材料结构表征与应用
《材料结构表征及应用》课程教学的改革思考
2021年第4期广东化工第48卷总第438期 · 179 · 《材料结构表征及应用》课程教学的改革思考陈沙,廖媛媛,许瀚(中南林业科技大学材料科学与工程学院,湖南长沙410004)[摘要]《材料结构表征及应用》是材料化学和材料科学与工程专业的一门实用性强的基础课程。
针对这门课程理论深奥、内容庞杂、课时较少、教学资源有限等问题,思考将讲好绪论课、教学内容重点突出、丰富教学方法、翻转课堂、注重教学信息反馈等方法运用到教学过程中,达到提高教学效果的目的。
[关键词]材料结构表征及应用;教学改革;翻转课堂[中图分类号]G4 [文献标识码]A [文章编号]1007-1865(2021)04-0179-01Teaching Exploration on Characterization and Application of Material StructureChen Sha, Liao Yuanyuan, Xu Han(School of Materials Science and Engineering Central South University of Forestry and Technology, Changsha 410004, China) Abstract: Characterization and Application of Material structure was one of the important fundamental courses in material science and Materials Science and Engineering. At present, this course had a lot of problems, such as profound theoretical knowledge, complex content, ewer hours, limited teaching resources, et al. To improve teaching quality, the reforms on the course, including teaching the introduction course, highlighting the key points of teaching content, enriching teaching methods, flipping the classroom, and paying attention to teaching information feedback and teaching key were discussed.Keywords: Characterization and Application of Material structure;teaching exploration;inverted classroom《材料结构表征及应用》是内容庞杂的实践性、技术性很强的综合性课程,授课内容包括各种测试表征原理、结构对性能的影响分析、仪器原理构造及应用,内容主要有红外光谱及激光拉曼光谱、核磁共振波谱、质谱、X射线衍射、电子显微分析、x射线光电子能谱分析和材料热分析等测试表征方法。
xrd的应用及原理
XRD的应用及原理引言X射线衍射(X-ray Diffraction, XRD)是一种重要的材料表征技术,广泛应用于材料科学、化学、地质学等领域。
本文将介绍XRD的应用领域以及其原理。
XRD的应用领域1.材料结构分析–XRD可以用于分析材料的晶体结构、组分和晶体缺陷等。
–通过分析材料的衍射峰的位置、强度和形状,可以确定晶体的晶格参数、晶体结构和晶体缺陷类型。
2.材料相变研究–XRD可以用于研究材料的相变行为。
相变时,晶体结构会发生变化,导致衍射峰位置和强度的变化。
–通过监测材料衍射峰的变化,可以研究材料的相变温度、相变过程和相变机制。
3.薄膜和薄片分析–XRD可以用于分析薄膜和薄片的晶体结构和厚度。
–通过分析衍射峰的宽度和位置,可以确定薄膜或薄片的晶格参数和厚度。
4.晶体定向分析–XRD可以用于分析晶体的定向性。
不同晶面的衍射峰位置和强度不同,通过分析衍射峰的特征,可以确定晶体的定向性。
–晶体定向分析在材料加工和材料性能研究中具有重要意义。
XRD的原理XRD基于布拉格衍射原理,即入射X射线与晶体的晶面间距相等时,发生衍射现象。
下面是XRD的基本原理:1.生成X射线–通过X射线发生器产生X射线。
X射线发生器通常包括X射线管和高压电源,通过加热阴极产生电子束,电子束击打阳极时会产生X射线。
2.照射样品–产生的X射线照射到待测样品上。
样品可以是粉末、薄膜或块体,关键是样品需要是晶体结构。
3.衍射现象–入射X射线与晶体的晶面相互作用,发生衍射现象。
衍射是X 射线经过晶体后,按照一定的角度改变方向而形成的。
4.检测衍射信号–使用X射线探测器检测样品的衍射信号。
常用的探测器包括点状探测器和线状探测器,可以用于测量衍射峰的位置和强度。
5.分析数据–通过分析探测到的衍射信号数据,可以确定材料的晶格参数、晶体结构、晶体缺陷等信息。
–可以使用布拉格方程和衍射峰的位置计算晶格参数,使用峰的强度和形状分析晶体结构和缺陷。
材料表征技术
材料表征技术材料表征技术,是指通过一系列的方法和手段对材料的结构、性能和组成进行分析和表征的一门科学技术。
它在材料科学与工程领域扮演着重要的角色,为材料研究、制备和应用提供了有力的支持。
本文将就材料表征技术的起源、发展和应用进行探讨。
一、起源与发展1.1 起源材料表征技术的起源可以追溯到人类最早的文明阶段。
古代人类通过肉眼观察、触摸和试用等方式对不同材料进行鉴别和利用。
例如,石器时代的人类学会通过不同石头的颜色、硬度和重量来选择适合的材料制作工具。
然而,随着科学的进步和技术的发展,人类对材料的要求越来越高,肉眼观察和试用已经不能满足科学研究和工程应用的需求,因此材料表征技术应运而生。
1.2 发展随着电子技术、光学技术、计算机技术和物理学等学科的发展,材料表征技术也逐渐得到了快速发展。
从最早的X射线衍射技术、电子显微镜技术到如今的扫描电子显微镜技术、透射电子显微镜技术以及原子力显微镜技术等,材料表征技术不断更新和完善。
不仅如此,还出现了许多新的材料表征技术,如拉曼光谱技术、原位测试技术、热分析技术等。
这些技术的出现和应用,使得材料的表征更加全面、精确和便捷。
二、材料表征技术的分类根据研究对象和表征方法的不同,材料表征技术可分为多种分类。
下面将以原子尺度、表面形貌和力学性能为切入点,来简单介绍几种常见的材料表征技术。
2.1 原子尺度表征技术在研究材料的微观结构时,往往需要观察和分析其原子尺度上的特征。
透射电子显微镜(TEM)、扫描电子显微镜(SEM)和原子力显微镜(AFM)等技术可提供关于原子尺度上的信息。
其中,TEM可用于分析材料的晶体结构、衍射图样等,SEM可观察材料表面的形貌和颗粒分布情况,AFM则可获得材料表面的拓扑结构和力学特性等。
2.2 表面形貌表征技术表面形貌是材料性能和功能的重要指标之一。
光学显微镜(OM)、扫描电子显微镜(SEM)和原子力显微镜(AFM)等技术常用于表征材料的表面形貌。
东华大学材料结构表征及其应用作业答案
“材料研究方法与测试技术”课程练习题第二章红外光谱法1.为什么说红外光谱是分子振动光谱?分子吸收红外光的条件是什么?双原子基团伸缩振动产生的红外光谱吸收峰的位置主要与哪些因素有关?答案:这是由于红外光谱是由样品分子振动吸收特定频率红外光发生能级跃迁而形成的。
分子吸收红外光的条件是:(1)分子或分子中基团振动引起分子偶极矩发生变化;(2)红外光的频率与分子或分子中基团的振动频率相等或成整数倍关系。
双原子基团伸缩振动产生的红外光谱吸收峰的位置主要与双原子的折合质量(或质量)和双原子之间化学键的力常数(或键的强度;或键的离解能)有关。
2.用诱导效应、共轭效应和键应力解释以下酯类有机化合物的酯羰基吸收峰所处位置的范围与饱和脂肪酸酯的酯羰基吸收峰所处位置范围(1735~1750cm-1)之间存在的差异。
芳香酸酯:1715~1730cm-1α酮酯:1740~1755cm-1丁内酯:~1820cm-1答案:芳香酸酯:苯环与酯羰基的共轭效应使其吸收峰波数降低;α酮酯:酯羰基与其相连的酮羰基之间既存在共轭效应,也存在吸电子的诱导效应,由于诱导效应更强一些,导致酯羰基吸收峰的波数上升;丁内酯:四元环的环张力使酯羰基吸收峰的波数增大。
3.从以下FTIR谱图中的主要吸收峰分析被测样品的化学结构中可能存在哪些基团?分别对应哪些吸收峰?答案:3486cm-1吸收峰:羟基(-OH);3335cm-1吸收峰:胺基(-NH2或-NH-);2971cm-1吸收峰和2870cm-1吸收峰:甲基(-C H3)或亚甲基(-CH2-);2115cm-1吸收峰:炔基或累积双键基团(-N=C=N-);1728cm-1吸收峰:羰基;1604cm-1吸收峰、1526cm-1吸收峰和1458cm-1吸收峰:苯环;1108cm-1吸收峰和1148cm-1吸收峰:醚基(C-O-C)。
1232cm-1吸收峰和1247cm-1吸收峰:C-N。
第三章拉曼光谱法1. 影响拉曼谱峰位置(拉曼位移)和强度的因素有哪些?如果分子的同一种振动既有红外活性又有拉曼活性,为什么该振动产生的红外光谱吸收峰的波数和它产生的拉曼光谱峰的拉曼位移相等?答案:影响拉曼谱峰位置的因素主要有:样品分子的化学结构和样品的聚集态结构。
材料结构表征及应用
材料结构表征及应用
材料结构表征及应用
材料结构表征是指材料结构特性之间的相互关系,它们决定了材料的性能。
材料结构表征包括材料的尺寸、形状、结构层次和热效应,这些结构特性可以通过材料的物理性能和机械性能来表示。
近年来,材料结构表征正变得越来越重要,在工业生产中得到了广泛应用。
材料结构表征对于提高材料性能和研发新材料至关重要。
材料结构表征可以更好地识别材料的特性,如耐磨性、耐腐蚀性和热稳定性,从而更好地满足应用材料的要求。
同时,材料结构表征还可以帮助研发新型材料,用于更多的应用领域。
材料结构表征在工业上被广泛应用,能够有效提高材料的性能。
它可以更准确地测量材料的厚度、宽度、形状和硬度,并用来检测材料表面缺陷、分析材料缺陷等,可以有效提高材料的效率和使用寿命。
同时,它还可以用来检测和控制工艺参数,如温度、时间和压力,以满足特定应用需求,并确保产品的高质量。
材料结构表征应用于许多不同领域,如航空航天、汽车制造、船舶制造、军事器材以及电子产品等,可以明显提升该领域的性能和效率。
此外,它还可以精确地测量金属材料、复合材料和非金属材料,以便在工业应用中更好地优化工艺,实现更高的性能。
材料结构表征是一项重要的技术,被广泛应用在工业生产中。
它提供了一种可靠的方式来测量材料的结构,可以明显提高材料的效率和使用寿命,满足工业需求,有助于提高整体的生产效率。
材料的五种表征方法
材料的五种表征方法材料的五种表征方法是材料科学中常用的五种表征材料性质的方法,包括物理性质、化学性质、结构性质、力学性质和热学性质。
这些方法可以帮助我们更全面地了解材料的性质和特点,从而更好地应用和开发材料。
一、物理性质物理性质是指材料在物理方面的性质,如密度、热导率、电导率、磁导率等。
这些性质可以通过实验测量得到,从而了解材料的物理特性。
例如,密度可以反映材料的质量和体积之间的关系,热导率可以反映材料传热的能力,电导率可以反映材料导电的能力,磁导率可以反映材料对磁场的响应能力。
二、化学性质化学性质是指材料在化学方面的性质,如化学成分、化学反应等。
这些性质可以通过化学分析和实验测量得到,从而了解材料的化学特性。
例如,化学成分可以反映材料的组成和结构,化学反应可以反映材料与其他物质的反应能力。
三、结构性质结构性质是指材料在结构方面的性质,如晶体结构、晶格常数、晶体缺陷等。
这些性质可以通过X射线衍射、电子显微镜等实验手段得到,从而了解材料的结构特性。
例如,晶体结构可以反映材料的原子排列方式,晶格常数可以反映材料晶格的大小和形状,晶体缺陷可以反映材料中存在的缺陷和杂质。
四、力学性质力学性质是指材料在力学方面的性质,如强度、韧性、硬度等。
这些性质可以通过实验测量得到,从而了解材料的力学特性。
例如,强度可以反映材料承受外力的能力,韧性可以反映材料抗断裂的能力,硬度可以反映材料抗划伤的能力。
五、热学性质热学性质是指材料在热学方面的性质,如热膨胀系数、比热容、热导率等。
这些性质可以通过实验测量得到,从而了解材料的热学特性。
例如,热膨胀系数可以反映材料随温度变化时的体积变化情况,比热容可以反映材料吸收或释放热量的能力,热导率可以反映材料传热的能力。
综上所述,材料的五种表征方法可以帮助我们更全面地了解材料的性质和特点,从而更好地应用和开发材料。
在材料科学研究和工程应用中,这些方法都具有重要的作用。
材料结构表征及应用知识点总结
第一章绪论材料研究的四大要素:材料的固有性质、材料的结构、材料的使用性能、材料的合成与加工。
材料的固有性质大都取决于物质的电子结构、原子结构和化学键结构。
材料结构表征的三大任务及主要测试技术:1、化学成分分析:除了传统的化学分析技术外,还包括质谱(MC)、紫外(UV)、可见光、红外(IR)光谱分析、气、液相色谱、核磁共振、电子自旋共振、二次离子色谱、X射线荧光光谱、俄歇与X射线光电子谱、电子探针等。
如质谱已经是鉴定未知有机化合物的基本手段;IR在高分子材料的表征上有着特殊重要地位;X射线光电子能谱(XPS)是用单色的X射线轰击样品导致电子的逸出,通过测定逸出的光电子可以无标样直接确定元素及元素含量。
2、结构测定:主要以衍射方法为主。
衍射方法主要有X射线衍射、电子衍射、中子衍射、穆斯堡谱等,应用最多最普遍的是X射线衍射。
在材料结构测定方法中,值得一提的是热分析技术。
3、形貌观察:光学显微镜、扫描电子显微镜、透射电子显微镜、扫描隧道显微镜、原子力显微镜。
第二章X射线衍射分析1、X射线的本质是电磁辐射,具有波粒二像性。
X射线的波长范围:0.01~100 Å 或者10-8-10-12 m 1 Å=10-10m(1)波动性(在晶体作衍射光栅观察到的X射线的衍射现象,即证明了X射线的波动性);(2)粒子性(特征表现为以光子(光量子)形式辐射和吸收时具有的一定的质量、能量和动量)。
2、X射线的特征:①X射线对物质有很强的穿透能力,可用于无损检测等。
②X射线的波长正好与物质微观结构中的原子、离子间的距离相当,使它能被晶体衍射。
晶体衍射波的方向与强度与晶体结构有关,这是X射线衍射分析的基础。
③X射线光子的能量与原子内层电子的激发能量相当,这使物质的X射线发射谱与吸收谱在物质的成分分析中有重要的应用。
一、X射线的产生1.产生原理高速运动的电子与物体碰撞时,发生能量转换,电子的运动受阻失去动能,其中一小部分(1%左右)能量转变为X射线,而绝大部分(99%左右)能量转变成热能使物体温度升高。
《材料结构表征及应用》思考题
第二章1、什么是贝克线?其移动规律如何?有什么作用?在两个折射率不同的物质接触处,可以看到比较黑暗的边缘,在这轮廓附近可以看到一条比较明亮的线细线,当升降镜筒时,亮线发生移动,这条明亮的细线称为贝克线。
贝克线的移动规律:提升镜筒,贝克线向折射率大的介质移动。
根据贝克线的移动,可以比较相邻两晶体折射率的相对大小。
2、单偏光镜和正交偏光镜有什么区别?单偏光下和正交偏光下分别可以观察哪些现象?单偏光(仅使用下偏光)下可以观察晶体的形态、结晶习性、解理、颜色以及突起、糙面、多色性和吸收性,比较晶体的折光率(贝克线移动),用油浸法测定折光率等,对矿物鉴定十分重要。
正交偏光镜:联合使用上、下偏光镜,且两偏光镜的振动面处于互相垂直位置。
可看到消光现象、球晶。
第三章1.电子透镜的分辨率受哪些条件的限制?透镜的分辨率主要取决于照明束波长儿其次还有透镜孔径半角和物方介质折射率。
2.透射电镜主要分为哪几部分?电子光线系统(镜筒)、电源系统、真空系统和操作控制系统。
3.透射电镜的成像原理是什么?透射电镜,通常采用热阴极电子枪来获得电子束作为照明源。
热阴极发射的电子,在阳极加速电压的作用下,高速穿过阳极孔,然后被聚光镜会聚成具有一定直径的束斑照到样品上。
具有一定能量的电子束与样品发生作用,产生反映样品微区厚度、平均原子序数、晶体结构或位向差别的多种信息。
透过样品的电子束强度,其取决于这些信息,经过物镜聚焦放大在其平面上形成一幅反映这些信息的透射电子像,经过中间镜和投影镜进一步放大,在荧光屏上得到三级放大的最终电子图像,还可将其记录在电子感光板或胶卷上。
4.请概述透射电镜的制样方法。
支持膜法,复型法、晶体薄膜法和超薄切片法。
高分子材料必要时还需染色、刻蚀。
5.扫描电镜的工作原理是什么?由三极电子枪发射出来的电子束,在加速电压作用下,经过2〜3个电子透镜聚焦后,在样品表面按顺序逐行进行扫描,激发样品产生各种物理信号,如二次电子、背散射电子、吸收电子、X射线、俄歇电子等。
物质结构的表征方法
物质结构的表征方法一、按表征任务分类材料结构的表征就其任务来说主要有三个,即成分分析、结构测定和形貌观察。
1.1 化学成分分析材料的化学成分分析除了传统的化学分析技术外,还包括质谱、紫外、可见光、红外光谱分析,气、液相色谱,核磁共振,电子自旋共振、X射线荧光光谱、俄歇与X射线光电子谱、二次离子质谱,电子探针、原子探针(与场、离子显微镜联用)、激光探针等。
在这些成分分析方法中有一些已经有很长的历史,并且已经成为普及的常规的分析乎段。
如质谱已是鉴定未知有机化合物的基本手段之一,其重要贡献是能够提供该化合物的分子量和元素组成的信息。
色谱中特别是裂解气相色谱( PGC)能较好显示高分子类材料的组成特征,它和质谱、红外光谱、薄层色谱,凝胶色谱等的联用,大大地扩展了其使用范围。
红外光谱在高分子材料的表征上有着特殊重要地位。
红外光谱测试不仅方法简单,而且也由于积累了大量的已知化合物的红外谱图及各种基团的特征频率等数据资料而使测试结果的解析更为方便。
核磁共振谱虽然经常是作为红外光谱的补充,但其对聚合物的构型及构象的分析,对于立构异构体的鉴定,对于共聚物的组成定性、定量及序列结构测定有着独特的长处。
许多信息是其他方法难以提供的。
需要特别提及的是,近年来由于对材料的表面优化处理技术的发展,对确定表面层结构与成分的测试需求迫切。
一种以X射线光电子能谱、俄歇电子能谱、低能离子散射谱仪为代表的分析系统的使用日益重要。
其中X射线光电子能谱(XPS)也称为化学分析光电子能谱(ESCA),是用单色的软X射线轰击样品导致电子的逸出,通过测定逸出的光电子可以无标样直接确定元素及元素含量。
对于固体样品,XPS可以探测2~20个原子层深度的范围。
目前已成为从生物材料、高分子材料到金属材料的广阔范围内进行表向分析的不可缺少的工具之一:俄歇电子能谱(AES)是用一束汇聚电子束,照射固体后在表面附近产生了二次电子。
由于俄歇电子在样品浅层表面逸出过程中没有能量的损耗,因此从特征能量可以确定样品元素成分,同时能确定样品表面的化学性质。
材料结构的表征
材料结构的表征第三章材料的表征材料的设计、制备和表征是材料研究的三个组成部分,材料设计的重要依据来源于材料的结构分析。
材料制备的实际效果必须通过材料结构分析的检验。
因此可以说,材料科学的进展极大的依赖于对材料结构分析表征的水平。
材料表征的主要手段:热分析技术显微技术X射线衍射技术波谱技术材料的表征就其任务来说主要有三个:成分分析、结构测定、形貌观察。
12材料组成:化学分析、X射线能谱仪材料结构: 1) 晶体结构:单晶(X射线单晶衍射仪)粉末材料(X射线粉末衍射)2) 材料显微:光学显微镜(OM)(0.8~150um)透射电子显微镜(TEM)(0.001~5um) (0.1~0.2nm) 扫描电子显微镜(SEM) 3) 材料谱学:谱学结果可以反映材料中的组成元素原子的成键、价态及性能。
材料性能:热学、力学、电学、光学、磁学、化学、生物医学等性能。
1)热学:TG、DSC、TM 2)电学:电导、电阻、温度系数、半导体的禁带宽度、电化学、光电化学3)光学:荧光(化学发光) 4)磁性:第一节热分析技术热分析:在程序控制温度条件下,测量材料物理性质与温度之间关系的一种技术。
从宏观性能的测试来判断材料结构的方法。
程序控制温度:指用固定的速率加热或冷却。
4热分析技术被广泛用于固态科学中,凡是与热现象有关的任何物理和化学变化都可以采取热分析方法进行研究。
如材料的固相转变、熔融、分解甚至材料的制备等。
同时,这些变化还能被定量的描绘,可以直接测量出这些变化过程中所吸收或放出的热量,如熔融热、结晶热、反应热、分解热、吸附或解吸热、比热容、活化能、转变熵、固态转变能等。
热分析技术中,热重法(TG)、差热分析(DTA)和差示扫描量热法(DSC)应用的最为广泛。
5一、热重法(TG) 在程序控制温度条件下,测量物质的质量与温度关系的一种热分析方法。
热重法通常有下列两种类型:等温热重法—在恒温下测量物质质量变化与时间的关系非等温热重法—在程序升温下测量物质质量变化与温度的关系61进行热重分析的基本仪器为热天平,它包括天平、炉子、程序控温系统、记录系统等几个部分。
材料结构表征与应用第一章-绪论-课件
1表面成分分析 (可作深度分析)
2表面能带结构分 析
3表面结构定性分 析与表面化学研究
约0.4~2nm(俄歇 约0.5~2.5nm(金属
电子能量
及金属氧化物);
50~2000eV范围内) 约4~10nm(有机化
(与电子能量及样 合物和聚合物)。
品材料有关)
1表面能带结构分 析 2表面结构定性分 析与表面化学研究
第一章 绪论
方法或仪器
分析原理
透射电镜(TEM)透射与衍射
检测信号
基本应用
透射电子与衍 射电子
1形貌分析(显微组织、晶体缺陷) 2晶体结构分析 3成分分析(配附件)
扫描电镜(SEM)电子激发二次 电子;电子吸 收和背散射
二次电子、背 散射电子和吸 收电子
电子探针 (EPMA)
电子激发特征X X光子 射线
第一章 绪论
材料分析是通过对表征材料的物理性质或 物理化学性质参数及其变化(称为测量信号或 表征信息)的检测实现的。即材料分析的基本 原理(或称技术基础)是指测量信号与材料成 分、结构等的特征关系。采用各种不同的测量 信号形成了各种不同的材料分析方法。
材料结构的表征(或材料的分析方法)就 其任务来说,主要有三个,即成分分析、结构 测定和形貌观察。
7、拉曼光谱分析:是一种散射光谱分析方法。
第一章 绪论
分析方法
基本分析项目与应用
原子发射光谱分析 (AES)
原子吸收光谱分析 (AAS) X射线荧光光谱分析 (XFS) 紫外、可见(分子) 吸收光谱分析(UV、 VIS)
元素定性、半定量、定量分析。对 于无机物分析是最好的定性、半定 量分析方法。 元素定量分析
约0.4~2.0nm(光 电子能量 10~100eV范围内)。
MOF的制备结构表征及催化应用
《催化化学》课程学习报告专题:MOF的制备、结构表征及催化应用学院名称:材料化学与化工学院学生姓名:学生学号:教师姓名:考核时间:MOF的制备、结构表征及催化应用摘要:金属有机骨架(MOFs)配位化合物作为一种新型有机无机杂化材料,具有高空隙率、孔道尺寸形状可调性、易于功能化等优点,在气体存储和分离、催化、载药、光电磁性材料等领域展示了良好的应用前景。
本文介绍了MOFS材料的常用制备方法和结构表征方法,综述了近年来MOFS材料在催化领域的应用,特别是以MOFS材料中骨架金属作为活性中心骨架有机配体作为活性中心和负载催化活性组分的催化反应,并对MOFS 材料的催化应用趋势做了展望,以期对MOFS 材料的催化性能有比较全面的认识。
关键词金属-有机骨架合成结构表征催化应用1.引言金属-有机骨架 (metal-organic frameworks,MOFs)材料是由金属离子与有机配体通过自组装过程杂化生成的一类具有周期性多维网状结构的多孔晶体材料,具有纳米级的骨架型规整的孔道结构,大的比表面积和孔隙率以及小的固体密度,在吸附、分离、催化等方面均表现出了优异的性能,已成为新材料领域的研究热点与前沿。
MOFs材料的出现可以追溯到1989年以Robson和 Hoskins为主要代表的工作,他们通过 4,4′,4′′,4′′′-四氰基苯基甲烷和正一价铜盐[Cu(CH3CN)4].BF4在硝基甲烷中反应,制备出了具有类似金刚石结构的三维网状配位聚合物[1],同时预测了该材料可能产生出比沸石分子筛更大的孔道和空穴,从此开始了MOFs材料的研究热潮。
但早期合成的MOFs材料的骨架和孔结构不够稳定,容易变形。
直到1995年Yaghi等合成出了具有稳定孔结构的MOFs[2],才使其具有了实用价值。
由于MOFs材料具有大的比表面积和规整的孔道结构,并且孔尺寸的可调控性强,骨架金属离子和有机配体易实现功能化,因此在催化研究、气体吸附、磁学性能、生物医学以及光电材料等领域得到了广泛应用。
材料结构表征及应用复习资料.
2.7激光拉曼光谱
1.几个基本概念?
1拉曼散射当一束频率为υ0的入射光照射到气体、液体或透明晶体样品上时,绝大部分可以通过,大约有0.1%的入射光子与样品发生碰撞后向各个方向散射。若入射光子与样品分子之间发生碰撞有能量交换,即称为非弹性碰撞,这种光的散射称为拉曼散射。
3肯定法这种分析方法主要针对谱图上强的吸收带,确定是属于什么官能团,然后再分析具有较强特征性的吸收带。
3.影响谱图质量的因素?
1仪器参数的影响光通量、增益、扫描次数等直接影响信噪比S/N.
2环境的影响光谱中的吸收带并非都是由样品本身产生的,潮湿的空气、样品的污染、残留溶剂、由玛瑙研钵或玻璃器皿所带入的二氧化硅,溴化钾压片时吸附的水等原因均可产生附加的吸收带,故在光谱解析时应特别注意。
材料结构表征及应用复习资料
--2013材料化学
第一章绪论
1.材料研究的四大要素:材料的固有性质、材料的结构、材料的使用性能、材料的合成与加工;
2.材料的固有性质大都取决于物质的电子结构、原子结构和化学键结构。
3.材料结构表征的三大任务及主要测试技术:
1化学成分分析:传统的化学分析技术、质谱、色谱、红外光谱、核磁共振、X射线光电子能谱;
2结构测定:X射线衍射、电子衍射、中子衍射、热分析;
3形貌观察:光学显微镜、扫描电镜、透射电镜、原子力显微镜;
第二章红外光谱及激光拉曼光谱
2.1红外光谱的基本原理
1.红外光谱定义:当用一束具有连续波长的红外光照射物质时,该物质的分子就要吸收一定波长的红外光的光能,并将其转变为分子的振动能和转动能,从而引起分子振动—转动能级的跃迁。通过仪器记录下不同波长的透过率(或吸光度)的变化曲线,即是该物质的红外吸收光谱。
材料结构表征及应用
材料结构表征及应用材料结构表征是材料科学领域中的重要研究内容,它涉及到材料的组成、结构、性能以及应用等方面。
材料的结构表征可以通过多种手段进行,例如X射线衍射、电子显微镜、原子力显微镜等,这些手段可以帮助科研人员深入了解材料的微观结构和性能,为材料的设计、制备和应用提供重要的参考依据。
X射线衍射是一种常用的材料结构表征手段,通过衍射图谱的分析可以得到材料的晶体结构信息,包括晶格常数、晶体取向、晶粒尺寸等。
电子显微镜则可以帮助科研人员观察材料的微观形貌和结构特征,包括晶粒形状、晶界分布、缺陷结构等。
原子力显微镜则可以实现对材料表面的原子尺度的观测,揭示材料表面的形貌和表面缺陷等信息。
除了以上提到的手段外,还有许多其他的材料结构表征手段,例如热分析技术、核磁共振、拉曼光谱等,这些手段可以从不同的侧面揭示材料的结构和性能信息。
通过综合运用这些手段,科研人员可以全面地了解材料的结构特征,为材料的应用提供更加可靠的支撑。
材料的结构表征不仅对于科研领域具有重要意义,也对于工业生产具有重要意义。
通过对材料结构的深入了解,可以实现对材料性能的精准调控,提高材料的性能指标,拓展材料的应用领域。
例如,通过对材料的晶体结构进行优化,可以实现对材料强度、硬度、导电性等性能的提升,从而提高材料的工程应用价值。
在材料科学领域,结构表征与应用是密不可分的。
只有深入了解材料的结构特征,才能实现对材料性能的准确把握,为材料的应用提供可靠的支撑。
因此,材料结构表征是材料科学研究中的重要环节,它为材料的设计、制备和应用提供了重要的科学依据。
总之,材料结构表征是材料科学研究中的重要内容,通过多种手段对材料的结构特征进行深入了解,可以为材料的应用提供可靠的支撑。
材料科学领域的研究人员应该不断探索新的结构表征手段,提高材料结构表征的准确性和可靠性,为材料的应用领域拓展提供更加有力的支持。
材料结构表征大全
目录一XRD衍射分析 (2)二红外光谱 (3)三紫外光谱 (4)四光电子能谱分析(XPS) (5)五热重分析 (6)六差热分析 (7)七TEM (8)八SEM (9)九核磁共振 (9)十质谱分析 (10)十一拉曼光谱 (11)十二EXAFS (12)十三热滞回线 (13)十四IV曲线测量 (14)十五DSC 差示扫描量热法 (15)十六流阻抗谱 (16)十七磁力显微术 (16)十八AFM分析 (18)十九STM(扫描隧道显微镜) (20)一XRD衍射分析XRD即X-ray diffraction 的缩写,X射线衍射,通过对材料进行X射线衍射,分析其衍射图谱,获得材料的成分、材料内部原子或分子的结构或形态等信息的研究手段。
工作原理X射线是一种波长很短(约为20~0.06埃)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。
在用电子束轰击金属“靶”产生的X射线中,包含与靶中各种元素对应的具有特定波长的X射线,称为特征(或标识)X射线。
X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。
晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。
满足衍射条件,可应用布拉格公式:2dsinθ=nλ表征内容应用已知波长的X射线来测量θ角,从而计算出晶面间距d,这是用于X射线结构分析;另一个是应用已知d的晶体来测量θ角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。
用途目前X射线衍射(包括散射)已经成为研究晶体物质和某些非晶态物质微观结构的有效方法。
主要应用有以下方面:1 物相分析是 X射线衍射在金属中用得最多的方面,分定性分析和定量分析。
前者把对材料测得的点阵平面间距及衍射强度与标准物相的衍射数据相比较,确定材料中存在的物相;后者则根据衍射花样的强度,确定材料中各相的含量。
MOF的制备、结构表征及催化应用
《催化化学》课程学习报告专题:MOF的制备、结构表征及催化应用学院名称:材料化学与化工学院学生姓名:学生学号:教师姓名:考核时间:MOF的制备、结构表征及催化应用摘要:金属有机骨架(MOFs)配位化合物作为一种新型有机无机杂化材料,具有高空隙率、孔道尺寸形状可调性、易于功能化等优点,在气体存储和分离、催化、载药、光电磁性材料等领域展示了良好的应用前景。
本文介绍了MOFS材料的常用制备方法和结构表征方法,综述了近年来MOFS材料在催化领域的应用,特别是以MOFS材料中骨架金属作为活性中心骨架有机配体作为活性中心和负载催化活性组分的催化反应,并对MOFS 材料的催化应用趋势做了展望,以期对MOFS 材料的催化性能有比较全面的认识。
关键词金属-有机骨架合成结构表征催化应用1.引言金属-有机骨架 (metal-organic frameworks,MOFs)材料是由金属离子与有机配体通过自组装过程杂化生成的一类具有周期性多维网状结构的多孔晶体材料,具有纳米级的骨架型规整的孔道结构,大的比表面积和孔隙率以及小的固体密度,在吸附、分离、催化等方面均表现出了优异的性能,已成为新材料领域的研究热点与前沿。
MOFs材料的出现可以追溯到1989年以Robson和 Hoskins为主要代表的工作,他们通过 4,4´,4´´,4´´´-四氰基苯基甲烷和正一价铜盐[Cu(CH3CN)4].BF4在硝基甲烷中反应,制备出了具有类似金刚石结构的三维网状配位聚合物[1],同时预测了该材料可能产生出比沸石分子筛更大的孔道和空穴,从此开始了MOFs材料的研究热潮。
但早期合成的MOFs材料的骨架和孔结构不够稳定,容易变形。
直到1995年Yaghi等合成出了具有稳定孔结构的MOFs[2],才使其具有了实用价值。
由于MOFs材料具有大的比表面积和规整的孔道结构,并且孔尺寸的可调控性强,骨架金属离子和有机配体易实现功能化,因此在催化研究、气体吸附、磁学性能、生物医学以及光电材料等领域得到了广泛应用。
材料的五种表征方法
材料的五种表征方法一、引言材料的表征是指通过一系列实验和测试方法来获取材料的性质和特征的过程。
材料表征方法的选择取决于所研究材料的性质和研究目的。
本文将介绍五种常用的材料表征方法,包括结构表征、形貌表征、力学表征、热学表征和电学表征。
通过深入探讨这些表征方法,我们可以更好地理解材料的性能和应用。
二、结构表征结构表征是研究材料内部结构和组成的方法。
常用的结构表征方法包括X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等。
1. X射线衍射(XRD)X射线衍射是一种分析材料结晶结构的方法。
通过照射材料表面的X射线,根据X 射线与晶体的相互作用产生的衍射图样,可以确定材料的晶体结构和晶格常数。
2. 扫描电子显微镜(SEM)扫描电子显微镜是一种观察材料表面形貌和微观结构的方法。
通过扫描电子束和样品表面的相互作用,可以获取高分辨率的材料表面形貌图像,并且可以分析材料的成分和晶体结构。
3. 透射电子显微镜(TEM)透射电子显微镜是一种观察材料内部结构和晶体缺陷的方法。
通过透射电子束和材料的相互作用,可以获取高分辨率的材料内部结构图像,并且可以分析材料的晶体结构、晶格缺陷和晶界等。
三、形貌表征形貌表征是研究材料表面形貌和微观结构的方法。
常用的形貌表征方法包括原子力显微镜(AFM)、扫描隧道显微镜(STM)和光学显微镜等。
1. 原子力显微镜(AFM)原子力显微镜是一种通过探针和材料表面之间的相互作用来观察材料表面形貌和表面力学性质的方法。
通过探针的运动和反馈信号,可以获取高分辨率的材料表面形貌图像,并且可以测量材料表面的力学性质。
2. 扫描隧道显微镜(STM)扫描隧道显微镜是一种通过电流和材料表面之间的隧道效应来观察材料表面形貌和电学性质的方法。
通过探针的运动和反馈信号,可以获取原子尺度的材料表面形貌图像,并且可以测量材料表面的电导率和电子结构。
3. 光学显微镜光学显微镜是一种观察材料表面形貌和显微结构的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由于电子流的波长远短于光波波长,故电镜的
放大及分辨率显著地高于光镜
整理ppt
12
光学显微镜(Optical Microscope, OM)
Ni-Cr合金的铸造组织
整理ppt
13
扫描电子显微镜(scanning electron microscope, SEM)
扫描电子显微镜是继透射电子显微镜后 发展起来的
整理ppt
4
1.材料现代分析方法
材料分析是通过对表征材料的物理性质或 物理化学性质参数及其变化(称为测量信号或 表征信息)的检测实现的。即材料分析的基本 原理(或称技术基础)是指测量信号与材料成 分、结构等的特征关系。采用各种不同的测量 信号形成了各种不同的材料分析方法。
材料结构的表征(或材料的分析方法)就 其任务来说,主要有三个,即成分分析、结构 测定和形貌观察。
材料结构分析
内蒙古科技大学
整理ppt
1
第一章 绪论
材料研究的基本内容
材料的制备工艺研究 材料的各种处理工艺研究(热处理、表面处理……) 材料的各种性能分析方法及测试(力学、电学、磁学、光 学……) 材料的组成表征方法及分析研究(成分、微观结构、显微组 织……)
归纳——材料的制备与处理工艺、材料的组成(成分、结构) 及材料的性能。 材料研究工作,不管具体干什么,总离不开这几个方面内容。
整理ppt
17
SEM应用
4.纳米结构材料形态观察
整理ppt
18
扫描电子显微镜
整理ppt
19
扫描探针显微镜(scanning probe microscopy,SPM)
扫描探针显微镜(Scanning Probe Microscope, SPM)是在扫描隧道显微镜的基础上发展起来 的各种新型探针显微镜(原子力显微镜AFM,激 光力显微镜LFM,磁力显微镜MFM等等)的统 称,是国际上近年发展起来的表面分析仪器, 它是利用带有超细针尖的探针逼近样品,并利 用反馈回路控制探针在距表面纳米量级位置扫 描,获得其原子以及纳米级的有关信息图像
整理ppt
2
1.材料现代分析方法
材料的现代分析方法是关于材料的成分、 结构、微观形貌与缺陷等的现代分析、测试技 术及相关的理论基础的科学。
成分、结构、加工和性能是材料科学与工 程的四个基本要素,成分和结构从根本上决定 了材料的性能,对材料的成分和结构的进行精 确表征是材料研究的基本要求,也是实现性能 控制的前提。
整理ppt
6
2.材料分析的内容
化学成分和价键(电子)结构。包括宏观和微 区化学成份(不同相的成份、基体与析出相的 成份)、同种元素的不同价键类型和化学环境。
有机物的分子结构和官能团。
整理ppt
7
3.材料分析的理论依据
尽管材料分析手段纷繁复杂,但它们也具有共同 之处。
除了个别研究手段(如扫描探针显微镜,SPM) 以外,基本上是利用入射电磁波或物质波(X射 线、电子束、可见光、红外光)与材料作用,产 生携带样品信息的各种出射电磁波或物质波(X 射线、电子束、可见光、红外光),探测这些出 射的信号,进行分析处理,即可获得材料的组织、 结构、成分、价键信息。
×10
分辨率
1000 0 10
1000 1
100
10
1
0.1 nm
0.1 0.01 0.001 0.0001 μm
整理ppt
11
光学和电子显微镜
光学显微镜是利用光学原理,把人眼所不能分 辨的微小物体放大成像,以供人们提取微细结 构信息的光学仪器
电子显微镜是以电子束为照明源,通过电子流 对样品的透射或反射及电磁透镜的多级放大后 在荧光屏上成像的大型仪器,而光学显微镜则 是利用可见光照明,将微小物体形成放大影像 的光学仪器。
整理ppt
3
1.材料现代分析方法
材料现代分析、测试技术的发展,使得材料分 析不仅包括材料(整体)成分、结构分析,也 包括材料表面与界面分析、微区分析、形貌分 析等诸多内容。材料分析方法也不仅是以材料 成分、结构等分析、测试为唯一目的,而是成 为材料科学的重要手段,广泛应用于研究和解 决材料理论和工程实际问题。
整理ppt
5
2.材料分析的内容
表面和内部组织形貌。包括材料的外观形貌 (如断口、裂纹等)、晶粒大小与形态、各种 相的尺寸与形态、含量与分布、界面(表面、 相界、晶界)、位向关系(新相与母相、孪生 相)、晶体缺陷(点缺陷、位错、层错)、夹 杂物、内应力。
晶体的相结构。各种相的结构,即晶体结构类 型和晶体常数。
表面形貌分析技术经历了光学显微镜(OM)、
电子显微镜(SEM)、扫描探针显微镜(SPM)
的发展过程,现在已经可以直接观测到原
子的图像。
整理ppt
10
三种组织分析手段的比较
扫描探针显微镜 扫描电子显微镜
观察倍率 ×10000000 ×1000000
×100000
×10000
光学显微镜
×1000
×100
整理ppt
8
Байду номын сангаас 4.材料分析方法
材料分析方法分可以分为为形貌分析、物 相分析、成分与价键分析与分子结构分析 四大类方法。
整理ppt
9
4.1组织形貌分析
微观结构的观察和分析对于理解材料的本 质至关重要,组织形貌分析借助各种显微
技术,认识材料的微观结构。形貌观察和 分析主要采用扫描电子显微镜和透射电 子显微镜。
整理ppt
20
SPM特点
首先,SPM具有极高的分辨率。它可以轻易的“看到” 原子,这是一般显微镜甚至电子显微镜所难以达到的。
其次,SPM得到的是实时的、真实的样品表面的高分 辨率图像。而不同于某些分析仪器是通过间接的或计 算的方法来推算样品的表面结构。也就是说,SPM是 真正看到了原子。
再次,SPM的使用环境宽松。电子显微镜等仪器对工 作环境要求比较苛刻,样品必须安放在高真空条件下 才能进行测试。而SPM既可以在真空中工作,又可以 在大气中、低温、常温、高温,甚至在溶液中使用。 因此SPM适用于各种工作环境下的科学实验。
SEM是聚焦电子束在试样表面逐点扫描 成像,试样为块状或粉末颗粒
理想中的SEM分析:保持样品原有形态; 得到样品真实表面形貌;最简单的处理 方法;实时观察样品的变化过程
整理ppt
14
SEM应用
1.材料表面形态观察
整理ppt
15
SEM应用
2.断口形貌观察
整理ppt
16
SEM应用
3.磨损表面形貌观察