3 3 3
o
2 l 3
6mv (4m 3M ) l
v
m
A
3-9 电风扇在开启电源后,经过t1时间到达了额定 转速,此时相应的角速度为 0。当关闭电源后,经 过t2时间风扇停转。已知风扇转子的转动惯量为 J, 并假定摩擦力矩和电机的电磁力矩均为常量,试根据 已知量推算电机的电磁力矩。 解: 设电机的电磁力矩为M,摩擦力矩为Mf
1
0
t1
3-9 (1)
mg T ma
T mg sin 30 ma

g 2 a m/s 4
方向竖直向下
T2 N 2
mg
(2)
mg T1 ma
T2 mg sin 300 ma
T1r T2r J
a r
T1
1
mg
J k m r2
g 联立求解得: a 22 k
质点运动 m 质 量 力 F 刚体定轴转动 2 J r 转动惯量 m dm 力矩 M Fr sin
dp dL F m a F 第二定律 转动定律 M J M dt dt p mv 动 量 角动量 L J t t2 动量定理 t Fdt mv2 mv1 角动量定理 t Mdt J 2 J1 1 动量守恒 F 0, mv 恒矢量 角动量守恒 M 0, J 恒矢量 力矩的功 W Md 力 的 功 W F dr

大学物理第三章刚体力学

大学物理第三章刚体力学

薄板的正交轴定理:
Jz Jx J y
o x
y
X,Y 轴在薄板面上,Z轴与薄板垂直。
例3、质量m,长为l 的四根均匀细棒, O 组成一正方形框架,绕过其一顶点O 并与框架垂直的轴转动,求转动惯量。 解:由平行轴定理,先求出一根棒 对框架质心C的转动惯量:
C
m, l
1 l 2 1 2 2 J ml m( ) ml 12 2 3
M F2 d F2 r sin
若F位于转动平面内,则上式简化为
M Fd Fr sin
力矩是矢量,在定轴转动中, 力矩的方向沿着转轴,其指向 可按右手螺旋法则确定:右手 四指由矢径r的方向经小于的 角度转向力F方向时,大拇指的 指向就是力矩的方向。根据矢 量的矢积定义,力矩可表示为:
例9 行星运动的开普勒第二运动定律:行星对太阳 的位矢在相等的时间内扫过相等的面积。 解:行星在太阳引力(有心 力)作用下沿椭圆轨道运动, 因而行星在运行过程中,它 对太阳的角动量守恒不变。
L rmvsin 常量
因而掠面速度:
dS dt
r dr sin 2dt
1 rv sin 常量 2
Fi fi Δmi ai
切向的分量式为
Fi sin i f i sin i mi ri
Fi sin i f i sin i mi ri
两边同乘ri,得
Fi ri sin i fi ri sin i mi ri2
上式左边第一项为外力Fi对转轴的力矩,而第二项是 内力fi 对转轴的力矩。对刚体的所有质点都可写出类 似上式的方程,求和得
质点的角动量一质量为m的质点以速度v运动相对于坐标原点o的位置矢量为r定义质点对坐标原点o的角动量为sinrmv282质点的角动量定理质点所受的合外力对某一参考点的力矩等于质点对该点的角动量对时间的变化率角动量定理

刚体力学基础第三章

刚体力学基础第三章

二、转动惯量J
对分立的质点系: J miri2
i
对刚体: 质量是连续分布
J r2dm
r 2dl 线分布,为线密度
J r 2ds 面分布,为面密度 r 2 dV 体分布,为体密度
z
dm
r
讨论
J r2dm
(1)转动惯量的物理意义:J表示刚体转动时惯性的大小
(2)转动惯量J的大小决定于
r 3dr
1 2
mR2
m
R 2
J
常 见 刚 体 的 转 动 惯 量
§3 刚体定轴转动定律
一、 力矩
使物体转动,必须给定一 个作用力,另外考虑转动与力 的作用点以及作用力的方向有 关,因此在研究物体转动中引
入力矩这一物理量。 (1)若刚体所受力 F在转动平面内
z
Od r
F
F
P
力臂:rsin = d 表示转轴到力作用线的垂直距离。
m
2(2
m
1
+
m
2
m 1+m 2
+
m
2
)g
T1
a m1 m1g T2 a m2 m2g
§4 力矩的功 动能定理
一、力矩的功
刚体在合外力矩作用下绕定轴转动而发生角位移时
d,A则力F矩 d对r刚体F作d了r功co。s F cos(900 )ds
F sin rd
Md
z
O d
dr
F
r P
元功:力矩对质点(或刚体)所作的 元功等于力矩和角位移的乘积
盘)。如A下降,B与水平桌面间的滑动摩擦系数为μ,
绳与滑轮之间无相对滑动,试求系统的加速度及绳中的
张力FT1和FT2。 受力分析 FT1

刚体力学基础

刚体力学基础


0
0t

1 t2
2
2

2 01 刚体 刚体定轴转动的描述
四、绕定轴转动刚体上各点的速度和加速度
线速度大小与 角速度大小的关系
v r
at

dv dt

r
z
a an r

at ve t
an

v2 r
2r a
ret

r 2en
第三章 刚体力学基础
3-1 刚体 刚体定轴转动的描述 3-2 刚体定轴转动的转动定律 3-3 刚体定轴转动的动能定理 3-4 刚体定轴转动的角动量定理和角动量守 恒定律
教学基本要求
一 理解刚体绕定轴转动的角速度和角加速 度的概念,理解角量与线量的关系。
二 理解力矩和转动惯量的概念,能应用 平行轴定理和转动惯量的可加性,计算刚体对定 轴的转动惯量。
O
F ri
Fii
i
i
ie
mi
Fie sini Fii sin i miait miri
以 ri 乘上式两边
Fieri sin i Fiiri sin i miri2
rad s1

62.8
rad s1
角位移 0 2πN 2π 10 rad 62.8 rad
角加速度
2 02
0 62.82
rad s2 31.4 rad s2
2 0 2 62.8
制动过程的时间
t

0
0 62.8 31.4
法向加速度
an r 2 0.5 3.142 m s2 493 m s2
§3.2 刚体定轴转动的转动定律

理论力学周衍柏第三章

理论力学周衍柏第三章
一、基础知识 1. 力系:作用于刚体上里的集合. 平衡系:使静止刚体不产生任何运动的力系. 等效系:二力系对刚体产生的运动效果相同. 二、公理: 1)二力平衡原理:自由刚体在等大、反向、共线二力作 用下必呈平衡。 2)加减平衡力学原理:任意力系加减平衡体系,不改变原 力系的运动效应。 3)力的可传性原理:力沿作用线滑移,幵不改变其作用 效果,F与F’等效。 注:1)以上公理适用于刚体, 2) 力的作用线不可随便平移
(e) dT Fi dri
(e) 若 Fi dri dV 则 T V E
为辅助方程,可代替上述6个方程中任何一个
§3.5 转动惯量
一、刚体的动量矩 1. 某时刻刚体绕瞬轴OO’转动,则pi点的速度为
vi rii
动量矩为 2. 坐标表示
R Fi Fi 0 M M i ri Fi 0
2. 几种特例 1)汇交力系(力的作用线汇交于一点):取汇交点为 简化中心,则
Fix 0 R Fi 0 Fiy 0 Fiz 0
三、力偶力偶矩 1. 力偶:等大、反向、不共线的两个力组成的利系。
力 偶 所在平面角力偶面. 2. 力偶矩: 对任意一点O M rA F rB F (rA rB ) F r F M Fd
方向 : 右手法则 上式表明:
J z x mi zi xi y mi zi yi z mi ( xi2 yi2 )
I yy mi ( zi2 源自xi2 ) I zy mi zi yi I yz mi yi zi I xz mi xi zi
I zz mi ( xi2 yi2 )

第3章刚体力学基础

第3章刚体力学基础

将圆盘视为一个系统,破裂后其受合 外力矩为零,所以其角动量守恒。
§3-3 刚体的能量
一、力矩的功
α
二、力矩的功率
说明:1、变力矩情况
2、此式的简单应用 三、转动动能 对刚体上任一质点mi, ri Vi ω 和质点的动能形式进行比较。
四、动能定理
意义:合外力矩对定轴转动的刚体所作的功, 等于刚体转动动能的增量。
第三章 刚体力学基础
§3-1 刚体运动的描述 一、刚体(rigid body) 刚体:在任何外力作用下,其形状和大小均不发生 改变的物体。 说明:
1)理想模型。
2)在外力的作用下,物体的形状和大小的变化很小 ,可以忽略不计,该物体仍可视为刚体。
二、刚体的运动 1、平动(translation)
刚体内任意两点的连线在
由平行轴定理
6g sinq 由(1)、(2)得: w = 2 7l v v v + mg = ma c 应用质心运动定理: N
(3) (4)
7 = ml 48
2
(2)
l = w2 a cl 4 6 = g sin q 7 l a = ct 4
(5)
由 (3)(4)(5)(6) 可解得:
l l 4 mg cos q = 4 J o 3 g cos q = (6) 7 13 N = mg sin q , l 7
解得:
应用型问题研究时以ω 绕轴旋转,在Δt 时间内其 角速度变为零。 d X C 碰撞过程中受力图为: ω Nx L/2 在图示坐标中, NY 依角动量定理: Z Y F
∵X方向无运动,∴NX = 0 结论:门碰装在离轴2/3处,开门时对轴的冲击力最小。
3)刚体匀变速转动公式
同匀变速直线运动公式。

刚体力学基础

刚体力学基础

1).形状、大小相同时, m↑→J↑(决定于m); 2).m相同, m分布离轴越远,J越大(决定于m的分布); 3).同一刚体,转轴不同,J不同,(决定于转轴的位置).
3.计算
1).质量不连续分布 J= miri2 i
m1
r2
r1
其中ri为Δmi到转轴的垂直距离
J m1r12 m2r22 m3r32
4.均匀细棒可绕棒一端的垂直于棒的水平轴无摩擦转
动.若细棒竖直悬挂,现有一弹性小球水平飞来与细棒
发生完全非弹性碰撞,在碰撞过程中球、棒组成的系
统的动量是否守恒?对转轴的角动量是否守恒?机械能
是否守恒?
动量不守恒,角动量守恒,机械能不守恒.
质点与刚体碰撞组成的系统一般 情况下动量不守恒,而角动量守恒.
1.刚体角动量定理 M J J d
dt
M J J d
dt
2
Mdt Jd J2 J1
1
刚体所受合外力的冲量矩等于其角动量的增量
2.刚体角动量守恒定律
条件:M 0, J 常量
刚体所受合外力矩为零,则其角动量守恒.
注意:1).L=Jω=常量, J、ω可变但乘积不变;
2).M、L、ω均对同一转轴, M为合外力矩;
a1 a2 a
a R
J 1 m R2
2
a1
a2
a
(m2 m1 )g
m1
m2
1 2
m
T1
m1
2m2g m1 m2
1 2
mg 1m 2
T2
m2
2m1g m1 m2
1 mg 2 1m
2
注意:1.涉及滑轮转动,滑轮两端绳的张力不相等T1≠T2; 2.绳与滑轮无相对滑动, a=R α

3-第3章 刚体力学基础

3-第3章   刚体力学基础
大学物理学(第5版)
二、定轴转动定律
把刚体看作一个质点系
Fi
f i Δ m i a i
ri Fi ri f i Δ m i ri a i
加速度: a i a i a in
§3-2力矩 刚体定轴转动的转动定律
Mi
z M iz
Fi
Fi //
ri
mi Fi
(ri Fi ) (ri fi ) Δmi ri ai Δmi ri ai Δmi ri ain
§3-2力矩 刚体定轴转动的转动定律
M外z Miz ( mi ri 2 ) ( mi ri 2 )
i
i
i
若令
J z (mi ri 2 )
i
M 外z J z
绕定轴转动的刚体的角加速度与作用于刚体上的合外力矩成正比,与刚体的转
动惯量成反比。
注意:
——刚体定轴转动中的转动定律
(1)M和J均对于同一转轴而言;
1
2
合外力矩对定轴转动刚体所做的功等于刚体转动动能的增量。 ——刚体定轴转动时的动能定理
章目录 节目录 上一页 下一页
“十二五”普通高等教育本科国家级规划教材
大学物理学(第5版)
§3-3 刚体定轴转动的动能定理
四、机械能守恒定律
1、刚体的势能
EP mghc
m为刚体的总质量; hc为刚体质心的高度。
dm dx m dx O
r2 x2
l
dm x dx
l
x
J l x2 m dx 1 m x3 l
J 1 ml 2
J=
0
1 ml 2 3
l
1 12
3l
ml 2 m
0
l2 4

大学物理 第3章 刚体力学基础

大学物理 第3章 刚体力学基础


2 1
Jd

1 2
J22

1 2
J12
2 Md (1 J2 )
1
2
力矩对刚体所做的功,等于刚体转动动能的增量。
例 如图所示,一根质量为m,长为l的均匀细棒OA,可绕固定点O在竖直平 面内转动.今使棒从水平位置开始自由下摆,求棒摆到与水平位置成30°角 时中心点C和端点A的速度.
F
·
F
式中为力F到轴的距离
F
若力的作用线不在转动在平面内,
则只需将力分解为与轴垂直、平行
r
的两个分力即可。
力对固定点的力矩为零的情况:
1、力F等于零, 2、力F的作用线与矢径r共线
(有心力对力心的力矩恒为零)。
力对固定轴的力矩为零的情况:
若力的作用线与轴平行 若力的作用线与轴相交
则力对该轴无力矩作用。
dJ R2dm
考虑到所有质元到转轴的距离均为R,所以细圆环对中心轴的转动惯量为
J dJ R2dm R2 dm mR2
m
m
(2)求质量为m,半径为R的圆盘对中心轴的转动惯量.整个圆盘可以看成许
多半径不同的同心圆环构成.为此,在离转轴的距离为r处取一小圆环,如
图2.36(b)所示,其面积为dS=2πrdr,设圆盘的面密度(单位面积上的质量)
力矩在x,y,z轴的分量式,称力对轴的矩。例如上面所列
Mx , My , Mz , 即为力对X轴、Y轴、Z轴的矩。 设力F 的作用线就在Z轴
的转动平面内,作用点到Z
轴的位矢为r,则力对Z轴
的力矩为
M z rF sin
r sin F F rF sin rF

大学物理教案-第3章 刚体力学基础

大学物理教案-第3章 刚体力学基础

J —描述刚体的转动惯性,称之为转动惯量。
二、力矩的功
对于 i 质点,其受外力为 F i ,则
Wi Fi dsi Fi cos α i ridθ Fiτ ridθ
Mid 对 i 求和,当整个刚体转动 d ,则力矩
的元功
dW ( Mi )d Md
∴ 当刚体转过有限角时,力矩的功为
W 2 Md 1
对于单个质点 转动惯量
J mr2 ,
质点系 转动惯量
n
J miri2 ,式中 ri 为 i 质点到轴的矩离。 i 1
质量连续分布的刚体 转动惯量 I r2dm 。 m
2
大学物理学
大学物理简明教程教案
刚体的转动惯量与
刚体的质量的有关, 刚体的质量分布有关, 。
轴的位置有关。
三、转动定律的应用
三、刚体定轴转动的动能定理
Md
J
d dt
d
J
d dt
dt
J
d
d
1 2
J2
2 1
M
d
1 2
J22
1 2
J12
力矩对刚体所做的功,等于刚体转动动能的增量。
§3.4 刚体定轴转动的角动量定理和角动量守恒定律
一、质点的角动量 角动量定理和角动量守恒定律(教材 P40 §2.4)
1、质点对固定点的角动量
ani ri 2
质点(a =常数)
v v0 at
x
x0
v0t
1 at 2 2
v2 v02 2ax x0
刚体( =常数)
0 t
0
0
t
1
2
t2
2 02 2 0
1
大学物理学

第3章 刚体力学基础

第3章 刚体力学基础

M = F1 d 1
r Ft 2 r2 F2 d 2 = Ft 叉乘右螺旋 1 r1
转动定律
瞬时 角加速度 瞬时 角速度
某质元
Fi
t
qi
n
fi
∑ Fi ri sin j i + ∑ f i ri sin q i = ∑
合外力矩 M 内力矩成对抵消= 0

O
ji
ri
等式两边乘以 i 并对所有质元及其所受力矩求和
∑ ∑

是矢量式 与质点平动对比
刚体的角动量守恒定律
由 若 则 刚体所受合外力矩 即
当刚体所受的合外力矩 刚体的角动量
等于零时, 保持不变。
乘积
角动量守恒的另一类现象 角动量守恒的另一类现象 保持不变, 变小则 变大, 变大则
变小。
张臂

用外力矩 启动转盘后 撤除外力矩
收臂
小 大

乘积
角动量守恒的另一类现象 花样滑冰中常见的例子 保持不变, 变小则
刚体系统的角动量定理
若一个系统包含多个共轴刚体或平动物体 系统的总合外力矩 ∑ ∑ 系统的总角动量的变化率 系统的总角动量增量 轻绳 (忽略质量) 同向 ∑ 而 解得
系统的总冲量矩 例如 求角加速度

系统:
静 止 释 放
∑ 总合外力矩 对O的角动量 对O的角动量 ∑ 由 得
主要公式归纳
(微分形式) (积分形式)
3
转动:分定轴转动和非定轴转动
刚体的平面运动
4
刚体的一般运动可看作: 随质心的平动
+
绕质心的转动
的合成
5
第二节
平 动
定轴转动

第3章 刚体力学基础

第3章 刚体力学基础

刚体力学的基础知识包括刚体绕定轴转 动的动力学方程和动能定理,刚体绕定轴 转动的角动量定理及角动量守恒定律
-------------------------------------------------------------------------------
§3-1 刚体 刚体定轴转动的描述
dt
当输---出----功----率-----一----定----时----,-力----矩-----与----角----速----度-----成----反----比----。------------
3. 刚体定轴转动的动能定理:
W
2 1
Md
2 1
Jd
2 1
J d d
dt
W
2 1
Jd
第3章 刚体力学基础
§3.1 刚体 刚体定轴转动的描述 §3.2 刚体定轴转动的转动定律 §3.3 刚体定轴转动的动能定理 §3.4 刚体定轴转动的角动量定理和角动量 守恒定律
-------------------------------------------------------------------------------
➢刚体上各质元的角量(即角位移、角速度、角加速度) 相同,而各质元的线量(即线位移、线速度、线加速度) 大小与质元到转轴的距离成正比 。
-------------------------------------------------------------------------------
§3-2 刚体定轴转动的转动定律
对滑轮 , 由转动定律
T2R T1R J ④
由于绳不可伸长
aA aB R

J 1 mR2

第3章 刚体力学基础

第3章  刚体力学基础
3-7如图所示,长为 的均匀细杆水平地放置在桌面上,质心离桌边缘的距离为 ,从静止开始下落。已知杆与桌边缘之间的摩擦系数为 。试求:杆开始滑动时的临界角。
分析细杆滑动前以 点为轴在重力矩作用下转动,细杆质心做以 点为圆心的圆周运动,根据转动定律及质心运动定律即可求出 点摩擦力 与 角关系,细杆开始滑动的临界条件为 。
(1)
(2)
式中 为圆环对 轴的转动惯量,圆环绕过中心且垂直环面的轴的转动量为 ,根据垂直轴定理
(3)
由(1)~(3)式解得
(4)
(5)
取小珠、环及地球为系统,在小珠下落过程中,外力做功为零,系统中又无非保守内力做功,所以系统的机械能守恒。设小珠落至 、 处时,相对于环的速度分别为 、 ,则有
解无滑动时,杆绕过 点的固定轴做定轴转动,由转动定律有
(1)
由平行轴定理求细杆绕 点转动时的转动惯量
(2)
无滑动时,杆绕 点转动,杆上各点做圆周运动,对质心 ,由牛顿运动定律得
(3)
(4)
杆绕 点转动,只有重力作功,机械能守恒,有

(5)
将式(5)代入式(3),并利用式(2),得
(6)
将式(1)代入式(4),并利用式(2),得
分析滑块与细杆碰撞角动量守恒,由此求细杆转动的 ,此后,细杆受摩擦力矩作用转速逐渐减为零,由摩擦力矩,根据角动量定理即可求出时间 。
解(1)以杆和滑块为研究系统。由于碰撞时间极短,杆所受到的摩擦力矩远小于滑块的冲力矩,故可认为合外力矩为零,因此系统的角动量守恒,即
(1)
解得
(2)碰后杆在转动过程中所受的摩擦力矩为
第3章 刚体力学基础
一、目的与要求
1.确切理解描述刚体平动和定轴转动的基本物理定义及性质,并掌握角量与线量的关系。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
联立(1)~(5)解得


J
m1R1 m2R2 m1R12 m2R22
g
T2
T1
m2 m1
T1

J m2R22 m2R1R2 J m1R12 m2R22
m1g
T2

J m1R12 m1R1R2 J m1R12 m2R22
m2 g
讨论:
a.当 m1R1 m2R2 时,物体运动方向与所设相
C
B
A



o
T1
N
T2 ' C
B
y
A
m1g
T2
B fk
m2 g
x
y
T1 '
o
A
解:建立如图坐标系
m1g T1 m1a1
T2 fk m2a2

N
fk
m2 g
N

0
T1R T2R J
J 1 MR2 2
a1 a2 a r
解得
a
只有保守力做功时----刚体的机械能守恒
Ek 2 Ep2 Ek1 Ep1
[例1]长为l,质量为m的均匀细杆 O
OA,绕通过其一端点O的水平轴在
铅垂面内自由转动。已知另一端
A过最低点时的速率为v0。求杆摆 动时A点升高的最大高度(不计空
气阻力和轴的摩擦力)。
h
解:杆摆动时只有重力做功,
A

o

mv 0

L 2
1 ML2 mL2
v0 φ
3
4
(2)子弹射入后的摆动过程
M 、m和地球组成的
o
系统机械能守恒
以竖直位置杆质心所
φ
在平面为零势能面

1 2

1 3
ML2

m
L2 4



2


m

M

g

L 2

L 2
cos

其中φ为杆摆动的最大角度
[例3]质量为m1的小球与质量为m2长为2l 的 棒作完全弹性碰撞,棒可绕通过中心的轴转
其中
J

1 12
m2
(2l
)
2

1 3
m2l
2
解得 v (m2 3m1)u m2 3m1
6m1u
(m2 3m1)l
L
r
v1
F
思考并解释 : 动能、机械能、
角动量 是否守恒?
定轴转动:转轴固定不动的转动


v
刚体的一般运动 = 平动 + 定轴转动
三、刚体的定轴转动
1.各点运动的特点
在自己的转动平面内作圆周运动
2.描述的物理量 , d , d
dt
任一质点圆周运动的 线量和角量的关系
r
dt z
简化
r
an r 2 at r
动解(:如相小图比球)可的。忽重求略力球与的冲反击弹力速度和棒m的2角速度u.
m1 、 m2组成的系统: M 外 0 角动量守恒
2l
设小球反弹速度为v, 棒的角速度为
m1ul J m1vl (以顺时针为正)
小球与棒完全弹性碰撞:
1 2
m1u 2

1 2
m1v2

1 2
J2
kg·m2 和 J=20 kg·m2.开始时,A轮转速为600
rev/min,B轮静止.C为摩擦啮合器,其转动惯量
可忽略不计.A、B分别与C的左、右两个组件相
连,当C的左右组件啮合时,B轮得到加速而A轮
减速,直到两轮的转速相等为止.设轴光滑,
求: (1) 两轮啮合后的转速n; A
B
(2) 两轮各自所受的冲量矩. C
求滑轮的角加速度β及各绳中 m2
的张力T1、T2. 解:设m1向下运动
T2
T1
m2 m1
m1
m1g T1 m1a1 1 T2 m2g m2a2 2
m2 g
m1g
T2
T1
T1R1 T2R2 J (3)
a1 R1 4 R2
R1
a2 R2 5
解:细棒质量密度为 m l
在棒上取长为d x 的质量元 o
dm dx
A
dx
dm的转动惯量 dJoc x2dm B
cx x
Joc
x2dm
m
l
2 l
2
x2
m l
dx
1 ml2 12
J AB
l 2 l
2
(
l 2

x)2
m dx l

1 ml2 3
3.平行轴定理
同,反之则相反
b.当 m1R1 m2R2 时, 0 即滑轮保持静止或
匀速转动
c.当R1 R2 时,则为定滑轮时的情况
§3-3 角动量及角动量守恒定律
一.冲量矩——力矩的时间积累 Mdt
单位: N m s
定义:刚体的角动量
L

J z
角动量又称动量矩,因为:

mi
Ri
2
2

2
2
i
mi Ri2
则刚体的转动动能
Ek

1 2
J z 2
z
Ri
mi Pi
二.力矩的 功 dA F dr
Ft
dr
F sin rd
Md
z
O
d

r
dr
F
P
A 2 Md
讨论: 1
恒力矩的功: A M M 2 1
m1 m2
g
m1 m2 M 2
T1

( 1)m2 M
m1 m2 M
2 2
m1g
T1

( 1)m1
m1 m2

M
M2
2
m2
g
[例2]在半径分别为R1和R2的
阶梯形滑轮上反向绕有两根 轻绳,各挂质量为m1、m2的
R2
R1
物体。如滑轮与轴间的摩擦
不计,滑轮的转动惯量为J。
zN
以质心C为坐标原点

设对Cz轴的转动
d
m
惯量为Jc
对MN 轴的转动惯量为
C
y

J MN

JC
md2
x
----平行轴定理
M
*MN为任意空间直线
例3:圆环绕中心轴旋转的转动惯量
J =
L R2dm = R2
0
dl
dm = mR2 R
m
O
圆盘绕中心轴旋转的转动惯量
dm= σds
=
m πR2
m
ω
m
r2 r1
花样滑冰 跳水 体操等
[例1]质量为m,长为L的均匀细棒,竖直悬 挂于一水平光滑轴,现用力F 打击棒的中部 如图,打击时间为t .
求:打击后棒的角速度。
解:由角动量定理
M t J

即F L t 1 mL2 0
F
23
3Ft
2mL
例2:圆盘(R,M),人(m)开始静止,人沿 转盘走一周,求盘相对地转动的角度
,现有一质量m的子弹以水平速度 v0 射入
杆中部并嵌在杆中,求(1)子弹射入瞬间杆 转动的角速度(2)杆能摆动的最大角度φ.
解: (1)以m、M为系统
子弹射入的瞬间过程系 v0
o
统对o 轴的合外力矩为
φ
零.
由角动量守恒定律
mv 0

L 2

1 3
ML2

m
L 2
2


----刚体转动的角动量定理
三.角动量守恒定律
当 M z 0 则 Lz J z =常量
----刚体定轴转动的角动量守恒定律
角动量守恒定律对J 可变化的非刚体系统 或非刚体个体同样适用。
当 M z 0 J11 J22 =常量
J 时, ;反之, J 时,
演示: 茹可夫斯基凳
d
J z dt
---定轴转动定律
反映了力矩的瞬时作用规律
*转动惯量的物理意义:Jz表示刚体转动惯性的大小
三、转动惯量的计算
o
1.对分离的质点系:J z mi Ri2
i
l lc
2.对质量连续分布的刚体:
dJ z r2dm
J z r2dm
o c
r dm
例1:如图,质量为m 的四个小球由钢性轻杆连
3.2 力矩、刚体定轴转动定律
一.力矩
z
翻倾
F//
任意
F
d
r

A
力的有效性分析
F
有效
F F F//
定轴
定义: F 对转轴的力矩
大小: M z Fd
若 F垂直转轴,力矩
大小:M z Fd Fr sin 方向:沿z轴,由 r 转向 F
的右手螺进的方向

Mz rF
v r 转动平面
匀变速转动
当 c
0 t


0
0
t
1
2
t2
2 02 2 ( 0 )
与质点的匀 加速直线运 动公式相似
例:一飞轮作匀减速转动,在4s内角速度由
相关文档
最新文档