永磁同步电机的仿真模型.docx
三相永磁同步电机(PMSM)矢量控制建模与仿真
目录1 引言 (1)1.1 课题的背景与意义 (1)1.1.1 课题背景 (1)1.1.2 课题意义 (1)1.2 永磁电机发展概况 (1)2 机电能量转换和拉格朗日方程 (2)2.1 机电能量转换 (2)2.2 三相同步电机电磁转矩 (7)2.3 拉格朗日方程 (9)3 三相永磁同步电机的数学模型 (11)3.1 三相PMSM的基本数学模型 (11)3.2 三相PMSM的坐标变换 (13)3.2.1 Clark变换 (13)3.2.2 Park变换 (14)3.3 同步旋转坐标系下PMSM的数学模型 (14)4 三相永磁同步电机的矢量控制 (16)4.1 转速环PI调节器的参数整定 (16)4.2 电流环PI调节器的参数整定 (17)4.3 三相PMSM矢量控制系统的仿真 (19)4.3.1 仿真建模 (19)4.3.2 仿真结果分析 (22)总结 (23)参考文献 (23)三相永磁同步电机矢量控制建模与仿真摘要:永磁同步电机具有体积小、效率和功率因数高等优点,因此越来越多的应用在各种功率等级的场合。
永磁同步电机的控制是永磁同步电机应用的关键技术,永磁同步电机的结构特点使得采用矢量控制系统有很大的优势。
本文首先分析了永磁同步电机矢量控制的发展概况,然后从机电能量转换的角度出发,解释三相永磁同步电机的机电能量转换原理,推导拉格朗日运动方程。
此外,列写出永磁同步电机在三相静止坐标系和dq坐标系下的数学模型。
基于Simulink建立了转速电流双闭环矢量控制系统的仿真模型,通过对仿真结果分析,验证了永磁同步电机矢量控制系统性能的优越性。
关键词:永磁同步电机,矢量控制,Simulink1 引言1.1 课题的背景与意义1.1.1 课题背景交流电机的控制性能在磁场定向矢量控制技术提出后才有了质的飞跃。
磁场定向矢量控制技术采用的是励磁电流和转矩电流的解稱控制,兼顾磁场和转矩的控制,克服了交流电机自身耦合的缺点。
基于永磁同步电机的无刷直流电机建模仿真
3ቤተ መጻሕፍቲ ባይዱ
1 0 0 0 7 2;
河南 柴油机 重 工有 限责任公 司 技 术 中心 , 河南 洛阳 4 7 1 0 0 3)
摘
要 :以无刷直流电机的 内部结构和数学模型为基础 , 提 出一种基 于 M A T L A B / S i m u l i n k模块库中永磁
同步 电机 ( P M S M) 模块 的无刷 直流 电机 ( B L D C M) 建模 与仿 真新方 法。在 MA T L A B / S i m u l i n k中, 通过建 立独 立功能模块 , 并结 合 S i m u l i n k模 块 库下 P M S M 模 块 和 通 用 电桥 模 块 等 , 对 该 模 块 进行 有 机 整 合 , 搭建 出 B L D C M 系统仿真模 型。该模 型采用 双闭环控 制 , 外 环为速度 环 , 采用 P I 控制 , 以稳定 转速和抗 负载扰 动 ; 内 环为电流环 , 以稳定 电流 。仿真结果证 明, 采用 P MS M仿 真 B L D C M, 在建模 过程 中具有简 洁高效且模 型更加 精确 的优 点 , 此模型 为改进其他控制算法提供 了建模仿 真基础 。
s y n c h r o n o u s m o t o r ( P MS M) w a s p r o p o s e d .I n M A T L A B / S i m u l i n k ,t h e i s o l a t e d f u n c t i o n a l b l o c k s c o m b i n e d w i t h
me t h o d f o r mo d e l i n g a n d s i mu l a t i o n o f B L DC M i n MA T L AB / S i mu l i n k mo d u l e l i b r a r y o f p e r ma n e n t ma g n e t
Maxwell仿真永磁同步电机步骤资料
Ansoft Maxwell 14 永磁同步电机仿真步骤总结
首先是建立一个RMxprt文件,选择电机类型为下图的
Permanent-MagnetSynchronous Motor
只要按照下面的参数输入即可
磁钢材料NTP264H要自己定义
Danper是怎么出来的?要右键”Rotor’ ,选择Insert Danper,就可以了
所有参数输入完毕,现在要定义个求解设置,右键“Analysis”添加一个setup,
模型
绕组的连接如下
求解结果
一键导入到maxwell14 2D瞬态场里去分析即可,右键Analysis setup 的creat Maxwell design ,auto setup 要打勾
导入模型如图,是1/4模型(导入整个模型的方法?加注fragnet 1)
因为是1/4模型,所以要设置一个Symmetry Multiplier ,右键”model”,就可以看到,设置如
下
电机在零负载转矩的起动:点击“model”的树,将其展开,双击Motion setup 作如下设置
为了得到,更好的仿真图像,设置一下仿真时间,双击Solve setup 作如下设置
以下就是在零负载转矩的情况下的得出的各种起动时间图,横轴的时间单位是毫秒(ms)
做完了以上的仿真,再做一个电机在额定负载下的起动过程,把上面的文件复制一下,然
后改一下名称,结果如图然后双击负载的那个,改一个参数就可以,要改的参数,在motion setup里(上面有提到过的)将load Torque 设置成如下就可以,然后开始让电脑开始仿真(Analys all)
结果的图如下。
永磁同步电机的仿真模型
永磁同步电机的仿真模型1、永磁同步电机介绍永磁同步电动机(permanent Magnets synchronous Motor, PMSM),转子采用永磁材料,定子为短距分布式绕组,采用三相正弦波交流电驱动,且定子感应电动势波形呈正弦波"定子绕组通过控制功率管(如IGBT)的不同开关组合,产生旋转磁场跟踪永磁转子的位置,自动地维持与转子的磁场有900的空间夹角,以产生最大的电机转矩"旋转磁场的转速则严格地由永磁转子的转速所决定,PMSM具有直流电动机的特性,有稳定的起动转矩,可以自行起动,并可类似直流电动机对电机进行闭环控制,多用于伺服系统和高性能的调速系统。
永磁同步电动机按转子形状可以分为两类:凸极式永磁同步电机和隐极式永磁同步电机。
它们的区别在于转子磁极所在的位置,凸极式永磁同步电机转子磁极是突起在轴上的,其直轴和交轴电感参数不相等"而隐极式永磁同步电机的转子磁极是内置在轴内的,直轴和交轴电感参数相等"凸极式转子具有明显的磁极,定子和转子之间的气隙是不均匀的,因此其磁路与转子的位置有关。
2、永磁同步电机的控制方法目前对永磁同步电机的控制技术主要有磁场定向矢量控制技术(field orientation control,FOC)与直接转矩控制技术(direct torque control,DTC)。
在这里我们使用磁场定向矢量控制技术来建立永磁同步电机的仿真模型。
磁场定向矢量控制技术的核心是在转子旋转坐标系中针对激磁电流id和转矩电流iq分别进行控制,并且采用的是经典的PI线性调节器,系统呈现出良好的线性特性,可以按照经典的线性控制理论进行控制系统的设计,逆变器控制采用了较成熟的SPWM、SVPWM等技术。
磁场定向矢量控制技术较成熟,动态、稳态性能较佳,所以得到了广泛的实际应用。
该方法摒弃了矢量控制中转子磁场定向的思想,采用定子磁场定向,分别对定子磁链和转矩直接进行控制。
永磁同步电机矢量控制matlab仿真
永磁同步电机矢量控制matlab仿真永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)的矢量控制(也称为场向量控制或FOC)是一种先进的控制策略,用于优化电机的性能。
这种控制方法通过独立控制电机的磁通和转矩分量,实现了对电机的高性能控制。
在MATLAB中,你可以使用Simulink和SimPowerSystems库来模拟永磁同步电机的矢量控制。
以下是一个基本的步骤指南:1.建立电机模型:使用SimPowerSystems库中的Permanent Magnet SynchronousMachine模型。
你需要为电机提供适当的参数,如额定功率、额定电压、额定电流、极对数、转子惯量等。
2.建立控制器模型:矢量控制的核心是Park变换和反Park变换,用于将电机的定子电流从abc坐标系变换到dq旋转坐标系,以及从dq坐标系变换回abc坐标系。
你需要建立这些变换的模型,并设计一个适当的控制器(如PI控制器)来控制dq轴电流。
3.建立逆变器模型:使用SimPowerSystems库中的PWM Inverter模型。
这个模型将控制器的输出(dq轴电压参考值)转换为逆变器的开关信号。
4.连接模型:将电机、控制器和逆变器连接起来,形成一个闭环控制系统。
你还需要添加一个适当的负载模型来模拟电机的实际工作环境。
5.设置仿真参数并运行仿真:在Simulink的仿真设置中,你需要设置仿真时间、步长等参数。
然后,你可以运行仿真并观察结果。
6.分析结果:你可以使用Scope或其他分析工具来查看电机的转速、定子电流、电磁转矩等性能指标。
这些指标可以帮助你评估控制算法的有效性。
请注意,这只是一个基本的指南,具体的实现细节可能会因你的应用需求和电机参数而有所不同。
在进行仿真之前,建议你仔细阅读相关的文献和教程,以便更好地理解永磁同步电机的矢量控制原理。
永磁同步电机系统仿真(毕业论文doc)
第 1 章绪论1.1 课题研究的背景1.1.1 永磁同步电机的发展状况永磁同步电机出现于20 世纪50 年代。
其运行原理与普通电激磁同步电机相同,但它以永磁体替代激磁绕组,使电机结构更为简单,提高了电机运行的可靠性。
随着电力电子技术和微型计算机的发展,20 世纪70 年代,永磁同步电机开始应用于交流变频调速系统。
20 世纪80 年代,稀土永磁材料的研制取得了突破性的进展,特别是剩磁高、矫顽力大而价格低廉的第三代新型永磁材料钕铁硼NdFeB的出现,极大地促进了永磁同步电机调速系统的发展。
尤其值得一提的是我国是一个稀土材料的大国,稀土储量和稀土金属的提炼都居世界首位。
随着稀土材料技术的不断发展,永磁材料的磁能积已经做的很高,价格也早就满足工业应用的需要,加上矢量控制水平的不断提高,永磁同步电动机越来越显出效率高、功率密度大、调速范围宽、脉动转矩小等高性能的优势。
使我国在稀土永磁材料和稀土永磁电机的科研水平都达到了国际先进水平。
新型永磁材料在电机上的应用,不仅促进了电机结构、设计方法、制造工艺等方面的改革,而且使永磁同步电机的性能有了质的飞跃,稀土永磁同步电机正向大功率超高速、大转矩微型化、智能化、高性能化的方向发展,成为交流调速领域的一个重要分支12。
由于受到功率开关元件、永磁材料和驱动控制技术发展水平的制约,永磁同步电机最初都采用矩形波波形,在原理和控制方式上基本上与直流电机类似,但这种电机的转矩存在较大的波动。
为了克服这一缺点,人们在此基础上又研制出带有位置传感器、逆变器驱动的正弦波永磁同步电机,这就使得永磁同步电机有了更广阔的前景。
1.1.2 永磁同步电机控制系统的发展随着永磁同步电动机的控制技术的不断发展,各种控制技术的应用也在逐步成熟,比如SVPWM、DTC、SVM-DTC、MRAS 等方法都在实际中得到应用。
然而,在实际应用中,各种控制策略都存在着一定的不足,如低速特性不够理想,过分依赖于电机的参数等等,因此,对控制策略中存在的问题进行研究就有着十分重大的意义。
永磁同步电机伺服系统的模型仿真
Simulation and Modeling of the PMSM Servo SystemWANG Zheng-guang, JIN Jian-xunSchool of Automation Engineering,University of Electronic Science and Technology of China, Chengdu, 610054 ChianAbstract: A method for modeling and simulation of PMSM (Permanent Magnet Synchronous Motor) servo system based on MATLAB/SIMULINK is proposed. The main function blocks include PMSM block, SVPWM block, coordinate transform block, PI control block, three phase current source inverter controller block, speed controller block etc., which made up of the simulation model to form a system having current and speed two closed loops. The simulation results show that the model is effective, and the method provides a base for both software and hardware design of an actual PMSM.Key words: PMSM; field oriented control; closed loop; simulation永磁同步电机伺服系统的模型仿真王争光,金建勋(电子科技大学自动化工程学院 成都 中国 610054)摘要:在MATLAB/SIMULINK环境下,用SIMULINK建立了永磁同步电机控制系统的仿真模型,主要功能模块包括PMSM (Permanent Magnet Synchronous Motor) 电机本体、SVPWM模块、坐标变换、PI控制模块、三相电流源逆变器、速度控制器,构建了PMSM的电流和速度双闭环控制系统的仿真模型,仿真波形达到了预期效果,证明了该模型的有效性,同时也为永磁同步电机的软硬件设计提供了理论基础。
永磁同步电机伺服系统的仿真研究
第一步:建立永磁同步电机变频调速系统结构框图图1 永磁同步电机变频调速系统结构框图这里请具体介绍以上各模块以及系统是如何串接的,即永磁同步电机变频调速的原理。
接下来讨论以下几点。
注意:比直流的少几项,主要考虑到用MA TLAB自带的一些模块构成伺服系统后,参数改变对某些效果并不明显。
1、启动时转速电流关系以及突加负载时两者之间的关系仿真研究图2 三相定子电流波形图图3 转速、转矩电流负载关系图简要说明:0.1秒加给定转速700r/min,电流迅速上升到达最大电流,当转速达到给定转速时,电流又下降,0.2秒又突加负载,电流上升,转速下降,随后在转速闭环调节的作用下,转速又上升到给定转速。
注:仿真结果标明,转速、电流以及负载的变化关系完全与理论情况一致。
第二步:建立永磁同步电机伺服系统结构框图图4 永磁同步电机伺服系统结构框图当调速系统确定以后,伺服系统开环增益Kh主要取决于位置调节器Kwp 1 开环增益Kh与跟随误差的关系图5 Kwp=5时系统跟随误差仿真图图6 Kwp=50时系统跟随误差仿真图图7 Kwp=500时系统跟随误差仿真图由此可见,随着开环增益变大,其跟随误差越小,成反比关系,仿真结果与理论情况完全一致。
2.开环增益Kh与稳定性的关系图8 Kwp=500时进给速度仿真图图9 Kwp=5000时进给速度仿真图由图8、9可以看出,随着开环增益变大,速度开始有些震荡,甚至不稳定。
与理论情况完全一致。
第三步平面插补运动仿真机床在加工曲面时,就是通过多轴组合运动,俗称插补运动。
这里进行两轴直线插补和圆弧插补仿真。
图10两轴插补运动时结构框图图11 直线插补仿真结果图12 圆弧插补仿真结果根据插补仿真结果可以看出,直线插补位置信号给定形式是斜坡输入信号,圆弧插补位置给定信号是简谐输入信号(正余弦信号),当其赋值不一样时,其插补结果就是椭圆。
永磁直线同步电机矢量控制模型及仿真的研究
式中 L d , L q — — — 直轴同步电感系数和交轴同 步电感系数 。 在理想情况下 , 即直线电机三相绕组对称 , 气隙 磁场均匀分布 , 感应反电势呈正弦波时 , 可以认为 d q 轴电感相同 ( L d = L q ) , 由式 ( 10 ) 可以看出 , 经过 坐标变换后 , 直轴与交轴的磁链和电流实现了解耦 。 电机的电磁推力方程 π 3 Np (ψdi q - ψ ( 11) Fe = qi d ) 2τ 式中 Fe — — — 电磁力 ; N p — — — 极对数 。 将式 ( 10) 带入式 ( 11) 有 π 3 Np ( 12) Fe = [ψ f i q + ( L d - L q ) i di d ] 2τ 电机的机械运动方程 ( 13) Fe = FL + B vv + Mpv 式中
M bf = Mf cos (θ-
ψ u0 = Ri 0 + p 0 式中
R— — — 每相绕组电阻值 ; ω— — — 永磁直线电机平移速度折合成的旋转 π ) v; 电机角速度 ,rad/ s ,ω = ( /τ v— — — 平移速度 , m/ s ;
式中 L m — — — 定子自感 ; Lσ — — — 定子漏感 ; Mf — — — 永磁体等效互感系数 ; θ— — — d 轴与 a 轴的夹角 。 则式 ( 2) 写成矩阵形式为 ψa L - 0. 5L ψb = ψ c
式 ( 9) 、 式 ( 10) 、 式 ( 12) 、 式 ( 13) 即构成永磁同步 直线电机在 dq 坐标系下的数学模型 。 2 SIMULINK 下 PMLSM 的仿真模型 根据上面建立的永磁直线同步电动机的数学模 型 ,利用 Simulink 仿真环境建立了永磁直线同步电 机的仿真模型 , 由式 ( 9 ) 和式 ( 10 ) 可以建立 PMLSM 的电流方程 ω Lq ud R id Ld Ld id Ld = + ω ω iq Ld iq uq - ψ f R Lq Lq Lq
永磁同步电机系统仿真
转矩与电流成正比关系 永磁同步电机系统的转矩与电流的相位差有关 转矩和电流的调节可以通过控制算法实现 了解转矩和电流的关系有助于优化电机性能
电压方程:描述电机的电压与 电流之间的关系
磁链方程:描述电机的磁链与 电流和磁通之间的关系
转矩方程:描述电机的转矩与 电流和磁通之间的关系
运动方程:描述电机的转速与 转矩和电机参数之间的关系
添加标题
常见仿真软件:ANSYS Maxwell、COMSOL Multiphysics、FEMM等
添加标题
适用场景:ANSYS Maxwell适用于电磁场仿真,COMSOL Multiphysics适用于多物理场耦合仿真,FEMM 适用于电机电磁场仿真
添加标题
精度和稳定性:ANSYS Maxwell和COMSOL Multiphysics精度较高,稳定性较好,而FEMM适用于简单模 型仿真,精度和稳定性相对较低
永磁同步电机系统 仿真的应用和发展 趋势
工业自动化:用于控制机器人、自动化生产线等 新能源汽车:作为驱动电机,提高能效和性能 航空航天:用于控制无人机、卫星等高精度设备 医疗器械:用于精密手术器械的控制和操作
添加 标题
高效能:随着技术的进步,永磁同步电机系统 的仿真将更加高效,能够更快地得到精确的结 果。
永磁同步电机系统 的仿真软件
Simulink:用于动态系统建模和仿真,支持多种永磁同步电机模型 FEMTO-ST MCU:专门用于电机控制系统的仿真,包括永磁同步电机 dSPACE:实时仿真系统,可用于永磁同步电机控制算法的验证 MATLAB/Simulink:电机控制系统设计和分析工具,适用于永磁同步电机仿真
永磁同步电机系统仿 真
汇报人:XX
目录
永磁同步直线电机的数学建模
R=3.740625Ω
数学建模
永磁同步直线电机
为了方便分析控制性能和导出控制方法引入坐标变换
• 三相交流变量 Clarke变换 • 两相交流变量 Park变换 • 两轴直流变静止坐标系
变 换 矩 阵
两相旋转坐标系
建模前的假设
• 1)不考虑磁路饱和,忽略端部效应(如极数尽量取多,行 程两端留有较长的磁轨等) • 2)气隙中的磁场在空间上按正弦分布。
永磁同步直线电机的 d-q 轴模型
参数: L 为电枢轴电感 p 为极对数 Ψf为定子永磁体在电枢中的耦合磁链 Ke= Ψf· 为反电动势系数 p Kt=K·Ψf为推力系数 v 为电机速度 M 为动子和负载的质量 B为粘滞摩擦系数 Fm为电磁推力 Fd为负载阻力
永磁同步直线电机的数学模型框图
电枢电阻的计算
永磁同步电机调速系统的建模与仿真
毕业设计(论文)课题名称永磁同步电机调速系统建模与仿真学生姓名王云学学号**********系、年级专业电气工程系、11级电气工程及其自动化指导教师刘白杨职称助教2015年4月 5 日相比于传统使用的电机,永磁同步电动机(PMSM)具有着比较高的工作效率、比较高的力矩惯量比、比较高的能量密度和环保节能等优越特性,所以对永磁同步电机进行控制调速方面的研究有着相当重要的意义。
由于电机在运行过程中会受到一些扰动,使电机的转速偏离原来的额定转速,所以我们通过在对他数学模型的分析基础上,我们把电机的转动速度偏差e和转动速度偏差变化率de/dt作为是输入的变量,利用Matlab Simlink模块建立了系统的仿真模型,来使得系统自动调节电机的转速使其保持在额定转速。
本文通过分别对经典PI控制调速系统和模糊PI控制调速系统进行了详细的仿真实验分析对比。
从仿真的分析结果可以看出,使用模糊智能的PI 控制调速系统不仅具有响应速度的迅速、无超调量、抗扰性能好、能更好地提高永磁同步电机的调速系统的动态和静态特性,而且还在非线性因素对系统的干扰方面具有一定的抑制作用。
关键词:永磁同步电机;Matlab Simlink;调速系统;模糊PI控制;逆变电路Compared with the traditional use of the motor, rare earth permanent magnet synchronous motor (PMSM) has high work efficiency, high torque inertia ratio, high energy density, energy saving and environmental protection advantages, so of permanent magnet synchronous motor (PMSM) to control the speed of research is of great importance significance. Through to his mathematical model based on the analysis, we put the motor rotation speed deviation E and the rotation speed deviation change rate de/dt as is the input variables, the use of MATLAB / SIMLINK module to establish the simulation model of the system.Based on the classical PI control system and fuzzy PI control system is analyzedwith the simulation experiment. From the analysis of the simulation results, we can see that using fuzzy PI intelligent control system with the response speed quickly, no overshoot and good anti disturbance performance, can better improve the permanent magnet synchronous motor control system is speed, static performance, can effectively suppress some nonlinear factors on the system interference.Key words: permanent magnet synchronous motor; Matlab Simlink; speed control system; fuzzy PI control; inverter circuit目录摘要 (I)Abstract (II)1 绪论 (1)1.1 课题的目的和意义 (1)1.2永磁同步电机国内外现状及水平 (1)1.3永磁同步电机的应用前景 (2)2 永磁同步电机系统原理 (4)2.1 永磁同步电机基本组成 (5)2.2 永磁同步电机的工作原理 (6)3永磁同步电机控制调速方法 (8)3.1 永磁同步电机控制系统的数学模型 (8)3.2 经典PI控制调速原理 (11)3.3 模糊PI控制调速原理 (12)4 Matlab建模与仿真设计 (15)4.1 matlab软件介绍 (15)4.2控制系统的仿真模型 (15)5仿真结果与分析 (20)6 总结 (25)参考文献 (26)附录 (28)致谢 (29)1 绪论1.1 课题的目的和意义由于永磁同步电动机具备制造结构简单可靠、占地空间体积小、工作效率比较高、电磁机械转矩的电流比大、转动惯量小、节能环保和比较好散发出热量以及维修保护等很多良好特点。
单相永磁同步电动机的建模与仿真
(#)绕组变换
采用将主相绕组变换到辅相绕组的
:引
言
单相永磁同步电动机是新一代高性能的单相驱动电
方法, 使得两相绕组的有效匝数都等于辅相绕组的有效 匝数。根据磁势和功率不变原则, 变换后主、 辅相绕组的 电压、 电流 (打 “’ ” 的量) 与变换前主、 辅相绕组的电压、 电 流 (不打 “’ ” 的量) 的关系如下: *4= 5 * # " [ ] [ [* ] " ! * ] # " 5 [ [] ] [ ] " # 6! = 4 E E 4 = = 4 E E
摘 要: 根 据 单 相 永 磁 同 步 电 动 机 的 数 学 模 型, 利用
件库供用户构造系统和开发自己所需的模型元件, 并可 通过封装来扩充现有的模型元件库。本文根据单相永磁 同步电动机的数学模型, 利用 D/E,2/7F 对单相永磁同步电 动机建立通用仿真模型, 将其封装成元件库中的元件, 并 设计了友好的人机交互界面, 最后通过仿真实验验证了 模型的正确性。
? 数学模型与仿真模型子模块
? L : 绕组交换和坐标变换 本文以双值电容异步起动稀土永磁单相同步电动机 为研究对象。由于单相永磁同步电动机定子绕组和转子 磁路均不对称, 为了建立其数学模型, 需要进行绕组变换
[!] 和坐标变换 。
万方数据
1I 46. ;/E,2=4/17 E1H.2 /; 4.;4.H =7H 9.:/I/.H 46:1,G6 46. .NJ.:/E.74L B$5C"4#2: ?@AB@C; ;/7G2. & J6=;. J.:E=7.74 & E=G7.4 ;37K 56:171,; E141:; E1H.2/7G; ;/E,2=4/17
永磁同步电机调速系统仿真
• 26•本文介绍了由SPWM 逆变器供电的永磁同步电动机调速系统的仿真设计,系统仿真模型主电路由直流电压源、通用桥式电路及永磁同步电机模块构成,控制电路由PWM 产生器、转速调节器ASR 、电流调节器ACR 及其他辅助模块组成。
通过提取仿真模块、参数设置,搭建系统仿真模型,观察仿真波形。
1 系统原理永磁同步电机因谐波少、转矩精度高及控制相对简单等特点,常用于高性的调速系统。
永磁同步电动机由三相SPWM 逆变器供电,定子电压为正弦波,按照转子磁链定向控制方式,使i sd =0。
检测转子转速ωr 和转角θr ,计算sin θr 和cos θr 。
给定转速ω*,与实际检测的转速比较偏差,然后经转速调节器ASR 得到i *sq ,电流反馈信号i sq 由定子电流经过3s/2r (三相静止/二相旋转)变换提供,经电流调节器ACR 得到定子电压的转矩分量u *sq ,使u *sd =0,经过2r/3s (二相旋转/三相静止)变换,得到SPWM 调制的三相电压信号。
正弦波永磁同步电动机调速系统电路原理框图如图1所示。
2 模型建立在Simscape 环境下,根据系统结构原理图进行仿真建模,步骤包括:在模块浏览器中提取相应模块;设置模块参数;连接各个模永磁同步电机调速系统仿真徐州工程学院电气与控制工程学院 于 蕾 纪 雯图1 系统原理框图块组成仿真模型;设置模型仿真时间及仿真算法等;启动仿真,通过示波器观察各参数的波形并进行分析。
系统主电路由直流电压源模块、通用桥式电路模块和永磁同步电机模块组成。
直流电压源采用DC Voltage Source 模块,电压E 取300V 。
Universal Bridge 通用桥式电路模块,将桥臂数目设置为3,选择电力电子器件类型为IGBT/Diodes 。
逆变器的控制信号使用3桥臂6脉冲的PWM Generator 模块,频率设置为3000Hz 。
永磁同步电机模块有4个输入端,其中Tm 接入机械转矩信号,A 、B 、C 连接三相电压,一个输出端m 用于测量和观察电机的工作状态。
永磁同步电动机仿真
基于Matlab/Simulink的永磁同步电机(PMSM)矢量控制仿真高延荣,舒志兵,耿宏涛摘要在现代交流伺服系统中,矢量控制原理以及空间电压矢量脉宽调制(SVPWM)技术使得交流电机能够获得和直流电机相媲美的性能。
永磁同步电机(PMSM)是一个复杂耦合的非线性系统。
本文在Matlab/Simulink环境下,通过对PMSM本体、d/q坐标系向a/b/c坐标系转换等模块的建立与组合,构建了永磁同步电机控制系统仿真模型。
仿真结果证明了该系统模型的有效性。
关键词:Matlab/Simulink,永磁同步电机,电压空间矢量脉宽调制,仿真0、引言永磁同步电机(PMSM)是采用高能永磁体为转子,具有低惯性、快响应、高功率密度、低损耗、高效率等优点,成为了高精度、微进给伺服系统的最佳执行机构之一。
永磁同步电机构成的永磁交流伺服系统已经向数字化方向发展。
因此如何建立有效的仿真模型具有十分重要的意义。
对于在Matlab中进行永磁同步电机(PMSM)建模仿真方法的研究已经受到广泛关注。
本文介绍了电压空间矢量脉宽调制原理并给出了坐标变换模块、SVPWM模块以及整个PMSM闭环矢量控制仿真模型,给出了仿真模型结构图和仿真结果。
1、电压空间矢量脉宽调制原理1.1电压空间矢量电机输入三相正弦电压的最终目的是在空间产生圆形旋转磁场,从而产生恒定的电磁转矩。
直接针对这个目标,把逆变器和异步电机视为一体,按照跟踪圆形旋转磁场来控制PWM电压,这样的控制方法称为“磁链跟踪控制”,磁链的轨迹是靠电压空间矢量相加得到的,所以又称“电压空间矢量PWM控制”。
空间矢量是按电压所加绕组的空间位置来定义的。
在图1中,A、B、C分别表示在空间静止不动的电机定子三相绕组的轴线,它们在空间互差120°,三相定子相电压UA、UB、UC 分别加在三相绕组上,可以定义三个电压空间矢量UA、UB、UC,它们的方向始终在各相的轴线上,而大小则随时间按正弦规律变化,时间相位互差120°。
永磁同步电机仿真
基于Matlab永磁同步电机控制系统建模仿真
本文在分析永磁同步电机数学模型的基础上,借助于Matlab强大的仿真建模能力,在Matlab/Simulink中建立了PMSM控制系统的仿真模型
永磁同步电机系统框图
永磁同步电机系统仿真建模控制框图
速度控制模块
为了验证所设计的PMSM控制系统仿真模型的静、动态性能,系统在t=0时刻,负载Tl= TN=2N・m起动,可以得到转速响应曲线、转矩响应曲线、ia,ib,ic相电流曲线分别如图a、b、c所示. 从转速响应曲线可以看出,转速在起动之后,很快达到稳定值.在转矩响应曲线中,在起动时刻,电磁转矩Te达到24N・m,但是很快稳定在设定值2N・m,并有轻微波动.ia,ib,ic相电流曲线和转矩响应曲线有些相似,在开始时刻,电流值比较大,但很快达到设定值
a
b
c PMSM仿真输出曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
永磁同步电机的仿真模型
1、永磁同步电机介绍
永磁同步电动机(permanent Magnets synchronous Motor, PMSM),转子采用永磁材料,定子为短距分布式绕组,采用三相正弦波交流电驱动,且定子感应电动势波形呈正弦波"定子绕组通过控制功率管(如IGBT)的不同开关组合,产生旋转磁场跟踪永磁转子的位置,自动地维持与转子的磁场有900的空间夹角,以产生最大的电机转矩"旋转磁场的转速则严格地由永磁转子的转速所决定,PMSM具有直流电动机的特性,有稳定的起动转矩,可以自行起动,并可类似直流电动机对电机进行闭环控制,多用于伺服系统和高性能的调速系统。
永磁同步电动机按转子形状可以分为两类:凸极式永磁同步电机和隐极式永磁同步电机。
它们的区别在于转子磁极所在的位置,凸极式永磁同步电机转子磁极是突起在轴上的,其直轴和交轴电感参数不相等"而隐极式永磁同步电机的转子磁极是内置在轴内的,直轴和交轴电感参数相等"凸极式转子具有明显的磁极,定子和转子之间的气隙是不均匀的,因此其磁路与转子的位置有关。
2、永磁同步电机的控制方法
目前对永磁同步电机的控制技术主要有磁场定向矢量控制技术(field orientation control,FOC)与直接转矩控制技术(direct torque control,DTC)。
在这里我们使用磁场定向矢量控制技术来建立永磁同步电机的仿真模型。
磁场定向矢量控制技术的核心是在转子旋转坐标系中针对激磁电流id和转矩电流iq分别进行控制,并且采用的是经典的PI线性调节器,系统呈现出良好的线性特性,可以按照经典的线性控制理论进行控制系统的设计,逆变器控制采用了较成熟的SPWM、SVPWM等技术。
磁场定向矢量控制技术较成熟,动态、稳态性能较佳,所以得到了广泛的实际应用。
该方法摒弃了矢量控制中转子磁场定向的思想,采用定子磁场定向,分别对定子磁链和转矩直接进行控制。
直接转矩控制的实现方法是:计算得到磁链和转矩的实际值与参考值之间的偏差,通过滞环比较以及当前定子磁链的空间位置确定控制信号,在离线计算的开关表中选取合适的空间电压矢量,再通过离散的bang-bang 控制方式调制产生PWM 信号,以控制逆变器产生合适的电压和电流驱动电机转动。
直接转矩控制摒弃了复杂的空间矢量坐标运算,电机的数学模型得到了简化,控制结构也简单,对电机参数变化不敏感,控制系统的动态性能得到了极大提高。
然而有利也有弊,直接转矩控制逆变器的开关频率不固定;转矩、电流脉动大;采样频率也非常高。
下图为磁场定向矢量控制技术的原理图。
FOC控制技术的原理:原理图中涉及到双反馈,第一层反馈为转速反馈:设定电机转速初始值作为给定值,然后与反馈的实际值(位置传感器采集到的位移微分得到)进行比较,得到的差值输入PI控制器进行控制,得到交轴电流iq。
同时三相绕组输出的电流iA,iB,iC经过clarke变换和park变化得到iq和id的实际值,分别与给定值进行比较,将比较后的值再进行park转换,得到的结果经过SVPWM技术调制之后输入到逆变器,继而可以驱动三相电机。
图2.1 磁场定向矢量控制技术原理
3、基于FOC技术的永磁同步电机建模
在这里采用的是最简单的id=0的控制方法。
Id=0时,从电动机端口看,永磁同步电机相当于一台他励的直流电动机,定子电流中只有交轴分量,而且定子磁动势空间矢量与永磁体磁动势空间矢量正交,电动机转矩中只有永磁转矩分量。
因为电磁转矩仅仅依赖交轴电流,从而实现了转矩表达式中的交直轴电流解耦。
下图为建立的基于FOC控制技术的永磁同步电机SIMULINK仿真模型
图2.2 基于FOC技术的永磁同步电机SIMULINK模型
控制模型主要包括转速给定部分,比例积分(PI)模块,坐标转换模块,逆变器控制模块,以及电动机模块。
下面进行一一介绍。
3.1 转速给定部分
转速给定模块使用SIMULINK中的常数(constant)模块,单位为rpm。
给定的速度要输入到电角速度计算模块(Gain)中,以得到给定转速的电角速度(单位为rad/s)。
设定电动机极对数为4,则其参数为2*pi*4/60。
图2.3 速度给定部分
图2.4 电角速度计算模块的参数设定
3.2 比例积分(PI)模块
调速系统实施转速闭环控制,转速比例积分调节器中的比例模块设置比例参数,积分模块设置积分参数。
调节器内同时设置了内限幅和外限幅模块(saturation)。
设定的PI参数如下图。
图2.5 PI模块的参数设定
图2.6 PI模块的内部结构
图2.7 Saturation的参数设置
3.3坐标转换模块
在三相静止坐标系下分析永磁同步电机的数学模型存在着许多难以克服的困难,引入空间矢量坐标变换理论可以简化其数学模型,并能够很容易的分析永磁同步电机的动态特性,空间坐标变换矢量图如图2-4 所示,图中fs为空间矢量,可为电压、电流、磁链等空间物理量,ωe 为转子旋转角速度,θe 为转子轴线与A 相绕组轴线的夹角。
图2.8 空间坐标变换矢量图
按照 f 不变的原则,可得到三相静止坐标系abc 变换到两相静止坐标系αβ的clark 变换矩阵为:
clark 逆变换矩阵为:
同理若以转子磁链轴线方向为坐标系的横轴,称为直轴(d 轴),以垂直转子磁链轴线方向90°为纵轴,称为交轴(q 轴),可建立与转子同步旋转的坐标系dq,简称同步旋转坐标系,将两相静止坐标系αβ变换到同步旋转坐标系dq 的park 变换矩阵为:
park 逆变换矩阵为:
根据上述坐标转换原理,我们建立dq到abc坐标系和abc到dq坐标系的转换模块。
如下图:
图2.9 dq坐标系到三相静止坐标系变换模块
图2.10 dq坐标系到三相静止坐标系变换模块内部实现
图2.11 三相静止坐标系到dq坐标系变换模块
图2.12 三相静止坐标系到dq坐标系变换模块的内部实现
3.4 逆变器控制模块
采用电流滞环脉冲宽度调制方法,该模块输入为三相相电流给定值和三相相电流实际值,输出为三相相电压。
其内部连接图如图所示:
图2.13 CHBPWM逆变器模块内部连接图
三相比较模块相同,其中比较模块通过比较A相给定的电流值和A相实际电流得出逆变器输出的A相相电压值,其内部连接图如图所示:
图2.14 比较模块内部连接图
其中,传递函数模块(transfer fcn)对相电流进行滤波,可以滤去A相反馈电流中的高次谐波。
继电器(relay)模块实现的是电流滞环控制功能。
其输入为给定电路与实际电流的差值,输出为A
相相电压。
其参数对话框如下图所示,主要有4个参数:开通动作值(switch on point)、关断动作值(switch off point)、开通时输出值(output when on)、关断时输出值(output when off)。
实现的功能是:当给定的电流值大于实际电流值的差达到开通动作值时,输出的A相相电压为155V,当给定的电流值小于实际电流值达到关断动作值时,输出A相电压为-155V。
图2.15 继电器参数设置
3.5电动机模型
在SIMULINK中对永磁同步电机进行仿真建模通常采用以下三种方法:
(1)在SIMULINK中内部提供的PMSM模型,它包含在电力系统库的电动机库中。
这种方法简单,方便,适于快熟创建永磁同步电动机调速系统,但由于模型已经封装好,不能随意修改,同时也不方便研究PMWM内部的建模方法。
(2)使用SIMULINK library库里已有的分离模块进行组合搭建电机模型,该方法思路清晰、简单、直。