正切函数、余切函数的图象和性质·典型例题分析

合集下载

三角函数的图像和性质知识点及例题讲解

三角函数的图像和性质知识点及例题讲解

三角函数的图像和性质1、用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (2π,1) (π,0) (23π,-1) (2π,0) 余弦函数y=cosx x ∈[0,2π]的图像中,五个关键点是:(0,1) (2π,0) (π,-1) (23π,0) (2π,1) 2 sin y x = cos y x = tan y x =图象定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值 当22x k ππ=+时,max 1y =;当22x k ππ=- 时,min 1y =-.当2x k π=时,max 1y =;当2x k ππ=+时,min1y =-.既无最大值也无最小值周期性 2π 2ππ奇偶性奇函数 偶函数 奇函数单调性 在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦上是增函数; 在32,222k k ππππ⎡⎤++⎢⎥⎣⎦上是减函数. 在[]2,2k k πππ-上是增函数; 在[]2,2k k πππ+上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭上是增函数.对称性 对称中心(),0k π 对称轴2x k ππ=+对称中心,02k ππ⎛⎫+ ⎪⎝⎭对称轴x k π=对称中心,02k π⎛⎫⎪⎝⎭无对称轴函数 性质例作下列函数的简图(1)y=|sinx|,x ∈[0,2π], (2)y=-cosx ,x ∈[0,2π]例利用正弦函数和余弦函数的图象,求满足下列条件的x 的集合:21sin )1(≥x 21cos )2(≤x3、周期函数定义:对于函数()y f x =,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有:()()f x T f x +=,那么函数()y f x =就叫做周期函数,非零常数T 叫做这个函数的周期。

注意: 周期T 往往是多值的(如sin y x = 2π,4π,…,-2π,-4π,…都是周期)周期T 中最小的正数叫做()y f x =的最小正周期(有些周期函数没有最小正周期)sin y x =, cos y x =的最小正周期为2π (一般称为周期)正弦函数、余弦函数:ωπ=2T 。

正切、余切函数的图象和性质

正切、余切函数的图象和性质

正切、余切函数的图象和性质正切、余切函数的图象和性质张思明教学目的:〔略〕教学过程择录:一、引题:师:比照上一节的习题,请同学们看一看自己的作业本,对正弦和余弦函数,在作业中,我们已涉及了多少类型的问题?生众:P159〔11〕正弦,余弦函数的定义域:P158〔3〕正弦,余弦函数的最值〔值域〕:P158〔6〕正弦,余弦函数的奇偶性P159〔8〕正弦,余弦函数的单调性P159〔7〕正弦,余弦函数的应用一-----比大小P158〔4〕正弦,余弦函数的周期〔最小正周期〕P159〔12〕正弦,余弦函数的图象P160〔16、17〕正弦,余弦函数性质的应用教师在黑板上书写:〔1〕定义域〔2〕值域〔3〕奇偶性〔4〕单调性〔5〕比大小〔6〕求最小正周期〔7〕作图〔8〕应用教师:今天我们来学习正切、余切函数的图象和性质,可以想一想,我们要觖决什么问题?生众:不就是上面这几点问题吗?教师:说的不错,我们就是要来解决把“正弦、余弦函数〞换成“正切、余切函数〞后〔1〕~〔7〕后面加一个“是什么?〞这样一些问题。

请同学们带的这些问题看书5分钟〔P153~P157〕。

[评述]:这里是通过作业小结的方式引入问题。

学生常常是很肓目的做作业,很少观察作业所涉及的问题类型和范围。

教师有意识地引导学生作这种观察,既培养了学生看课本的习惯,又自然引出了今天的课题和要探索解决的问题。

二、学生自己回忆性设问,〔自问自答〕5分钟以后:学生阅读完毕,教师指导第一组学生〔7人〕为相邻的同桌的同学〔第二组学生〕就前面七个方向提一个有关正、余切函数性质的问题,要求是后面的同学不要提前面已经提到过的问题,并请同桌同学〔起立〕对着大家答复。

做完后,问、答的两组学生角色交换。

其它组的同学一边听,一边作判断,对的放过,不对时请同一行的同学予以更正:生1:正切函数的定义域是什么?邻生答:除了,k∈Z外的全体实数。

生2:正切函数的值域是整个y轴吗?邻生改正:应说成是全体实数生3:………生10:学过四种三角函数都是奇数吗?都是增函数吗?邻生答:不对,反例是余弦函数〕生11:正切函数是它定义域上的增函数吗?〔好问题!〕邻生答:是,其它学生更正:不是。

三角函数的正切与余切关系解析

三角函数的正切与余切关系解析

三角函数的正切与余切关系解析三角函数是数学中重要的概念之一,其中正切和余切是相互关联的两个函数。

在本文中,我们将详细解析正切和余切的关系及其相关性质。

一、正切与余切的定义正切函数(tangent function)和余切函数(cotangent function)是三角函数中的两个重要函数。

在单位圆上,这两个函数与正弦和余弦函数之间存在一定的关系。

正切函数定义如下:tan(x) = sin(x) / cos(x)余切函数定义如下:cot(x) = 1 / tan(x) = cos(x) / sin(x)其中,x为角度值或弧度值,sin(x)代表正弦函数值,cos(x)代表余弦函数值。

二、正切与余切的性质1. 定义域和值域:正切函数和余切函数的定义域为x ≠ (2k + 1)π/2 (k为整数),即除去所有以π/2为倍数的点。

正切函数的值域为R,即所有实数。

余切函数的值域也为R,即所有实数。

2. 奇偶性:正切函数是奇函数,即tan(-x) = -tan(x)。

余切函数是奇函数,即cot(-x) = -cot(x)。

3. 周期性:正切函数和余切函数的周期都是π,即tan(x + π) = tan(x),cot(x + π) = cot(x)。

4. 正切和余切的关系:由正弦和余弦函数定义可得,tan(x) = sin(x) / cos(x),cot(x) = cos(x) / sin(x)。

这意味着正切和余切是正弦和余弦的倒数关系。

5. 正切和余切的图像:正切函数和余切函数的图像都是无界的,并且在定义域内具有周期性。

三、正切与余切的应用正切与余切在数学和科学中有广泛的应用,以下是其中一些重要应用:1. 三角方程的求解:在解三角方程时,正切和余切的性质可以用来简化等式,从而求解方程。

2. 函数图像的分析:正切和余切函数的图像特点可以用于分析函数的性质,如最值、增减性、极值点等。

3. 三角恒等式的证明:在证明三角恒等式时,正切和余切的关系可以用来推导等式的两边,从而证明恒等式的成立。

高一数学正切函数和余切函数的图像与性质1(学生版)

高一数学正切函数和余切函数的图像与性质1(学生版)
(1) ;
(2)
例2、求函数 的定义域、值域,并指出它的周期性、奇偶性、单调性。
变式练习1:讨论函数 的性质
变式练习2: 的单调区间怎么求?
例3、观察正切曲线写出满足tanx>0的x的值的范围:
变式练习:方法同上,求出分别满足下列条件的x的值的范围
(1)
(2)
例4、求下列函数的定义域
(1)y=tan2x
例5、求学下列函数的最小正周期和单调区间
(1) ;
(2)
【课堂小练】
1、函数y=tan(ax+ )(a≠0)的最小正周期为( )
2、以下函数中,不是奇函数的是( )
A y=sinx+tanxB.y=xtanx-1C.y= D.y=lg
3、下列命题中正确的是( )
A.y=cosx在第二象限是减函数B.y=tanx在定义域内是增函数
C.y=|cos(2x+ )|的周期是 D.y=sin|x|是周期为2π的偶函数
4、函数y= + 的定义域是( )
A (2k+1)π≤x≤(2k+1)π+ ,k∈Z
B (2k+1)π<x<(2k+1)π+ ,k∈Z
C (2k+1)π≤x<(2k+1)π+ ,k∈Z
D (2k+1)π<x<(2k+1)π+ 或x=kπ,k∈Z
5、已知y=tan2x-2tanx+3,求它的最小值
6、求适合下列条件的 的集合:
6.单调性:在开区间 内,函数单调递增
余切函数y=cotx的图象及其性质(要求学生了解):
——即将 的图象,向左平移 个单位,
再以x轴为对称轴上下翻折,即得 的图象
定义域:
值域:R,
当 时 ,当 时
周期:
奇偶性:奇函数
单调性:在区间 上函数单调递减

讲义21:正切函数的图像与性质

讲义21:正切函数的图像与性质

精锐教育学科教师辅导讲义讲义编号_学员编号: 年 级:高一 课 时 数:3 学员姓名: 辅导科目:数学 学科教师:课 题 正、余切函数的图像和性质授课日期及时段教学目的熟练掌握正、余切函数的图像及其性质(单调性、奇偶性、周期性);能灵活利用他们的性质解题。

教学内容一、知识梳理1、正切函数的图像2、正切函数的性质 (1)定义域:⎭⎬⎫⎩⎨⎧∈+≠z k k x x ,2|ππ, (2)值域:R ,当z k k k x ∈⎪⎭⎫⎝⎛+∈2,πππ时0>y ,当z k k k x ∈⎪⎭⎫⎝⎛-∈πππ,2时0<y(3)周期性:π=T说明:函数()()tan 0,0y A x A ωϕω=+≠≠的周期T πω=求三角函数式的最小正周期时,要尽可能地化为只含一个三角函数,且三角函数的次数为1的形式,否则很容易出现错误。

(4)奇偶性:()x x tan tan -=-奇函数,对称中心是,02k π⎛⎫⎪⎝⎭()k Z ∈ 特别提醒:正(余)切型函数的对称中心有两类:一类是图像与x 轴的交点,另一类是渐近线与x 轴的交点,但无对称轴,这是与正弦、余弦函数的不同之处。

(5)单调性:在开区间z k k k ∈⎪⎭⎫⎝⎛+-2,2ππππ内,函数单调递增。

但要注意在整个定义域上不具有单调性。

余切函数的图像和性质:二、例题解析例1 函数y =x tan log 21的定义域是( )A {x |0<x ≤4π) B {x |2k π<x ≤2k π+4π,k ∈Z }C {x |k π<x ≤k π+4π,k ∈Z }D {x |k π-2π<x ≤k π+4π,k ∈Z }巩固训练1、函数1tan y x =-的定义域是_______2、函数)1(cot log 2-x 的定义域是________2、函数tan 2()tan xf x x=的定义域为( ) A .{|x x R ∈ 且,4k x k Z π⎫≠∈⎬⎭B .{|x x R ∈ 且,2x k k Z ππ⎫≠+∈⎬⎭C .{|x x R ∈ 且,4x k k Z ππ⎫≠+∈⎬⎭D .{|x x R ∈ 且,4k x k k Z ππ⎫≠-∈⎬⎭4、函数tan()4y x π=-的定义域是( )A .|,4x x x R π⎧⎫≠∈⎨⎬⎩⎭ B .|,4x x x R π⎧⎫≠-∈⎨⎬⎩⎭C .|,,4x x k k R x R ππ⎧⎫≠+∈∈⎨⎬⎩⎭ D .3|,,4x x k k Z x R ππ⎧⎫≠+∈∈⎨⎬⎩⎭例2 函数tan()(0)6y ax a π=+≠的周期为( ).A .2a π B .2aπ C .a π D .a π 例3 比较大小:(1)125tan 与137tan ; (2)⎪⎭⎫ ⎝⎛-34tan π与⎪⎭⎫⎝⎛-511tan π。

正切函数和余切函数的图像和性质

正切函数和余切函数的图像和性质

正切函数和余切函数的图像和性质知识点:1.正切函数和余切函数的概念;2.正切函数与余切函数的图像和性质;3.正切函数与余切函数性质的应用;教学过程:1.正切函数和余切函数的概念:(1)正切函数---形如tan=的函数称为正切函数;y x余切函数--形如cot=的函数称为余切函数;y x2.函数的图像和性质:(1)正切函数的图像:见正切函数图像课件。

(2)正切函数图像:-(3)与切函数的图像:归纳填表格:例1.求下列函数的周期: (1)tan(3)3y x π=-+;(2)221tgxy tg x=+;(3)cot tan y x x =-;(4)22tan21tan 2xy x=-; (5)sin 1tan tan 2x y x x ⎛⎫=+ ⎪⎝⎭例2.求下列函数的单调区间: (1)tan(2)24y x π=++;(2)tan()123x y π=-+-;(3)12log cot y x ⎛= ⎝⎭ 例3.求下列函数的定义域:(1)tan 4y x π⎛⎫=- ⎪⎝⎭;(2)y =(3)y = 例4.(1)求函数21)tan tan ]y x x =-的定义域; (2)解不等式:23tan (2)(3tan(2)044x x ππ+-+≤例5.已知2tan tan y x a x =-,当1[0,],[0,]34x a π∈∈时,函数max y =a 的值;例6.已知函数tan ,(0,)2y x x π=∈,若1212,(0,),2x x x x π∈≠。

求证:1212()()()22f x f x x xf ++>。

正切、余切函数的图象和性质

正切、余切函数的图象和性质

正切、余切函数的图象和性质
正切、余切函数的图象和性质
正切、余切函数的图象和性质
张思明
教学目的:(略)
教学过程择录:
一、引题:
师:对比上一节的习题,请同学们看一看自己的作业本,对正弦和余弦函数,在作业中,我们已涉及了多少类型的问题?
生众:P159(11)正弦,余弦函数的定义域:
P158(3)正弦,余弦函数的最值(值域):
P158(6)正弦,余弦函数的奇偶性
P159(8)正弦,余弦函数的单调性
P159(7)正弦,余弦函数的应用一-----比大小
P158(4)正弦,余弦函数的周期(最小正周期)
P159(12)正弦,余弦函数的图象
P160(16、17)正弦,余弦函数性质的应用
教师在黑板上书写:(1)定义域(2)值域(3)奇偶性(4)单调性(5)比大小(6)求最小正周期(7)作图(8)应用教师:今天我们来学习正切、余切函数的图象和性质,可以想一想,我们要觖决什么问题?
生众:不就是上面这几点问题吗?
教师:说的不错,我们就是要来解决把“正弦、余弦函数”换成“正切、余切函数”后(1)~(7)后面加一个“是什么?”这样一些问题。

请同学们带的这些问题看书5分钟(P153~P157)。

[评述]:这里是通过作业小结的方式引入问题。

学生常常是很肓目的做作业,很少观察作业所涉及的问题类型和范围。

教师有意识地引导学生作这种观察,既培养了学生看课本的习惯,又自然引出了今天的课题和要探索解决的问题。

二、学生自己回顾
[1] [2] [3] [4] [5]。

三角函数的图象与性质

三角函数的图象与性质

三角函数的图象与性质教学目标1.熟练掌握正弦函数、余弦函数、正切函数、余切函数的性质,并能用它研究复合函数的性质.2.熟练掌握正弦函数、余弦函数、正切函数、余切函数图象的形状、态度,并会用“五点法”画出函数y=sin(ωx+φ)的图象。

3.理解图象平移变换、伸缩变换的意义,并会用这两种变换研究函数图象的变化.重点难点重点是通过复习,能运用四种三角函数的性质研究复合三角函数的性质及图象的特点,特别是三角函数的周期性,是需要重点明确的问题.难点是,在研究复合函数性质时,有些需要先进行三角变换,把问题转化到四种三角函数上,才能进行研究,这就增加了问题的综合性和难度.教学过程三角函数的图象与性质是三角函数的核心问题,要熟练、准确地掌握.特别是三角函数的周期性,反映了三角函数的特点,在复习“三角函数的性质与图象”时,要牢牢抓住“三角函数周期性”这一内容,认真体会周期性在三角函数所有性质中的地位和作用.这样才能把性质理解透彻.【要点复习】一.y=sinx的图象和性质:1.图象:列表后描点,用平滑曲线相连得到y=sinx,x∈[0,2π]的图象y=sinx,x∈R时的完整的图象.由此可见,画出y=sinx 的图象关键是首先要画出y=sinx 在[0,2π]内的图象.而y=sinx 在[0,2π]的图象有这样五个点很重要:(0,0),(2π,1),(π,0),(32π,-1),(2π,0);其中(0,0), (π,0),(2π,0)是轴上的点,(2π,1), (32π,-1)分别是函数图象的最高、最低点.所以这五个点是确定y=sinx 图象的基本点.因此,代数描点法也可简称为“五点法”,以后再画y=sinx 图象时,就可直接使用五点法了.2.性质:(1)定义域:x ∈R .(2)值域:y ∈[-1,1], ∴y=sinx 是有界函数。

(3)周期性:正弦函数y=sinx 是周期函数.2π是它的最小正周期,2k π(k ∈Z ,k =0)都是它的周期.(4)单调性:从图象上可以看出正弦函数在整个实数域上不是增函数,也不是减函数,但具有增减区间。

三角函数知识点及典型例题

三角函数知识点及典型例题

板块一 基础知识一、锐角三角函数的定义1. 锐角A 的正弦、余弦、正切、余切都叫做A ∠的锐角三角函数.2. 正弦:Rt ABC ∆中,锐角A 的对边与斜边的比叫做A ∠的正弦,记作sin A ,即sin aA c =. 3. 余弦:Rt ABC ∆中,锐角A 的邻边与斜边的比叫做A ∠的余弦,记作cos A ,即cos b A c =. 4. 正切:Rt ABC ∆中,锐角A 的对边与邻边的比叫做A ∠的正切,记作tan A ,即tan a A b =. 5. 余切:Rt ABC ∆中,锐角A 的邻边与对边的比叫做A ∠的余切,记作cot A ,即cot b A a=. 从定义中可以看出,① 正弦、余弦、正切、余切都是在直角三角形中给出的,要避免应用时对任意三角形随便套用定义. ② sin A 、cos A 、tan A 、cot A 分别是正弦、余弦、正切、余切的数学表达符号,是一个整体,不能理解为sin 与A 、cos 与A 、tan 与A 、cot 与A 的乘积.③ 在直角三角形中,正弦、余弦、正切、余切分别是某个锐角的对边与斜边、邻边与斜边、对边与邻边、邻边与对边的比值,当这个锐角确定后,这些比值都是固定值.二、特殊角三角函数这些特殊角的三角函数值一定要牢牢记住.三、锐角三角函数的取值范围在Rt ABC ∆中,90C ∠=︒,000a b c a c b c >>><<,,,,,又sin a A c =,cos b A c =,tan a A b =,cot bA a=,三角函数 0︒ 30︒45︒60︒90︒sin A 012 22 321cos A 132 22 12 0tan A 03313-cot A - 3 1 33三角函数所以0sin 10cos 1tan 0cot 0A A A A <<<<>>,,,.四、三角函数关系 1. 同角三角函数关系: 22sin cos 1A A +=,sin tan cos AA A=,tan cot 1A A ⋅= 2. 互余角三角函数关系:⑴ 任意锐角的正弦值等于它的余角的余弦值:()sin cos 90A A =︒-; ⑵ 任意锐角的余弦值等于它的余角的正弦值:()cos sin 90A A =︒-; ⑶ 任意锐角的正切值等于它的余角的余切值:()tan cot 90A A =︒-;⑷ 任意锐角的余切值等于它的余角的正切值:()cot tan 90A A =︒-. 3. 锐角三角函数值的变化规律:令1c =,锐角A ∠越小,则a 越小,则b 越大;当A ∠越大,则a 就越大,b 就越小,且a c b c <<,,所以当角度在0~90︒︒范围内变化时,正弦值随角度的增大(或减小)而增大(或减小);余弦值随角度的增大(或减小)而减小(或增大).而正切值也是随角度的增大(或减小)而增大(或减小);余切值随角度的增大(或减小)而减小(或增大).可以应用0~90︒︒间的正弦值、余弦值、正切值、余切值的增减性来比较角的正弦、余弦、正切、余切值的大小,其规律是:⑴A B 、为锐角且A B >,则sin sin A B >,cos cos A B <,tan tan A B >,cot cot A B <;⑵A B 、为锐角且A B <,则sin sin A B <,cos cos A B >,tan tan A B <,cot cot A B >.该规律反过来也成立.板块二 常用公式1. 和角公式:cos()cos cos sin sin αβαβαβ+=-,sin()sin cos cos sin αβαβαβ+=+,tan tan tan()1tan tan αβαβαβ++=-⋅;2. 差角公式:cos()cos cos sin sin αβαβαβ-=+,sin()sin cos cos sin αβαβαβ-=-,tan tan tan()1tan tan αβαβαβ--=+⋅;3. 倍角公式:2222cos2cos sin 2cos 112sin ααααα=-=-=-,sin22sin cos ααα=,22tan tan 21tan ααα=-; 4. 半角公式:21cos cos 22αα+=,21cos sin 22αα-=,sin 1cos tan 21cos sin ααααα-==+; 5. 万能公式:22tan2sin 1tan 2ααα=+,221tan 2cos 1tan 2ααα-=+,22tan2tan 1tan 2ααα=-;6. 积化和差公式:1cos cos [cos()cos()]2αβαβαβ=++-,1cos sin [sin()sin()]2αβαβαβ=+--,1sin cos [sin()sin()]2αβαβαβ=++-,1sin sin [cos()cos()]2αβαβαβ=-+--.7. 和差化积公式:cos cos 2cos cos22αβαβαβ+-+=,cos cos 2sin sin22αβαβαβ+--=-,sin sin 2sin cos22αβαβαβ+-+=,sin sin 2cossin22αβαβαβ+--=.板块一、三角函数基础【例1】 已知如图:在Rt ABC ∆中,810BC AC ==,.求sin A 和sin B 的值。

余切函数的特性解析与变化规律

余切函数的特性解析与变化规律

余切函数的特性解析与变化规律余切函数(cot)是三角函数的一种,它表示正切函数(tan)的倒数。

在数学中,余切函数的特性及其变化规律具有一定的重要性。

本文将对余切函数的特性进行解析,并讨论其变化规律。

一、余切函数的定义余切函数cot(x)表示正切函数tan(x)的倒数,即cot(x) = 1/tan(x)。

然而,由于在某些特定的角度值上正切函数为零,因此在这些角度处无定义。

这些特定角度被称为余切函数的奇点。

二、余切函数的周期性余切函数具有周期性,且其周期等于π。

这意味着当x增加π,或减去π的整数倍时,余切函数的值会重复。

例如,cot(x) = cot(x + π) = cot(x - π)。

三、余切函数的图像余切函数的图像具有一些显著特点。

当x接近奇点时,余切函数的值会趋向正无穷大或负无穷大。

当x不是奇点时,余切函数的值在正无穷到负无穷之间变化。

这可以通过绘制余切函数的图像来观察到。

四、余切函数的变化规律1. 正值和负值:在第一象限和第三象限,余切函数值为正;而在第二象限和第四象限,余切函数值为负。

因此,余切函数在不同象限上的值有着不同的符号。

2. 最大值和最小值:余切函数在奇点处无定义,因此不存在最大值或最小值。

然而,在非奇点处,余切函数的值在-1和+1之间变化。

当x接近奇点时,余切函数的值趋近于无穷大。

3. 渐进线:余切函数的图像在奇点处有两条渐近线,即x = (2n +1)π/2,其中n为整数。

这两条渐近线将图像划分成多个区域。

4. 奇偶性:余切函数具有奇偶性,即cot(-x) = -cot(x)。

这意味着余切函数关于原点是奇函数,即对于任意x,cot(x) = -cot(-x)。

五、余切函数的应用余切函数在数学和物理等领域有着广泛的应用。

例如,在电路分析中,余切函数可以用来表示电阻和电抗的比值。

在三角恒等式和复数运算中,余切函数也起到重要的作用。

综上所述,余切函数cot(x)是一种具有周期性和奇偶性的三角函数。

高一数学正切函数和余切函数的图像与性质2(教师版)

高一数学正切函数和余切函数的图像与性质2(教师版)

学科教师辅导讲义年 级: 高一 辅导科目: 数学 课时数:课 题 正切函数和余切函数的图像与性质教学目的1、让学生掌握正切函数的图像,性质2、熟练求出正切函数的周期,单调区间等教学内容 【知识梳理】正切函数R x x y ∈=tan ,且()z k k x ∈+≠ππ2的图象,称“正切曲线”余切函数y =cotx ,x ∈(k π,k π+π),k ∈Z 的图象(余切曲线)正切函数的性质:1.定义域:⎭⎬⎫⎩⎨⎧∈+≠z k k x x ,2|ππ, 2.值域:R3.当z k k k x ∈⎪⎭⎫ ⎝⎛+∈2,πππ时0>y ,当z k k k x ∈⎪⎭⎫ ⎝⎛-∈πππ,2时0<y 4.周期性:π=T5.奇偶性:()x x tan tan -=-奇函数 6.单调性:在开区间z k k k ∈⎪⎭⎫ ⎝⎛++-ππππ2,2内,函数单调递增 余切函数y =cotx ,x ∈(k π,k π+π),k ∈Z 的性质:1.定义域:z k k x R x ∈≠∈,π且2.值域:R ,3.当z k k k x ∈⎪⎭⎫ ⎝⎛+∈2,πππ时0>y ,当z k k k x ∈⎪⎭⎫ ⎝⎛-∈πππ,2时0<y 4.周期:π=T5.奇偶性:奇函数6.单调性:在区间()()ππ1,+k k 上函数单调递减【典型例题分析】例1、用图象解不等式3tan ≥x 。

解:利用图象知,所求解为z k k k ∈⎥⎦⎤⎢⎣⎡++2,3ππππ亦可利用单位圆求解变式练习:tan 1x ≤-。

答案:,24k x k k Z ππππ-<≤-∈。

例2、作出函数()π2,0,tan 1tan 2∈+=x x xy 且23,2ππ≠x 的简图 解:⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛∈-⎪⎭⎫ ⎝⎛⋃⎪⎭⎫ ⎝⎛∈==+=23,2,sin 2,232,0,sin cos 1tan tan 1tan 2πππππx x x x x x x x y例3、求下列函数的定义域。

高一数学正切函数和余切函数的图像与性质1(教师版)

高一数学正切函数和余切函数的图像与性质1(教师版)

学科教师辅导讲义定义域:z k k x R x ∈≠∈,π且值域:R ,当z k k k x ∈⎪⎭⎫ ⎝⎛+∈2,πππ时0>y ,当z k k k x ∈⎪⎭⎫ ⎝⎛-∈πππ,2时0<y 周期:π=T奇偶性:奇函数单调性:在区间()()ππ1,+k k 上函数单调递减【典型例题分析】例1、比较⎪⎭⎫ ⎝⎛-413tan π与⎪⎭⎫ ⎝⎛-517tan π的大小 解:tan 413tan -=⎪⎭⎫ ⎝⎛-πΘ4π,52tan 517tan ππ-=⎪⎭⎫ ⎝⎛-, 又:⎪⎭⎫ ⎝⎛=<<2,0tan ,5240πππ在x y 内单调递增, ⎪⎭⎫ ⎝⎛->⎪⎭⎫ ⎝⎛-->-∴<∴ππππππ517tan 413tan ,52tan 4tan ,52tan4tan 即 变式练习:不通过求值,比较tan135°与tan138°的大小解:∵90°<135°<138°<270°又∵y =tan x 在x ∈(90°,270°)上是增函数∴tan135°<tan138°例2、求函数tan(3)3y x π=-的定义域、值域,并指出它的周期性、奇偶性、单调性。

解析:令33t x π=-,则由,2t k ππ≠+得5()318k x k Z ππ≠+∈,4、函数y =sin x +tan x ,x ∈[-4π,4π]的值域为 5、函数y =cot x -tan x 的周期为6、函数y =xx 22tan 1tan 1+-的周期为 7、作出函数y =|tan x |的图象,并观察函数的最小正周期和单调区间8、试证cot x =-tan (2π+x ),并指出通过怎样的图象变换可由y =tan x 的图象得到y =cot x 的图象9、作出函数y =xx 2tan 1tan 2-的图象,并观察函数的周期参考答案: 1C 2B 3C 4[-122,122+-] 5 2π 6π 7函数y =|tan x |的图象如下图:函数y =|tan x |的周期为π单调递增区间为[k π,2π+k π],k ∈Z 单调递减区间为(-2π+k π,k π],k ∈Z8(略)9函数y =xx 2tan 1tan 2-的图象如下图: 周期为π【课堂总结】本节课我们研究了正切函数和余切函数的图象和性质,并能在解题中应用【课后练习】1、正切函数在其定义域上有最值吗?答:没有,因为正切函数的值域为R 且不等于k π+2π (k ∈Z ).2、在下列函数中,同时满足的是( )①在(0,2π)上递增;②以2π为周期;③是奇函数 A y =tan x B y =cos xC y =tan 21x D y =-tan x 答案:C3、函数y =tan(2x +4π)的图象被平行直线)(82Z ∈+=k k x ππ隔开,与x 轴交点的坐标是))(0,82(Z ∈-k k ππ与y 轴交点的坐标是(0,1),周期是2π,定义域的集合是},82|{Z R ∈+≠∈k k x x x ππ且,值域的集合是R ,它是非奇非偶函数4、函数y =x sin -+x tan 的定义域是( )A (2k +1)π≤x ≤(2k +1)π+2π,k ∈Z B (2k +1)π<x <(2k +1)π+2π,k ∈Z C (2k +1)π≤x <(2k +1)π+2π,k ∈Z D (2k +1)π<x <(2k +1)π+2π或x =k π,k ∈Z 解:由⎩⎨⎧≥≤0tan 0sin x x ,得(2k +1)π≤x <(2k +1)π+2π 答案:C5、已知y =tan 2x -2tan x +3,求它的最小值解:y =(tan x -1)2+2,当tan x =1时,y min =2。

高中数学必修4三角函数常考题型正切函数性质与图像

高中数学必修4三角函数常考题型正切函数性质与图像

【知识梳理】1.正切函数的性质函y=tanx 数定πxx≠kπ+,k∈Z 义域2函y=tan x 数值域(-∞,+∞)周期T=π奇偶性奇函数在每个开区间kπ-π,kπ+π(k∈Z)上都是增22单调性函数2.正切函数的图像正切函数的图像:正切函数的图像叫做正切曲线.正切函数的图像特征:正切曲线是被相互平行的直线x=π+kπ,k∈Z所隔开的无穷多支曲线组成的.2【常考题型】题型一、正切函数的定义域、值域问题【例1】求以下函数的定义域和值域:(1)y=tan x+πy=3-tanx.4;(2)ππ[解](1)由x+4≠kπ+2(k∈Z)得,πx≠kπ+,k∈Z,4ππ所以函数y=tan x +4的定义域为xx≠kπ+4,k∈Z,其值域为(-∞,+∞).(2)由3-tan x≥0得,tan x≤3.结合y=tan x的图像可知,在ππ-2,2上,ππ满足tan x≤3的角x应满足-2<x≤3,所以函数y=3-tan x的定义域为xkπ-π<x≤kπ+π,k∈Z,其值域为[0,+∞).23【类题通法】求正切函数定义域的方法及求值域的注意点求与正切函数有关的函数的定义域时,除了求函数定义域的一般要求外,还要保证正切函π数y=tan x有意义,即x≠2+kπ,k∈Z.而对于构建的三角不等式,常利用三角函数的图像求解.解形如tan x>a的不等式的步骤:【对点训练】1求函数y=1+tan x的定义域.解:要使函数有意义,那么有1+tanx≠0,ππ∴tan x≠-1,∴x≠kπ-4且x≠kπ+2,k∈Z.1因此,函数y=1+tan x的定义域为ππ.xx≠kπ-且x≠kπ+,k∈Z42题型二、正切函数的单调性及应用【例2】(1)求函数y=tan 1πx-的单调区间;2413π12π(2)比较tan-4与tan-5的大小.[解](1)由k π-π<1-π<π+π(k∈Z)得,22x4k2π3π2kπ-2<x<2kπ+2,k∈Z,1ππ3π所以函数y=tan2x-4的单调递增区间是2kπ-2,2kπ+2(k∈Z).13π-4π+3π3ππ12π(2)由于tan-4=tan4=tan4=-tan4,tan-5=-2π2πtan2π+5=-tan5,π2ππ又0<4<5<2,而y=tan x在0,π上单调递增,2π2ππ2π所以tan4<tan5,-tan4>-tan5,13π12π即tan-4>tan-5.【类题通法】1.求函数y =tan(+)(,,φ都是常数)的单调区间的方法AωxφAω(1)假设ω>0,由于y=tan x在每一个单调区间上都是增函数,故可用“整体代换〞的思想,ππ令kπ-2<ωx+φ<kπ+2,求得x的范围即可.(2)假设ω<0,可利用诱导公式先把y=tan(+)转化为y=tan[-(--)]=-AωxφAωxφtan(--),即把x 的系数化为正值,再利用“整体代换〞的思想,求得x的范围即可.Aωxφ2.运用正切函数单调性比较大小的方法运用函数的周期性或诱导公式将角化到同一单调区间内.运用单调性比较大小关系.【对点训练】1.比较tan1,tan2,tan3的大小.解:因为tan2=tan(2-π),tan3=tan(3-π).ππ又因为2<2<π,所以-2<2-π<0.因为π<3<π,所以-π<3-π<0.22ππ显然-2<2-π<3-π<1<2,ππ又y=tan x在-2,2内是增函数,所以tan(2-π)<tan(3-π)<tan1,即tan2<tan3<tan1.2.求函数y=3tan π-24x的单调区间.ππ解:y=3tan4-2x=-3tan2x-4,由-ππ<2-πππ得,+<+422πk3πk-+π<<+π(∈Z),82x82k所以y=3tan π-24x的单调递减区间为πk3πk-+π,8+π(k∈Z).822题型三、与正切函数有关的周期性、奇偶性问题π【例3】(1)求f(x)=tan2x+3的周期;判断y=sin x+tan x的奇偶性.[解](1)∵tan2x+π+π=tan2x+π,33即tan2π+π=tan2x+π,x+33 2ππf(x)=tan2x+3的周期是2.π,k∈Z,关于原点对称,(2)定义域为xx≠kπ+2∵f(-x)=sin(-x)+tan(-x)=-sin x-tan x=-f(x),∴它是奇函数.【类题通法】与正切函数有关的函数的周期性、奇偶性问题的解决策略π一般地,函数y=A tan(ωx+φ)的最小正周期为T=|ω|,常常利用此公式来求周期.(2)判断函数的奇偶性要先求函数的定义域,判断其是否关于原点对称.假设不对称,那么该函数无奇偶性,假设对称,再判断f(-x)与f(x)的关系.【对点训练】关于x的函数f(x)=tan(x+φ)有以下几种说法:π①对任意的φ,f(x)都是非奇非偶函数;②f(x)的图像关于2-φ,0对称;③f(x)的图像关于(π-φ,0)对称;④f(x)是以π为最小正周期的周期函数.其中不正确的说法的序号是________.解析:①假设取φ=kπ(k∈Z),那么f(x)=tan x,此时,f(x)为奇函数,所以①错;观察正切函数y=tan x的图像,可知y=tan x关于kπ,0(k∈Z)对称,令x+φ=kπ得x=kπ-222φ,分别令k=1,2知②、③正确,④显然正确.答案:①【练习反响】1.函数y=tan x πx≠kπ+,k∈Z的单调性为() 2A.在整个定义域上为增函数B.在整个定义域上为减函数C.在每一个开区间ππ-+kπ,+kπ(k∈Z)上为增函数22D.在每一个开区间π+2kπ,π-+2kπ(k∈Z)上为增函数22解析:选C由正切函数的图像可知选项C正确.2.函数y=tan(cos x)的值域是()C.[-tan1,tan1]D.以上均不对解析:选C ∵-1≤cos x ≤1,且函数 y =tan x 在[-1,1]上为增函数,∴ tan(-1)≤tanx ≤tan1.即-tan 1≤tan x ≤tan1.x 3.函数y =5tan -的最小正周期是________.2解析:=π=2π.T1-2答案:2π4.函数 y =3tan( π+ x ),- π < ≤ π4 的值域为________.x 6y =3tan(π+x )= 3tan x ,因为正切函数在 -π π解析:函数2,上是增函数,所以-2 3<y ≤ 3,所以值域为 (-3,3].1答案:(-3, 3]2π15.求函数y =tan 2x -6的定义域、周期及单调区间.2 ππ解:由2x -6≠2+k π,k ∈Z ,4π得x ≠+2k π,k ∈Z ,31 π所以函数y =tan2x -6的定义域为4π xx ≠3+2k π,k ∈Z.πT =1=2π,所以函数y =tan1x -π26的周期为2π.2π1ππ由-+k π<x -22<+k π,k ∈Z ,得622π 4π13+2k π<x <3+2k π,k ∈Z.2π所以函数y =tan2x -6的单调递增区间为-2π+2kπ,4π+2kπ(k∈Z).33。

专题4 三角函数的图象与性质-重难点题型精讲(举一反三)(新高考地区专用)(解析版)

专题4 三角函数的图象与性质-重难点题型精讲(举一反三)(新高考地区专用)(解析版)

专题4.7 三角函数的图象与性质-重难点题型精讲1.正弦函数与余弦函数的图象(1)正弦函数的图象①根据三角函数的定义,利用单位圆,我们可以得到函数y=,x∈[0,2π]的图象,如图所示.②五点法观察图,在函数y=,x∈[0,2π]的图象上,以下五个点:,1),( π,0),(-1),(2π,0)在确定图象形状时起关键作用.描出这五个点,函数y=,x∈[0,2π]的图象形状就基本确定了.因此,在精确度要求不高时,常先找出这五个关键点,再用光滑的曲线将它们连接起来,得到正弦函数的简图.这种作图的方法叫做“五点(画图)法”.(2)余弦函数的图象①图象变换法作余弦函数的图象由诱导公式六,我们知道,而函数x∈R的图象可以通过正弦函数y=,x∈R的图象向左平移个单位长度而得到.所以将正弦函数的图象向左平移个单位长度,就得到余弦函数的图象,如图所示.②五点法作余弦函数的图象类似于正弦函数图象的作法,从余弦函数y=,x∈R的图象可以看出,要作出函数y=在[0,2]上的图象,起关键作用的五个点是:(0,1),(,0),(,-1),(,0),(2,1).先描出这五个点,然后把这五个点用一条光滑的曲线连接起来就得到了函数y=在[0,2]上的简图,再通过左右平移(每次移动2个单位长度)即可得到余弦函数y=,x∈R的图象.(3)正弦曲线、余弦曲线正弦函数的图象和余弦函数的图象分别叫做正弦曲线和余弦曲线.它们是具有相同形状的“波浪起伏”的连续光滑曲线.2.正弦函数与余弦函数的性质(1)周期函数①定义:一般地,设函数f(x)的定义域为D,如果存在一个非零常数T,使得对每一个x∈D都有x+T∈D,且f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期.②最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.(2)正弦函数与余弦函数的性质正弦函数与余弦函数的图象与性质如下表:3.正弦型函数的性质的性质4.正切函数的性质与图象(1)正切函数的图象及性质(2)三点两线法作正切曲线的简图类比于正、余弦函数图象的五点法,我们可以采用三点两线法作正切函数的简图.“三点”是指点(-,-1),(0,0),(,1);“两线”是指直线x=-和x=.在三点、两线确定的情况下,可以大致画出正切函数在区间(-上的简图.5.余切函数的图象及性质正切函数的图象及性质:的图象先向右平移个单位长度,再以x轴为对称轴上下翻折,可得的图象.余切函数的图象与性质如下表:【题型1 三角函数的定义域和值域(最值)】【方法点拨】求与三角函数有关的函数的值域(最值)的常用方法有:(1)借助三角函数的有界性、单调性求解;(2)转化为关于的二次函数求解.注意求三角函数的最值对应的自变量x的值时,要考虑三角函数的周期性.【例1】(2022·甘肃·高二开学考试)函数f(x)=tan(x+π4)的定义域为()A.{x|x≠kπ+π4,k∈Z}B.{x|x≠2kπ+π4,k∈Z}C.{x|x≠kπ−π4,k∈Z}D.{x|x≠kπ,k∈Z}【解题思路】根据正切函数的定义域可得结果.【解答过程】因为x+π4≠kπ+π2,k∈Z,所以x≠kπ+π4,k∈Z.故f(x)的定义域为{x|x≠kπ+π4,k∈Z}.故选:A.【变式1-1】(2022·四川省高三阶段练习(理))若x∈[π4,2π3],则函数f(x)=3sin x cos x+√3sin2x的值域为( ) A .[0,3√32]B .[0,√32] C .[0,√3]D .[0,3+√3]【解题思路】利用二倍角公式和辅助角公式化简原式为f (x )=√3sin(2x -π6)+√32,结合正弦函数的图像和性质,求解即可. 【解答过程】由题意,f (x )=3sin x cos x +√3sin 2x =32sin2x +√32(1-cos2x )=√3×(√32sin2x -12cos2x )+√32=√3×(cos π6sin2x -sin π6cos2x )+√32=√3sin(2x -π6)+√32,当x ∈[π4,2π3]时,有2x -π6∈[π3,7π6],当2x -π6=π2,即x =π3时,f (x )max =f (π3)=√3+√32=3√32; 当2x -π6=7π6,即x =2π3时,f (x )min =f (2π3)=0.即函数f (x )的值域为[0,3√32].故选:A.【变式1-2】(2022·福建省高二阶段练习)函数f (x )=sinx +cos (x +π6)的值域为( ) A .[−2,2]B .[−√3,√3]C .[−1,1]D .[−√32,√32] 【解题思路】利用两角和的余弦公式和辅助角公式进行化简,即可得到答案 【解答过程】解:函数f (x )=sinx +cos (x +π6)=sinx +√32cosx −12sinx =√32cosx +12sinx =cos (x −π6),∵x ∈R ,∴cos (x −π6)∈[−1,1],∴函数的值域为[−1,1], 故选:C .【变式1-3】(2022·全国·高一单元测试)若x ∈[−π3,2π3],则函数y =cos 2(x +π6)+sin (x +2π3)的最大值与最小值之和为( )A .12B .1C .74D .√2【解题思路】利用诱导公式可化简函数为y =(cos (x +π6)+12)2−14,根据余弦型函数值域的求法可求得cos(x+π6)∈[−√32,1],结合二次函数最值的求法可求得y的最大值和最小值,加和即可求得结果.【解答过程】y=cos2(x+π6)+sin(x+2π3)=cos2(x+π6)+sin(π2+x+π6)=cos2(x+π6)+cos(x+π6)=(cos(x+π6)+12)2−14,当x∈[−π3,2π3]时,x+π6∈[−π6,5π6],∴cos(x+π6)∈[−√32,1],∴当cos(x+π6)=1时,y max=94−14=2;当cos(x+π6)=−12时,y min=−14;∴y max+y min=2−14=74.故选:C.【方法点拨】证明一个函数是否为周期函数或求函数周期的大小常用以下方法:(1)定义法:即对定义域内的每一个x值,看是否存在非零常数T使f(x+T)=f(x)成立,若成立,则函数是周期函数且T是它的一个周期.(2)公式法:利用三角函数的周期公式来求解.(3)图象法:画出函数的图象,通过图象直观判断即可.【例2】(2023·广东·高三学业考试)函数f(x)=sin(x2−π4)的最小正周期是()A.π2B.πC.2πD.4π【解题思路】利用正弦函数的周期求解.【解答过程】f(x)的最小正周期为T=2π12=4π.故选:D.【变式2-1】(2023·广东·高三学业考试)函数f(x)=cos(12x+π6)的最小正周期为()A.π2B.πC.2πD.4π【解题思路】利用余弦型函数的周期公式进行求解.【解答过程】∵f(x)=cos(12x+π6),∴f(x)最小正周期T=2π12=4π.故A,B,C错误.故选:D.【变式2-2】(2022·甘肃临夏·高二期末(理))函数f(x)=cos(ωx+π6)(ω>0)的最小正周期为π,则f(π2)=()A.−√32B.−12C.12D.√32【解题思路】由周期求出ω,从而可求出f(x),进而可求出f(π2).【解答过程】因为函数f(x)的最小正周期为π,ω>0,所以ω=2ππ=2,得f(x)=cos(2x+π6),所以f(π2)=cos(2×π2+π6)=−cosπ6=−√32.故选:A.【变式2-3】(2022·广东佛山·高三阶段练习)在下列函数中,最小正周期为π且在(0,π2)为减函数的是()A.f(x)=sin|2x|B.f(x)=cos(2x+π6)C.f(x)=|cosx|D.f(x)=tan(2x−π4)【解题思路】根据三角函数的图像性质,逐个选项进行判断即可得出答案.【解答过程】对于A,f(x)=sin|2x|的图像关于y轴对称,在(0,π2)为增函数,不符题意,故A错;对于B,f(x)=cos(2x+π6)的最小正周期为π,x∈(0,π2),2x+π6∈(π6,7π6),不是减函数,不符题意,故B错;对于C,f(x)=|cosx|的最小正周期为π,在(0,π2)为减函数,符合题意,故C对;对于D,f(x)=tan(2x−π4)的最小正周期为π2,不符题意,故D错;故选:C.【题型3 三角函数的奇偶性】【方法点拨】掌握正弦、余弦、正切函数的奇偶性相关知识,结合具体题目,灵活求解.【例3】(2022·广东·高三学业考试)若函数f(x)=sin(x+φ)是偶函数,则φ可取一个值为()A.−πB.−π2C.π4D.2π【解题思路】根据偶函数的定义得φ=kπ+π2,k∈Z,结合选项可确定答案.【解答过程】∵函数f(x)=sin(x+φ)是偶函数,∴f(−x)=f(x),即sin(−x+φ)=sin(x+φ).∴−x+φ=x+φ+2kπ或−x+φ+x+φ=π+2kπ,k∈Z.当−x+φ=x+φ+2kπ时,可得x=−kπ,不满足函数定义.当−x+φ+x+φ=π+2kπ时,φ=kπ+π2,k∈Z,若φ=kπ+π2=−π,解得k=−32∉Z,故A错误;若φ=kπ+π2=−π2,解得k =−1∈Z ,故B 正确; 若φ=kπ+π2=π4,解得k =−14∉Z ,故C 错误;若φ=kπ+π2=2π,解得k =32∉Z ,故D 错误;故选:B.【变式3-1】(2022·全国·高一)下列函数中,在其定义域上是偶函数的是( ) A .y =sinxB .y =|sinx |C .y =tanxD .y =cos (x −π2)【解题思路】根据奇偶性定义,结合三角函数的奇偶性可直接得到结果.【解答过程】对于A ,∵y =sinx 定义域为R ,sin (−x )=−sinx ,∴y =sinx 为奇函数,A 错误;对于B ,∵y =|sinx |定义域为R ,|sin (−x )|=|−sinx |=|sinx |,∴y =|sinx |为偶函数,B 正确;对于C ,∵y =tanx 定义域为(kπ−π2,kπ+π2)(k ∈Z ),即定义域关于原点对称,tan (−x )=−tanx ,∴y =tanx 为奇函数,C 错误;对于D ,∵y =cos (x −π2)=sinx 定义域为R ,sin (−x )=−sinx ,∴y =cos (x −π2)为奇函数,D 错误. 故选:B.【变式3-2】(2022·北京高三阶段练习)函数f (x )=cos x +cos2x 是( ) A .奇函数,且最大值为2 B .偶函数,且最小值为-98 C .奇函数,且最小值为-98D .偶函数,且最大值为98【解题思路】利用函数奇偶性的定义可判断出函数f (x )的奇偶性,利用二次函数的基本性质可求得函数f (x )的最值.【解答过程】函数f (x )的定义域为R ,f (-x )=cos (-x )+cos (-2x )=cos x +cos2x =f (x ), 故函数f (x )为偶函数,因为-1≤cos x ≤1,则f (x )=2cos 2x +cos x -1=2(cos x +14)2-98, 所以,f (x )min =-98,f (x )max =2+1-1=2.故选:B.【变式3-3】(2022·广西·模拟预测(理))若将函数f (x )=sin2x −√3cos2x 的图象向右平移m (m >0)个单位后,所得图象对应的函数为奇函数,则m 的最小值是( ) A .π6B .π3C .2π3D .5π6【解题思路】首先对f (x )化简得到f (x )=2sin (2x −π3),再写出平移后的解析式y =2sin (2x −2m −π3),因为其为奇函数,则−2m −π3=k π,k ∈Z ,解出m 即可得到最小值.【解答过程】f (x )=sin2x −√3cos2x =2(12sin2x −√32cos2x)=2sin (2x −π3),向右平移m(m >0)个单位后得到函数y =2sin [2(x −m )−π3]=2sin (2x −2m −π3),由于是奇函数,因此,得−2m −π3=k π,k ∈Z ,m =−π6−k π2,k ∈Z.又∵m >0,则当k =−1时,m 的最小值是π3,故选:B.【方法点拨】掌握正弦、余弦、正切函数的对称性相关知识,结合具体题目,灵活求解.【例4】(2022·安徽·高三开学考试)函数f (x )=tan (2x −π3)的图象的一个对称中心为( ) A .(π12,0)B .(7π12,0)C .(−5π12,0)D .(−π12,0)【解题思路】根据正切型函数的对称中心为(k π2,0) k ∈Z ,求解即可. 【解答过程】由2x −π3=k π2,k ∈Z ,可得x =k π4+π6,k ∈Z ,当k =0时,x =π6,当k =1时,x =π4+π6=5π12,当k =2时,x =8π12=23π, 当k =−1时,x =−π4+π6=−π12, 当k =−2时,x =−4π12=−13π, 当k =−3时,x =−7π12,所以(−π12,0)为f (x )图象的一个对称中心, 故选:D.【变式4-1】(2022·河南·高三阶段练习(理))已知函数f (x )=2cos (ωx −π6)(ω>0)在[0,2π]内恰有三条对称轴,则ω的取值范围是( ) A .[43,116)B .(43,116]C .[1312,1912)D .(1312,1912]【解题思路】根据余弦函数的性质可得2π≤2ωπ−π6<3π,进而即得. 【解答过程】因为0≤x ≤2π, 所以−π6≤ωx −π6≤2ωπ−π6, 所以2π≤2ωπ−π6<3π, 解得1312≤ω<1912.故选:C.【变式4-2】已知函数f(x)=sin (12x −π6),则结论正确的是( )A .f (x )的图象关于点(5π3,0)中心对称B .f (x )的图象关于直线x =−π3对称C .f (x )在区间(−π,π)内有2个零点D .f (x )在区间[−π2,0]上单调递增【解题思路】A 、B 应用代入法判断对称轴和对称中心;C 、D 根据给定区间求12x −π6的范围,结合正弦型函数的性质求零点和单调性. 【解答过程】A :f(5π3)=sin (12×5π3−π6)=sin2π3≠0,故(5π3,0)不是对称中心,错误;B :f(−π3)=sin[12×(−π3)−π6]=−sin π3≠±1,故x =−π3不是对称轴,错误;C :在x ∈(−π,π),则12x −π6∈(−2π3,π3),故f(x)=0,可得12x −π6=0,所以x =π3为f (x )在(−π,π)内的唯一零点,错误;D :在x ∈[−π2,0],则12x −π6∈[−5π12,−π6],故f(x)=sin (12x −π6)递增,正确. 故选:D.【变式4-3】(2022·贵州·高三阶段练习(文))已知函数f (x )=2cos (ωx +φ)(ω>0,0<φ<π)的相邻两条对称轴之间的距离为2π,且为奇函数,将f (x )的图象向右平移π3个单位得到函数g (x )的图象,则函数g (x )的图象( ) A .关于点(−5π3,0)对称B .关于点(π2,0)对称 C .关于直线x =−π3对称D .关于直线x =π2对称【解题思路】两个相邻对称轴的为半个周期,奇函数可以确定f (x )为正弦函数,由此条件得出f (x )的解析式,再根据平移得出g (x )的解析式,根据解析式写出对称中心和对称轴的通式即可得出答案.【解答过程】由相邻两条对称轴之间的距离为2π可知T2=2π,即T =4π,ω=2πT ,ω=12, 因为f (x )为奇函数,根据0<φ<π可知φ=π2,f (x )=2sin 12x , g (x )=2sin (12(x −π3))=2sin (12x −π6),对称中心:12x −π6=k π(k ∈Z ),x =2k π+π3(k ∈Z ),故A 正确,B 错误;对称轴:12x −π6=π2+k π(k ∈Z ),x =2k π+4π3(k ∈Z ),故C 、D 错误;故选:A.【方法点拨】三角函数的单调性问题主要有:三角函数的单调区间的求解、比较函数值的大小、根据三角函数的单调性求参数;结合具体条件,根据三角函数的图象与性质进行求解即可.【例5】(2022·江西·高三阶段练习(理))函数y =sin (π6−2x)(x ∈[0,π])为增函数的区间是( ) A .[0,π3]B .[π12,7π12]C .[π3,5π6]D .[5π6,π]【解题思路】根据三角函数单调性的求法求得正确答案. 【解答过程】y =sin (π6−2x)=−sin (2x −π6),2k π+π2≤2x −π6≤2k π+3π2,k π+π3≤x ≤k π+5π6,k ∈Z , 令k =0可的y =sin (π6−2x)(x ∈[0,π])的递增区间为[π3,5π6]. 故选:C.【变式5-1】(2022·河南信阳·一模(理))已知函数f (x )=2√3cos (x -π2)cos x -2sin 2x ,若f (x )在区间[m ,π4]上单调递减,则实数m 的取值范围( )A .[π6,π4]B .[π3,π2]C .[π6,π4)D .[π6,π3)【解题思路】利用三角恒等变换,化简三角函数,利用正弦型函数的单调性,建立不等式组,可得答案.【解答过程】f (x )=2√3cos (x -π2)cos x -2sin 2x =2√3sin x cos x -2·1-cos2x 2=√3sin2x -1+cos2x=2(√32sin2x +12cos2x)-1 =2sin (2x +π6)-1,由x ∈[m ,π4],则2x +π6∈[2m +π6,2π3],由题意,[2m +π6,2π3]⊆[π2,3π2],则π2≤2m +π6<2π3,解得π6≤m <π4. 故选:C.【变式5-2】(2022·江苏·高三阶段练习)已知a =log 168,b =πln0.8,c =sin2.5,则a ,b ,c 的大小关系是( ) A .c <a <b B .c <b <a C .a <b <cD .a <c <b【解题思路】由对数的运算法则求出a ,又πln0.8,sin2.5分别可看做y =πx ,y =sinx 的函数值,考虑构造指数函数和正弦函数,利用函数的单调性对其值进行估计,又因为ln0.8估值困难,故考虑利用与函数y =lnx 近似的有理函数y =1−1x 对其大小进行估值,最后求得答案.【解答过程】由题意,a =log 168=log 2423=34=0.75, 设f (x )=lnx +1x −1,则f ′(x )=1x −1x 2=x−1x 2,当0<x <1时,f ′(x )<0,函数f (x )在(0,1)上单调递减,当x >1时,f ′(x )>0,函数f (x )在(1,+∞)上单调递增,所以f (0.8)>f (1),即ln0.8+54−1>0,所以ln0.8>−14,因为函数y =πx 在(−∞,+∞)上单调递增,所以πln0.8>π−14,又(π−14)−4=π,(34)−4=25681≈3.16,所以(34)−4>(π−14)−4,因为y =x−4在(0,+∞)单调递减,所以34<π−14,所以πln0.8>34,故b >a , 因为3π4<2.5<5π6,函数y =sinx 在(π2,π)上单调递减,所以sin 5π6<sin2.5<sin3π4,所以12<sin2.5<√22,所以sin2.5<34,即c <a ,所以c <a <b , 故选:A.【变式5-3】(2022·内蒙古·高三阶段练习(文))若函数f(x)=√2cos (ωx +π4)(ω>0)在(0,7π4)上单调递减,则ω的最大值为( )A .37 B .34C .14D .1【解题思路】由题知ωx +π4∈(π4,7π4ω+π4),再根据函数y =√2cosx 在(0,π)上单调递减可得7π4ω+π4≤π,进而解不等式求解即可.【解答过程】解:因为函数f(x)=√2cos (ωx +π4)(ω>0)在(0,7π4)上单调递减,所以7π4≤12T =πω,解得0<ω≤47,因为x ∈(0,7π4),所以ωx +π4∈(π4,7π4ω+π4),因为函数y =√2cosx 在(0,π)上单调递减, 所以,函数f(x)=√2cos (ωx +π4)(ω>0)在(0,7π4)上单调递减,则有7π4ω+π4≤π,解得ω≤37,所以ω的取值范围是ω∈(0,37],即ω的最大值为37. 故选:A.【方法点拨】解决正(余)弦型函数性质的综合应用问题的思路: (1)熟练掌握函数或的图象,利用基本函数法得到相应的函数性质,然后利用性质解题.(2)直接作出函数图象,利用图象形象直观地分析并解决问题. 【例6】已知函数f (x )=4sinxcos (x +π6)+1.(1)求f (x )的最小正周期及单调区间; (2)求f (x )在区间[−π6,π4]上的最大值与最小值.【解题思路】(1)先利用三角恒等变换化简得到f (x )=2sin (2x +π6),从而利用T =2π|ω|求出最小正周期,再利用整体法求解函数的单调区间;(2)根据x ∈[−π6,π4]求出2x +π6∈[−π6,2π3],从而结合函数图象求出最大值为2,最小值为−1.【解答过程】(1)因为f (x )=4sinx (cosxcos π6−sinxsin π6)+1=2√3sinxcosx −2sin 2x +1 =√3sin2x +cos2x =2sin (2x +π6) 所以f (x )的最小正周期T =2π2=π;令−π2+2k π≤2x +π6≤π2+2k π,k ∈Z ,解得:[−π3+k π,π6+k π],k ∈Z , 令π2+2k π≤2x +π6≤3π2+2k π,k ∈Z ,解得:[π6+k π,2π3+k π],k ∈Z ,单调增区间为[−π3+k π,π6+k π],k ∈Z ,单调减区间为[π6+k π,2π3+k π],k ∈Z ;(2)已知x ∈[−π6,π4],所以2x +π6∈[−π6,2π3],当2x +π6=π2,即x =π6时,f (x )取得最大值,最大值为2, 当2x +π6=−π6,即x =−π6时,f (x )取得最小值,最小值为-1, 所以f (x )在区间[−π6,π4]上的最大值为2,最小值为−1.【变式6-1】(2022·陕西·高三阶段练习(文))已知函数f (x )=4sin (ωx +φ)(ω>0,|φ|<π2)图象的一条对称轴为直线x =−π12,这条对称轴与相邻对称中心之间的距离为π8.(1)求f (x );(2)求f (x )在[−π24,π4]上的值域.【解题思路】(1)先求出周期,由此求出ω的值,利用对称轴方程求出φ,即可得到函数的解析式;(2)根据自变量的范围求得4x −π6∈[−π3,5π6],根据正弦函数的取值求得函数的值域【解答过程】(1)因为函数f(x)图象的对称轴与相邻对称中心之间的距离为π8, 所以T =π2,故ω=2πT=4,又f(x)的图象的一条对称轴方程为x =−π12, 则4×(−π12)+φ=π2+k π,k ∈Z ,即φ=5π6+k π,k ∈Z ,又|φ|<π2,所以φ=−π6, 故f(x)=4sin (4x −π6);(2)因为x ∈[−π24,π4],所以4x −π6∈[−π3,5π6],所以sin (4x −π6)∈[−√32,1],所以4sin (4x −π6)∈[−2√3,4], 故f (x )在[−π24,π4]上的值域为[−2√3,4].【变式6-2】(2021·天津·高一期末)已知函数f (x )=2√3cos 2(π2+x)-2sin(π+x )cos x -√3 (1)求f (x )的最小正周期及单调递减区间; (2)求f (x )在区间[π4,π2]上的最值;(3)若f (x 0-π6)=1013,x 0∈[3π4,π],求sin2x 0的值.【解题思路】(1)根据三角恒等变换可得f (x )=2sin (2x -π3),然后根据三角函数的性质即得;(2)根据正弦函数的性质即得;(3)由题可得sin (2x 0-2π3)=513,然后根据同角关系式及和差角公式即得. 【解答过程】(1)因为f (x )=2sin x cos x +2√3sin 2x -√3 =sin2x -√3cos2x =2sin (2x -π3). 所以f (x )的最小正周期T =2π2=π,∵π2+2k π≤2x -π3≤3π2+2k π,k ∈Z ,∴5π12+k π≤x ≤11π12+k π,所以f (x )的单调递减区间为[5π12+k π,11π12+k π](k ∈Z);(2)由(1)知f (x )的单调递减区间为[5π12+k π,11π12+k π](k ∈Z),∵x ∈[π4,π2],∴f (x )在[π4,5π12]上单调递增,在[5π12,π2]上单调递减,又f (5π12)=2sin π2=2,f (π4)=2sin π6=1,f (π2)=2sin2π3=√3,故f (x )min =1,f (x )max =2; 另解:∵x ∈[π4,π2], ∴t =2x -π3∈[π6,2π3],∵y =sin t 在t ∈[π6,π2]单调递增,在[π2,2π3]上单调递减, ∴当t =π2时,(sin t )max =1,f (x )max =2×1=2, ∴当t =π6时,(sin t )min =12,f (x )min =2×12=1; (3)∵f (x 0-π6)=1013,∴sin (2x 0-2π3)=513, 由x 0∈[3π4,π],得2x 0-2π3∈[5π6,4π3],∴cos (2x 0-2π3)=-1213, ∴sin2x 0=sin [(2x 0-2π3)+2π3]=sin (2x 0-2π3)cos2π3+cos (2x 0-2π3)sin 2π3=513×(-12)+(-1213)×√32=-5+12√326. 【变式6-3】(2022·黑龙江·高三阶段练习)已知函数f (x )=[(1+√2)sin x -cos x]⋅[(1-√2)sin x -cos x]. (1)求f (x )的最小正周期T 和单调递减区间;(2)四边形ABCD 内接于⊙O ,BD =2,锐角A 满足f (3A4)=-1,求四边形ABCD 面积S 的取值范围.【解题思路】(1)利用三角函数恒等变换公式对函数化简变形得f (x )=√2cos (2x +π4),从而可求出最小正周期,再由2kπ≤2x +π4≤2kπ+π(k ∈Z )求出其单调区间,(2)由f (3A4)=-1,求得A =π3,再由圆的性质可得C =2π3,设AB =a ,AD =b ,BC =c ,CD =d ,分别在△ABD 和△CBD 中利用余弦定理结合基本不等式可得0<ab ≤4,0<cd ≤43,从而可求出四边形ABCD 面积S 的取值范围.【解答过程】(1)[(1+√2)sin x -cos x]⋅[(1-√2)sin x -cos x]=[(sin x -cos x )+√2sin x]⋅[(sin x -cos x )-√2sin x]=(sin x -cos x )2-2sin 2x =sin 2x -2sin x cos x +cos 2x -2sin 2x=1-2sin 2x -sin2x =cos2x -sin2x=√2cos (2x +π4), ∴f (x )=√2cos (2x +π4) ∴T =π.由2kπ≤2x +π4≤2kπ+π(k ∈Z ),得kπ-π8≤x ≤kπ+3π8(k ∈Z ),所以f (x )单调递减区间为[kπ-π8,kπ+3π8](k ∈Z ). (2)由于f (3A4)=-1,根据(1)得√2cos (2×3A 4+π4)=-1,∵0<A <π2,∴A =π3,C =2π3.分别设AB =a ,AD =b ,BC =c ,CD =d .因BD =2,分别在△ABD 和△CBD 中由余弦定理得a 2+b 2-2ab cos π3=4,c 2+d 2-2cd cos2π3=4,∴a 2+b 2=4+ab ,c 2+d 2=4-cd .∵a 2+b 2≥2ab ,c 2+d 2≥2cd ,等号在a =b =2,c =d =2√33时成立,∴4+ab ≥2ab ,4-cd ≥2cd ,解得0<ab ≤4,0<cd ≤43. ∴0<ab +cd ≤163.等号在a =b =2,c =d =2√33时成立,∵S =12ab sin A +12cd sin C =√34(ab +cd ), 所以S 的取值范围是(0,4√33].。

初中数学正切和余切正弦余弦教学案例

初中数学正切和余切正弦余弦教学案例

正切和余切【学习目标】1.了解正切、余切概念的意义及正切和余切互为倒数的关系.2.熟记30°、45°、60°角的三角函数值,并会用这些数值计算、化简含有特殊角的三角函数的式子,会根据特殊角的三角函数值说出对应角的度数.3.了解一个锐角的正切(余切)值与它的余角的余切(正切)值之间的关系. 4.会用有关锐角三角函数的知识解决一些求直角三角形中未知元素的问题. 【主体知识归纳】1.正切:如图1,∠A 的对边与邻边的比叫做∠A 的正切,记作tan .即tanA =baA A =∠∠的邻边的对边.2.余切:如图1,∠A 的邻边与对边的比叫做∠A 的余切,记作cotA ,即cotB =Aa b A A tan 1==∠∠的对边的邻边. 3.锐角三角函数:锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数.4.互余两个锐角的正切值与余切值之间的关系:任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值,即tanA =cot (90°-A ),cotA =tan (90°-A ). 5.特殊角的正切、余切值【基础知识讲解】1. 理解锐角三角函数的意义,必须注意:一个锐角的三角函数值实际上是一个比值,无单位,只是一个数值;当这个锐角取任意一个固定值时,这一比值也是一个固定值.这个值与它所在三角形的大小没有关系.如图2的甲、乙两个直角三角形,大小显然不等,但∠A =∠A ′=30°,tan =33,tan ′=33,也就是说,∠A 的正切值没有因为所在三角形的大小而改变,同样,余切值也没有改变.2.求锐角三角函数的值我们知道,求一个锐角的三角函数值,就是应用相关概念、性质、定理等,求该锐角所在直角三角形某两边的比值.而确定有关比值的方法,在常见的题目中,根据已知条件的不同,一般可分为两类:第一类是已知各边的大小或能够求出各边的大小;第二类是无法求出各边的大小,已知各边间的倍数关系或能够求出各边间的倍数关系.解决第二类问题一般采用辅助元的方法,通过已知条件的转化,用辅助元表示直角三角形的各边,消元后求得.显然,此类问题体现着概念的灵活运用,题目常具有一定的综合性,涉及到初中代数、几何等知识.3.直角三角形中各元素之间的关系:在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,则 (1)两个锐角的关系——互余,即A +B =90°; (2)边与边的关系——勾股定理,即a 2+b 2=c 2; (3)边与角的关系——锐角三角函数,即 sinA =ca=cosB , cosA =c b =sinA ,tanA =b a =cotB , cotA =ab=tanB . 【例题精讲】 例1:计算:(1)2)60tan 1(︒-–sin60°; (2)22tan 301tan 45cot 301cot 60cot 45tan 60︒-︒︒--︒︒+︒; (3)4sin 30cos 72cos(45)sin18cos 72cos(45)αα︒︒︒++︒+︒︒-–cot(45°+α)(0°<α<45°);(4)tan 260°–2cos45°+sin 225°+sin 265°–3cot 260°. 解:(1)原式=|1–tan60°|–sin60°=|1–3|–23=23–1. (2)原式=)32(3313193133231311)33(13322+--=+---=+⨯---⨯=2. (3)原式=)45cos()45cos(72cos 72cos 72cos 2αα-︒+︒+︒+︒︒–cot(45°+α)=︒︒72cos 272cos 2+cot(45°+α)–cot(45°+α)=1.(4)原式=(3)2–2×22+(sin 225°+cos 225°)–3×(33)2=3–2+1–1=3–2.说明:(1)三角函数的计算要遵循以下原则:当所给的角是特殊角时,只要把特殊角的三角函数值代入计算即可;当所给的角不是特殊角而又要求不查表时,要注意灵活运用同角的三角函数关系和互为余角的三角函数关系进行化简.(2)本例的第(4)题,用到了“sin 2α+cos 2α=1”这个关系式,你不妨证明一下.例2:在Rt △ABC 中,∠C =90°,各边长都扩大3倍,那么∠B 的正切值和余切值( )A .没有变化B .都扩大3倍C .都缩小3倍D .不能确定剖析:在Rt △ABC 中,各边长都扩大3倍后,三角形是否是直角三角形,若是,则可用三角函数定义;若不是,则不能直接用三角函数定义.由(3a)2+(3b)2=9(a 2+b 2)=9c 2=(3c)2.所以三角形还是直角三角函数,故可用三角函数的定义.解法一:∵a 2+b 2=c 2,(3a)2+(3b)2=9a 2+9b 2=9(a 2+b 2), ∴(3a)2+(3b)2=(3c)2.即各边长扩大3倍后,三角形仍然是直角三角形. 由三角函数定义,得 tan =b a b a =33,cot =aba b =33. ∴∠B 的正切值和余切值不变.故选A . 解法二:∵三角形各边扩大相同的倍数, ∴得到的三角形与原三角形相似. ∴对应角相等.即∠B 的三角函数值不变.例3:在Rt △ABC 中,∠C =90°,且已知AC =b ,∠A =α,那么边BC 的长为( )A .b ·sin αB .b ·cos αC .b ·tan αD .b ·cot α剖析:在直角三角形中,由三角函数定义知,已知三角函数中三个量的任何两个量,都可以求出另外一个量.解:在Rt △ABC 中,由三角函数定义,得 tan α=ACBC,∴BC =AC ·tan α. 即a =b ·tan α. 故应选C .说明:由于AC 、∠A 是已知的,所以要求a 的值,就必须用与AC 、与∠A 有关的三角函数来表示.本题主要考查两点,其一是正确理解如何用已知元素表示未知元素;其二是能熟练地用直角三角形两边的比表示一锐角的三角函数.例4:计算:tan 260°+tan(43°+α)–cot(47°–α)–tan44°·tan45°·tan46°.剖析:要求上式的值,必须知道各项的值,或者可以把未知项消去.显然本式中的tan60°、tan45°的值都是已知的,tan (43°+α)、cos(47°–α)、tan44°、tan46°的值都不知道.通过观察分析可知,tan(43°+α)与cot(47°–α)的值相等,tan44°与tan46°的积等于1.所以上式的值可求.解:原式=(3)2+tan(43°+α)–tan [90°–(47°–α)]–tan44°·1·cot(90°–46°)=3+tan(43°+α)–tan(43°+α)–tan44°·cot44° =3–1=2.说明:在遇到非特殊角的三角函数式求值时,要注意灵活运用互为余角三角函数及同角三角函数之间的关系.例5:如图3,在△ABC 中,∠ACB =90°,延长AB 到D ,使BD =AB ,连结CD ,若tan ∠ECB =31,求∠A 的四个三角函数值.解:如图3,取CD 的中点E ,连结BE . ∵点B 、E 分别为AD 、CD 的中点, ∴B E∥AC ,且AC =2B E. ∴∠CBE =∠ACB =90°. ∴tan ∠ECB =BCBE =31. 设BE =m (m >0),则AC =2m ,BC =3m . 在Rt △ABC 中,AB =1322=+BC AC m . ∴sinA =13133133==m m AB BC ,cosA =13132132==mm AB AC , tanA =2323==m m AC BC ,cotA =3232==m m BC AC . 说明:(1)为了利用tan ∠ECB =31,需构造∠ECB 所在的直角三角形.(2)在求sinA, tanA 的值后,还可用同角的三角函数关系求cosA 、cotA 的值.同角的三角函数有以下几种关系:①平方关系:sin 2A +cos 2A =1②商式关系:tanA =A A cos sin ,cotA =A Asin cos . ③倒数关系:tanA =Acot 1,即tanA ·cotA =1.例6:已知tan α=2,求ααcos sin 2cos 3sin +-a a的值.剖析:(1)要求该式子的值,只要求出sin α、cos α的值即可,而已知的是tan α的值,如果通过恒等变形,把式子中的sin α、cos α用tan α表示也可以,显然分子、分母同除以cos α即可.(2)由已知tan α=2,可知sin α=2cos α,把该式代入原式也可以求值.解法一:原式=1tan 23tan cos cos cos sin 2cos cos 3cos sin +-=+-αααααααααα, ∵tan α=2,∴原式=5112232-=+⨯-.解法二:∵tan α=ααcos sin =2, ∴sin α=2cos α. 原式=51cos 5cos cos cos 22cos 3cos 2--=+⨯-αααααα.说明:在进行三角函数的有关计算时,常利用有关公式进行恒等变形,怎样变形?要根据题目的特点有目的地进行变形.【知识拓展】你知道古埃及是怎样测量金字塔高度的吗?你知道古埃及的金字塔吗?它们是古代埃及国王们的坟墓,那是一些古老雄伟的建筑,也是古埃及劳动人民智慧的结晶.两千六百多年前,埃及有个国王,想要知道已经盖好了的大金字塔的高度,可是谁也不知道怎样测量.人爬到塔顶上去吧,不可能.因为塔身是斜的,就是爬上去了,又用什么方法来测量呢?后来,国王找到了一个名叫法列士的学者来设法解决这个问题,法列士答应了,他选择了一个风和日丽的日子,在国王、祭司们的亲自驾临下,举行了测塔仪式.看热闹的人当然不少,人们拥挤着、议论着.看看时间已经不早了,太阳光给每一个在场的人和巨大的金字塔都投下了长长的影子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档