(完整word版)伺服电机外文文献翻译
直流电动机中英文对照外文翻译文献
中英文对照外文翻译文献(文档含英文原文和中文翻译)外文文献:DC Motor CalculationsOverviewNow that we have a good understanding of dc generators, we can begin our study of dc motors. Direct-current motors transform electrical energy into mechanical energy. They drive devices such as hoists, fans, pumps, calendars, punch-presses, and cars. These devices may have a definite torque-speed characteristic (such as a pump or fan) or a highly variable one (such as a hoist or automobile). The torque-speed characteristic of the motor must be adapted to the type of the load it has to drive, and this requirement has given rise to three basic types of motors: 1.Shunt motors 2. Series motors 3. Compound motors Direct-current motors are seldom used in ordinary industrial applications because all electric utility systems furnish alternating current. However, for special applications such as in steel mills, mines, and electric trains, it is sometimes advantageous to transform the alternating current into direct current in order to use dc motors. The reason is that the torque-speed characteristics of dc motors can be varied over a wide range while retaining high efficiency. Today, this general statement can be challenged because the availability of sophisticated electronic drives has made it possible to use alternating current motors for variable speed applications. Nevertheless, there are millions of dc motors still in service and thousands more are being produced every year.Counter-electromotive force (cemf)Direct-current motors are built the same way as generators are; consequently, a dc machine can operate either as a motor or as a generator. To illustrate, consider a dc generator in which the armature, initially at rest, is connected to a dc source E s by means of a switch (Fig. 5.1). The armature has a resistance R, and the magnetic field is created by a set of permanent magnets.As soon as the switch is closed, a large current flows in the armature because its resistance is very low. The individual armature conductors are immediately subjected to a force because they are immersed in the magnetic field created by the permanent magnets. These forces add upto produce a powerful torque, causing the armature to rotate.Figure 5.1 Starting a dc motor across the line.On the other hand, as soon as the armature begins to turn, a second phenomenon takes place: the generator effect. We know that a voltage E o is induced in the armature conductors as soon as they cut a magnetic field (Fig. 5.2). This is always true, no matter what causes the rotation. The value and polarity of the induced voltage are the same as those obtained when the machine operates as a generator. The induced voltage E o is therefore proportional to the speed of rotation n of the motor and to the flux F per pole, as previously given by Eq. 5.1:E o = Zn F/60 (5.1)As in the case of a generator, Z is a constant that depends upon the number of turns on the armature and the type of winding. For lap windings Z is equal to the number of armature conductors.In the case of a motor, the induced voltage E o is called counter-electromotive force (cemf) because its polarity always acts against the source voltage E s. It acts against the voltage in the sense that the net voltage acting in the series circuit of Fig. 5.2 is equal to (E s - Eo) volts and not (E s + E o) volts.Figure 5.2 Counter-electromotive force (cemf) in a dc motor.Acceleration of the motorThe net voltage acting in the armature circuit in Fig. 5.2 is (E s- E o) volts. The resulting armature current /is limited only by the armature resistance R, and soI = (E s- E o)IR (5.2)When the motor is at rest, the induced voltage E o= 0, and so the starting current isI = E s/RThe starting current may be 20 to 30 times greater than the nominal full-load current of the motor. In practice, this would cause the fuses to blow or the circuit-breakers to trip. However, if they are absent, the large forces acting on the armature conductors produce a powerful starting torque and a consequent rapid acceleration of the armature.As the speed increases, the counter-emf E o increases, with the result that the value of (E s—E o)diminishes. It follows from Eq. 5.1 that the armature current / drops progressively as the speed increases.Although the armature current decreases, the motor continues to accelerate until it reaches a definite, maximum speed. At no-load this speed produces a counter-emf E o slightly less than the source voltage E s. In effect, if E o were equal to E s the net voltage (E s—E o) would become zero and so, too, would the current /. The driving forces would cease to act on the armature conductors, and the mechanical drag imposed by the fan and the bearings would immediately cause the motor to slow down. As the speed decreases the net voltage (E s—E o) increases and so does the current /. The speed will cease to fall as soon as the torque developed by the armature current is equal to the load torque. Thus, when a motor runs at no-load, the counter-emf must be slightly less than E s so as to enable a small current to flow, sufficient to produce the required torque.Mechanical power and torqueThe power and torque of a dc motor are two of its most important properties. We now derive two simple equations that enable us to calculate them.1. According to Eq. 5.1 the cemf induced in a lap-wound armature is given byE o = Zn F/60Referring to Fig. 5.2, the electrical power P a supplied to the armature is equal to the supply voltage E s multiplied by the armature current I:P a = E s I (5.3)However, E s is equal to the sum of E o plus the IR drop in the armature:E s = E o + IR (5.4)It follows thatP a= E s I= (E o + IR)I=E o I + I2R (5.5)The I2R term represents heat dissipated in the armature, but the very important term E o I is the electrical power that is converted into mechanical power. The mechanical power of the motor is therefore exactly equal to the product of the cemf multiplied by the armature currentP = E o I (5.6)whereP = mechanical power developed by the motor [W]E o= induced voltage in the armature (cemf) [V]I = total current supplied to the armature [A]2. Turning our attention to torque T, we know that the mechanical power P is given by the expressionP = nT/9.55 (5.7)where n is the speed of rotation.Combining Eqs. 5.7,5.1, and 5.6, we obtainnT/9.55 = E o I= ZnFI/60and soT =Z F I/6.28The torque developed by a lap-wound motor is therefore given by the expressionT =Z F I/6.28 (5.8)whereT = torque [N×m]Z = number of conductors on the armatureF = effective flux per pole [Wb]*/ = armature current [A]6.28 = constant, to take care of units[exact value = 2p]Eq. 5.8shows that we can raise the torque of a motor either by raising the armature current or by raising the flux created by the poles.Speed of rotationWhen a dc motor drives a load between no-load and full-load, the IR drop due to armature resistance is always small compared to the supply voltage E s. This means that the counter-emf E s is very nearly equal to E s.On the other hand, we have already seen that Eo may be expressed by the equationE o = Zn F/60Replacing E o by E s we obtainE s = Zn F/60That is,wheren = speed of rotation [r/min]E s = armature voltage [V]Z = total number of armature conductorsThis important equation shows that the speed of the motor is directly proportional to the armature supply voltage and inversely proportional to the flux per pole. We will now study how this equation is applied.Armature speed controlAccording to Eq. 5.8, if the flux per pole F is kept constant (permanent magnet field or field with fixed excitation), the speed depends only upon the armature voltage E s. By raising or lowering E s the motor speed will rise and fall in proportion.In practice, we can vary E s by connecting the motor armature M to a separately excited variable-voltage dc generator G . The field excitation of the motor is kept constant, but the generator excitation I x can be varied from zero to maximum and even reversed. The generator output voltage E s can therefore be varied from zero to maximum, with either positive or negative polarity. Consequently, the motor speed can be varied from zero to maximum in either direction. Note that the generator is driven by an ac motor connected to a 3-phase line. This method of speed control, known as the Ward-Leonard system, is found in steel mills, high-rise elevators, mines, and paper mills.In modem installations the generator is often replaced by a high-power electronic converter that changes the ac power of the electrical utility to dc, by electronic means.What happens to the dc power received by generator G? When G receives electric power, it operates as a motor, driving its own ac motor as an asynchronous generator!* As a result, ac power is fed back into the line that normally feeds the ac motor. The fact that power can be recovered this way makes the Ward-Leonard system very efficient, and constitutes another of its advantages.Rheostat Speed ControlAnother way to control the speed of a dc motor is to place a rheostat in series with the armature . The current in the rheostat produces a voltage drop which subtracts from the fixed source voltage E s, yielding a smaller supply voltage across the armature. This method enables us to reduce the speed below its nominal speed. It is only recommended for small motors because a lot of power and heat is wasted in the rheostat, and the overall efficiency is low. Furthermore, thespeed regulation is poor, even for a fixed setting of the rheostat. In effect, the IR drop across the rheostat increases as the armature current increases. This produces a substantial drop in speed with increasing mechanical load.中文译文:直流电动机的计算概述现在,我们对直流发电机有一个很好的了解,我们可以开始对直流电动机的研究了。
机电专业论文英文文献及其中文译文
毕业论文外文文献翻译译文题目:INTEGRATION OF MACHINERY外文资料翻译资料来源:文章名:INTEGRATION OF MACHINERY 《Digital Image Processing》书刊名:作者:Y. Torres J. J. Pavón I. Nieto and J. A.Rodríguez章节:2.4 INTEGRATION OF MACHINERYINTEGRATION OF MACHINERY (From ELECTRICAL AND MACHINERY INDUSTRY)ABSTRACT Machinery was the modern science and technology development inevitable resultthis article has summarized the integration of machinery technology basic outlineand the development background .Summarized the domestic and foreign integration ofmachinery technology present situation has analyzed the integration of machinerytechnology trend of development. Key word:integration of machinery ,technology,present situation ,productt,echnique of manufacture ,trend of development 0. Introduction modern science and technology unceasing development impelleddifferent discipline intersecting enormously with the seepage has caused the projectdomain technological revolution and the transformation .In mechanical engineeringdomain because the microelectronic technology and the computer technology rapiddevelopment and forms to the mechanical industry seepage the integration of machinerycaused the mechanical industry the technical structure the product organizationthe function and the constitution the production method and the management systemhas had the huge change caused the industrial production to enter into quottheintegration of machineryquot by quotthe machinery electrificationquot for the characteristicdevelopment phase. 1. Integration of machinery outline integration of machinery is refers in theorganization new owner function the power function in the information processingfunction and the control function introduces the electronic technology unifies thesystem the mechanism and the computerization design and the software whichconstitutes always to call. The integration of machinery development also has becomeone to have until now own system new discipline not only develops along with thescience and technology but also entrusts with the new content .But its basiccharacteristic may summarize is: The integration of machinery is embarks from thesystem viewpoint synthesis community technologies and so on utilization mechanicaltechnology microelectronic technology automatic control technology computertechnology information technology sensing observation and control technologyelectric power electronic technology connection technology information conversiontechnology as well as software programming technology according to the systemfunction goal and the optimized organization goal reasonable disposition and thelayout various functions unit in multi-purpose high grade redundant reliable inthe low energy consumption significance realize the specific function value andcauses the overall system optimization the systems engineering technology .From thisproduces functional system then becomes an integration of machinery systematic orthe integration of machinery product. Therefore quotintegration of machineryquot coveringquottechnologyquot and quotproductquot two aspects .Only is the integration of machinerytechnology is based on the above community technology organic fusion one kind ofcomprehensivetechnology but is not mechanical technical the microelectronictechnology as well as other new technical simple combination pieces together .Thisis the integration of machinery and the machinery adds the machinery electrificationwhich the electricity forms in the concept basic difference .The mechanicalengineering technology has the merely technical to develop the machineryelectrification still was the traditional machinery its main function still wasreplaces with the enlargement physical strength .But after develops the integrationof machinery micro electron installment besides may substitute for certainmechanical parts the original function but also can entrust with many new functionslike the automatic detection the automatic reduction information demonstrate therecord the automatic control and the control automatic diagnosis and the protectionautomatically and so on .Not only namely the integration of machinery product ishumans hand and body extending humans sense organ and the brains look has theintellectualized characteristic is the integration of machinery and the machineryelectrification distinguishes in the function essence. 2. Integration of machinery development condition integration of machinerydevelopment may divide into 3 stages roughly.20th century 60s before for the firststage this stage is called the initial stage .In this time the people determinationnot on own initiative uses the electronic technology the preliminary achievement toconsummate the mechanical product the performance .Specially in Second World Warperiod the war has stimulated the mechanical product and the electronic technologyunion these mechanical and electrical union military technology postwar transferscivilly to postwar economical restoration positive function .Developed and thedevelopment at that time generally speaking also is at the spontaneouscondition .Because at that time the electronic technology development not yetachieved certain level mechanical technical and electronic technology union alsonot impossible widespread and thorough development already developed the productwas also unable to promote massively. The 20th century 7080 ages for the second stagemay be called the vigorous development stage .This time the computer technologythe control technology the communication development has laid the technology basefor the integration of machinery development . Large-scale ultra large scaleintegrated circuit and microcomputer swift and violent development has provided thefull material base for the integration of machinery development .This timecharacteristic is :①A mechatronics word first generally is accepted in Japanprobably obtains the quite widespread acknowledgment to 1980s last stages in theworldwide scale ②The integration of machinery technology and the product obtainedthe enormous development ③The various countries start to the integration ofmachinery technology and the product give the very big attention and the support.1990s later periods started the integration of machinery technology the new stagewhich makes great strides forward to the intellectualized direction the integrationof machinery enters the thorough development time .At the same time optics thecommunication and so on entered the integration of machinery processes thetechnology also zhan to appear tiny in the integration of machinery the footappeared the light integration of machinery and the micro integration of machineryand so on the new branch On the other hand to the integration ofmachinery systemmodeling design the analysis and the integrated method the integration ofmachinery discipline system and the trend of development has all conducted thethorough research .At the same time because the hugeprogress which domains and so on artificial intelligence technology neural networktechnology and optical fiber technology obtain opened the development vast worldfor the integration of machinery technology .These research will urge theintegration of machinery further to establish the integrity the foundation and formsthe integrity gradually the scientific system. Our country is only then starts fromthe beginning of 1980s in this aspect to study with the application .The State Councilhad been established the integration of machinery leading group and lists as quot863plansquot this technology .When formulated quot95quot the plan and in 2010 developed thesummary had considered fully on international the influence which and possiblybrought from this about the integration of machinery technology developmenttrend .Many universities colleges and institutes the development facility and somelarge and middle scale enterprises have done the massive work to this technicaldevelopment and the application does not yield certain result but and so on theadvanced countries compared with Japan still has the suitable disparity. 3. Integration of machinery trend of development integrations of machinery arethe collection machinery the electron optics the control the computer theinformation and so on the multi-disciplinary overlapping syntheses its developmentand the progress rely on and promote the correlation technology development and theprogress .Therefore the integration of machinery main development direction is asfollows: 3.1 Intellectualized intellectualizations are 21st century integration ofmachinery technological development important development directions .Theartificial intelligence obtains day by day in the integration of machineryconstructors research takes the robot and the numerical control engine bedintellectualization is the important application .Here said quottheintellectualizationquot is to the machine behavior description is in the control theoryfoundation the absorption artificial intelligence the operations research thecomputer science the fuzzy mathematics the psychology the physiology and the chaosdynamics and so on the new thought the new method simulate the human intelligenceenable it to have abilities and so on judgment inference logical thinkingindependent decision-making obtains the higher control goal in order to .Indeedenable the integration of machinery product to have with the human identicalintelligence is not impossible also is nonessential .But the high performancethe high speed microprocessor enable the integration of machinery product to havepreliminary intelligent or humans partial intelligences then is completelypossible and essential. In the modern manufacture process the information has become the controlmanufacture industry the determining factor moreover is the most active actuationfactor .Enhances the manufacture system information-handling capacity to become themodern manufacture science development a key point .As a result of the manufacturesystem information organization and structure multi-level makes the information thegain the integration and the fusion presents draws up the character informationmeasuremulti-dimensional as well as information organizations multi-level .In themanufacture information structural model manufacture information uniform restraintdissemination processing and magnanimous data aspects and so on manufacture knowledgelibrary management all also wait for further break through. Each kind of artificial intelligence tool and the computation intelligence methodpromoted the manufacture intelligence development in the manufacture widespreadapplication .A kind based on the biological evolution algorithm computationintelligent agent in includes thescheduling problem in the combination optimization solution area of technologyreceives the more and more universal attention hopefully completes the combinationoptimization question when the manufacture the solution speed and the solutionprecision aspect breaks through the question scale in pairs the restriction .Themanufacture intelligence also displays in: The intelligent dispatch the intelligentdesign the intelligent processing the robot study the intelligent control theintelligent craft plan the intelligent diagnosis and so on are various These question key breakthrough may form the product innovation the basicresearch system. Between 2 modern mechanical engineering front science differentscience overlapping fusion will have the new science accumulation the economicaldevelopment and societys progress has had the new request and the expectation tothe science and technology thus will form the front science .The front science alsohas solved and between the solution scientific question border area .The front sciencehas the obvious time domain the domain and the dynamic characteristic .The projectfront science distinguished in the general basic science important characteristicis it has covered the key science and technology question which the project actualappeared. Manufacture system is a complex large-scale system for satisfies the manufacturesystem agility the fast response and fast reorganization ability must profit fromthe information science the life sciences and the social sciences and so on themulti-disciplinary research results the exploration manufacture system newarchitecture the manufacture pattern and the manufacture system effectiveoperational mechanism .Makes the system optimization the organizational structureand the good movement condition is makes the system modeling the simulation andthe optimized essential target .Not only the manufacture system new architecture tomakes the enterprise the agility and may reorganize ability to the demand responseability to have the vital significance moreover to made the enterprise first floorproduction equipment the flexibility and may dynamic reorganization ability set ahigher request .The biological manufacture view more and more many is introduced themanufacture system satisfies the manufacture system new request. The study organizes and circulates method and technique of complicated systemfrom the biological phenomenon is a valid exit which will solve many hard nut tocracks that manufacturing industry face from now on currently .Imitating to livingwhat manufacturing point is mimicry living creature organ of from the organizationfrom match more from growth with from evolution etc. function structure and circulatemode of a kind of manufacturing system and manufacturing process. The manufacturing drives in the mechanism under continuously by ones ownperfect raise on organizing structure and circulating modeand thus to adapt theprocess ofwith ability for the environment .For from descend but the last productproceed together a design and make a craft rules the auto of the distance born producesystem of dynamic state reorganization and product and manufacturing the system tendautomatically excellent provided theories foundation and carry out acondition .Imitate to living a manufacturing to belong to manufacturing science andlife science ofquotthe far good luck is miscellaneous to hand overquot it will produceto the manufacturing industry for 21 centuries huge of influence .机电一体化摘要机电一体化是现代科学技术发展的必然结果本文简述了机电一体化技术的基本概要和发展背景。
文献翻译(伺服系统中英文翻译)
武汉轻工大学毕业设计(论文)外文参考文献译文本2014届原文出处指导老师给出毕业设计(论文)题目PMSM伺服系统---MATLAB仿真设计院(系)电气与电子工程学院专业名称自动化学生姓名陈思明学生学号100408903指导教师高峰译文要求:1、译文内容须与课题(或专业)有联系;2、外文翻译不少于4000汉字。
SERVO CONTROL SYSTEMS 1: DC ServomechanismsElke Laubwald: Visiting Consultant, control systems ABSTRACT: This is one of a series of white papers on systems modelling, analysis and control, prepared by Control Systems to give insights into important principles and processes in control. In control systems there are a number of generic systems and methods which are encountered in all areas of industry antechnology. These white papers aim to explain these important systems and methodsinstraightforward terms.The white papers describe what makes a particular type of system/method important, how it works and then demonstrates how to control it. The control demonstrations is performed using models of real systems designed by our founder - Peter Wellstead, and developed for manufacture by TQ Education and Training Ltd in their CE range of equipment. Where possible results from the real system are shown. This white paper is about the universally used ‘work horse’ of electro-mechanical systems– the DC servo control system or servomechanism.1. What is a Servo Control System and servo motor?A servo control system is one of the most important and widely used forms of control system. Any machine or piece of equipment that has rotating parts will contain one or more servo control systems. The job of the control system may include:Maintaining the speed of a motor within certain limits, even when the load on the output of the motormight vary. This is called regulation.Varying the speed of a motor and load according to an externally set programme of values. This is called set point (or reference) tracking.Our daily lives depend upon servo controllers. Anywhere that there is an electric motor there will be a servo control system to control it. Servo control is very important. The economy of the world dependsupon servo control (there are other things to be sure – but stay with me on the control theme). Manufacturing industry would cease without servo systems because factory production lines could not becontrolled, transportation would halt because electric traction units would fail, computers would cease because disk drives would not work properly and communications networks would fail because network servers use hard disk drives. Young people would become even more unbearable and they would complain more than they do now, because their music and games systems will not work without servo control.Servo control systems are that important and it is vital to know about them. So pay attention and sit up straight – you are not on holiday and I am not writingthis for the good of my health.Also known as the implementation of the motor servo motor, the automatic control system for the implementation of components to convert signals received from the motor shaft angular displacement or angular velocity output.DC and AC servo motor is divided into two categories, the main feature is that when the signal voltage is zero, no rotation of the phenomenon, the increasing speed with uniform torque decreased.Servo motors to control mechanical servo system in the operation of the engine components. Is a servomotors device.Servo motor can control the speed, position accuracy is very accurate.The voltage signal into a torque and speed to drive the control object.Rotor speed by the input signal control, and can respond rapidly, in the automatic control system for the implementation of components, and has electrical and mechanical time constant, linear and high initiating voltage low.2. Modelling a Simple Servo SystemBefore we can control a system we must understand in mathematical terms how the system behaves without control. This is system modelling and it is a fundamental part of our work in control systems analysis. This white paper is about the simplest form of servo – the direct current (DC) position control servomechanism. It is important because, although it is the simplest form of servomechanism, it is usedas the starting point for understanding all other servo systems The basic form of a DC servo system is made of an electric motor with an output shaft that has an inertialload J on it, and friction in the bearings of the motor and load (represented by the constant b). There will be an electric drive circuit where an input voltage u(t) is transformed by the motor into a torque T(t) inthe motor output shaft. Using systems modelling ideas for mechanical systems a torque balance can bewritten between the input torque from the motor and the torque required to accelerate the load and overcome friction. This is shown in the equation()J b T t θθ+=Where θ is the angular position of the servo output shaft. The control objective is to control the shaft Position or the shaft velocity to be some desire value . The input voltage u(t) is related to the torque T(t) a gain K and the inertia divided by the friction coefficient is referred to as the system time constant ⎜ , where τ=J/b So the system model becomes:+()Ku t τθθ=In a practical servo system there will be additional components of the model which are important. Many of these are to do with the nonlinearities in the drive amplifier and friction in the mechanical components. The most important nonlinearities are the saturation voltage of the motor drive amplifier, the deadband in the amplifier, the so-called Coulomb friction in the rotating mechanical components andhysteresis (backlash) in any gearboxes that might be between the motor and the load. A good control system must include features to deal with these nonlinear features.In this white paper we will concentrate on the linear parts of the servo system and only show some hints of non-linear issues. The linear part of the servo system model can be put in the transfer function form:()()()1K Y s U s s s τ=+ Where y(s ) is the output shaft position and u(s) is the motor input. K is the system gain and τ is tthe time constant.An important job for the control systems analyst is to know how to measure the values of the gains K and the time constant . To make it easier to follow in this case we can say that for example, the CE110 Servo Trainer has been designed to give a gain of one between the motor input and the motor speed, and anapproximate gain of K = 2 between the measured speed and the measured shaft position. The nominal value of the time constant is 1.5. So the transfer function model can be decomposed into the transfer function from the motor input to the motor speed v(s), an d the transfer function from the motor speed to the output shaft position.()1()(s)1()()v s U s kU s Y s s τ=+=Many control systems design tools use a state space representation of the system model. In servo systems the states are the velocity and position of the servo system output shaft. Rearranging the system transfer model gives the state space form:Also note that the servo system measured variables in the state model are the position of the shaft y (using a position encoder or potentiometer) and the velocity v (using a speed encoder). The linear models given above are the basis of the design of servo controllers. A real servo however has non-linear components that influence its dynamic behaviour. The main nonlinearities are Coulombfriction in the moving parts and the dead zone and saturation in the motor input amplifier. This is advanced control and we will not cover it in this white paper.Servo mainly rely on impulse to locate, basically can be understood, the servo motor receives a pulse, a pulse will rotate the corresponding point of view, in order to achieve the displacement, because the servo motor itself has issued a pulse function, so the servoEach motor to rotate a point of view, is issued by the corresponding number of pulses, so that the pulse and servo motors to accept the formation of the echo, or called closed-loop, this way, the system will know the number of pulses sent to the servo motor, while the number of receivedpulse came back, so that we can very accurately control the motor rotation, in order to achieve accurate positioning, can reach 0.001mm.DC servo motor into brush and brushless motors.Brush motor low cost, simple structure, starting torque, wide speed range, easy control, need to maintain, but easy to maintain (replacement carbon brushes), generate electromagnetic interference, the environment requirements.So it can be used for cost-sensitive general industrial and civil applications.Brushless motor, small size, light weight, large output, fast response, high speed, small inertia, rotational smoothness, torque and stability.Control complex, easy to implement intelligent, flexible way of their electronic commutation, the commutation can be square wave or sinusoidal commutation.Motor maintenance-free, high efficiency, low operating temperature, electromagnetic radiation is very small, long-life, can be used for a variety of environments.Brushless AC servo motor is divided into synchronous and asynchronous motors, motion control in the current synchronous motor is generally used, and its power range, can do a lot of rge inertia, the maximum rotation speed is low, and with the power increases rapidly decreased.Thus suitable for applications that run on low speed steady. Servo motor rotor is permanent magnet, the drive control of the U / V / W three-phase power to form fields, the rotor in the magnetic field under the rotation, while the motor comes with encoder feedback signal to the drive, the drive according to the feedback valuecompared with the target value, adjusting the angle of the rotor rotation.Depends on the accuracy of the servo motor encoder accuracy (lines).Question:AC servo motors and brushless DC servo motor function, what is the difference? A: AC servo better because a sine wave control, torque ripple small.DC servo is a trapezoidal wave.But the DC servo is relatively simple, cheap3. Example of a Servo SystemThe figure 1 shows the CE110 Servo Trainer from TQ Education and Training Ltd. This is a classic andcomprehensive representation of the servo control problem. It contains all relevant features that can befound in a practical servo system. The centre section of the system are the main hardware elements, fromthe left they are:1. The inertial load2. The speed sensor3. An active load (in this case a generator, G)4. The servo motor, M5. An electric clutch and gearbox (can you see the picture of a gear system on the right?)6. And under the gear system is the output shaft with a position sensor.The electric clutch allow the position system to be disconnected to study velocity control problems. Thegearbox is included because servo mechanisms for position control very often havegearboxes to reducespeed and increase torque. The generator is included so that control under variable load can beinvestigated.At the top of the front panel are electronic versions of all the nonlinear elements that can be found in realservos – these are used to teach nonlinear compensation and to understand what to look for in practicalsituations. We will be using the linear motor with internal load and position output through a gearbox toillustrate servo control in action. I might show some nonlinear behaviour in this white paper, but thenagain, I might not – it depends on how nice you are to me as I sit on this keyboard, all the time dreamingof my beautiful mountain homeland and mein Verlobter.4. Servo System ControllersThere are many, many alternative controller design theories that can be used to control a servomechanism. Possibly there are too many. Here is a list of most of the techniques:1. Three term (PID) control2. Velocity Feedback Control3. Phase Lead Compensation4. State Feedback Control5. State Observer Implementation and Control6. Linear Quadratic Regulator (LQR)7. Linear Quadratic Gaussian (LQG)8. Robust Control9. Sliding Mode and Variable Structure Control10. Dead Beat ControlEach of the above can be implemented as a continous time method or a digital method based on Ztransforms. Also it is possible to use techniques such as fuzzy control and its variants. A bewilderingchoice is it not? And what is more, all of them can give an acceptable performance if designed with careand by an expert. For example, robust control potentially gives the best technicaland practical results, butan expert is required to select the design factors required and to get a simple implementable controller.5. Introduction permanent magnet AC servo motor80 years since the 20th century, with the integrated circuits, power electronics and AC variable speed drive technology, permanent magnet AC servo drive technology with outstanding development, national electrical manufacturers have launched their own well-known AC servo motor and servo drive seriesand continue to improveand update products.AC servo system has become a contemporary high-performance servo systems the main development direction, so that the original DC servo facing the crisis of being eliminated.90 years later, the world has been commercialized by AC servo digital control system is a sine wave motor servo drive.AC servo drive the rapid development of the field in thetransmission.Permanent magnet AC servo motor compared with DC servo motor, the main advantages are: ⑴without brush and commutator, it is reliable and maintenance requirements for maintenance and low.⑵cooling the stator winding more convenient.⑶inertia is small, easy-to improve the system fast.⑷adapted to high-speed high torque working condition.⑸under the same power, smaller size and weight.Since the German MANNESMANN of Rexroth Indramat division in the company's Hanover Trade Fair 1978 was officially launched MAC permanent magnet AC servo motor and drive system, which marks this new generation of AC servo technology has entered the practical stage.To the late 20th century, 80 years, the company has a complete line of products.The servo-device market are turning to the exchange system.Early analog systems such as zero-drift, interference, reliability, accuracy and flexibility in areas such as lack of motion control is still not fully meet the requirements, in recent years with the microprocessor, the new digital signal processor (DSP) applicationsthe emergence of digital control system, the control section can be carried out entirely by the software, called Jiang hazy or Tuan Shen Jing only fresh coarse hempen fabric, valiant only Shen of the permanent magnet AC servo system.So far, high-performance servo systems mostly use electrical permanent magnet synchronous AC servo motor, control the drive to use more fast, accurate positioning of the all-digital servo system.Typical manufacturers such as Siemens of Germany, the United States and Japan Kollmorgen companies such as Panasonic and Yaskawa.Yaskawa Electric has launched a small-scale production of AC servomotors and drives, in which D series for CNC machine tools (maximum speed of 1000r/min, torque is 0.25 ~ 2.8Nm), R series is suitable for the robot (the highest speed of 3000r/min, torque is 0.016 ~ 0.16Nm).Launched after the M, F, S, H, C, G six series.90 20th century, has introduced a new D-series and Rseries.Rectangular wave drive from the old series, 8051 to control the sine wave drive, 80C, 154CPU and gate array chip control, torque ripple from 24% to 7%, and improved reliability.Thus, the formation of only a few years, eight series (power range of 0.05 ~ 6kW) more complete system to meet the working machinery, transportation agencies, welding robots, assembly robots, electronic components, processing machinery, printing presses, high speed winding machine, winding machines for different C equipment to produce the famous Japanese law that g (Fanuc) company, in the 20th century has introduced the mid-80s S series (13 specifications), and L series (5 specifications) of the permanent magnet AC servo motor.L Series has a smaller moment of inertia and the mechanical time constant, particularly for applications that require fast response servo system.Other Japanese manufacturers, such as: Mitsubishi Motors (HC-KFS, HC-MFS, HC-SFS, HC-RFS and HC-UFS series), Toshiba Seiki (SM series), Okuma Iron Works (BL series), Sanyo Electric(BL series), standing stones motor (S series) and many other manufacturers have entered the permanent magnet AC servo system fray.Germany Rexroth (Rexroth) The MAC Indramat Division Series AC servo motor Total 7 Frame 92 specifications.Germany's Siemens (Siemens)'s IFT5 series three-phase permanent magnet AC servo motor standard and short form is divided into two categories, a total of 98 species of 8 frame size specifications.Allegedly the same series AC servo motor and DC servo motor output torque compared IHU series, which weighs only 1 / 2, supporting the transistor PWM drive 6SC61 series, the most for 6-axis motor control.Bosch (BOSCH) ferrite magnets produced the SD series (17 standard) and rare earth permanent magnet of the SE series (8 specs) AC servo motor and drive controller Servodyn SM series.American production companies Gettys servo device as Gould Electronics, once a division of (Motion Control Division), production ofM600 series A600 series AC servo motor and servo drives.After the merger to the AEG, Gettys name restored, the introduction of A700 all-digital AC servo system.U.S. AB (ALLEN-BRADLEY) 1326-based production company driver division ferrite permanent magnet AC servo motor and servo controller PWM AC 1391.Frame size motors including 3 of 30 specifications.ID (Industrial Drives) is a famous Cole Morgan (Kollmorgen) of industrial drives division, has produced BR-210, BR-310, BR-510 a total of 41 specifications of the three series of brushless servo motor and servo BDS3drive.Since 1989, launched a new series designedsolely doped Jian Pirates (Goldline) permanent magnet AC servo motor, including the B (small inertia), M (Middle Inertia) and EB (explosion proof) three categories, 10,20,40,60,80 five frame sizes, each of 42 categories of specifications, all using NdFeB permanent magnet, torque range of 0.84 ~ 111.2Nm, a power range of 0.54 ~ 15.7kW.Supporting the drive has BDS4 (analog), BDS5 (digital type, with position control) and the Smart Drive (digital type) of three series, the maximum continuous current of 55A.Goldline Series represents contemporary art in permanent magnet AC servo technology.Ireland's Inland formerly a division of Kollmorgen abroad, now merged into the AEG, the production of DC servo motors, DC torque motor and servo amplifier is known.Production BHT1100, 2200,3300 three frame sizes of 17 kinds of specifications of SmCo permanent magnet AC servo motor and eight controllers.French Alsthom Group factory in Paris Parvex LC series (long form) and GC series (short) 14 AC servo motor specifications, and production AXODYN series of drives.The former Soviet Union for the CNC machine tools and robots servo control developed two series of AC servo motor.One ДBy series uses ferrite magnets, there are two frame sizes, frame sizes are 3 for each core length, each with two winding data, a total of 12 specifications, a continuous torqu e range of 7 ~ 35N.m.2ДBy series uses rare earth permanent magnet, 6 frame size 17 specifications, the torque range is 0.1 ~170N.m, supporting the 3ДБ controller.In recent years, Panasonic has introduced the all-digital AC servo system based MINAS series, in which permanent magnet AC servo motor with MSMA series of small inertia-type, power from 0.03 ~ 5kW, a total of 18 kinds of specifications; the inertia type with MDMA, MGMA, MFMA threeseries, the power from 0.75 ~ 4.5kW, 23 kinds of specifications, MHMA series of large inertia motor power range from 0.5 ~ 5kW, 7 kinds of specifications.Samsung developed in recent years, all-digital AC servo motor and drive system, which FAGA AC servo motor series of CSM, CSMG, CSMZ, CSMD, CSMF, CSMS, CSMH, CSMN, CSMX a variety of models, the power from 15W ~ 5kW.Now often used (Powerrate) This comprehensive index as the servo motor quality factor, measuring a variety of AC and DC servo motor contrast and dynamic response performance stepper motor.Continuous motor power, said the rate of change (rated) torque and rotor inertia ratio.Change rate is calculated by power analysis, the permanent magnet AC servo motor technology indicators for the United States ID, Goldline Series is the best, followed by Germany's Siemens in IFT5 series.摘要:这是根据控制系统理论撰写的关与系统模型、分析和控制的一系列白皮书之一,目的在于给出一些重要的控制理论和控制过程。
schneider伺服中英文对照
Description 描述configuration 组态reference 参考Keypad port 键盘端口Monodrop multidropAction 行动modify 修改identify 鉴定Acceleration of profile genearator 加速度波形发生器Nominal power of external braking resistor 外部制动电阻的额定功率Resistance value of external braking resistor 外部制动电阻的电阻值DC bus voltage low threshold for quick stop 直流母线电压低时快速停止Deceleration of profile generator 减速波形发生器Specification of the control mode 规范控制模式Reference speed for moving away from switch 从开关移动的参考速度Distance from switching edge to reference point 从开关边缘的距离参考点Reference speed for searching the switch 寻找开关的参考速度Continuous motor current at standstill 连续电机停止时的电流Maximum permissible time for M_I_max 电流最大值的允许时间Current limitation 电流限制Current limitation for halt 暂停时的电流限制Current limitation for quick stop 快速停止时的电流限制Mass moment of inertia of motor 电机惯性质量矩Jog distance prior to continuous run 慢跑距离之前连续运行Speed controller P-term 速度控制器的P-任期Motor inductance d-diretion 电机电感D-方向Signal evaluation LIMN LIMN的信号评估Signal evaluation LIMPMotor inductance q-direction 电机电感Q-方向Modbus baud rate 波特率Motor EMF constant Ke 电机电动势常数Maximum motor current 最大电流Nominal motor speed 电机额定转速Maximum permissible motor speed 最大允许电机转速Nominal motor speed 电机额定转速Motor serial numberMotor typeSpeed for fast jog 速度快慢跑Speed limitation 速度限制Denominator of position scaling 分母的位置缩放Numerator of position scaling 分子的位置缩放Speed for slow jog 慢跑的速度Limitation of ref.speed for op.modes with profile generation文件生成op.modes参考速度的限制Maximum current of power amplifier 最大电流功率放大器Nominal current of power amplifier 额定电流功率放大器Maximum permissible power amplifier temperature 允许的最大功率放大器温度Temperature warning threshold of power amplifier功率放大器的温度警告阈值Nominal power of internal braking resistor 内部制动电阻的额定功率Firmware program number 固件程序号Absolute positioning only after homing 绝对定位后才寻零Number of pole pairs of motor 电机极对数DC bus voltage low threshold for switching off the drive 直流母线电压低门槛关掉驱动器Signal vealuation REFInternal braking resistor 内部制动电阻Motor connection resistance 电机连接电阻Motor encoder type 电机编码器类型Device serial number 设备的序列号Filter time constant refece value filter of the refece speed value 滤波器的时间常数参考价值的参考速度值滤波器Maximum motor temperature 电动机的最高温度Speed controller setting time 速度控制器的设定时间Maximum motor torque 电机的最大转矩Nominal motor torque 电机额定转矩Maximum permissible DC bus voltage 允许的最大直流母线电压Nominal motor voltage 电机额定电压Signal selection position interface 规范控制模式Signal selection position interface 信号选择位置接口Current limitation 电流限制Curretn limitation for quick stop 快停时的电流限制Current limitation for halt 暂停时的电流限制Speed limitation 速度限制Profibus addressNumerator of position scaling 分子的位置缩放Denominator of position scaling 分母的位置缩放Encoder simulation setting of resolution 编码器分辨率的模拟设置Braking resistor control 制动电阻控制Nominal power of external braking resistor 外部制动电阻的额定功率Resistance value of external braking resistor 外部制动电阻的电阻值Permissible switch on time of external braking resistor 允许外部制动电阻的开关时间Time delay during opening/releasing the holding brake 在开放/释放抱闸时间延迟Time delay during closing of holding brake 在抱闸关闭时间延迟Encoder simulation-setting of resolution 编码器模拟分辨率的设置Display when motor rotates 电机转动时显示Lock HMI 锁定人机界面Signal evaluation LIMPSignal evaluation LIMNSignal evaluation REFNegative position limit for software limit switch 软件限位开关位置限制Postitve position limit for software limit switchMomitoring of software limit switches 监控软件限位开关Numerator of position scaling 分子的位置缩放Denominator of position scaling 分母的位置缩放Defination of derection of rotation 旋转方向的定义Limitation of reference speed for operate modes with profile generation文件生成的参考速度的限制,操作模式Acceleration of profile generator 加速度波形发生器Deceleration of profile generator 减速波形发生器Jerk limitation 挺举(振动、抖动)限制Absolute positioning only after homing 绝对定位后才寻零Error response to failure of a mains phase of 3-phase devices 失败的错误响应的三相设备的电源相Error response to tracking error 跟踪误差的错误响应Max.permissible tracking error of the position controller 位置控制器的电缆导体的长期允许工作不超过跟踪误差Commutation monitoringSpeed controller P-term 速度控制器的P-任期Speed controller setting time 速度控制器的设定时间Poittion controller P-term 位置控制器的P-任期Speed feed-forward control position controller 速度前馈控制的位置控制器Filter time constant ref.value filter of the ref.courretn value 滤波器的时间常数的ref.current 值ref.value过滤器Filter time constant ref.vqlue filter of the ref.speed value 滤波器的时间常数的ref.speed 值ref.value过滤器Speed limitationCurretn limitationCurretn limitation for quick stopCurretn limitation for haltTimeout time for standstill window monitoring 超时时间停顿窗口监测Standstil window ,time 停顿的窗口,时间Standstill window,permissible control deviation 停顿窗口,允许控制偏差Selection of special gear ratios 特殊齿轮比的选择Numerator of gear ratio 齿轮比分子Denominator of gear ratio 齿轮比的分母Enabled movement direction of gear processing 齿轮加工功能的运动方向Direction of counting at position interface 位置计数接口的方向Reference speed for searching the switch 寻找开关的参考速度Reference speed for moving away from switch 从交换机的参考速度Max.search distance after overrun of swetch 超出开关后的最大寻找距离Maximum run-out distance 最大运行距离Distance from switching edge to reference point 从开关边缘的距离参考点Position at reference point 在参考点位置Speed for slow jog 慢跑的速度Speed for fast jogJog distance prior to continuous run 慢跑距离之前连续运行Wait time prior to continuous run 连续运行前的等待时间Mapping of PZD5+6 to drive 映射到驱动PZD5+6Mapping of PZD5+6 to master 掌握5 +6 PZD的映射Mapping of PZD5 to masterInhibit time during read tasks in the parameter channel PBSafeState Safe state抑制过程中的参数通道PBSafeState安全状态读取的任务的时间Error response to process data channel processing fault 错误响应处理数据通道处理故障Modbus addressModbus baud rateModbus data formatModbus word sequence for double words (32 bit values) 双字的Modbus字序列(32位值)DatasheetNominal power of internal braking resistor 内部制动电阻的额定功率Internal braking resistor 内部制动电阻Firmware version number 固件版本号Device serial number 设备的序列号Firmware program number 固件程序号Maximum permissible motor speed 最大允许电机转速Nominal motor speed 电机额定转速Number of pole pairs of motor 电机极对数Motor connection resistance 电机连接电阻Motor moment of inertia of motor 电机力矩电机的惯性Motor EMF constant Ke 电机电动势常数柯Nominal motor voltage 电机额定电压Maximum motor torque 电机的最大转矩Nominal motor torque 电机额定转矩Motor inductance q-direction 电机电感Q-方向Motor inductance d-directionTemperature warning threshold of motor 电机温度警告阈值Maximum motor temperature 电动机的最高温度Maximum permissible time for M_I_max 最大允许时间为M_I_max Type of temperature sensor 温度传感器的类型Nominal current of power amplifier 额定电流功率放大器Maximum current of power amplifier 最大电流功率放大器DC bus voltage low threshold for switching off the drive 直流母线电压低门槛关掉驱动器Maximum permissible DC bus voltage 允许的最大直流母线电压DC bus voltage low threshold for quick stop 直流母线电压低门槛,快速停止Maximum permissible power amplifier temperature 允许的最大功率放大器温度Temperature warning threshold of power amplifier 功率放大器的温度警告阈值Mass moment of inertia of the complete system 完整的系统惯性质量矩Adaptation of control parameters(harder/softer) 控制参数的适应化修改(难/柔和)Type of coupling of the system 系统的耦合类型Speed of rotation tolerance during determination of the parameter set 测定的参数集的速度在旋转性Speed jump for Autotuning 速度跳跃的自动调整(自动调整的速度跳跃)Waiting time between autotuning steps 自动调整步骤之间的等待时间Current limitation 电流限制Speed controller p-term 速度控制器的P-任期Speed controller setting time 速度控制器的设定时间Position controller p-term 位置控制器的P-任期Speed feed-forward control position controller 速度前馈控制的位置控制器Speed limitation 车速限制Filter time constant ref.value filter of the ref.speed value 滤波器的时间常数的ref.speed值ref.value过滤器Filter time constant ref.value filter of the ref.current value滤波器的时间常数的ref.current值ref.value过滤器Max.permissible distance 电缆导体的长期允许工作不超过距离Regulation loop Regulation loop。
专外英语翻译文章
Translation of Technology English------What and Why of a Machine ServoStudent ID: P111813881Class: 2Name: Shaodong HeApril 21,20014What and Why of a Machine ServoShaodong He1, a, Yongmei Ma2,b1College of Electrical Engineering, Northwest University for Nationalities, Lanzhou, Gansu2College of Electrical Engineering, Northwest University for Nationalities, Lanzhou, GansuA502102088@, b1423407061@Keywords::Servo control, feedback, servo drives, AC servo drive industry, transistors, electric drives, servo systems.Abstract:Servo system is used to accurately reproduce or follow a process of feedback control systems.Servo derived from the English word "Servo", as the name suggests, refers to an external system to follow instructions that people expect movement, and the movement of elements which include position, speed and torque and other physical quantities. Review servo system development process, from the earliest hydraulic, pneumatic to today's electrified by a servo motor, feedback device and the controller consists of a servo system.Today, as technology continues to mature, AC servo motor technology with its excellent value for money, and gradually become the dominant executive to replace DC motor servo system. AC servo system technology also makes the market matures showing rapid diversification.什么是伺服机器及为什么何绍东1, a, 马永梅2,b1甘肃省兰州市西北民族大学榆中校区电气工程学院2甘肃省兰州市西北民族大学榆中校区电气工程学院a502102088@, b1423407061@关键字:伺服控制,反馈,伺服驱动,交流电工业伺服驱动器,晶体管,电动驱动,伺服系统。
伺服电机原理英文版
Sinusoidal and trapezoidal brushless servos
Incremental encoder feedback for brushless motors
Closed-loop control for highperformance motion
2磁极 (1S1N),6组绕线(6槽)
2极,3组绕线
4极12槽
• Due to the construction technique of a brushless servomotor (inside-out compared to the DC servomotor) the motor losses are almost entirely in the stator, resulting in a short thermal path to the ambient allowing more input power into the windings. Passing air over the motor frame can further increase heat transfer to the ambient.
electronically commutated motor or brushless servomotor
The primary limitation of the DC servomotor is the mechanical commutator:
• brush replacement • brush run-in after replacement, • brush RFI (radio frequency interference) • voltage/current limitations.
【资料】步进电机和伺服电机的系统控制中英文翻译资料
【关键字】资料SELECTING THE MOTOR THAT SUITS YOUR APPLICATION Motion control, in its widest sense, could relate to anything from a welding robot to the hydraulic system in a mobile crane. In the field of Electronic Motion Control, we are primarily concerned with systems falling within a limited power range, typically up to about 10HP (7KW), and requiring precision in one or more aspects. This may involve accurate control of distance or speed, very often both and sometimes other parameters such as torque or acceleration rate. In the case of the two examples given, the welding robot requires precise control of both speed and distance; the crane hydraulic system uses the driver as the feedback system so its accuracy varies with the skill of the operator. This wouldn’t be considered a motion control system in the strict sense of the term. Our standard motion control system consists of three basic elements:Fig. 1 Elements of motion control systemThe motor,This may be a stepper motor (either rotary or linear), a DC brush motor or a brushless servo motor. The motor needs to be fitted with some kind of feedback device unless it is a stepper motor.Fig. 2 shows a system complete with feedback to control motor speed. Such a system is known as a closed-loop velocity servo system.Fig. 2 Typical closed loop (velocity) servo systemThe drive,this is an electronic power amplifier that delivers the power to operate the motor in response to low-level control signals. In general, the drive will be specifically designed to operate with a particular motor type –you can’t use a stepper drive to operate a DC brush motor, for instance.Application Areas of Motor TypesStepper MotorsStepper Motor BenefitsStepper motors have the following benefits:• Low cost• Ruggedness• Simplicity in construction• High reliability• No maintenance• Wide acceptance• No tweaking to stabilize• No feedback components are needed• They work in just about any environment• Inherently more failsafe than servo motors.There is virtually no conceivable failure within the stepper drive module that could cause the motor to run away. Stepper motors are simple to drive and control in an open-loop configuration. They only require four leads. They provide excellent torque at low speeds, up to 5 times the continuous torque of a brush motor of the same frame size or double the torque of the equivalent brushless motor. This often eliminates the need for a gearbox. A stepper-driven-system is inherently stiff, with known limits to the dynamic position error.Stepper Motor DisadvantagesStepper motors have the following disadvantages:• Resonance effects and relatively long settling times• Rough performance at low speed unless a micro step drive is used• Liability to undetected position loss as a result of operating open-loop• They consume current regardless of load conditions and therefore tend to run hot• Losses at speed are relatively high and can cause excessive heating, and they are frequently noisy (especially at high speeds).• They can exhibit lag-lead oscillation, which is difficult to damp. There is a limit to their available size, and positioning accuracy relies on the mechanics (e.g., ball screw accuracy). Many of these drawbacks can be overcome by the use of a closed-loop control scheme. Note: The Comp motor Zeta Series minimizes or reduces many of these different stepper motor disadvantages. There are three main stepper motor types:• Permanent Magnet (P.M.) Motors• Variable Reluctance (V.R.) Motors• Hybrid MotorsWhen the motor is driven in its full-step mode, energizing two windings or “phases” at a time (see Fig. 3), the torque available on each step will be the same (subject to very small variations in the motor and drive characteristics). In the half-step mode, we are alternately energizing two phases and then only one as shown in Fig. 4. Assuming the drive delivers the same winding current in each case, this will cause greater torque to be produced when there are two windings energized. In other words, alternate steps will be strong and weak. This does not represent a major deterrent to motor performance—the available torque is obviously limited by the weaker step, but there will be a significant improvement in low-speed smoothness over the full-step mode.Clearly, we would like to produce approximately equal torque on every step, and this torque should be at the level of the stronger step. We can achieve this by using a higher current level when there is only one winding energized. This does not over dissipate the motor because the manufacturer’s current rating assumes two phases to be energized the current rating is based on the allowable case temperature). With only one phase energized, the same total power will be dissipated if the current is increased by 40%. Using this higher current in the one-phase-on state produces approximately equal torque on alternate steps (see Fig. 5).Fig. 3 Full step currentFig. 4 Half step currentFig.5 Half step current, profiledWe have seen that energizing both phases with equal currents produces an intermediate step position half-way between the one-phase-one positions. If the two phase currents are unequal, the rotor position will be shifted towards the stronger pole. This effect is utilized in the micro stepping drive, which subdivides the basic motor step by proportioning the current in the two windings. In this way, the step size is reduced and the low-speed smoothness is dramatically improved. High-resolution micro step drives divide the full motor step into as many as 500 micro steps, giving 100,000 steps per revolution. In this situation, the current pattern in the windings closely resembles two sine waves with a 90°phase shift between them (see Fig. 6). The motor is now being driven very much as though it is a conventional AC synchronous motor. In fact, the stepper motor can be driven in this way from a 60 Hz-US (50Hz-Europe) sine wave source by including a capacitor inseries with one phase. It will rotate at 72 rpm.Fig. 6 Phase currents in micro step modeStandard 200-Step Hybrid MotorThe standard stepper motor operates in the same way as our simple model, but has a greater number of teeth on the rotor and stator, giving a smaller basic step size. The rotor is in two sections as before, but has 50 teeth on each section. The half-tooth displacement between the two sections is retained. The stator has 8 poles each with 5 teeth, making a total of 40 teeth (see Fig. 7).Fig.7 200-step hybrid motorIf we imagine that a tooth is placed in each of the gaps between the stator poles, there would be a total of 48 teeth, two less than the number of rotor teeth. So if rotor and stator teeth are aligned at 12 o’clock, they will also be aligned at 6 o’clock. At 3 o’clock and 9 o’clock the teeth will be misaligned. However, due to the displacement between the sets of rotor teeth, alignment will occur at 3 o’clock and 9 o’clock at the other end of the rotor.The windings are arranged in sets of four, and wound such that diametrically-opposite poles are the same. So referring to Fig. 7, the north poles at 12 and 6 o’clock attract the south-pole teeth at the front of the rotor; the south poles at 3 and 9 o’clock attract the north-pole teeth at the back. By switching current to the second set of c oils, the stator field pattern rotates through 45°. However, to align with this new field, the rotor only has to turn through 1.8°. This is equivalent to one quarter of a tooth pitch on the rotor, giving 200 full steps per revolution.Note that there are as many detent positions as there are full steps per rev, normally 200. The detent positions correspond with rotor teeth being fully aligned with stator teeth. When power is applied to a stepper drive, it is usual for it to energize in the “zero phase” state in which there is current in both sets of windings. The resulting rotor position does not correspond with a natural detent position, so an unloaded motor will always move by at least one half steps at power-on. Of course, if the system was turned off other than in the zero phase state, or the motor is moved in the meantime, a greater movement may be seen at power-up.Another point to remember is that for a given current pattern in the windings, there are as many stable positions as there are rotor teeth (50 for a 200-step motor). If a motor isde-synchronized, the resulting positional error will always be a whole number of rotor teeth or a multiple of 7.2°. A motor cannot “miss” individual steps – position errors of one or two steps must be due to noise, spurious step pulses or a controller fault.Fig. 8 Digital servo driveDigital Servo Drive OperationFig.8 shows the components of a digital drive for a servo motor. All the main control functions are carried out by the microprocessor, which drives a D-to-A converter to produce an analog torque demand signal. From this point on, the drive is very much like an analog servo amplifier.Feedback information is derived from an encoder attached to the motor shaft. The encoder generates a pulse stream from which the processor can determine the distance traveled, and by calculating the pulse frequency it is possible to measure velocity.The digital drive performs the same operations as its analog counterpart, but does so by solving a series of equations. The microprocessor is programmed with a mathematical model (or “algorithm”) of the equivalent analog system. This model predicts the behavior of the system. It also takes into account additional information like the output velocity, the rate of change of the input and the various tuning settings.To solve all the equations takes a finite amount of time, even with a fast processor –this time is typically between 100ms and 2ms. During this time, the torque demand must remain constant at its previously-calculated value and there will be no response to a change at the input or output. This “update time” therefore becomes a critical factor in the performance of a digital servo and in a high-performance system it must be kept to a minimum.The tuning of a digital servo is performed either by pushbuttons or by sending numerical data from a computer or terminal. No potentiometer adjustments are involved. The tuning data is used to set various coefficients in the servo algorithm and hence determines the behavior of the system. Even if the tuning is carried out using pushbuttons, the final values can be uploaded to a terminal to allow easy repetition.Some applications, the load inertia varies between wide limits – think of an arm robot that starts off unloaded and later carries a heavy load at full extension. The change in inertia may well be a factor of 20 or more, and such a change requires that the drive isre-tuned to maintain stable performance. This is simply achieved by sending the new tuning values at the appropriate point in the operating cycle.步进电机和伺服电机的系统控制运动控制,在其最广泛的意义上说,可能与任何移动式起重机中焊接机器人液压系统有关。
电机和传动部件外文文献翻译、中英文翻译
Motor and Drive PartsTIMING BELT REPLACEMENT1, Power source must be connected to machine and turned on. Turn the power disconnect/lockout switch to the “O” (OFF) position and lock out. Allow machine to come to a complete stop, then press the “I” (START) button and hold for two seconds to verify that the machine will not start.2, After the green guard locking switch status light illuminates (when all rotating parts are idle) rotate the latch handle on the gear compartment door and open the gear door.3, Remove the belt guard by removing the hand knob that holds the guard (inside the gear compartment).4, Loosen the two pinch fasteners in the jack shaft spindle assembly (Figure 50).5, Loosen the motor mounting fasteners and slide the motor to release belt tension. Remove the belts (Figure51).Figure 50—Loosen pinch fasteners in jack shat spindle assembly (1) Pinch Fasteners,(2) Jack Shaft Spindle AssemblyFigure 51 – Timing Belts(1)TIMING BELT TENSION1, Use the motor tension wrench to slide the motor and apply tension to the timing belts. The pin on the wrench fits in a hole on the support housing(Figure52). The pinch fasteners in the jack shaft spindle assembly must be properly tension both belts. Tighten the motor mounting fasteners, and then tighten the pinch fasteners in the jack shaft spindle assembly.Figure 52 – Using the motor to apply belt tension. (1) Motor Tension Wrench2, Replace belt guard and tighten with the hand knob.3, Close and rotate latch handle connecting the gear compartment door and support housing.Electrical AssemblyINSPECTIONW ARNING: In the event of an electrical problem, only a qualified electrician should inspect or repair the fault. Voltages dangerous to life exist in the starter enclosure! The power disconnect/lockout switch must be in the “O”(OFF) position. Live voltages are still present in the box even though disconnect is off. Always disconnect and lock out power source before beginning electrical inspection or repair.The electrical assembly must be in good working condition before operating this machine. For a description of the amplifier and safety switch operation and method for checking this system. Electrical schematics are located in the starter enclosure. Refer to Figures53 and 54 and inspect the following:Figure 53 –Starter enclosure interior with variable frequency drive. (1) Disconnect Switch, (2) Guard Locking Switch Power Disconnect, (3) Main Fuses, (4) Earthing Terminals, (5) Transformer, (6) Transformer Fuses Block, (7) Variable Frequency Drive, (8) Contactor, (9) Standstill Monitor, (10) Control RelayFigure 54 – Starter enclosure interior, across-the-line start. (1) Disconnect Switch, (2) Guard Locking Switch Power Disconnect, (3) Main Fuses, (4) Earthing Terminals, (5) Transformer, (6) Transformer Fuse Block, (7) Overload Relay, (8) Contactor, (9) Standstill Monitor, (10) Control RelayStarter enclosure: Inspect interior of starter enclosure for corrosion. If a significant amount of water accumulates in the bottom of the starter enclosure, check the breather drain. Breather drain should be free from obstruction. Excess water could also indicate an opening or loose fitting that allows water to enter the enclosure. Check all access points to the enclosure. Check gasket around door and window. Inspect push/pull stop button, “I”(START) push button assemblies, selector switches and pilot light assembly for damage or corrosion. Replace rubber boots and pilot light lens if damaged.NOTE: Electrical components that fail due to water or chemical contamination are not covered under the warranty.Fuses: Remove transformer fuses, located in the transformer fuse blocks. Check with an ohmmeter or continuity light. If one fuse is replaced, all others of that type fuse should also be replaced.Machines equipped with variable frequency drive(VFD):The drive currently in use is the GPD315/V 7. If the digital display on the drive is not illuminated when the machine is energized, contact Urschel Laboratories.Standstill monitor: Terminals should be tight and free from corrosion. Monitor must be replaced if damaged.Power line filter (CE compliant machine with VFD): See the electrical assemblies illustrations in the “Parts” section of this manual for part locations.Guard locking switches:Replace or straighten actuator key if it is damaged or bent. Check cords for cuts or abrasions. If the green guard locking switch status light does not illuminate when power to the machine is connected, contact Urschel Laboratories. Switch must be replaced if it has been forced open while locked. Use only new screws that are supplied with the switch. Manual release must be in “lock” position when removing and replacing lid( Figure 55).Figure 55 – Guard Locking Switch. (1) Green Guard Locking Switch Status Light, (2) Guard Locking Switch Manual ReleaseGreen status light must be inside the lens when replacing the lid. To maintain watertight features, securely tighten the seven screws for the lid until there is no gap between lid and switch assembly. Do not over tighten.NOTE:The two screws located under the lid on the guard locking switch act as special dowel pins locking the switch assembly into place and must not be substituted.Interrupt switch: Terminals should be tight and free from corrosion. Recommended torque is 5.0 inch pounds (80 inch ounces) or 0.56 Newton-meters. Check sensor, actuator and cord for damage. Switch should be replaced if any defect or damage is defected. Check switch alignment. Actuator must be aligned and within 1/32 (8mm) of sensor to complete safety switch circuit (Figure 56).WARNING: Always perform the guard locking/interrupt switch system test before operating the machine.Figure 56 –Interrupt switch sensor and actuator must be aligned and within 1/32”(8mm). (1) Sensor, (2) ActuatorV ARIABLE FREQUENCY DRIVE PROGRAMMINGA replacement variable frequency drive must have frequencies programmed after the drive has been installed into the electrical enclosure. Refer to the “Speed Chart” on your machine or on page 30 in this manual and program the replacement unit according to the following procedure.WARNING: Starter enclosure must be energized in order to program the drive. Voltages dangerous to life exist when equipment is open and energized! Only a qualified electrician should inspect, install, or program variable frequency drive.1, Turn power disconnect/lockout switch to “O”(OFF). Open starter enclosure door. Operate the power disconnect/lockout switch mechanism in the enclosure to turn power on.2, Set the selector switches to the first drive frequency to be programmed. The frequency drive has a digital operator with a display (Figure 57). The display for the GPD 315/V7 drive will read the lowest setting allowed.Figure 57 – FPD 315 Drive, digital operator. (1) Digital Display,(2) Numeral Change Key, (increase), (3) Numeral Change Key, (decrease), (4) Read/Write Key3, Enter the speed in the display in hertz. Increase or decrease the value with the “numeral change” keys. See the chart for frequency settings.CAUTION: Do not attempt to over speed the motor! Over speeding could create a safety hazard and cause excessive wear on machine parts. Under speeding will cause the motor to overheat.4, With the value correctly displayed and flashing, press the “DATA/ENTER” or “ENTER” key. The display will stop flashing, indicating that the value has been entered.NOTE:Altering preprogrammed speeds will permanently change these values. To return to original settings, follow steps 1-4.5, Operate the power disconnect/lockout switch mechanism in the enclosure to turn power off. Close and lock starter enclosure door.Knife CareKNIFE CARE GUIDELINESKnives should be inspected and sharpened or replaced at regular intervals depending upon operating conditions, type of product and hours of operation. Follow these guidelines for bestresults:1, Do not attempt to remove all defects from the knife edge by sharpening.This practice results in shortened knife life. Small defects will not affect knife performance.2, New knives should not be installed beside worn knives. This arrangement may result in poor quality cuts. Keep all the knives from one spindle in a set and sharpen them together. Periodically check knife width or diameter to make sure all the knives in a set are the same size.3, Recommended minimum dimensions: The following minimum dimensions are intended to give satisfactory results for most applications. However, each customer must look at the quality of cut on his product to determine at what point knives are resharpened beyond usefulness. The minimum dimensions stated are intended to give satisfactory results for most applications. Some customers may be able to give satisfactory results from knives ground smaller, but some may notice a deterioration in quality of out before the minimum size is reached. Measure crosscut knives from the cutting edge to the back of the knife unless otherwise noted; measure the diameter of circular knives unless otherwise noted.SHARPENING EQUIPMENTUrschel Laboratories manufactures machines to quickly and efficiently sharpen knives. The following machine are available;Model WG honing machine is used to sharpen slicing knives and crosscut knives (straight cut only). For the Model DC, use workrest 33224 for 42281 and 42446 crosscut knives and slicing knife insert .Use workrest 33225 for 42460 crosscut knives. Use workrest 33256 for all other slicing knives.Model CKG honing machine is used to place the best possible edge on circular knives. The Model CKG can be purchased from the factory ready to sharpen 3-1/2”circular knives for the Model DC. Honers that are not set up to sharpen 3-1/2” circular knives must have certain parts installed. Use the following procedure:W ARNNING: Honers place an extremely sharp edge on knives; handle knives with care!1, Make sure the honer is unplugged from the power source.2, Install hone assembly, knife holder hub and edge roller stud for 3-1/2’’circular knives (Figure 58). The hone assembly (part number 33083) contains the hone bracket and internal parts, the shield and the honing wheel. The stud on the hone bracket is installed in the second hole from the motor shaft (4” knife position). The knife holder hub (part number 33081) is installed with the raised diameter facing out. The edge roller stud (part number 33023) is installed with the set screw in the second spot drilled hole from the outside end (Note that this part number has remained thesame but the part has been modified. The stud should have four spot drilled holes.) 3, Position the hone shield in as far as possible by loosening the screw and sliding the shield. Retighten the screw.4. Pull the knife clamp hub out of the clamping position. Hold a knife against the knife holder hub. Loosen the set screw in the motor shaft hub and slide the hub and knife on the motor shaft until the knife just touches the honing wheel. Tighten the set screw.5, Adjust the knife clamp if necessary. The knife clamp should hold the knife against the hub tight enough so that it cannot be rotated yet not so tight that it drives the motor back and distorts the base (the brake arm assembly must be properly adjusted to test for knife rotation). To adjust the knife clamp, loosen the two locking nuts and move the clamp in or out.6, Place a knife in the honer and sharpen in the normal manner (see the Model CKG instruction manual for more information). If too much of the knife edge is removed, readjust the hub. If insufficient metal is removed, loosen the screw on the hone shield and slide the hone slightly forward against the knife edge.BUFFINGWARNING: Only qualified trained personnel should buff knives. Use adequate eye and respiratory protection, and a properly guarded buffing wheel. Hold knife securely. Never attempt to catch a dropped knife! Should you drop a knife during the buffing operation, move away and let it tall.When crosscut knives are sharpened by grinding, filing or honing, a slight wire edge may be produced. Buffing will remove this wire edge.Install two to four 10" (254 mm) diameter buffing wheels side by side between flanges at least2" (51 mm) in diameter. Buffing wheels and bars of buffing compound are available from Urschel Laboratories (see “Tools", page67).Turn on the buffer (3600RPM) and hold the bar of buffing compound firmly against the outside diameter of the buffing wheels to apply alight coating of compound. Apply compound frequently to obtain sharp edges quickly.NOTE: If excess compound is applied, the wheel will harden, making it ineffective.Should this occur, Use a buffing wheel rake, available from an industrial supplier, to soften the wheel.When holding knives, be cautions and use a firm grip. Hold the knife firmly with the bevel side up, parallel with and just below the center line of the shaft of the buffer (Figure 58). Push the knife edge into the buffing wheel, penetrating the wheel 1/16"-1/8"(1.5-3mm). Move the knife endwise and buff the entire edge across the buffing wheel with a steady rapid movement in each direction. Several rapid passes are better than one or two slow ones. Do not hold the knife in one area of the buffing wheel too long as the edge may heat and burn. If a burr or wire edge remains, turn the knife over and buff with the bevel side down. Continue buffing, switching from side to side, until wire edge or burr is gone.Sharpen all sides of crinkle knife edges by tipping the knife endwise at a slight angle, first in one direction and then in the other. Next, the knife is held straight and level to buff the remainder of the cutting edge.With bevel side up, sharpen side surface of crinkle knife edge by tipping the knife endwise at a slight angle, first in one direction and then in the other. Next, the knife is held straight and level tobuff the remainder of the cutting edge.Figure 58 –Model CKG honing machine set to sharpen 3-1/2”circular knives (1) Hone Bracket, (2) Mounting Position for Hone Assembly, (3) Knife Holder Hub, (4) Set Screw,(5) Edge Roller Stud (set screw seats in second hole), (6) Hone Shield, (7) Screw, (8) Knife Clamp Hub, (9) Locking Nuts, (10) Honing WheelFailure to obtain sharp edges by buffing may be caused by the following:1, Edges may be too dull or blunt. Blunt edges must always be ground or filed to restore a bevel width and angle similar to that found on a new knife.2, Knives must be correctly held against the buffing wheel (Figure 59).3, Too little or too much buffing compound on the wheel.4, Undersize buffing wheels. Discard the buffing wheels when they are worn to8-3/4" (222 mm) diameter.Figure 59 – Correct position (top) and incorrect position (bottom) for knife during buffing .(1) Knife, (2) Buffing WheelPROBLEM CAUSE CORRECTIONMachine Does Not Start Power disconnect lockout switch isin the "O"(OFF)positionTurn power disconnect lockoutswitch to the "I"(ON) position. Manual release on either of theguard locking switches is in the"unlock" positionTurn manual release to the"lock" position on bothswitches, page 17.Guard locking switch powerdisconnect is in the"O"(OFF)positionTurn guard locking switchpower disconnect to the"I"(ON) position, page 54.Push/pull stop button is not pulledout after being pushedPull push/pull stop button out,page 28.Covers and guards not securelyclosedMake certain covers andguards are securely closed.Check for bent or twistedbrackets that will preventswitches from lining up. See"Covers and Guards",pages34-35.VFD fault or warning Not error code displayed onVFD. Turn disconnect off.电机和传动部件同步带置换1,电源必须与机器连接并打开。
文献翻译—步进电机和伺服电机的系统控制
附件1:外文资料翻译Step Motor&Servo Motor Systems and ControlsAbstract:80 years since the 20th century, with the integrated circuits, power electronics and AC variable speed drive technology, servo-drive technology has highlighted the development of national well-known electrical manufacturers have launched their own servo motor and servo drive products and continue to improveand updated.Modern high-performance servo systems have become the main development direction of the servo system, servo so that the original out of the crisis facing.90 years later, has commercialized the world's all-digital servo control system is a sine wave motor servo drive.Servo drive the rapid development of the field in the transmission.Keywords Circuit Electronics servomechanism servo-systemMotion Architect® Software Does the Work for You... Configure ,Diagnose, Debug Compumotor’s Motion Architect is a Microsoft® Windows™-based software development tool for 6000Series products that allows you to automatically generate commented setup code, edit and execute motion control programs, and create a custom operator test panel. The heart of Motion Architect is the shell, which provides an integrated environment to access the following modules.• System Configurator—This module prompts you to fill in all pertinent set-up information to initiate motion. Configurable to the specific 6000 Series product that is selected, the information is then used to generate actual 6000-language code that is the beginning of your program.• Program Editor—This module allows you to edit code. It also has the commands available through “Help” menus. A user’s guide is provided on disk.• Terminal Emulator—This module allows you to interact directly with the 6000 product. “Help” is again available with all commands and theirdefinitions available for reference.• Test Panel—You can simulate your programs, debug programs, and check for program flow using this module.Because Its Windows, You Already Know How to Use ItMotion Architect® has been designed for use with all 6000 Series products —for both servo and stepper technologies. The versatility of Windows and the 6000 Series language allow you to solve applications ranging from the very simple to the complex.Motion Architect comes standard with each of the 6000 Series products and is a tool that makes using these controllers even more simple—shortening the project development time considerably. A value-added feature of Motion Architect, when used with the 6000 Servo Controllers, is its tuning aide. This additional module allows you to graphically display a variety of move parameters and see how these parameters change based on tuning values. Using Motion Architect, you can open multiple windows at once. For example, both the Program Editor and Terminal Emulator windows can be opened to run the program, get information, and then make changes to the program.On-line help is available throughout Motion Architect, including interactive access to the contents of the Compumotor 6000 Series Software Reference Guide.SOLVING APPLICATIONS FROM SIMPLE TO COMPLEXServo Control is Yours with Servo Tuner SoftwareCompumotor combines the 6000 Series servo controllers with Servo Tuner software. The Servo Tuner is an add-on module that expands and enhances the capabilities of Mot ion Architect®.Motion Architect and the Servo Tuner combine to provide graphical feedback of real-time motion information and provide an easy environment for setting tuning gains and related systemparameters as well as providing file operations to save and recall tuning sessions.Draw Your Own Motion Control Solutions with Motion Toolbox Software Motion Toolbox™is an extensive library of LabVIEW® virtual instruments (VIs) for icon-based programming of Compumotor’s 6000 Series motion controllers. When using Motion Toolbox with LabVIEW, programming of the 6000 Series controller is accomplished by linking graphic icons, or VIs, together to form a block diagram.Motion Toolbox’s has a library of more than 150 command,status, and example VIs. All command and status VIs include LabVIEW source diagrams so you can modify them, if necessary, to suit your particular needs. Motion Toolbox als user manual to help you gut up and running quickly.comprehensiveM Software for Computer-Aided Motion Applications CompuCAM is a Windows-based programming package that imports geometry from CAD programs, plotter files, or NC programs and generates 6000 code compatible with Compumotor’s 6000 Series motion controllers. Available for purchase from Compumotor, CompuCAM is an add-on module which is invoked as a utility from the menu bar of Motion Architect.From CompuCAM, run your CAD software package. Once a drawing is created, save it as either a DXF file, HP-GL plot file or G-code NC program. This geometry is then imported into CompuCAM where the 6000 code is generated. After generating the program, you may use Motion Architect functions such as editing or downloading the code for execution.Motion Builder Software for Easy Programming of the 6000 SeriesMotion Builder revolutionizes motion control programming. This innovative software allows programmers to program in a way they are familiar with—a flowchart-style method. Motion Builder decreases the learning curve and makes motion control programming easy.Motion Builder is a Microsoft Windows-based graphical development environment which allows expert and novice programmers to easily program the 6000 Series products without learning a new programming language. Simply drag and drop visual icons that represent the motion functions you want toperform.Motion Builder is a complete application development environment. In addition to visually programming the 6000 Series products, users may configure, debug, download, and execute the motion program.SERVO VERSUS STEPPER... WHAT YOU NEED TO KNOWMotor Types and Their ApplicationsThe following section will give you some idea of the applications that are particularly appropriate for each motor type, together with certain applications that are best avoided. It should be stressed that there is a wide range of applications which can be equally well met by more than one motor type, and the choice will tend to be dictated by customer preference, previous experience or compatibility with existing equipment.A helpful tool for selecting the proper motor for your application is Compumotor’s Motor Sizing and Selection software package. Using this software, users can easily identify the appropriate motor size and type. High torque, low speedcontinuous duty applications are appropriate to the step motor. At low speeds it is very efficient in terms of torque output relative to both size and input power. Microstepping can be used to improve smoothness in lowspeed applications such as a metering pump drive for very accurate flow control. High torque, high speedcontinuous duty applications suit the servo motor, and in fact a step motor should be avoided in such applications because the high-speed losses can cause excessive motor heating.Short, rapid, repetitive movesare the natural domain of the stepper due to its high torque at low speeds, good torque-to-inertia ratio and lack of commutation problems. The brushes of the DC motor can limit its potential for frequent starts, stops and direction changes.Low speed, high smoothness applicationsare appropriate for microstepping or direct drive servos.Applications in hazardous environmentsor in a vacuum may not be able to use a brushed motor. Either a stepper or a brushless motor is called for, depending on the demands of the load. Bear in mind that heat dissipation may be a problem in a vacuum when the loads are excessive.SELECTING THE MOTOR THAT SUITS YOUR APPLICATIONIntroductionMotion control, in its widest sense, could relate to anything from a welding robot to the hydraulic system in a mobile crane. In the field of Electronic Motion Control, we are primarily concerned with systems falling within a limited power range, typically up to about 10HP (7KW), and requiring precision in one or more aspects. This may involve accurate control of distance or speed, very often both, and sometimes other parameters such as torque or acceleration rate. In the case of the two examples given, the welding robot requires precise control of both speed and distance; the crane hydraulic system uses the driver as the feedback system so its accuracy varies with the skill of the operator. This wouldn’t be considered a motion control system in the strict sense of the term.Our standard motion control system consists of three basic elements:Fig. 1 Elements of motion control systemThe motor. This may be a stepper motor (either rotary or linear), a DC brush motor or a brushless servo motor. The motor needs to be fitted with somekind of feedback device unless it is a stepper motor.Fig. 2 shows a system complete with feedback to control motor speed. Such a system is known as a closed-loop velocity servo system.Fig. 2 Typical closed loop (velocity) servo systemThe drive. This is an electronic power amplifier thatdelivers the power to operate the motor in response to low-level control signals. In general, the drive will be specifically designed to operate with a particular motor type – you can’t use a stepper drive to operate a DC brush motor, for instance. Application Areas of Motor TypesStepper MotorsStepper Motor BenefitsStepper motors have the following benefits:• Low cost• Ruggedness• Simplicity in construction• High reliability• No maintenance• Wide acceptance• No tweaking to stabilize• No feedback components are needed• They work in just about any environment• Inherently more failsafe than servo motors.There is virtually no conceivable failure within the stepper drive module that could cause the motor to run away. Stepper motors are simple to driveand control in an open-loop configuration. They only require four leads. They provide excellent torque at low speeds, up to 5 times the continuous torque of a brush motor of the same frame size or double the torque of the equivalent brushless motor. This often eliminates the need for a gearbox.A stepper-driven-system is inherently stiff, with known limits to the dynamic position error.Stepper Motor DisadvantagesStepper motors have the following disadvantages:• Resonance effects and relatively long settlingtimes• Rough performance at low speed unless amicrostep drive is used• Liability to undetected position loss as a result ofoperating open-loop• They consume current regardless of loadconditions and therefore tend to run hot• Losses at speed are relatively high and can causeexcessive heating, and they are frequently noisy(especially at high speeds).• They can exhibit lag-lead oscillation, which isdifficult to damp. There is a limit to their availablesize, and positioning accuracy relies on themechanics (e.g., ballscrew accuracy). Many ofthese drawbacks can be overcome by the use ofa closed-loop control scheme.Note: The Compumotor Zeta Series minimizes orreduces many of these different stepper motor disadvantages.There are three main stepper motor types:• Permanent Magnet (P.M.) Motors• Variable Reluctance (V.R.) Motors• Hybrid MotorsWhen the motor is driven in its full-step mode, energizing two windings or “phases” at a time (see Fig. 1.8), the torque available on each step will be the same (subject to very small variations in the motor and drive characteristics). In the half-step mode, we are alternately energizing two phases and then only one as shown in Fig. 1.9. Assuming the drive delivers the same winding current in each case, this will cause greater torque to be produced when there are two windings energized. In other words, alternate steps will be strong and weak. This does not represent a major deterrent to motor performance—the available torque is obviously limited by the weaker step, but there will be a significant improvement in low-speed smoothness over the full-step mode.Clearly, we would like to produce approximately equal torque on every step, and this torque should be at the level of the stronger step. We can achieve this by using a higher current level when there is only one winding energized. This does not over dissipate the motor because the manufacturer’s current rating assumes two phases to be energized the current rating is based on the allowable case temperature). With only one phase energized, the same total power will be dissipated if the current is increased by 40%. Using this higher current in the one-phase-on state produces approximately equal torque on alternate steps (see Fig. 1.10).Fig. 1.8 Full step current, 2-phase onFig. 1.9 Half step currentFig. 1.10 Half step current, profiledWe have seen that energizing both phases with equal currents produces an intermediate step position half-way between the one-phase-on positions. If the two phase currents are unequal, the rotor position will be shifted towards the stronger pole. This effect is utilized in the microstepping drive, which subdivides the basic motor step by proportioning the current in the two windings. In this way, the step size is reduced and the low-speed smoothness is dramatically improved. High-resolution microstep drives divide the full motor step into as many as 500 microsteps, giving 100,000 steps per revolution. In this situation, the current pattern in the windings closely resembles two sine waves with a 90° phase shift between them (see Fig. 1.11). The motor is now being driven very much as though it is a conventional AC synchronous motor. In fact, the stepper motor can be driven in this way from a 60 Hz-US (50Hz-Europe) sine wave source by including a capacitor in series with one phase. It will rotate at 72 rpm.Fig. 1.11 Phase currents in microstep modeStandard 200-Step Hybrid MotorThe standard stepper motor operates in the same way as our simple model, but has a greater number of teeth on the rotor and stator, giving a smaller basic step size. The rotor is in two sections as before, but has 50 teeth on each section. The half-tooth displacement between the two sections is retained. The stator has 8 poles each with 5 teeth, making a total of 40 teeth (see Fig. 1.12).Fig. 1.12 200-step hybrid motorIf we imagine that a tooth is placed in each of the gaps between the stator poles, there would be a total of 48 teeth, two less than the number of rotor teeth. So if rotor and stator teeth are aligned at 12 o’clock, they will also be aligned at 6 o’clock. At 3 o’clock and 9 o’clock the teeth will be misaligned. However, due to the displacement between the sets of rotor teeth, alignment will occur at 3 o’clock and 9 o’clock at the other end of the rotor.The windings are arranged in sets of four, and wound such that diametrically-opposite poles are the same. So referring to Fig. 1.12, thenorth poles at 12 and 6 o’clock attract the south-pole teeth at the front of the rotor; the south poles at 3 and 9 o’clock attract the north-pole teeth at the back. By switching current to the second set of coils, the stator field pattern rotates through 45°. However, to align with this new field, the rotor only has to turn through 1.8°. This is equivalent to one quarter of a tooth pitch on the rotor, giving 200 full steps per revolution. Note that there are as many detent positions as there are full steps per rev, normally 200. The detent positions correspond with rotor teeth being fully aligned with stator teeth. When power is applied to a stepper drive, it is usual for it to energize in the “zero phase” state in which there is current in both sets of windings. The resulting rotor position does not correspond with a natural detent position, so an unloaded motor will always move by at least one half step at power-on. Of course, if the system was turned off other than in the zero phase state, or the motor is moved in the meantime, a greater movement may be seen at power-up.Another point to remember is that for a given current pattern in the windings, there are as many stable positions as there are rotor teeth (50 for a 200-step motor). If a motor is de-synchronized, the resulting positional error will always be a whole number of rotor teeth or a multiple of 7.2°. A motor cannot “miss” individual steps – position errors of one or two steps must be due to noise, spurious step pulses or a controller fault.Fig. 2.19 Digital servo driveDigital Servo Drive OperationFig. 2.19 shows the components of a digital drive for a servo motor. Allthe main control functions are carried out by the microprocessor, which drives a D-to-A convertor to produce an analog torque demand signal. From this point on, the drive is very much like an analog servo amplifier. Feedback information is derived from an encoder attached to the motor shaft. The encoder generates a pulse stream from which the processor can determine the distance travelled, and by calculating the pulse frequency it is possible to measure velocity.The digital drive performs the same operations as its analog counterpart, but does so by solving a series of equations. The microprocessor is programmed with a mathematical model (or “algorithm”) of the equivalent analog system. This model predicts the behavior of the system. In response to a given input demand and output position. It also takes into account additional information like the output velocity, the rate of change of the input and the various tuning settings.To solve all the equations takes a finite amount of time, even with a fast processor – this time is typically between 100ms and 2ms. During this time, the torque demand must remain constant at its previously-calculated value and there will be no response to a change at the input or output. This “update time” therefore becomes a critical factor in the performance of a digital servo and in a high-performance system it must be kept to a minimum. The tuning of a digital servo is performed either by pushbuttons or by sending numerical data from a computer or terminal. No potentiometer adjustments are involved. The tuning data is used to set various coefficients in the servo algorithm and hence determines the behavior of the system. Even if the tuning is carried out using pushbuttons, the final values can be uploaded to a terminal to allow easy repetition.In some applications, the load inertia varies between wide limits – think of an arm robot that starts off unloaded and later carries a heavy load at full extension. The change in inertia may well be a factor of 20 or more, and such a change requires that the drive is re-tuned to maintain stableperformance. This is simply achieved by sending the new tuning values at the appropriate point in the operating cycle.步进电机和伺服电机的系统控制摘要: 20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的伺服电动机和伺服驱动器系列产品并不断完善和更新。
电机和传动部件外文文献翻译、中英文翻译
Motor and Drive PartsTIMING BELT REPLACEMENT1, Power source must be connected to machine and turned on. Turn the power disconnect/lockout switch to the “O” (OFF) position and lock out. Allow machine to come to a complete stop, then press the “I” (START) button and hold for two seconds to verify that the machine will not start.2, After the green guard locking switch status light illuminates (when all rotating parts are idle) rotate the latch handle on the gear compartment door and open the gear door.3, Remove the belt guard by removing the hand knob that holds the guard (inside the gear compartment).4, Loosen the two pinch fasteners in the jack shaft spindle assembly (Figure 50).5, Loosen the motor mounting fasteners and slide the motor to release belt tension. Remove the belts (Figure51).Figure 50—Loosen pinch fasteners in jack shat spindle assembly (1) Pinch Fasteners,(2) Jack Shaft Spindle AssemblyFigure 51 – Timing Belts(1)TIMING BELT TENSION1, Use the motor tension wrench to slide the motor and apply tension to the timing belts. The pin on the wrench fits in a hole on the support housing(Figure52). The pinch fasteners in the jack shaft spindle assembly must be properly tension both belts. Tighten the motor mounting fasteners, and then tighten the pinch fasteners in the jack shaft spindle assembly.Figure 52 – Using the motor to apply belt tension. (1) Motor Tension Wrench2, Replace belt guard and tighten with the hand knob.3, Close and rotate latch handle connecting the gear compartment door and support housing.Electrical AssemblyINSPECTIONW ARNING: In the event of an electrical problem, only a qualified electrician should inspect or repair the fault. Voltages dangerous to life exist in the starter enclosure! The power disconnect/lockout switch must be in the “O”(OFF) position. Live voltages are still present in the box even though disconnect is off. Always disconnect and lock out power source before beginning electrical inspection or repair.The electrical assembly must be in good working condition before operating this machine. For a description of the amplifier and safety switch operation and method for checking this system. Electrical schematics are located in the starter enclosure. Refer to Figures53 and 54 and inspect the following:Figure 53 –Starter enclosure interior with variable frequency drive. (1) Disconnect Switch, (2) Guard Locking Switch Power Disconnect, (3) Main Fuses, (4) Earthing Terminals, (5) Transformer, (6) Transformer Fuses Block, (7) Variable Frequency Drive, (8) Contactor, (9) Standstill Monitor, (10) Control RelayFigure 54 – Starter enclosure interior, across-the-line start. (1) Disconnect Switch, (2) Guard Locking Switch Power Disconnect, (3) Main Fuses, (4) Earthing Terminals, (5) Transformer, (6) Transformer Fuse Block, (7) Overload Relay, (8) Contactor, (9) Standstill Monitor, (10) Control RelayStarter enclosure: Inspect interior of starter enclosure for corrosion. If a significant amount of water accumulates in the bottom of the starter enclosure, check the breather drain. Breather drain should be free from obstruction. Excess water could also indicate an opening or loose fitting that allows water to enter the enclosure. Check all access points to the enclosure. Check gasket around door and window. Inspect push/pull stop button, “I”(START) push button assemblies, selector switches and pilot light assembly for damage or corrosion. Replace rubber boots and pilot light lens if damaged.NOTE: Electrical components that fail due to water or chemical contamination are not covered under the warranty.Fuses: Remove transformer fuses, located in the transformer fuse blocks. Check with an ohmmeter or continuity light. If one fuse is replaced, all others of that type fuse should also be replaced.Machines equipped with variable frequency drive(VFD):The drive currently in use is the GPD315/V 7. If the digital display on the drive is not illuminated when the machine is energized, contact Urschel Laboratories.Standstill monitor: Terminals should be tight and free from corrosion. Monitor must be replaced if damaged.Power line filter (CE compliant machine with VFD): See the electrical assemblies illustrations in the “Parts” section of this manual for part locations.Guard locking switches:Replace or straighten actuator key if it is damaged or bent. Check cords for cuts or abrasions. If the green guard locking switch status light does not illuminate when power to the machine is connected, contact Urschel Laboratories. Switch must be replaced if it has been forced open while locked. Use only new screws that are supplied with the switch. Manual release must be in “lock” position when removing and replacing lid( Figure 55).Figure 55 – Guard Locking Switch. (1) Green Guard Locking Switch Status Light, (2) Guard Locking Switch Manual ReleaseGreen status light must be inside the lens when replacing the lid. To maintain watertight features, securely tighten the seven screws for the lid until there is no gap between lid and switch assembly. Do not over tighten.NOTE:The two screws located under the lid on the guard locking switch act as special dowel pins locking the switch assembly into place and must not be substituted.Interrupt switch: Terminals should be tight and free from corrosion. Recommended torque is 5.0 inch pounds (80 inch ounces) or 0.56 Newton-meters. Check sensor, actuator and cord for damage. Switch should be replaced if any defect or damage is defected. Check switch alignment. Actuator must be aligned and within 1/32 (8mm) of sensor to complete safety switch circuit (Figure 56).WARNING: Always perform the guard locking/interrupt switch system test before operating the machine.Figure 56 –Interrupt switch sensor and actuator must be aligned and within 1/32”(8mm). (1) Sensor, (2) ActuatorV ARIABLE FREQUENCY DRIVE PROGRAMMINGA replacement variable frequency drive must have frequencies programmed after the drive has been installed into the electrical enclosure. Refer to the “Speed Chart” on your machine or on page 30 in this manual and program the replacement unit according to the following procedure.WARNING: Starter enclosure must be energized in order to program the drive. Voltages dangerous to life exist when equipment is open and energized! Only a qualified electrician should inspect, install, or program variable frequency drive.1, Turn power disconnect/lockout switch to “O”(OFF). Open starter enclosure door. Operate the power disconnect/lockout switch mechanism in the enclosure to turn power on.2, Set the selector switches to the first drive frequency to be programmed. The frequency drive has a digital operator with a display (Figure 57). The display for the GPD 315/V7 drive will read the lowest setting allowed.Figure 57 – FPD 315 Drive, digital operator. (1) Digital Display,(2) Numeral Change Key, (increase), (3) Numeral Change Key, (decrease), (4) Read/Write Key3, Enter the speed in the display in hertz. Increase or decrease the value with the “numeral change” keys. See the chart for frequency settings.CAUTION: Do not attempt to over speed the motor! Over speeding could create a safety hazard and cause excessive wear on machine parts. Under speeding will cause the motor to overheat.4, With the value correctly displayed and flashing, press the “DATA/ENTER” or “ENTER” key. The display will stop flashing, indicating that the value has been entered.NOTE:Altering preprogrammed speeds will permanently change these values. To return to original settings, follow steps 1-4.5, Operate the power disconnect/lockout switch mechanism in the enclosure to turn power off. Close and lock starter enclosure door.Knife CareKNIFE CARE GUIDELINESKnives should be inspected and sharpened or replaced at regular intervals depending upon operating conditions, type of product and hours of operation. Follow these guidelines for bestresults:1, Do not attempt to remove all defects from the knife edge by sharpening.This practice results in shortened knife life. Small defects will not affect knife performance.2, New knives should not be installed beside worn knives. This arrangement may result in poor quality cuts. Keep all the knives from one spindle in a set and sharpen them together. Periodically check knife width or diameter to make sure all the knives in a set are the same size.3, Recommended minimum dimensions: The following minimum dimensions are intended to give satisfactory results for most applications. However, each customer must look at the quality of cut on his product to determine at what point knives are resharpened beyond usefulness. The minimum dimensions stated are intended to give satisfactory results for most applications. Some customers may be able to give satisfactory results from knives ground smaller, but some may notice a deterioration in quality of out before the minimum size is reached. Measure crosscut knives from the cutting edge to the back of the knife unless otherwise noted; measure the diameter of circular knives unless otherwise noted.SHARPENING EQUIPMENTUrschel Laboratories manufactures machines to quickly and efficiently sharpen knives. The following machine are available;Model WG honing machine is used to sharpen slicing knives and crosscut knives (straight cut only). For the Model DC, use workrest 33224 for 42281 and 42446 crosscut knives and slicing knife insert .Use workrest 33225 for 42460 crosscut knives. Use workrest 33256 for all other slicing knives.Model CKG honing machine is used to place the best possible edge on circular knives. The Model CKG can be purchased from the factory ready to sharpen 3-1/2”circular knives for the Model DC. Honers that are not set up to sharpen 3-1/2” circular knives must have certain parts installed. Use the following procedure:W ARNNING: Honers place an extremely sharp edge on knives; handle knives with care!1, Make sure the honer is unplugged from the power source.2, Install hone assembly, knife holder hub and edge roller stud for 3-1/2’’circular knives (Figure 58). The hone assembly (part number 33083) contains the hone bracket and internal parts, the shield and the honing wheel. The stud on the hone bracket is installed in the second hole from the motor shaft (4” knife position). The knife holder hub (part number 33081) is installed with the raised diameter facing out. The edge roller stud (part number 33023) is installed with the set screw in the second spot drilled hole from the outside end (Note that this part number has remained thesame but the part has been modified. The stud should have four spot drilled holes.) 3, Position the hone shield in as far as possible by loosening the screw and sliding the shield. Retighten the screw.4. Pull the knife clamp hub out of the clamping position. Hold a knife against the knife holder hub. Loosen the set screw in the motor shaft hub and slide the hub and knife on the motor shaft until the knife just touches the honing wheel. Tighten the set screw.5, Adjust the knife clamp if necessary. The knife clamp should hold the knife against the hub tight enough so that it cannot be rotated yet not so tight that it drives the motor back and distorts the base (the brake arm assembly must be properly adjusted to test for knife rotation). To adjust the knife clamp, loosen the two locking nuts and move the clamp in or out.6, Place a knife in the honer and sharpen in the normal manner (see the Model CKG instruction manual for more information). If too much of the knife edge is removed, readjust the hub. If insufficient metal is removed, loosen the screw on the hone shield and slide the hone slightly forward against the knife edge.BUFFINGWARNING: Only qualified trained personnel should buff knives. Use adequate eye and respiratory protection, and a properly guarded buffing wheel. Hold knife securely. Never attempt to catch a dropped knife! Should you drop a knife during the buffing operation, move away and let it tall.When crosscut knives are sharpened by grinding, filing or honing, a slight wire edge may be produced. Buffing will remove this wire edge.Install two to four 10" (254 mm) diameter buffing wheels side by side between flanges at least2" (51 mm) in diameter. Buffing wheels and bars of buffing compound are available from Urschel Laboratories (see “Tools", page67).Turn on the buffer (3600RPM) and hold the bar of buffing compound firmly against the outside diameter of the buffing wheels to apply alight coating of compound. Apply compound frequently to obtain sharp edges quickly.NOTE: If excess compound is applied, the wheel will harden, making it ineffective.Should this occur, Use a buffing wheel rake, available from an industrial supplier, to soften the wheel.When holding knives, be cautions and use a firm grip. Hold the knife firmly with the bevel side up, parallel with and just below the center line of the shaft of the buffer (Figure 58). Push the knife edge into the buffing wheel, penetrating the wheel 1/16"-1/8"(1.5-3mm). Move the knife endwise and buff the entire edge across the buffing wheel with a steady rapid movement in each direction. Several rapid passes are better than one or two slow ones. Do not hold the knife in one area of the buffing wheel too long as the edge may heat and burn. If a burr or wire edge remains, turn the knife over and buff with the bevel side down. Continue buffing, switching from side to side, until wire edge or burr is gone.Sharpen all sides of crinkle knife edges by tipping the knife endwise at a slight angle, first in one direction and then in the other. Next, the knife is held straight and level to buff the remainder of the cutting edge.With bevel side up, sharpen side surface of crinkle knife edge by tipping the knife endwise at a slight angle, first in one direction and then in the other. Next, the knife is held straight and level tobuff the remainder of the cutting edge.Figure 58 –Model CKG honing machine set to sharpen 3-1/2”circular knives (1) Hone Bracket, (2) Mounting Position for Hone Assembly, (3) Knife Holder Hub, (4) Set Screw,(5) Edge Roller Stud (set screw seats in second hole), (6) Hone Shield, (7) Screw, (8) Knife Clamp Hub, (9) Locking Nuts, (10) Honing WheelFailure to obtain sharp edges by buffing may be caused by the following:1, Edges may be too dull or blunt. Blunt edges must always be ground or filed to restore a bevel width and angle similar to that found on a new knife.2, Knives must be correctly held against the buffing wheel (Figure 59).3, Too little or too much buffing compound on the wheel.4, Undersize buffing wheels. Discard the buffing wheels when they are worn to8-3/4" (222 mm) diameter.Figure 59 – Correct position (top) and incorrect position (bottom) for knife during buffing .(1) Knife, (2) Buffing WheelPROBLEM CAUSE CORRECTIONMachine Does Not Start Power disconnect lockout switch isin the "O"(OFF)positionTurn power disconnect lockoutswitch to the "I"(ON) position. Manual release on either of theguard locking switches is in the"unlock" positionTurn manual release to the"lock" position on bothswitches, page 17.Guard locking switch powerdisconnect is in the"O"(OFF)positionTurn guard locking switchpower disconnect to the"I"(ON) position, page 54.Push/pull stop button is not pulledout after being pushedPull push/pull stop button out,page 28.Covers and guards not securelyclosedMake certain covers andguards are securely closed.Check for bent or twistedbrackets that will preventswitches from lining up. See"Covers and Guards",pages34-35.VFD fault or warning Not error code displayed onVFD. Turn disconnect off.电机和传动部件同步带置换1,电源必须与机器连接并打开。
机电一体化中英文互译【范本模板】
机械专业中英文对照英语词汇陶瓷ceramics合成纤维synthetic fibre电化学腐蚀electrochemical corrosion车架automotive chassis悬架suspension转向器redirector变速器speed changer板料冲压sheet metal parts孔加工spot facing machining车间workshop工程技术人员engineer气动夹紧pneuma lock数学模型mathematical model画法几何descriptive geometry机械制图Mechanical drawing投影projection视图view剖视图profile chart标准件standard component零件图part drawing装配图assembly drawing尺寸标注size marking技术要求technical requirements刚度rigidity内力internal force位移displacement截面section疲劳极限fatigue limit断裂fracture塑性变形plastic distortion脆性材料brittleness material刚度准则rigidity criterion垫圈washer垫片spacer直齿圆柱齿轮straight toothed spur gear斜齿圆柱齿轮helical—spur gear直齿锥齿轮straight bevel gear运动简图kinematic sketch齿轮齿条pinion and rack蜗杆蜗轮worm and worm gear虚约束passive constraint曲柄crank摇杆racker凸轮cams共轭曲线conjugate curve范成法generation method定义域definitional domain值域range导数\\微分differential coefficient求导derivation定积分definite integral不定积分indefinite integral曲率curvature偏微分partial differential毛坯rough游标卡尺slide caliper千分尺micrometer calipers攻丝tap二阶行列式second order determinant逆矩阵inverse matrix线性方程组linear equations概率probability随机变量random variable排列组合permutation and combination气体状态方程equation of state of gas动能kinetic energy势能potential energy机械能守恒conservation of mechanical energy动量momentum桁架truss轴线axes余子式cofactor逻辑电路logic circuit触发器flip-flop脉冲波形pulse shape数模digital analogy液压传动机构fluid drive mechanism机械零件mechanical parts淬火冷却quench淬火hardening回火tempering调质hardening and tempering磨粒abrasive grain结合剂bonding agent砂轮grinding wheel后角clearance angle龙门刨削planing主轴spindle主轴箱headstock卡盘chuck加工中心machining center车刀lathe tool车床lathe钻削镗削bore车削turning磨床grinder基准benchmark钳工locksmith锻forge压模stamping焊weld拉床broaching machine拉孔broaching装配assembling铸造found流体动力学fluid dynamics流体力学fluid mechanics加工machining液压hydraulic pressure切线tangent机电一体化mechanotronics mechanical—electrical integration 气压air pressure pneumatic pressure稳定性stability介质medium液压驱动泵fluid clutch液压泵hydraulic pump阀门valve失效invalidation强度intensity载荷load应力stress安全系数safty factor可靠性reliability螺纹thread螺旋helix键spline销pin 滚动轴承rolling bearing滑动轴承sliding bearing弹簧spring制动器arrester brake十字结联轴节crosshead联轴器coupling链chain皮带strap精加工finish machining粗加工rough machining变速箱体gearbox casing腐蚀rust氧化oxidation磨损wear耐用度durability随机信号random signal离散信号discrete signal超声传感器ultrasonic sensor集成电路integrate circuit挡板orifice plate残余应力residual stress套筒sleeve扭力torsion冷加工cold machining电动机electromotor汽缸cylinder过盈配合interference fit热加工hotwork摄像头CCD camera倒角rounding chamfer优化设计optimal design工业造型设计industrial moulding design有限元finite element滚齿hobbing插齿gear shaping伺服电机actuating motor铣床milling machine钻床drill machine镗床boring machine步进电机stepper motor丝杠screw rod导轨lead rail组件subassembly可编程序逻辑控制器Programmable Logic Controller PLC电火花加工electric spark machining电火花线切割加工electrical discharge wire — cutting 相图phase diagram热处理heat treatment固态相变solid state phase changes有色金属nonferrous metal陶瓷ceramics合成纤维synthetic fibre电化学腐蚀electrochemical corrosion车架automotive chassis悬架suspension转向器redirector变速器speed changer板料冲压sheet metal parts孔加工spot facing machining车间workshop工程技术人员engineer气动夹紧pneuma lock数学模型mathematical model画法几何descriptive geometry机械制图Mechanical drawing投影projection视图view剖视图profile chart标准件standard component零件图part drawing装配图assembly drawing尺寸标注size marking技术要求technical requirements刚度rigidity内力internal force位移displacement截面section疲劳极限fatigue limit断裂fracture塑性变形plastic distortion脆性材料brittleness material刚度准则rigidity criterion垫圈washer垫片spacer直齿圆柱齿轮straight toothed spur gear斜齿圆柱齿轮helical-spur gear直齿锥齿轮straight bevel gear运动简图kinematic sketch 齿轮齿条pinion and rack蜗杆蜗轮worm and worm gear虚约束passive constraint曲柄crank摇杆racker凸轮cams共轭曲线conjugate curve范成法generation method定义域definitional domain值域range导数\\微分differential coefficient求导derivation定积分definite integral不定积分indefinite integral曲率curvature偏微分partial differential毛坯rough游标卡尺slide caliper千分尺micrometer calipers攻丝tap二阶行列式second order determinant逆矩阵inverse matrix线性方程组linear equations概率probability随机变量random variable排列组合permutation and combination气体状态方程equation of state of gas动能kinetic energy势能potential energy机械能守恒conservation of mechanical energy 动量momentum桁架truss轴线axes余子式cofactor逻辑电路logic circuit触发器flip—flop脉冲波形pulse shape数模digital analogy液压传动机构fluid drive mechanism机械零件mechanical parts淬火冷却quench淬火hardening回火tempering调质hardening and tempering磨粒abrasive grain结合剂bonding agent砂轮grinding wheelAssembly line 组装线Layout 布置图Conveyer 流水线物料板Rivet table 拉钉机Rivet gun 拉钉枪Screw driver 起子Pneumatic screw driver 气动起子worktable 工作桌OOBA 开箱检查fit together 组装在一起fasten 锁紧(螺丝)fixture 夹具(治具)pallet 栈板barcode 条码barcode scanner 条码扫描器fuse together 熔合fuse machine热熔机repair修理operator作业员QC品管supervisor 课长ME 制造工程师MT 制造生技cosmetic inspect 外观检查inner parts inspect 内部检查thumb screw 大头螺丝lbs. inch 镑、英寸EMI gasket 导电条front plate 前板rear plate 后板chassis 基座bezel panel 面板power button 电源按键reset button 重置键Hi—pot test of SPS 高源高压测试Voltage switch of SPS 电源电压接拉键sheet metal parts 冲件plastic parts 塑胶件SOP 制造作业程序material check list 物料检查表work cell 工作间trolley 台车carton 纸箱sub-line 支线left fork 叉车personnel resource department 人力资源部production department生产部门planning department企划部QC Section品管科stamping factory冲压厂painting factory烤漆厂molding factory成型厂common equipment常用设备uncoiler and straightener整平机punching machine 冲床robot机械手hydraulic machine油压机lathe车床planer |plein|刨床miller铣床grinder磨床linear cutting线切割electrical sparkle电火花welder电焊机staker=reviting machine铆合机position职务president董事长general manager总经理special assistant manager特助factory director厂长department director部长deputy manager |=vice manager副理section supervisor课长deputy section supervisor =vice section superisor副课长group leader/supervisor组长line supervisor线长assistant manager助理to move,to carry, to handle搬运be put in storage入库pack packing包装to apply oil擦油to file burr 锉毛刺final inspection终检to connect material接料to reverse material 翻料wet station沾湿台Tiana天那水cleaning cloth抹布to load material上料to unload material卸料to return material/stock to退料scraped |\\'skr?pid|报废scrape .。
机电一体化中英文对照外文翻译文献
中英文对照外文翻译文献(文档含英文原文和中文翻译)By integration of machinery developmentThe modern science and technology unceasing development, impelled different discipline intersecting enormously with the seepage, has caused the project domain technological revolution and the transformation, in mechanical engineering domain, because the microelectronic technology and the computer technology rapid development and forms to the mechanical industry seepage the integration of machinery, caused the mechanical industry the technical structure, the product organization, the function and the constitution, the production method and the management system has had the huge change, caused the industrial production to enter into “the integration of machinery” by “the machinery electrification” for the characteristic development phase.First, the integration of machinery outlineIntegration of machinery is refers in the organization new owner function, the power function, in the information processing functio n and the control function introduces the electronic technology, u nifies the system the mechanism and the computerization design and the software which constitutes always to call.Integration of machinery is refers in the organization new owner function, the power function, in the information processing functio n and the control function introduces the electronic technology, u nifies the system the mechanism and the computerization design and the software which constitutes always to call.The integration of machinery development also has become one to h ave until now own system new discipline, not only develops along with the science and technology, but also entrusts with the new content, but its basic characteristic may summarize is: The inte gration of machinery is embarks from the system viewpoint, synthes is community technologies and so on utilization mechanical technolo gy, microelectronic technology, automatic control technology, compute r technology, information technology, sensing observation and contro l technology, electric power electronic technology, connection techn ology, information conversion technology as well as software progra mming technology, according to the system function goal and the o ptimized organization goal, reasonable disposition and the layout v arious functions unit, in multi-purpose, high grade, redundant reli able, in the low energy consumption significance realize the speci fic function value, and causes the overall system optimization the systems engineering technology, from this produces function system , then becomes an integration of machinery systematic or the inte gration of machinery product.Therefore, “the integration of machinery”covering “the technolog y”and “the product”two aspects, only are, the integration of machinery technology is based on the above community technology organic fusion one kind of comprehensive technology, but is not m echanical technical, the microelectronic technology as well as othe r new technical simple combination, pieces together, this is the integration of machinery and the machinery adds the machinery elec trification which the electricity forms in the concept basic diffe rence, the mechanical engineering technology has the merely technic al to develop the machinery electrification, still was the traditi onal machinery, its main function still was replaces with the enl argement physical strength, after but developed the integration of machinery, micro electron installment eliminated may substitute fo r certain mechanical parts original Outside function, but also can entrust with many new functions, like the automatic detection, t he automatic reduction information, demonstrate the record, the aut omatic control and the control automatic diagnosis and the protect ion automatically and so on, not only namely the integration of machinery product is human's hand and body extending, human's sens e organ and the brains look, has the intellectualized characteristic is the integration of machinery and the machinery electrificati on distinguishes in the function essence.Second, the integration of machinery development conditionIntegration of machinery development may divide into 3 stages roug hly, 20th century 60's before for the first stage, this stage is called the initial stage, in this time, the people determination not on own initiative uses the electronic technology the prelimi nary achievement to consummate the mechanical product the performan ce, specially in Second World War period, the war has stimulated the mechanical product and the electronic technology union, these mechanical and electrical union military technology, postwar trans fers civilly, to the postwar economical restoration positive functi on, has developed and the development at that time generally spea king also is at the spontaneous condition, because at that time the electronic technology development not yet achieved certainly Le vel. Mechanical technical and electronic technology union also not impossible widespread and thorough development, already developed the product was also unable to promote massively.The 20th century 70~80 ages for the second stage, may be called the vigorous development stage, this time, the computer technology, the control technology, the communication development, has laid the technology base for the integration of machinery development, large-scale, ultra large scale integrated circuit and microcomputer swift and violent development, has provided the full material base for the integration of machinery development, this time characteristic is:①A mechatronics word first generally is accepted in Japan, probably obtains the quite widespread acknowledgment to 1980s last stages in the worldwide scale;②The integration of machinery technology and the product obtained the enormous development;③The various countries start to the integration of machinery technology and the product give the very big attention and the support. 1990s later periods, started the integration of machinery technology the new stage which makes great strides forward to the intelle ctualized direction, the integration of machinery enters the thorou gh development time, on the one hand, optics, the communication a nd so on entered the integration of machinery, processes the tech nology also zhan to appear tiny in the integration of machinery the foot, appeared the light integration of machinery and the micro integration of machinery and so on the new branch; On the ot her hand to the integration of machinery system modelling design, the analysis and the integrated method, the integration of machi nery discipline system and the trend of development has all condu cted the thorough research, simultaneously, because domains and soon artificial intelligence technology, neural network technology a nd optical fiber technology obtain the huge progress, opened the development vast world for the integration of machinery technology,these research, will urge the integration of machinery further t o establish the integrity the foundation and forms the integrity gradually the scientific system.Third, the integration of machinery trend of developmentIntegration of machinery is the collection machinery, the electron, optics, the control, the computer, the information and so on th e multi-disciplinary overlapping syntheses, its development and the progress rely on and promote the correlation technology developme nt and the progress, therefore, the integration of machinery main development direction is as follows:3.1IntellectualizedIntellectualization is a 21st century integration of machinery tech nological development important development direction, the artificial intelligence obtains day by day in the integration of machinery constructor's research takes, the robot and the numerical control engine bed intellectualization is the important application, here said “the intellectualization”is to the machine behavior descr iption, is in the control theory foundation, the absorption artifi cial intelligence, the operations research, the computer science, t he fuzzy mathematics, the psychology, the physiology and the chaos dynamics and so on the new thought, the new method, simulate t he human intelligence, enable it to have abilities and so on j udgment inference, logical thinking, independent decision-making, obt ains the higher control goal in order to, indeed, enable the int egration of machinery product to have With the human identical in telligence, is not impossible, also is nonessential, but, the high performance, the high speed microprocessor enable the integration of machinery product to have .preliminary intelligent or human's partial intelligences, then is completely possible and essential.3.2 ModularModulations are one item important and the arduous project, becaus e the integration of machinery product type and the manufacturer are many, but the development and the development have standard m echanical connection, electrical connection, power connection, the e nvironment connection integration of machinery product unit are an item extremely complex also are the extremely important matters, like the development collection deceleration, the intelligent velo city modulation, the electrical machinery in a body power unit, h ave function and so on vision, imagery processing, recognition and range finder control units, as well as each kind can complete the model operation the mechanism, like this, may use the standar d unit to develop the new product rapidly, simultaneously also ma y expand the scale of production, this need formulation Each standard, in order to various parts, the unit match and the connecti on, as a result of the conflicts of interest, very will be diff icult to formulate international or the domestic this aspect stand ard in the near future, but might through set up some big enter prises to8 form gradually, obviously, the advantage which from the el ectrical product standardization, the seriation will bring may af firm, regardless of will be to produces the standard integration of machinery unit the enterprise to produce the integration of ma chinery product the enterprise, the formalization will give the in tegration of machinery enterprise to bring the happy future3.3 Network1990s, the computer technology and so on the prominent achievement was the networking, networking starting with the rapid developmen t for the science and technology, the industrial production, polit ical, the military, the education magnanimous act person daily l ife has all brought the huge transformation, each kind of network the global economy, the production linked up into a single stre tch, enterprise's competition will also globalize, once the integra tion of machinery new product developed, so long as its function were original, the quality was reliable, very quick could the b est-selling whole world, as a result of the network popularization , was on the rise based on network each kind of long-distance c ontrol and the surveillance technology, but long-distance control t erminal device itself will be the integration of machinery product , the field busWas the domestic electric appliances network has9 become the situation with the local area network technolog y, connected using the family network each kind of domestic elect ric appliances take the computer as the central computer integrati on electrical appliances system, caused the people at home to sha re the inconvenience and the joy which each kind of high-tech br ought, therefore, the integration of machinery product faced the n etwork direction to develop without doubt.3.4 MicrominiaturizedMicrominiaturization emerge in the end of 1980s, refers is the in tegration of machinery to the miniature machine and the microscopi c domain development tendency, overseas name it micro electron mec hanical system (MEMS), makes a general reference the geometry size not to surpass 1cm3 the integration of machinery product, and t o micron, the nanometer level development, the micro integration o f machinery product volume small, consumes energy few, the movemen t is nimble, in aspects and so on biological medical service, mi litary, information has the incomparable superiority, the micro int egration of machinery development bottleneck lies in the micro mechanical technology, the micro integration of machinery product proc essing uses the fine processing technology, namely ultra precise t echnology, it including photoetching technology and etching technolo gy two kinds.3.5 GreenIndustries lived developed for the people have brought the huge c hange, on the one hand, the material was rich, the life was com fortable; On the other hand, the resources reduce, the ecological environment receives the serious pollution, therefore, the people appealed the protection environment resources, the return nature, the green product concept arises at the historic moment under t his kind of call, the green is the time tendency, the green pro duct in its design, the manufacture, the use and in the destruct ion life process, conforms to the specific environmental protection and the human health request, harmless or the harm are extremel y few to the ecological environment, the resources use factor is extremely high, the design green integration of machinery product , has the broad development future, the integration of machinery product green mainly is refers, when use does not pollute the ec ological environment, after the abandonment can recycle the use. 3.6 systematizationsOne of systematized performance characteristics is the system archi tecture further uses open style and the patternizing main line st ructure. the system may the nimble configuration, carries on tailo rs and the combination willfully, simultaneously seeks realizes the multi-subsystem coordination control and the synthesis management, second performance is the correspondence function big enhancement, generally besides RS232, but also will have RS485, the DCS pers onification, the future integration of machinery even more pays gr eat attention to the product and human's relations, the integratio n of machinery personification will have two meanings, one will b e, the integration of machinery product finally user will be a h uman, how will entrust with the integration of machinery product person's intelligence, the emotion, the human nature appears more and more importantly, specially the opposite partyWith the robot, its high-level boundary is the man-machine integration, another imi tates the biological mechanism, develops each kind of mechanical a nd electrical body flower product, in fact, many integration of m achinery products all are developed animal's inspiration.Fourth, the model integration of machinery productIntegration of machinery product subsystem (complete machine) and t he foundation Yuan, the part two big kinds, the typical integrati on of machinery system includes: The numerical control engine bed, the robot, the automobile computerization product,12 the intellectualized instrument measuring appliance, the elec tronic publishing printing system, the CAD/CAM system and so on, the typical integration of machinery Yuan, the part includes: Elec tric power electronic device and equipment, programmable controller, fuzzy controller, miniature electrical machinery, sensor, special-p urpose integrated circuit, servo and so on, these model integratio n of machinery product technical present situation, trend of devel opment, market prospect analysis omitting.Fifth, our country develops the situation and the duty integration of machinery work which “The integration of machinery” faces mainly includes two levels: One, with the microelectronic technology transformation tradition industry, its goal is the energy conservation, the nodal wood, enhances the work efficiency, improves the product quality, enhances the traditional industry technology advancement one step; Two, development automation, digitization, intellectualized mechanical and electrical products, promotion product renewal.(1) our country “the integration of machinery†the work fac es situation1. Our country is big with the microelectronic technology transfor mation tradition industry work load and is broad, has difficulty2. Our country with the integration of machinery technology accele ration product renewal, enhances the market share the call to be high, has the pressure.3.Our country is low with the integration of machinery product su bstitution technology content and the added value, consumes energy, the water consumption, consumes the material to be high, the po llution, harasses the people product the responsibility to be heav y, has the significance, in our country industrial system, the en ergy consumption, the water consumption wealthy and powerful family , also accounts for the quite great proportion to the environment al pollution serious enterprise, in recent years our country's ind ustry structure, product mix although several passes through the adjustment, but because many kinds of reasons, the result contin uously insufficiently is obvious, inside this no doubt has the hi gher authority to lead the department the policy comes out of ma ny doors question, “therefore has the enterprise “to hate to le ave one's native land”clings to tenaciously industry”the quest ion, but undeniable also has cannot optimize the ideal industry, optimal pleasing product The question, on the good answer already suspended at these enterprise's front, this was the development integration of machinery, developed with the production related int egration of14 machinery product, the integration of machinery product fu nction strong, the performance good, the quality high, the cost was low, also had the flexibility, might according to when the ma rket requirement and the user reflection the product mix and the production process made the essential adjustment, the reform, but did not need to change the equipment, this was the solution me chanical and electrical products multi-varieties, the few volume pr oduction important outlet, simultaneously, might pour into the fres h blood for the traditional mechanical industry, brought the new vigor, extricated the machinery production from the arduous physica l labor, realization Enlightened production.Moreover, looked from the market demand angle, because our country develops, the development integration of machinery product history is not long, the disparity is big, many product varieties, quan tity, the scale, the quality all cannot meet the need, the impor t volume all quite is big every year, therefore must develop urg ently.(2) Our country “the integration of machinery†work duty Our country may summarize in the integration of machinery aspect duty is two speeches: A speech widely thoroughly uses the integra tion of machinery technological transformations tradition industry; Another speech is develops the integration of15 machinery product on a grand scale, the promotion mechani cal and electrical products renewal, the total goal is the promot ion mechanical and electrical body industry formation, makes the c ontribution for our country industrial structure and the product m ix adjustment.In brief, the integration of machinery technology not only is pro motes the traditional mechanical and electrical industry fresh bloo d and the source power, also is opens our country mechanical and electrical profession product mix, the industrial structure adjust s the front door the key.Sixth, our country develops “the integration of machinery†c ountermeasure(1) Enhancement overall plan arrangement, coordinated development pl anAt present, our country is engaged in the unit which “the integ ration of machinery”the research develops and produces to be ve ry many, each one all has a set of own development strategy, va rious units' plan as a result of respective standpoint, the objec tive point limit, only is considered unavoidably the local interes t, various16 department responsible for the work's related plan and pl an, also some unification consideration insufficiency, the overall plan arrangement insufficient question, simultaneously lacks the com prehensive survey overall situation to have the authority development plan and the strategic plan, therefore, suggested various depar tment responsible for the work charges the unit concerned in to conduct the thorough investigation and study, in the scientific an alysis foundation, formulates manages the overall situation “the i ntegration of machinery”the research, the development, the produc tive plan and the plan Avoids developing duplicates, produces hasa collision!(2) Strengthened profession management, display “associationâ€functionAt present, our country “integration of machinery”hot, but acco rding to the present profession division method and the management system, “the policy comes out of many doors”is difficult duo , therefore, our country has the necessity to be clear about one “the integration of machinery”the profession to manage the or ganization, according to the present country political reform and the economic restructuring spirit, as well as the integration of machinery profession characteristic, we suggested, strengthens Beijin g Integration of machinery Association as soon as possible the co nstruction, entrusts with its profession management function, “the association”must further expand the leadership organization - -council representative the stratification plane and the coverage, must strengthen the office, secretariat's construction; Must throu gh its astute capable administrative body, the economic entity, the organization17 “the profession”the development plan, strategic plan dr awing up; The instruction profession stationing layout adjustment, carries on develops the breach choice, pays special attention to the priority project the experiment site and the related project loses one's temper, the tender work ......Seventh, the conclusionIn summary, the integration of machinery appearance is not isolate d, it is many science and technology development crystallization, is the social productive forces develops the certain stage inevita bly request Certainly, also has with the integration of machinery related technology very many, and along with the science and te chnology development, the tendency which each kind of technology w ill fuse mutually more and more is obvious, the integration of m achinery technology broad prospects for development more and more will be also bright.论机电一体化的发展现代科学技术的不断发展,极大地推动了不同学科的交叉与渗透,导致了工程领域的技术革命与改造,在机械工程领域,由于微电子技术和计算机技术的迅速发展及其向机械工业的渗透所形成的机电一体化,使机械工业的技术结构、产品机构、功能与构成、生产方式及管理体系发生了巨大变化,使工业生产由“机械电气化”迈入了“机电一体化”为特征的发展阶段。
电机学英文文献翻译
The three-phase induction motor speed control methodThree-phase asynchronous motor speed formula: N = 60f / p (1-s) Can be seen from the above formula, change the power supply frequency f, motor pole number p and the slip s may be too much to change the speed of purpose. From the speed of the essence of view, is simply a different way to change speed synchronous AC motor does not change the sync transfer speed or two.Widespread use in production machines without changing the synchronous speed of motor speed control method Wound Rotor Series Resistance Speed, chopper speed control, cascade control, and application of electromagnetic slip clutch, fluid couplings, clutches and other film speed. Change the synchronous speed of change on the number of stator pole multi-speed motor to change the stator voltage and frequency to frequency conversion with no change to the motor speed and so on.Energy from the speed point of view when, with high speed method and inefficient methods of two kinds of speed: high speed when the slip refers to the same, so no slip losses, such as multi-speed motors, Slip frequency control and loss can speed recovery methods (such as cascade control, etc.). A deteriorating loss of speed control methods are inefficient speed, such as series resistance of the rotor speed method, the energy loss in the rotor circuit on; Electromagnetic Clutch The speed method, the energy loss in the clutch coils; fluid coupling speed, energy loss in the fluid coupling of the oil. General deterioration in loss increased with the expansion speed range, if not speed range, the energy loss is minimal.1, variable speed control method of pole pairsThis speed is then used to change the stator winding way to change the red cage motor stator pole pairs to achieve speed control purposes, the followingfeaturesWith hard mechanical properties, good stability;No slip loss, high efficiency; Wiring simple, easy to control, low price;A level speed, differential large, can not get smooth speed control;With pressure and speed adjustment, with the use of electromagnetic slip clutch,smooth and efficient access to high speed characteristics.This method is suitable for the production does not require variable speed machinery, such as metal cutting machine Bed , Lift , Lifting equipment, Fans Water Pump And so on.2, Frequency Control Method Frequency control is to change the motor stator Power supply Frequency, thus changing the speed of its synchronous speed method. Frequency control system main equipment is to provide variable frequency power supply Inverter , Inverter can be divided into AC - DC - AC inverter and AC - AC converter two categories, most of the current domestic use of AC - DC - AC inverter. Its characteristicsHighefficiency, speed the process without additional loss;Wide range of applications, can be used for cage induction motor;Speed range, features a hard, high accuracy;Technical complexity, high cost, difficult maintenance and overhaul.This method is suitable for the high accuracy, good speed performance occasions.3, cascade control method Cascade control is wound into the rotor circuit in the series of additional potential can be adjusted to change the motor's slip, to achieve speed control purposes. Most of the deterioration in power to be in series with the added potential absorbed, re-use generate additional devices to absorb the deterioration in power to return power to use or conversion of energy. Slip-power absorption under way, cascade control can be divided into Motor Cascade control, mechanical and thyristor cascade control cascade control, and multi-use cascade control thyristor, characterized byCan speed the process of deterioration in loss of feedback to the network or productionmachinery, more efficient;Installed capacity and speed range in direct proportion to investment, applicable speed range 70% -90% rated speed of production machinery;peed device failure can switch to full speed, to avoid the cut-off;Thyristor cascade speed low power factor, harmonics greater impact.This method is suitable for fans, pumps and rolling mills, mine hoist, extrusion machines.4, wound rotor motor speed control method of Series ResistanceWound Rotor Motor additional resistance in series, so that the motor slip up, motor running at low speed. The greater the resistance in series, the motor speed is lower. This method is simple, easy to control, but deteriorate the power consumption in the form of heat in the resistor. Is a class speed, soft mechanical properties.5, the stator pressure and speed adjustment methodStator voltage when changing the motor, you can get a different set of mechanical properties of curves, which were different speeds. Since the motor torque and voltage proportional to the square, the largest decline in a lot of torque, speed range of its small cage motors in general and difficult to apply. In order to expand the speed range, pressure and speed adjustment should be larger rotor resistance value cage motors, such as dedicated voltage regulator with speed torque motor, or series wound motor frequency sensitive resistors. In order to expand the range of stable operation, when the speed of 2:1 or more occasions in the feedback control should be adopted to achieve the purpose of automatic adjustment of speed.Pressure and speed adjustment is a key device to provide power supply voltage, the current way of a tandem common saturation voltage regulator Reactor , Auto Transformer And several other Thyristor Surge. Thyristor Surge is the best way. Adjusting Speed featuresPressure and speed adjustment circuit is simple, easy to realize automatic control;Poor power surge process to heat transfer in the rotor resistance in the form of consumption, low efficiency.Pressure and speed adjustment generally applies to 100KW below production machinery.6.electromagnetic speed regulating motor speed control method of electromagneticspeed regulating electric motor squirrel cage motor, electric slip clutch and DC excitation power supply (Controller) consists of three parts. DC excitation power small, usually consisting of single phase half-wave or full wave rectifiers thyristors composition, change thyristor conduction angle, you can change the magnetizing current size.Electromagnetic slip clutch armature, poles and excitation windings composed of three parts. Armature and the latter has no mechanical contact, are free to rotate. Armature motor coaxial connection active part, driven by motors; docking with the load axis magnetic pole coupling from the moving parts. When the armature poles are at rest, such as excitation windings for DC, along the circumferential surface will form a number of air gap on the n, s, of alternating polarity poles, the magnetic flux through the armature. Dang electric armature with drag motor rotating Shi, due to electric armature and pole between relative movement, and makes electric armature induction produced Eddy, this Eddy and magnetic pass mutual role produced go moments, led has pole of rotor by same direction rotating, but its speed constant below electric armature of speed N1, this is a go difference adjustable speed way, changes go difference clutch device of DC Lai magnetic current, will can change clutch device of output go moments and speed. Characteristics of electromagnetic speed regulating motor speed:appliances, structure and control circuit is simple, reliable operation, easymaintenance; speed and smooth, stepless speed regulationthe power network harmonic effects;lost speed, low efficiency.This method applies to medium and small power, requires low speed when the smooth, short run production machinery.7. the hydraulic coupler speed regulating hydraulic Coupler is a device for hydraulic drive, is made up of the pump and turbine, they collectively work wheels, placed in a sealed case. Shell filled with a certain amount of working fluid, when pump is impulse driven by rotation, in which liquid propelled by blades which rotate, and under the action of centrifugal force along the outer wheels when entering the turbine pump, to thrust to the turbine blades on the same turn, make it drive production machinery running. Power transfer capacity of the hydraulic coupler and shell filled with fluid volume sizes are consistent. In the course of work, changing the filling rate can change the coupler of turbine speed, stepless speed regulation, characterized by:power scope, can meet the needs of from a couple of different power 10-kilowattto shuqianqian;simple structure, reliable performance, easy to operation and maintenance, andlow cost;small size, capacity;easy to adjust, easy to fulfill automatic control.This method applies to the speed of the fan and water pump.三相异步电动机的几种调速方式三相异步电动机转速公式为:n=60f/p(1-s)从上式可见,改变供电频率f、电动机的极对数p及转差率s均可太到改变转速的目的。
机械毕业设计英文外文翻译伺服电机原理及应用
译文伺服电机原理及应用电机是如何工作的电动机是将电能转换成机械运动,电机用在家用电器,电动风扇,遥控玩具等各种使用场合电机起源于早期电学上的一个发现- Arago转动.在1824年, Francois Arago发现悬浮在铜盘上的磁针,在铜盘转动时也跟着转动.第二年,计算机先驱Charles Babbage和天文学家John Herschel向人们展示上述运动可以相逆的:转动一块位于铜盘上方较强的磁铁时,铜盘也转动.在1831年, Michael Faraday通过试验来解释这一现象发生的原因.在电机实际运用前,半个多世纪来做这些电机些基础研究过了几十年后,许多发明家不断改进发明将电能转换成机械能.其中一个就是1832 Hippolyte Pixii改进了之后称为换向器的发明.它通过改变位于两个或更多的固定电磁石电流方向,以维持一台电机连续运转. Thomas Davenport是第一个制造出在工业中使用的电机.并是第一个对电机申请专利的.不久电机被用作诸如交通运输等场合. Moritz-Hermann De Jacobi将一台电机安装在涅瓦河上的一条船上. Charles G. Page用电机做了一台小型机车.伴随着19世纪80年代商业性电力供应系统出现,制造出更大的电机也变得有可能. Edison鼓励在工业中便用电机,并且设计了几一些为工业使用兵新型电机在19世纪80年代到90年代发生了一个重大变化,电力公司开始考虑转成交流电.交流适合于长距离传输.并且在Edison的电灯上工作的很好,但是没有实际的交流电机存在,直到意大利的Galileo Ferraris和美国的Nikola Tesla. 在今天人们认为Tesla的贡献比Ferraris大部分原因是前者后来受雇于西屋公司,这家公司应用了他自己的及其他人的专利,成了为电气设备一个主要的生产者.随着交流电机成为可能,交流电力的发展,交流电机一直使用到现在。
电动机控制中英文对照外文翻译文献
电动机控制中英文对照外文翻译文献(文档含英文原文和中文翻译)原文:Control of Electric winchFor motor control, we know the best way is to use the style buttons to move the many simple manual console. And this console, in some applications may still be a good choice, as some complex control headache can also be used. This article describes in your design, build or purchase winch controller, you have the motor's basic electrical equipment and you will need to address the user interface command addressed.First, the manual should be a manual control console type, so if you remove your finger buttons, hoist will stop. In addition, each control station equipped with an emergency need to brake, hoist the emergency brake to cut off all power, not just the control circuit. Think about it, if the hoist at the stop, it did not stop, you do need a way to cut off the fault line protection power. Set the table in the control of a key operated switch, is also a very good idea, especially in the line leading to theworkstation can not control, you can use the switch.(in the design of the console, even the simplest manual console, but also consider setting by specialized personnel to operate the safe operation of the keys.) Constant speed motor controlFor a fixed speed winch actual control device is a three-phase starter. Turn the motor is reversed, by a simple switch controlled phase transformation sequence from ABC to CBA. These actions are completed by two three-pole contactor-style, and they are interlocked, so that they can not be simultaneously closed. NEC, required in addition to overload and short circuit protection devices. To protect the motor against overload due to mechanical effects caused by overheating in the heat to be installed inside the starter overload delay device. When the heat overload delay device overheating, it has a long double off the metal motor power. In addition In addition, you can also select a thermistor can be installed in the motor winding way, it can be used to monitor motor temperature changes. For the short-circuit protection, we generally used by motor fuses to achieve.A linear current independent contactors, the contactors are configured should be more than the current main circuit contactor, so as to achieve the purpose of redundancy. This sets the current contactor is controlled by the security circuit, such as: emergency brake and the more-way limits.We can use the limit switches to achieve the above operation. When you reach the end of the normal travel limit position, the hoist will stop, and you can only move the winch in the opposite direction (ie, the direction away from the limit position.) There is also need for a more limited way just in case, due to electrical or mechanical problems, leaving the operation of hoist limit bit more than normal. If you run into more limiter, linear contactor will open, therefore, can not be driven winch will exceed this limit position. If this happens, you need to ask a professional technician to check the lead to meet the more specific reasons limiter. Then, you can use thestarter toggle switch inside the elastic recovery process to deal with more problems, rather than tripping device or a hand-off the current contacts.A necessary condition for speedOf course, the simple fixed speed starter is replaced by variable speed drives. This makes things start to get interesting again! At a minimum, you need to add a speed control dial operation platform. Joystick is a better user interface, because it makes you move parts of a more intuitive control.Unfortunately, you can not just from your local console to send commands to control the old variable speed drives, in addition, you can not want it in the initial stages, will be able to enhance the safe and reliable and decentralized facilities. Most of the variable speed drive can not achieve these requirements, because they are not designed to do upgrading work. Drivers need to be set to release the brake before the motor can generate torque, and when parking, that is, before the revocation of torque, the brake will be the first action.For many years, DC motors and drives provide a number of common solutions, such as when they are in a variety of speeds with good torque characteristics. For most of the hoist of the large demand for DC motor is very expensive, and that the same type of AC motor than the much more expensive. Although the early AC drives are not very useful, as they have a very limited scope of application of the speed, but produced only a small low-speed torque. Now, with the DC drives the development of low cost and a large number of available AC motors has led to a communication-driven revolution.Variable speed AC drives in two series. Frequency converter has been widely known and, indeed, easy to use. These drives convert AC into DC, and then, and then convert it back to exchange, the exchange after the conversion is a different frequency. If the drive produced the exchange of 30Hz, 60Hz a normal motor will run at half speed. Theoretically, this is very good, but in practice, this will have a lot of problems. First of all, a typical linear motor 60Hz frequencies below 2Hz 3Hz area or there will be errors, and start cog (that urgent push, yank), or parking. This will limit your speed range lower than 20:1, almost not adapted to the operational phase of the fine adjustment. Second, many low-cost converter is not able to provide the rated torque at low speeds. Use of these drives, will result in the rapid move to upgrade the components or complete failure, precisely, when you try to upgrade a stable scientific instruments, you do not want to see this situation. Some new inverter is a closed-loop system (to get feedback from the motor to provide a more accurate speed control), and the motor will work quite well.Another series of AC drives is the flow vector type drive. These components require installation of the spindle motor encoder, encoder makes use of these drivescan accurately monitor the rotation of the motor armature. Processor accurately measured magnetic flux vector values that are required to make the armature at a given speed rotation. These drives allow infinite speed, so you actually can produce at zero speed to rated torque. These drives provide precise speed and position control, so these drives in high performance applications to be welcomed.(Based on PLC controllers provide system status and control options. This screen shows the operator full access to the nine-story elevator enhance the control panel.) PLC-based systemsIs the full name of a PLC programmable logic controller. First of all, PLC controller developed to replace the fifties and sixties-based industrial control system relay, they work in harsh industrial indoor environments. These are modular systems that have a large variety of I / O modules. The modular system can easily achieve the semi-custom hardware configuration assembled, and the resulting configuration is also very reasonable price. These modules include: position control module, the counter, A / D and D / A converter, and a variety of physical state or physical contact with closed output module. Large number of different types of I / O components and PLC module property makes it an effective way to assemble custom and semi custom control system.The biggest shortcoming of PLC systems is the lack of the real number of display to tell you what is being done and the PLC on the PLC program to help you.T he first is professional entertainment for the large-scale PLC system is one of the original in Las Vegas, MGM (now Bailey Company) of the riding and carriage system. Many manufacturers offer a standard PLC-based semi-automated acoustic systems and a host of signs, set the location of the command line interpreter, and the upgrading of the control system is also available. Using standard modules to set user-defined system configuration capability is based on the PLC controller of the greatest advantage.High-end controllerFor complex transmission, the controller became complex, more than speed, time and location control. They include complex instructions to write and record the movement contour, and the processing can immediately run the ability to multi-point instructions.Many large opera house is toward the direction of point lift system, where each one is equipped with a rope to enhance independent winches, rope equivalent to those of each dimmer circuit. When more than one hoist is used to enhance the individual part, the hoist must be fully synchronous, or the load to shift, so will lead to a separate winch becomes the risk of overload. Control system must be able to be selected to keep pace winch, or a hoist winch is not able to maintain synchronization with the other, can provide the same high-speed parking capacity. For a typical speed of 240 ft / min and a winch to maintain the rate of error of between 1 / 8 points of equipment, you only have less than three microseconds of time to identify problems and try to correct the error The hoist speed, make sure you fail, you start all the winch stop the group. This will require a large amount of computation, fast I / O interface, and easy to use to write software.For large rope control system has two very different solutions. The first is to use a separate console, the problem in general terms, this console should be installed in the appropriate location of the operator perspective. However, this not only from one angle to another angle, but still can not get an instruction to another instruction from the control. These difficulties have been partially resolved. Installed in different locations through the use of video cameras, and these cameras connected to the three-dimensional display graphics, these graphics enables the operator to observe from the perspective of any of the three coordinates in the expected direction of rope movement. These operators can make from a console for him at the actual angle, or closed circuit camera practical perspective, to observe the movement of the rope on the screen. For the complex interrelated moving parts, makes the implementation of the above observation Failure to control and find out easier.Another solution to the problem is a distributed system that uses multiple light console. This will allow the different operators in the same way the different aspects of control gear, we have improved the manual control device. A vivid example is the flower in a vegetable market in central London, the Royal Opera House, the program uses the above, where the control console 240 with ten motors. Each console has five playback device, and has been open, so that each motor has been assigned to a single console. An operator and a console can control all the devices, however, often may be running a console platform screen upgrade, another console is a console on the transmission device, and the third console is used to the necessary backgroundin the background image down.(edge-type portable console allows the operator many advantages from the start to control the movement of the machine, and provide three-dimensional image display.)ConclusionA huge change in the rope control system, a workstation has been developed from a push-button to complex multi-user computerized control system. When the control system to buy rope, you can always find to meet your needs. Control system performance is the most important security and reliability. These are the true value of the property, and you can expect the price to buy a suitable way of security. With a certain product manufacturers to work, he will make you know how to install it. And he will make contact with you and the users, those users have with similar requests.译文:电动卷扬机的控制对于电动机的控制,我们所知道的最好的方式就是使用由许多点动式按钮组成的简单的手工操作台。
电动机控制中英文对照外文翻译文献
电动机控制中英⽂对照外⽂翻译⽂献电动机控制中英⽂对照外⽂翻译⽂献(⽂档含英⽂原⽂和中⽂翻译)原⽂:Control of Electric winchFor motor control, we know the best way is to use the style buttons to move the many simple manual console. And this console, in some applications may still be a good choice, as some complex control headache can also be used. This article describes in your design, build or purchase winch controller, you have the motor's basic electrical equipment and you will need to address the user interface command addressed.First, the manual should be a manual control console type, so if you remove your finger buttons, hoist will stop. In addition, each control station equipped with an emergency need to brake, hoist the emergency brake to cut off all power, not just the control circuit. Think about it, if the hoist at the stop, it did not stop, you do need a way to cut off the fault line protection power. Set the table in the control of a key operated switch, is also a very good idea, especially in the line leading to the workstation can not control, you can use the switch.(in the design of the console, even the simplest manual console, but also consider setting by specialized personnel to operate the safe operation of the keys.) Constant speed motor controlFor a fixed speed winch actual control device is a three-phase starter. Turn the motor is reversed, by a simple switch controlled phase transformation sequence from ABC to CBA. These actions are completed by two three-pole contactor-style, and they are interlocked, so that they can not be simultaneously closed. NEC, required in addition to overload and short circuit protection devices. To protect the motor against overload due to mechanical effects caused by overheating in the heat to be installed inside the starter overload delay device. When the heat overload delay device overheating, it has a long double off the metal motor power. In addition In addition, you can also select a thermistor can be installed in the motor winding way, it can be used to monitor motor temperature changes. For the short-circuit protection, we generally used by motor fuses to achieve.A linear current independent contactors, the contactors are configured should be more than the current main circuit contactor, so as to achieve the purpose of redundancy. This sets the current contactor is controlled by the security circuit, such as: emergency brake and the more-way limits.We can use the limit switches to achieve the above operation. When you reach the end of the normal travel limit position, the hoist will stop, and you can only move the winch in the opposite direction (ie, the direction away from the limit position.) There is also need for a more limited way just in case, due to electrical or mechanical problems, leaving the operation of hoist limit bit more than normal. If you run into more limiter, linear contactor will open, therefore, can not be driven winch will exceed this limit position. If this happens, you need to ask a professional technician to check the lead to meet the more specific reasons limiter. Then, you can use thestarter toggle switch inside the elastic recovery process to deal with more problems, rather than tripping device or a hand-off the current contacts.A necessary condition for speedOf course, the simple fixed speed starter is replaced by variable speed drives. This makes things start to get interesting again! At a minimum, you need to add a speed control dial operation platform. Joystick is a better user interface, because it makes you move parts of a more intuitive control.Unfortunately, you can not just from your local console to send commands to control the old variable speed drives, in addition, you can not want it in the initial stages, will be able to enhance the safe and reliable and decentralized facilities. Most of the variable speed drive can not achieve these requirements, because they are not designed to do upgrading work. Drivers need to be set to release the brake before the motor can generate torque, and when parking, that is, before the revocation of torque, the brake will be the first action.For many years, DC motors and drives provide a number of common solutions, such as when they are in a variety of speeds with good torque characteristics. For most of the hoist of the large demand for DC motor is very expensive, and that the same type of AC motor than the much more expensive. Although the early AC drives are not very useful, as they have a very limited scope of application of the speed, but produced only a small low-speed torque. Now, with the DC drives the development of low cost and a large number of available AC motors has led to a communication-driven revolution.Variable speed AC drives in two series. Frequency converter has been widely known and, indeed, easy to use. These drives convert AC into DC, and then, and then convert it back to exchange, the exchange after the conversion is a different frequency. If the drive produced the exchange of 30Hz, 60Hz a normal motor will run at half speed. Theoretically, this is very good, but in practice, this will have a lot of problems. First of all, a typical linear motor 60Hz frequencies below 2Hz 3Hz area or there will be errors, and start cog (that urgent push, yank), or parking. This will limit your speed range lower than 20:1, almost not adapted to the operational phase of the fine adjustment. Second, many low-cost converter is not able to provide the rated torque at low speeds. Use of these drives, will result in the rapid move to upgrade the components or complete failure, precisely, when you try to upgrade a stable scientific instruments, you do not want to see this situation. Some new inverter is a closed-loop system (to get feedback from the motor to provide a more accurate speed control), and the motor will work quite well.Another series of AC drives is the flow vector type drive. These components require installation of the spindle motor encoder, encoder makes use of these drivescan accurately monitor the rotation of the motor armature. Processor accurately measured magnetic flux vector values that are required to make the armature at a given speed rotation. These drives allow infinite speed, so you actually can produce at zero speed to rated torque. These drives provide precise speed and position control, so these drives in high performance applications to be welcomed.(Based on PLC controllers provide system status and control options. This screen shows the operator full access to the nine-story elevator enhance the control panel.) PLC-based systemsIs the full name of a PLC programmable logic controller. First of all, PLC controller developed to replace the fifties and sixties-based industrial control system relay, they work in harsh industrial indoor environments. These are modular systems that have a large variety of I / O modules. The modular system can easily achieve the semi-custom hardware configuration assembled, and the resulting configuration is also very reasonable price. These modules include: position control module, the counter, A / D and D / A converter, and a variety of physical state or physical contact with closed output module. Large number of different types of I / O components and PLC module property makes it an effective way to assemble custom and semi custom control system.The biggest shortcoming of PLC systems is the lack of the real number of display to tell you what is being done and the PLC on the PLC program to help you.T he first is professional entertainment for the large-scale PLC system is one of the original in Las Vegas, MGM (now Bailey Company) of the riding and carriage system. Many manufacturers offer a standard PLC-based semi-automated acoustic systems and a host of signs, set the location of the command line interpreter, and the upgrading of the control system is also available. Using standard modules to set user-defined system configuration capability is based on the PLC controller of the greatest advantage.High-end controllerFor complex transmission, the controller became complex, more than speed, time and location control. They include complex instructions to write and record the movement contour, and the processing can immediately run the ability to multi-point instructions.Many large opera house is toward the direction of point lift system, where each one is equipped with a rope to enhance independent winches, rope equivalent to those of each dimmer circuit. When more than one hoist is used to enhance the individual part, the hoist must be fully synchronous, or the load to shift, so will lead to a separate winch becomes the risk of overload. Control system must be able to be selected to keep pace winch, or a hoist winch is not able to maintain synchronization with the other, can provide the same high-speed parking capacity. For a typical speed of 240 ft / min and a winch to maintain the rate of error of between 1 / 8 points of equipment, you only have less than three microseconds of time to identify problems and try to correct the error The hoist speed, make sure you fail, you start all the winch stop the group. This will require a large amount of computation, fast I / O interface, and easy to use to write software.For large rope control system has two very different solutions. The first is to use a separate console, the problem in general terms, this console should be installed in the appropriate location of the operator perspective. However, this not only from one angle to another angle, but still can not get an instruction to another instruction from the control. These difficulties have been partially resolved. Installed in different locations through the use of video cameras, and these cameras connected to the three-dimensional display graphics, these graphics enables the operator to observe from the perspective of any of the three coordinates in the expected direction of rope movement. These operators can make from a console for him at the actualangle, or closed circuit camera practical perspective, to observe the movement of the rope on the screen. For the complex interrelated moving parts, makes the implementation of the above observation Failure to control and find out easier. Another solution to the problem is a distributed system that uses multiple light console. This will allow the different operators in the same way the different aspects of control gear, we have improved the manual control device. A vivid example is the flower in a vegetable market in central London, the Royal Opera House, the program uses the above, where the control console 240 with ten motors. Each console has five playback device, and has been open, so that each motor has been assigned to a single console. An operator and a console can control all the devices, however, often may be running a console platform screen upgrade, another console is a console on the transmission device, and the third console is used to the necessary backgroundin the background image down.(edge-type portable console allows the operator many advantages from the start to control the movement of the machine, and provide three-dimensional image display.)ConclusionA huge change in the rope control system, a workstation has been developed from a push-button to complex multi-user computerized control system. When the control system to buy rope, you can always find to meet your needs. Control system performance is the most important security and reliability. These are the true value of the property, and you can expect the price to buy a suitable way of security. With a certain product manufacturers to work, he will make you know how to install it. And he will make contact with you and the users, those users have with similar requests.译⽂:电动卷扬机的控制对于电动机的控制,我们所知道的最好的⽅式就是使⽤由许多点动式按钮组成的简单的⼿⼯操作台。
文献翻译-伺服电机原理及应用
原文说明原文说明的内容是:文章阐述了电机的工作原理、发展过程、以及伺服电机的工作控制原理。
并且举例说明了伺服电机所适用的场合。
题名Servomotor’s Elements and Applications作者 NEWMARKER来源佳工机电网How Does a Motor Work?An electric motor converts electricity into mechanical motion. Electric motors are used in household appliances, electric fans, remote-controlled toys, and in thousands of other applications.The electric motor grew out of one of the earliest discoveries in electric science—Arago’s rotations. In 1824, Francois Arago discovered that a magnetic needle suspended over a copper disk would rotate when the disc was spun. The next year, computer pioneer Charles Babbage and astronomer John Herschel showed that the action could be reversed: spinning a more powerful magnet above the copper disk would spin the copper disc. Then, in 1831, Michael Faraday conducted experiments that helped explain why this took place. While this laid the groundwork for the electric motor, it was another half century before electric motors weredoing useful work.Over the next few decades many inventors made improved devices for turning electricity into motion. One of these was Hippolyte Pixii’s 1832 improvement called the commutator, which switched the flow of current between two or more sets of stationary electromagnets to keep a motor continuously rotating. Thomas Davenport was the first to build an electric motor large enough to be used in industry, and he was also the first to seek a patent on a motor. Soon electric motors were being used for such things as transportation. Moritz-Hermann De Jacobi used an electric motor on a boat on the Neva River, and Charles G. Page used one to build a small locomotive. After the appearance of commercial electric power systems in the 1880s, larger electric motors were possible. Edison encouraged the use of electric motors in industrial applications and designed several new electric motors for that purpose.An important change came in the later 1880s and 1890s, when electric power companies began considering the switch to alternating current. Alternating current was perfect for the distribution of electric power over long distances, and it worked well with the Edison electric lamp, but no practical AC motor existed until the works of Galileo Ferraris in Italy and Nikola Tesla in the United States. Tesla’s contributions are remembered today more than Ferraris’ in part because Tesla was subsequently hired by the Westinghouse corporation, whichused his patents along with many others to become one of the major producers of electric equipment. With a suitable AC motor available, AC power took off. It is still in use today.ServomotorServomotors are available as AC or DC motors. Early servomotors were generally DC motors because the only type of control for large currents was through SCRs for many years. As transistors became capable of controlling larger currents and switching the large currents at higher frequencies, the AC servomotor became used more often. Early servomotors were specifically designed for servo amplifiers. Today a class of motors is designed for applications that may use a servo amplifier or a variable-frequency controller, which means that a motor may be used in a servo system in one application, and used in a variable-frequency drive in another application. Some companies also call any closed-loop system that does not use a stepper motor a servo system, so it is possible for a simple AC induction motor that is connected to a velocity controller to be called a servomotor.Some changes that must be made to any motor that is designed as a servomotor includes the ability to operate at a range of speeds without overheating, the ability to operate at zero speed and retain sufficient torque to hold a load in position, and the ability to operate at very low speeds for long periods of time without overheating. Older-type motorshave cooling fans that are connected directly to the motor shaft. When the motor runs at slow speed, the fan does not move enough air to cool the motor. Newer motors have a separate fan mounted so it will provide optimum cooling air. This fan is powered by a constant voltage source so that it will turn at maximum RPM at all times regardless of the speed of the servomotor. One of the most usable types of motors in servo systems is the permanent magnet (PM) type motor. The voltage for the field winding of the permanent magnet type motor can be AC voltage or DC voltage. The permanent magnet-type motor is similar to other PM type motors presented previously. Figure-1 shows a cutaway picture of a PM motor and Fig.-2 shows a cutaway diagram of a PM motor. From the picture and diagram you can see the housing, rotor and stator all look very similar to the previous type PM motors. The major difference with this type of motor is that it may have gear reduction to be able to move larger loads quickly from a stand still position. This type of PM motor also has an encoder or resolver built into the motor housing. This ensures that the device will accurately indicate the position or velocity of the motor shaft.FIGURE 1-1 Typical PM servomotorsFIGURE 1-2 Cutaway picture of a permanent magnet servomotor Brushless ServomotorsThe brushless servomotor is designed to operate without brushes. This means that the commutation that the brushes provided must now be provided electronically. Electronic commutation is provided by switching transistors on and off at appropriate times. Figure 1-3 shows three examples of the voltage and current waveforms that are sent to the brushless servomotor. Figure 1-4 shows an example of the three windings of the brushless servomotor. The main point about the brushless servomotor is that it can be powered by either ac voltage or dc voltage.FIGURE 1-3 (a) Trapezoidal input voltage and square wave current waveforms. (b) Sinusoidal input voltage and sinusoidal voltage and square wave output voltage waveforms. (c) Sinusoidal input voltage and sinusoidal current waveforms. This has become the most popular type of brushless servomotor control.Figure 1-4 shows three sets of transistors that are similar to the transistors in the output stage of the variable-frequency drive. In Fig. l-4a the transistors are connected to the three windings of the motor in a similar manner as in the variable-frequency drive. In Fig. l-4b the diagram of the waveforms for the output of the transistors is shown asthree separate sinusoidal waves. The waveforms for the control circuit forthe base of each transistor are shown in Fig. l-4c. Figure l-4d shows the back EMF for the drive waveforms.FIGURE 11-86 (a) Transistors connected to the three windings of the brushless servomotor. (b) Waveforms of the three separate voltages that are used to power the three motor windings. (c) Waveforms of the signals used to control the transistor sequence that provides the waveforms for the previous diagram, (d) Waveform of theoverall back EMFServomotor ControllersServomotor controllers have become more than just amplifiers for a servomotor. Today servomotor controllers must be able to make a number of decisions and provide a means to receive signals from external sensors and controls in the system, and send signals to host controllersand PLCs that may interface with the servo system. Figure 1-5 shows a picture of several servomotors and their amplifiers. The components in this picture look similar to a variety of other types of motors and controllers.FIGURE 1-5 Example servomotors and amplifiers Figure 1-6 shows a diagram of the servomotor controller so that you can see some of the differences from other types of motor controllers. The controller in this diagram is for a DC servomotor. The controller has three ports that bring signals in or send signals out of the controller. The power supply, servomotor, and tachometer are connected to port P3 at the bottom of the controller. You can see that the supply voltage is 115-volt AC single phase. A main disconnect is connected in series with the LI wire. The LI and N lines supply power to an isolation step-down transformer. The secondary voltage of the trans-former can be any voltage between 20 and 85 volts. The controller is grounded at terminal 8.You should remember that the ground at this point is only used to provide protection against short circuits for all metal parts in the system.The servomotor is connected to the controller at terminals 4 and 5. Terminal 5 is + and terminal 4 is - . Terminal 3 provides a ground for the shield of the wires that connect the motor and the controller. The tachometer is connected to terminals 1 and 2. Terminal 2 is + and terminal 1 is - . The shield for this cable is grounded to the motor case. The wires connected to this port will be larger than wires connected to the other ports, since they must be capable of carrying the larger motor current. If the motor uses an external cooling fan, it will be connected through this port. In most cases the cooling fan will be powered by single-phase or three-phase AC voltage that remains at a constant level, such as 110 volts AC or 240 volts AC.FIGURE 1-6 Diagram of a servo controller. This diagram shows the digital (on-off) signals and the analog signals that are sent to the controller, and the signals the controller sends back to the host controller or PLC.The command signal is sent to the controller through port PI. The terminals for the command signal are 1 and 2. Terminal 1 is + and terminal 2 is - . This signal is a type signal, which means that it is not grounded or does not share a ground potential with any other part of the circuit. Several additional auxiliary signals are also connected through port 1. These signals include inhibit (INH), which is used to disable the drive from an external controller, and forward and reverse commands (FAC and RAC), which tell the controller to send the voltage to the motor so that it will rotate in the forward or reverse direction. In some applications, the forward maximum travel limit switch and reverse maximum travel limit switch are connected so that if the machine travel moves to the extreme position so that it touches the overtravel limit switch, it will automatically energize the drive to begin travel in the opposite direction.Port PI also provides several digital output signals that can be used to send fault signals or other information such as "drive running" back to a host controller or PLC. Port PI basically is the interface for all digital (on-off) signals.Port P2 is the interface for analog (0-max) signals. Typical signals on this bus include motor current and motor velocity signals that are sent from the servo controller back to the host or PLC where they can be used in verification logic to ensure the controller is sending the correct information to the motor. Input signals from the host or PLC can also be sent to the controller to set maximum current and velocity for the drive. In newer digital drives, these values are controlled by drive parameters that are programmed into the drive.PWM Servo AmplifierThe PWM servo amplifier is used on small-size servo applications that use DC brush-type servomotors. Figure 1-7 shows a diagram for this type of amplifier. From the diagram you can see that single-phase AC power is provided to the amplifier as the supply at the lower left part of the diagram. The AC voltage is rectified and sent to the output section of the drive that is shown in the top right comer of the diagram. The output section of the drive uses four IGBTs to create the pulse-width modulation waveform. The IGBTs are connected so that they provide 30-120 volts DC and up to 30 A to the brush-type DC servo-motor. The polarity of the motor is indicated in the diagram.The remaining circuits show a variety of fault circuits in the middle of the diagram that originate from the fault logic board and provide an output signal at the bottom of the diagram. You should notice that thefault output signals include overvoltage, overtemperature, and overcurrent. A fourth signal is identified as SSO (system status output), which indicates the status of the system as faulted anytime a fault has occurred. A jumper is used to set the SSO signal as an open collector output with a logic level "1" indicating the drive is ready, or as a normally closed relay indicating the drive is ready.The input terminals at the bottom right part of the diagram are used to enable or inhibit the drive, and to select forward amplifier clamp (FAC) or reverse amplifier clamp (RAC). The inhibit signal is used as a control signal, since it inhibits the output stage of the amplifier if it is high. The FAC and RAC signals limit the current in the opposite direction to 5%.The input signals are shown in the diagram at the upper left side. The VCS (velocity command signal) requires a +VCS and a -VCS signal to provide the differential signal.FIGURE 1-7 Diagram of a pulse-width modulator (PWM) amplifier with abrush-type DC servomotorApplications for Servo Amplifiers and MotorsYou will get a better idea of how servomotors and amplifiers operate if you see some typical applications. Figure 1-8 shows an example of a servomotor used to control a press feed. In this application sheet material is fed into a press where it is cut off to length with a knife blade or sheer. The sheet material may have a logo or other advertisement that must line up registration marks with the cut-off point. In this application the speed and position of the sheet material must be synchronized with the correct cut-off point. The feed-back sensor could be an encoder or resolver that is coupled with a photoelectric sensor to determine the location of the registration mark. An operator panel is provided so that the operator can jog the system for maintenance to the blades, or when loading a new rollof material. The operator panel could also be used to call up parameters for the drive that correspond to each type of material that is used. The system could also be integrated with a programmable controller or other type of controller and the operator panel could be used to select the correct cutoff points for each type of material or product that is run.FIGURE 1-8 Application of a servomotor controlling the speed of material as it entersa press for cutting pieces to size.An Example of a Servo Controlled In-Line Bottle-Filling ApplicationA second application is shown in Fig. 1-9. In this application multiple filling heads line up with bottles as they move along a continuous line. Each of the filling heads must match up with a bottle and track the bottle while it is moving. Product is dispensed as the nozzles move with the bottles. In this application 10 nozzles are mounted on acarriage that is driven by a ball-screw mechanism. The ball-screw mechanism is also called a lead screw. When the motor turns the shaft of the ball screw, the carriage will move horizontally along the length of the ball-screw shaft. This movement will be smooth so that each of the nozzles can dispense product into the bottles with little spillage.The servo drive system utilizes a positioning drive controller with software that allows the position and velocity to be tracked as the conveyor line moves the bottles. A master encoder tracks the bottles as they move along the conveyor line. An auger feed system is also used just prior to the point where the bottles enter the filling station. The auger causes a specific amount of space to be set between each bottle as it enters the filling station. The bottles may be packed tightly as they approach the auger, but as they pass through the auger their space is set exactly so that the necks of the bottles will match the spacing of the filling nozzles. A detector is also in conjunction with the dispensing system to ensure that no product is dispensed from a nozzle if a bottle is missing or large spaces appear between bottles.FIGURE 1-9 Application of a beverage-filling station controlled by a servomotor The servo drive system compares the position of the bottles from the master encoder to the feedback signal that indicates the position of the filling carriage that is mounted to the ball screw. The servo drive amplifier will increase or decrease the speed of the ball-screw mechanism so that the nozzles will match the speed of the bottles exactly.An Example of a Servo Controlled Precision Auger Filling SystemA third application for a servo system is provided in Fig. 1-10. In this application a large filling tank is used to fill containers as they pass along a conveyor line. The material that is dispensed into the containers can be a single material fill or it can be one of several materials added to a container that is dumped into a mixer for a blending operation. Since the amount of material that is dispensed into the container must be accurately weighed and metered into the box, an auger that is controlledby a servo system is used. The feedback sensor for this system can be a weighing system such as the load cell discussed in earlier chapters. The command signal can come from a programmable controller or the operator can enter it manually by selecting a recipe from the operator's terminal. The amount of material can be different from recipe to recipe.FIGURE 1-10 Application of a precision auger filling station controlled by aservomotor.The speed of the auger can be adjusted so that it runs at high speed when the container is first being filled, and the speed can be slowed to a point where the final grams of material can be metered precisely as the container is filled to the proper point. As the price of material increases,precision filling equipment can provide savings as well as quality in the amount of product used in the recipe.An Example of a Label Application Using ServomotorsThe fourth application has a servomotor controlling the speed of a label-feed mechanism that pulls preprinted labels from a roll and applies them to packages as they move on a continuous conveyor system past the labeling mechanism. The feedback signals are provided by an encoder that indicates the location of the conveyor, tach generator that indicates the speed of the conveyor, and a sensor that indicates the registration mark on each label. The servo positioning system is controlled by a microprocessor that sets the error signal, and the servo amplifier that provides power signals to the servomotor. This application is shown in Fig. 1-11.FIGURE 1-11 Example of a labeling application controlled by a servomotor An Example of a Random Timing Infeed System Controlled by a ServomotorThe fifth application is presented in Fig. 1-12, and it shows a series of packaging equipment that operates as three separate machines. The timing cycle of each station of the packaging system is independent from the others. The packaging system consists of an infeed conveyor, a positioning conveyor, and a wrapping station. The infeed conveyor and the wrapping station are mechanically connected so that they run at the same speed. The position of the packages on the wrapping station must be strictly controlled so that the packages do not become too close to each other. A piece of metal called a flight is connected to the wrapping station conveyor at specific points to ensure each package stays in position. A sensor is mounted at the beginning of the positioning conveyor to determine the front edge of the package when it starts to move onto the positioning conveyor. A second sensor is positioned at the bottom of the packaging conveyor to detect the flights. Both of these signals from the sensors are sent to the servomotor to provide information so the servo can adjust the speed of the positioning conveyor so that each package aligns with one of the flights as it moves onto the packaging conveyor. This application shows that the servo positioning controller can handle a variety of different signals from more than one sensor because the controller uses a microprocessor.controlled by a servo-motor.译文伺服电机原理及应用电机是如何工作的?电动机是将电能转换成机械运动,电机用在家用电器,电动风扇,遥控玩具等各种使用场合电机起源于早期电学上的一个发现- Arago转动.在1824年, Francois Arago发现悬浮在铜盘上的磁针,在铜盘转动时也跟着转动.第二年,计算机先驱Charles Babbage和天文学家John Herschel向人们展示上述运动可以相逆的:转动一块位于铜盘上方较强的磁铁时,铜盘也转动.在1831年, Michael Faraday通过试验来解释这一现象发生的原因.在电机实际运用前,半个多世纪来做这些电机些基础研究过了几十年后,许多发明家不断改进发明将电能转换成机械能.其中一个就是1832 Hippolyte Pixii改进了之后称为换向器的发明.它通过改变位于两个或更多的固定电磁石电流方向,以维持一台电机连续运转. Thomas Davenport是第一个制造出在工业中使用的电机.并是第一个对电机申请专利的.不久电机被用作诸如交通运输等场合. Moritz-Hermann De Jacobi将一台电机安装在涅瓦河上的一条船上. Charles G. Page用电机做了一台小型机车.伴随着19世纪80年代商业性电力供应系统出现,制造出更大的电机也变得有可能. Edison 鼓励在工业中便用电机,并且设计了几一些为工业使用兵新型电机在19世纪80年代到90年代发生了一个重大变化,电力公司开始考虑转成交流电.交流适合于长距离传输.并且在Edison的电灯上工作的很好,但是没有实际的交流电机存在,直到意大利的Galileo Ferraris和美国的Nikola Tesla. 在今天人们认为Tesla的贡献比Ferraris大部分原因是前者后来受雇于西屋公司,这家公司应用了他自己的及其他人的专利,成了为电气设备一个主要的生产者.随着交流电机成为可能,交流电力的发展,交流电机一直使用到现在。
(完整版)电机学英文文献翻译
(完整版)电机学英文文献翻译The three-phase induction motor speed control methodThree-phase asynchronous motor speed formula: N = 60f / p (1-s) Can be seen from the above formula, change the power supply frequency f, motor pole number p and the slip s may be too much to change the speed of purpose. From the speed of the essence of view, is simply a different way to change speed synchronous AC motor does not change the sync transfer speed or two.Widespread use in production machines without changing the synchronous speed of motor speed control method Wound Rotor Series Resistance Speed, chopper speed control, cascade control, and application of electromagnetic slip clutch, fluid couplings, clutches and other film speed. Change the synchronous speed of change on the number of stator pole multi-speed motor to change the stator voltage and frequency to frequency conversion with no change to the motor speed and so on.Energy from the speed point of view when, with high speed method and inefficient methods of two kinds of speed: high speed when the slip refers to the same, so no slip losses, such as multi-speed motors, Slip frequency control and loss can speed recovery methods (such as cascade control, etc.). A deteriorating loss of speed control methodsare inefficient speed, such as series resistance of the rotor speed method, the energy loss in the rotor circuit on; Electromagnetic Clutch The speed method, the energy loss in the clutch coils; fluid coupling speed, energy loss in the fluid coupling of the oil. General deterioration in loss increased with theexpansion speed range, if not speed range, the energy loss is minimal.1, variable speed control method of pole pairsThis speed is then used to change the stator winding way to change the red cagemotor stator pole pairs to achieve speed control purposes, the followingfeaturesWith hard mechanical properties, good stability;No slip loss, high efficiency; Wiring simple, easy to control, low price;A level speed, differential large, can not get smooth speed control;With pressure and speed adjustment, with the use of electromagnetic slip clutch,smooth and efficient access to high speed characteristics.This method is suitable for the production does not require variable speed machinery, such as metal cutting machine Bed , Lift , Lifting equipment, Fans Water Pump And so on.2, Frequency Control Method Frequency control is to change the motor stator Power supply Frequency, thus changing the speed of its synchronous speed method. Frequency control system main equipment is to provide variable frequency power supply Inverter , Inverter can be divided into AC - DC - AC inverter and AC - AC converter two categories, most of the current domestic use of AC - DC - AC inverter. Its characteristicsHigh efficiency, speed the process without additional loss;Wide range of applications, can be used for cage induction motor;。
机器人视觉伺服控制外文文献翻译、中英文翻译
附录1:外文翻译摘要本文介绍了机器人视觉伺服控制的入门教程,由于该课题涉及许多学科,我们的目标仅限于提供一个基本的概念框架工作。
首先,我们从机器人学和计算机视觉的前提条件,包括坐标变换,速度表示,以及图像形成过程的几何方面的描述进行简要回顾。
然后,我们提出了视觉伺服控制系统的分类。
然后详细讨论了基于位置和基于图像的系统的两大类。
由于任何视觉伺服系统必须能够跟踪图像序列中的图像特征,所以我们还包括基于特征和基于相关性的跟踪方法的概述。
我们结束了教程与一些服务的当前方向的研究领域的视觉伺服控制当今绝大多数增长的机器人人口都在工厂里工作,在那里工厂可以制造出适合机器人的环境。
在工作环境和物体放置不能精确控制的应用中,机器人的影响要小得多。
这种局限性很大程度上是由于现代商业机器人系统固有的感觉能力不足。
人们早已认识到,传感器集成是提高机器人的通用性和应用领域的基础,但迄今为止,这还没有证明在制造业中大量的机器人应用是有效的。
机器人在日常生活中的“前沿”为这项研究提供了新的动力。
与制造业的应用不同,重新设计“我们的世界”并不适合于机器人。
视觉是一种有用的机器人传感器,因为它模仿人类的视觉,并允许对环境进行非接触测量。
自从Shirai 和伊努埃(1)的早,期工作(谁描述了如何使用视觉反馈回路来校正机器人的位置以提高任务精度)大量的EORT 一直致力于机器人的视觉控制。
机器人控制器完全集成的视觉系统现在可以从多个供应商获得。
通常,视觉感知和操作以开环的方式组合,“看”然后“移动”。
所得到的操作的精度直接取决于视觉传感器和机器人末端Ecter 的精度。
增加这些子系统的精度的一个替代方法是使用视觉反馈控制回路,这将增加系统的整体精度,这是大多数应用中的一个主要问题。
极端地,机器视觉可以为机器人端部控制器提供闭环位置控制。
这被称为视觉伺服。
这个词似乎已经被RHT 和Park(2)在1979 中介绍了,以区别他们的方法与先前的“块世界”实验,其中系统在拍照和移动之间交替。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
伺服电机1.伺服电机的定义伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。
分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。
伺服电机在伺服系统中控制机械元件运转的发动机.是一种补助马达间接变速装置。
伺服电机可使控制速度,位置精度非常准确。
将电压信号转化为转矩和转速以驱动控制对象。
转子转速受输入信号控制,并能快速反应,在自动控制系统中作执行元件,且具有机电时间常数小、线性度高、始动电压低等特点。
2.伺服电机工作原理1.伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。
有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便(换碳刷),产生电磁干扰,对环境有要求。
无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。
控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。
电机免维护,效率很高,运行温度低,电磁辐射很小,长寿命,可用于各种环境。
2.交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控制中一般都用同步电机,它的功率范围大,可以做到很大的功率。
大惯量,最高转动速度低,且随着功率增大而快速降低。
因而适合做低速平稳运行的应用。
3.永磁交流伺服电动机简介20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。
交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。
90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。
交流伺服驱动装置在传动领域的发展日新月异。
永磁交流伺服电动机同直流伺服电动机比较,主要优点有:⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。
⑵定子绕组散热比较方便。
⑶惯量小,易于提高系统的快速性。
⑷适应于高速大力矩工作状态。
⑸同功率下有较小的体积和重量。
自从德国MANNESMANN的Rexroth公司的Indramat分部在1978年汉诺威贸易博览会上正式推出MAC永磁交流伺服电动机和驱动系统,这标志着此种新一代交流伺服技术已进入实用化阶段。
到20世纪80年代中后期,各公司都已有完整的系列产品。
整个伺服装置市场都转向了交流系统。
早期的模拟系统在诸如零漂、抗干扰、可靠性、精度和柔性等方面存在不足,尚不能完全满足运动控制的要求,近年来随着微处理器、新型数字信号处理器(DSP)的应用,出现了数字控制系统,控制部分可完全由软件进行,分别称为摪胧只瘮或抟旌鲜綌、撊只瘮的永磁交流伺服系统。
到目前为止,高性能的电伺服系统大多采用永磁同步型交流伺服电动机,控制驱动器多采用快速、准确定位的全数字位置伺服系统。
日本安川电机制作所推出的小型交流伺服电动机和驱动器,其中D系列适用于数控机床(最高转速为1000r/min,力矩为0.25~2.8N.m),R系列适用于机器人(最高转速为3000r/min,力矩为0.016~0.16N.m)。
之后又推出M、F、S、H、C、G 六个系列。
20世纪90年代先后推出了新的D系列和R系列。
这样,只用了几年时间形成了八个系列(功率范围为0.05~6kW)较完整的体系,满足了工作机械、搬运机构、焊接机械人、装配机器人、电子部件、加工机械、印刷机、高速卷绕机、绕线机等的不同需要。
以生产机床数控装置而著名的日本法那克(Fanuc)公司,在20世纪80年代中期也推出了S系列(13个规格)和L系列(5个规格)的永磁交流伺服电动机。
L系列有较小的转动惯量和机械时间常数,适用于要求特别快速响应的位置伺服系统。
日本其他厂商,例如:三菱电动机(HC-KFS、HC-MFS、HC-SFS、HC-RFS和HC-UFS系列)、东芝精机(SM系列)、大隈铁工所(BL系列)、三洋电气(BL系列)、立石电机(S系列)等众多厂商也进入了永磁交流伺服系统的竞争行列。
美国著名的伺服装置生产公司Gettys曾一度作为Gould 电子公司一个分部(Motion Control Division),生产M600系列的交流伺服电动机和A600 系列的伺服驱动器。
后合并到AEG,恢复了Gettys名称,推出A700全数字化的交流伺服系统。
I.D.(Industrial Drives)是美国著名的科尔摩根(Kollmorgen)的工业驱动分部,曾生产BR-210、BR-310、BR-510 三个系列共41个规格的无刷伺服电动机和BDS3型伺服驱动器。
自1989年起推出了全新系列设计的掺鹣盗袛(Goldline)永磁交流伺服电动机,包括B(小惯量)、M(中惯量)和EB(防爆型)三大类,有10、20、40、60、80五种机座号,每大类有42个规格,全部采用钕铁硼永磁材料,力矩范围为0.84~111.2N.m,功率范围为0.54~15.7kW。
配套的驱动器有BDS4(模拟型)、BDS5(数字型、含位置控制)和Smart Drive(数字型)三个系列,最大连续电流55A。
法国Alsthom集团在巴黎的Parvex工厂生产LC系列(长型)和GC系列(短型)交流伺服电动机共14个规格,并生产AXODYN系列驱动器。
原苏联为数控机床和机器人伺服控制开发了两个系列的交流伺服电动机。
其中ДBy系列采用铁氧体永磁,有两个机座号,每个机座号有3种铁心长度,各有两种绕组数据,共12个规格,连续力矩范围为7~35N.m。
2ДBy系列采用稀土永磁,6个机座号17个规格,力矩范围为0.1~170N.m,配套的是3ДБ型控制器。
近年日本松下公司推出的全数字型MINAS系列交流伺服系统,其中永磁交流伺服电动机有MSMA系列小惯量型,功率从0.03~5kW,共18种规格;中惯量型有MDMA、MGMA、MFMA三个系列,功率从0.75~4.5kW,共23种规格,MHMA 系列大惯量电动机的功率范围从0.5~5kW,有7种规格。
伺服电机原理1.交流伺服电动机交流伺服电动机定子的构造基本上与电容分相式单相异步电动机相似.其定子上装有两个位置互差90°的绕组,一个是励磁绕组Rf,它始终接在交流电压Uf上;另一个是控制绕组L,联接控制信号电压Uc。
所以交流伺服电动机又称两个伺服电动机。
交流伺服电动机的转子通常做成鼠笼式,但为了使伺服电动机具有较宽的调速范围、线性的机械特性,无“自转”现象和快速响应的性能,它与普通电动机相比,应具有转子电阻大和转动惯量小这两个特点。
目前应用较多的转子结构有两种形式:一种是采用高电阻率的导电材料做成的高电阻率导条的鼠笼转子,为了减小转子的转动惯量,转子做得细长;另一种是采用铝合金制成的空心杯形转子,杯壁很薄,仅0.2-0.3mm,为了减小磁路的磁阻,要在空心杯形转子内放置固定的内定子.空心杯形转子的转动惯量很小,反应迅速,而且运转平稳,因此被广泛采用。
交流伺服电动机在没有控制电压时,定子内只有励磁绕组产生的脉动磁场,转子静止不动。
当有控制电压时,定子内便产生一个旋转磁场,转子沿旋转磁场的方向旋转,在负载恒定的情况下,电动机的转速随控制电压的大小而变化,当控制电压的相位相反时,伺服电动机将反转。
交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点:1、起动转矩大由于转子电阻大,与它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。
因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。
2、运行范围较广 3、无自转现象,正常运转的伺服电动机,只要失去控制电压,电机立即停止运转。
当伺服电动机失去控制电压后,它处于单相运行状态,由于转子电阻大,定子中两个相反方向旋转的旋转磁场与转子作用所产生的两个转矩特性(T1-S1、T2-S2曲线)以及合成转矩特性(T-S曲线)交流伺服电动机的输出功率一般是0.1-100W。
交流伺服电动机运行平稳、噪音小。
但控制特性是非线性,并且由于转子电阻大,损耗大,效率低,因此与同容量直流伺服电动机相比,体积大、重量重,所以只适用于0.5-100W的小功率控制系统。
2.伺服电机选型方法1.与步进电机的性能比较步进电机作为一种开环控制的系统,和现代数字控制技术有着本质的联系。
在目前国内的数字控制系统中,步进电机的应用十分广泛。
随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。
为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。
虽然两者在控制方式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。
现就二者的使用性能作一比较。
一、控制精度不同:两相混合式步进电机步距角一般为 1.8°、0.9°,五相混合式步进电机步距角一般为0.72 °、0.36°。
也有一些高性能的步进电机通过细分后步距角更小。
如三洋公司(SANYO DENKI)生产的二相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。
交流伺服电机的控制精度由电机轴后端的旋转编码器保证。
以三洋全数字式交流伺服电机为例,对于带标准2000线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/8000=0.045°。
对于带17位编码器的电机而言,驱动器每接收131072个脉冲电机转一圈,即其脉冲当量为360°/131072=0.0027466°,是步距角为1.8°的步进电机的脉冲当量的1/655。
二、低频特性不同,步进电机在低速时易出现低频振动现象。
振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。
这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。