(完整)第六章平面图形的认识(一)检测卷(含答案),推荐文档

合集下载

最新七年级数学上册苏科版《第六章平面图形的认识》测试卷一及答案(精品试卷).docx

最新七年级数学上册苏科版《第六章平面图形的认识》测试卷一及答案(精品试卷).docx

第六章平面图形的认识测试卷(一)(满分:100分时间:60分)一、选择题(20分)1.下列各图中,画出了直线PQ、射线AB和线段MN,其中能相交的是( )2.如果∠α=40°,那么∠α的余角等于( ) A.60°B.50°C.140°D.90°3.如图,图中画出了以点O为端点的四条射线OA、OB、OC、OD,其中,方向为北偏西30°的射线是( )A.射线OA B.射线OB C.射线OC D.射线OD第3题第4题第5题4.如图,在正方体中,与棱AB平行的棱有( ) A.1条B.2条C.3条D.4条5.如图,CD⊥EF于点D,且∠EDA=∠FDB,下列说法中,错误的是( ) A.∠EDA与∠BDC互余B.∠EDA与∠FDA互补C.∠EDA与∠FDB是对顶角D.∠ADC=∠BDC6.下列说法中,正确的是 ( )A .一根拉紧的细线就是直线B .直线上的一点将直线分成两条相等的射线C .经过两点有且只有一条直线D .端点相同的两条射线就是同一条射线7.如图,C 是AB 的中点,D 是BC 的中点.下列等式中,错误的有 ( ) ①CD =AC -DB ②CD =AD -BC③CD =12AB -12AC ④CD =13AB A .1个 B .2个 C .3个 D .4个8.下列说法中,正确的是 ( ) A .互补的两个角若相等,则这两个角都是直角 B .直线是平角C .不相交的两条直线互相平行D .和为180°的两个角是邻补角9.在同一平面内,四条直线的交点个数不可能是 ( ) A .2个 B .3个 C .4个 D .5个10.如图,在正方形网格中,∠1、∠2、∠3的大小关系是 ( )A .∠1=∠2=∠3B .∠1=∠2>∠3C .∠1<∠2=∠3D .∠1>∠2>∠3 二、填空题(20分)11.两点之间的所有连线中,最短.12.2时30分时,钟面上的时针和分针的夹角度数是.13.如图,当∠1和∠2满足条件时,OA⊥OB.(填一个适当的条件)第13题第14题14.如图,∠AOD和∠BOC都是直角,如果∠DOC=38°,那么∠ADB的度数是.15.计算:28°32′+15°46′°,180°-32°47′12″=,32°5′42″×4=,37°43′27″÷3=.16.已知A、B、C三点在同一条直线上,AB=10,BC=8,则AC=.17.用一副三角尺可以画出的度数有.(请写出所有能画出的度数)三、计算题(18分)18.一个角的补角是它的余角的3倍,求这个角的度数.19.如图,AB=8cm,点C是AB上一点,AC=3.2cm,M是AB的中点,N是AC的中点,求线段MN的长.20.如图,直线AB、CD相交于点O,OD平分∠BOF,OE⊥CD,∠BOE=50°,求∠AOC、∠EOF、∠AOF的度数。

苏科版七年级上册数学第6章 平面图形的认识(一)含答案(含解析)

苏科版七年级上册数学第6章 平面图形的认识(一)含答案(含解析)

苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、∠1=45゜24′,∠2=45.3゜,∠3=45゜18′,则()A.∠1=∠2B.∠2=∠3C.∠1=∠3D.以上都不对2、如图,OA⊥OC,OB⊥OD,四位同学观察图形后分别说了自己的观点.甲:∠AOB=∠COD;乙:∠BOC+∠AOD=180°;丙:∠AOB+∠COD=90°;丁:图中小于平角的角有6个.其中观点正确的有()A.甲、乙、丙B.甲、丙、丁C.乙、丙、丁D.甲、乙、丁3、12点15分,时针与分针所夹的小于平角的角为()A.90°B.67.5°C.82.5°D.60°4、已知:如图,点E,F分别在AB,CD上,AF⊥CE,垂足为点O,∠1=∠B,∠A+∠2=90°.求证:AB∥CD.证明:如图,∵∠1=∠B(已知)∴CE∥BF(同位角相等,两直线平行)______________∴∠AFC+∠2=90°(等式性质)∵∠A+∠2=90°(已知)∴∠AFC=∠A(同角或等角的余角相等)∴AB∥CD(内错角相等,两直线平行)请你仔细观察下列序号所代表的内容:①∴∠AOE=90°(垂直的定义)②∴∠AFB=90°(等量代换)③∵AF⊥CE(已知)④∵∠AFC+∠AFB+∠2=180°(平角的定义)⑤∴∠AOE=∠AFB(两直线平行,同位角相等)横线处应填写的过程,顺序正确的是()A.⑤③①②④B.③④①②⑤C.⑤④③①②D.⑤②④5、如图,C是线段AB的中点,D是线段CB的中点,下列说法错误的是()A.CD=AC﹣BDB.CD= AB﹣BDC.AC+BD=BC+CDD.CD= AB6、如图,∠DOB=140°,OA⊥OB,则∠AOC=()A.40°B.45°C.50°D.55°7、如图,射线 AB,DC 交于点O,射线OM平分∠AOC,若∠BOD=80°,则∠COM的度数为()A.30°B.40°C.50°D.60°8、如图,直线AC和直线BD相交于点0,若∠1+∠2=90°,则∠BOC的度数是()A.100°B.115°C.135°D.145°9、如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能符合题意解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间,线段最短 D.经过两点,有且仅有一条直线10、如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为()A.2B.3C.4D.511、下列六个命题:①有理数与数轴上的点一一对应;②两条直线被第三条直线所截,内错角相等;③直线外一点到这条直线的垂线段叫做点到直线的距离;④平行于同一条直线的两条直线互相平行;⑤垂直于同一条直线的两条直线互相平行;⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等,其中假命题的个数是()A.3个B.4个C.5个D.6个12、下列结论中,不正确的是()A.两点确定一条直线B.两点之间的所有连线中,线段最短C.对顶角相等D.过一点有且只有一条直线与已知直线平行13、下列说法:①如果∠1+ ∠2+∠3=180°,那么∠1,∠2,∠3三个角互为补角;②如果∠A+ ∠B=90°,那么∠A与∠B互为余角;③“对顶角相等”成立,反之“相等的角是对顶角”也成立;④两条直线被第三条直线所截,同位角相等;⑤两点之间,线段最短. 正确的个数是()A.2个B.3个C.4个D.5个14、在墙壁上固定一根横放的木条,则至少需要()枚钉子A.lB.2C.3D.随便多少枚15、修建高速公路时,经常将弯曲的道路改直,从而缩短路程,这样做的数学根据是()A.两点确定一条直线B.两点之间,线段最短C.垂线段最短D.同位角相等,两直线平行二、填空题(共10题,共计30分)16、请补充完成以下解答过程,并在括号内填写该步骤的理由.已知:如图,, , 平分,若,求的度数.解:因为,所以________ .因为________ ,所以.所以.(________)因为,所以.因为平分,所以________ ________°所以________°.17、如图所示:直线AB与CD相交于O,已知∠1=30°,OE是∠BOC的平分线,则∠2=________°,∠3=________°.18、数轴上到表示数4的点的距离为5个单位长度的点表示的数是________.19、如图,已知从甲地到乙地共有四条路可走,你应选择第________ 路,所用的数学原理为:________20、如图,射线表示西北方向,若射线表示南偏西的方向,则锐角的大小是________度.21、下午3点30分时,钟面上时针与分针所成的角等于________°.22、若∠1+∠2=180°,∠1+∠3=180°,则∠2与∠3的关系是________.23、火车往返于A、B两个城市,中途经过4个站点(共6个站点),不同的车站来往需要不同的车票,共有________种不同的车票.24、以下说法:①两点确定一条直线;②两点之间直线最短;③若x=y,则= ;④若|a|=﹣a,则a<0;⑤若a,b互为相反数,那么a,b的商必定等于﹣1.其中正确的是________.(请填序号)25、如图,已知AE//CD,BC⊥CD于C,若∠A=28°,则∠ABC=________三、解答题(共5题,共计25分)26、一个角的余角比它的补角还多1°,求这个角.27、如图,轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则∠A的度数为多少?28、已知A、B、C.三点在同一直线上,DE⊥AB, ∠DBE=2∠EBC,求∠DBE的度数。

苏科版七年级上册数学第6章 平面图形的认识(一) 含答案

苏科版七年级上册数学第6章 平面图形的认识(一) 含答案

苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、如图,点A位于点O的()方向上A.北偏西65°B.南偏东35°C.北偏东65°D.南偏西65°2、下列说法正确的是()A.射线比直线短B.两点确定一条直线C.经过三点只能作一条直线D.两点间的长度叫两点间的距离3、如图,直线AB、CD交于O,EO⊥AB于O,∠1与∠2的关系是()A.互余B.对顶角C.互补D.相等4、在图中,不同的线段的条数是()A.3B.4C.5D.65、在数轴上表示数-1和2019的两点分别为点A和点B,则A、B两点之间的距离为()A.2018B.2019C.2020D.20216、若一个三角形的两个外角分别是135º、125º,则这个三角形的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定形状7、如图,点在直线上移动,是直线上的两个定点,且直线.对于下列各值:①点到直线的距离;②的周长;③的面积;④的大小.其中不会随点的移动而变化的是()A.①②B.①③C.②④D.③④8、下列各图中,OP 是∠MON 的平分线,点E,F,G 分别在射线OM,ON,OP 上,则可以解释定理“角的平分线上的点到角的两边的距离相等”的图形是()A. B. C. D.9、如图,直线,则的度数为()A.150°B.140°C.130°D.120°10、下列说法中正确的是()A.四棱锥有4个面B.连接两点间的线段叫做两点间的距离C.如果线段,则M是线段AB的中点D.射线和射线不是同一条射线11、如图,大小不同的两个磁块,其截面都是等边三角形,小三角形边长是大三角形边长的一半,点O是小三角形的内心,现将小三角形沿着大三角形的边缘顺时针滚动,当由①位置滚动到④位置时,线段OA绕点O顺时针转过的角度是()A.240°B.360°C.480°D.540°12、把一条弯曲的河道改成直道,可以缩短航程,其中的道理可以解释为()A.线段有两个端点B.过两点可以确定一条直线C.两点之间,线段最短D.线段可以比较大小13、若A,B,C是直线l上的三点,P是直线l外一点,且PA=5cm,PB=4cm,PC=3cm,则点P到直线l的距离 ( )A.等于3 cmB.大于3 cm而小于4 cm ;C.不大于3cm D.小于3 cm14、下列四个图中,∠1和∠2是对顶角的图的个数是()A.0个B.1个C.2个D.3个15、已知∠α,如图,则∠α的度数约为()A.75°B.60°C.45°D.30°二、填空题(共10题,共计30分)16、如图,CD,BE相交于点A,若∠B=70°,∠DAE=60°,则∠C=________°.17、己知在纸面上有一数轴(如图所示)一般地,数轴上表示数m和数n的两点间距离可用|m﹣n|表示,|x﹣4|+|x﹣5|的最小值是________18、如图,已知:∠1+∠2=180°,求证:a∥b.证明:∵∠1=∠3________∠1+∠2=180________∴∠3+∠2=180°________∴a∥b________19、如图,将一副直角三角板如图放置,若∠AOD=18°,则∠BOC的度数为________.20、52.42°=________°________′________″.21、在同一平面内,有直线a1, a2, a3, a4,…,a100,若a1⊥a2,a 2∥a3, a3⊥a4, a4∥a5,…,按此规律下去,则a1与a100的位置关系是________.22、已知小岛A位于基地O的东南方向,货船B位于基地O的北偏东50°方向,那么∠AOB的度数等于________23、在直线AB上任取一点O,过点O作射线OC,OD,使,当时,的度数是________.24、如图所示,直线AB,CD相交于点O,OM⊥AB,若∠MOD=30°,则∠COB=________ 度.25、如图,已知A、B、C、D四点在同一直线上,点D是线段BC的中点,且BC=3AB,如果AB=4cm,则线段AD的长度为________ cm.三、解答题(共5题,共计25分)26、一个角的补角比它的余角的2倍还多45°,求这个角的度数.27、如图,在△ABC中,AB=4,AC=3,BC=5,DE是BC的垂直平分线,点D,E分别在BC,AB上,求线段DE的长.28、如图,已知,相交于点O,,,平分,平分,求.29、如图点P是∠ABC内一点画图:①过点P作BC的垂线,D是垂足;②过点P作BC的平行线交AB于E,过点P作AB的平行线交BC于F.30、如图,∠1=28°,AB⊥CD,垂足为O,EF经过点O.求∠2、∠3的度数.参考答案一、单选题(共15题,共计45分)1、A2、B4、D5、C6、A7、B8、D9、D10、D11、C12、C13、C14、A15、C二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

苏科版七年级上《第6章平面图形的认识(一)》单元测试题含答案

苏科版七年级上《第6章平面图形的认识(一)》单元测试题含答案

第6章平面图形的认识(一)一、选择题(每小题3分,共21分)1、下列说法正确的是()A、过一点P只能作一条直线B、射线AB和射线BA表示同一条射线C、直线AB和直线BA表示同一条直线D、射线a比直线b短2、如图5-Z-1,由点O测点A的方向是()图5-Z-1A、北偏南60°B、南偏西60°C、南偏西30°D、西偏南30°3. 如图5-Z-2,OA⊥OB,∠BOC=30°,OD平分∠AOC,则∠BOD的度数是()图5-Z-2A、40°B、60°C、20°D、30°4、若直线l上一点P和直线l外一点Q的距离为8 cm,则点Q到直线l的距离是()A、等于8 cmB、小于或等于8 cmC、大于8 cmD、以上三种都有可能5、如图5-Z-3所示,OC⊥AB,∠COD=45°,则图中互为补角的角共有()图5-Z-3A、1对B、2对C、3对D、4对6、在图5-Z-4中,线段的条数为()图5-Z-4A、9B、10C、13D、157、已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β-∠γ的值为()A、45°B、60°C、90°D、180°二、填空题(每小题3分,共24分)8、已知∠A=40°,则∠A的余角的度数是________、9、工人师傅在砌墙时,先在两端各固定一点,中间拉紧一条细线,然后沿着细线砌墙就能砌直、运用的数学原理:________________________、10、9:30时,钟表的时针和分针构成的角的度数是________、11、如图5-Z-5,已知BC=4,BD=7,D是线段AC的中点,则AB=________、图5-Z-512、把16°15′化为度是________、13、若∠α与∠β是对顶角,∠α的补角是35°,则∠β的度数为________、14、如图5-Z-6,PC∥AB,QC∥AB,则点P,C,Q在一条直线上,理由:______________________、图5-Z-615、如图5-Z-7所示,AB⊥CD,垂足为B,直线EF过点B,且BE平分∠ABD,则∠CBF的度数为________、图5-Z-7三、解答题(共55分)16、(10分)已知点C在线段AB上,点D在线段AB的延长线上,若AC=5,BC=3,BD=AB,求CD的长、17、(10分)如图5-Z-8,已知∠AOB, 用三角尺和量角器画图、(1)画∠AOB的平分线OC,并在OC上任取一点P;(2)过点P画一条平行于OB的直线;(3)过点P画PD⊥OA,PE⊥OB,垂足分别为D,E.图5-Z-818、(10分)如图5-Z-9,直线AB,CD相交于点O,OE平分∠AOC,∠AOD比∠AOE 大75°,求∠AOD的度数、图5-Z-919、(12分)如图5-Z-10,已知线段AB,请按要求完成下列问题、(1)用直尺和圆规作图:延长线段AB到点C,使BC=AB;反向延长线段AB到点D,使AD=AC.(2)如果AB=2 cm,①求CD的长;②设P是线段BD的中点,求线段CP的长、图5-Z-1020、(13分)如图5-Z-11,将长方形纸片的一角斜折过去,点B落在点D处,EF为折痕,再把FC折过去与FD重合,FH为折痕,问:(1)EF与FH有什么位置关系?(2)∠CFH与∠BEF有什么数量关系?图5-Z-111、C 2.C 3. D 4、B 5、C 6、D 7、C 8、50° 9、两点确定一条直线 10、105° 11、10 12、16.25° 13、145°14、过直线外一点有且只有一条直线和已知直线平行 15、45°16、解:∵点C 在线段AB 上,AC =5,BC =3, ∴AB =8.∵点D 在线段AB 的延长线上,BD =14AB ,∴BD =14AB =2,∴CD =BC +BD =3+2=5.17、略18、解:因为OE 平分∠AOC ,所以可设∠AOE =∠EOC =x °.因为∠AOD 比∠AOE 大75°,所以∠AOD =∠AOE +75°=(x +75)°.因为∠AOD +∠AOE +∠EOC =180°, 所以x +75+x +x =180, 解得x =35.所以∠AOD =35°+75°=110°.19、解:(1)如图所示,点C 和点D 即为所求、(2)①∵AB =2 cm ,BC =AB ,∴AC =2AB =4 cm.又∵AD =AC ,∴CD =2AC =8 cm. ②∵BD =AD +AB =4+2=6 (cm),P 是线段BD 的中点,∴BP =3 cm ,∴CP =BC +BP =2+3=5(cm)、20、解:(1)根据折叠的有关性质可知:∠DFH =∠CFH ,∠BFE =∠DFE . 因为∠BFE +∠DFE +∠DFH +∠CFH =180°, 即有∠EFD +∠DFH =12×180°=90°,即∠EFH =90°. 故EF ⊥FH .(2)因为∠BEF +∠BFE =90°,∠BFE +∠CFH =90°,所以∠CFH =∠BEF .。

苏科版七年级上册数学第6章 平面图形的认识(一) 含答案

苏科版七年级上册数学第6章 平面图形的认识(一) 含答案

苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、下列说法正确的是()A.过一点有且只有一条直线与已知直线平行B.不相交的两条直线叫做平行线C.两点确定一条直线D.两点间的距离是指连接两点间的线段2、如图,直线l1∥l2,则∠α为()A.150°B.140°C.130°D.120°3、如图,在A、B两处观测到C处的方位角分别是()A.北偏东65°,北偏西40°B.北偏东65°,北偏西50°C.北偏东25°,北偏西40°D.北偏东35°,北偏西50°4、如图,已知线段AB=10 cm,点N在AB上,NB=2 cm,M是AB中点,那么线段MN的长为()A.5 cmB.4 cmC.3 cmD.2 cm5、已知,那么的补角等于()A.36°B.54°C.154°D.144°6、下列说法错误的是().A.过直线外一点有且仅有一条直线与它平行B.相交的两条直线只有一个交点C.经过一点有且只有一条直线与已知直线垂直D.经过两点有且只有一条直线7、已知线段AB=5cm,在直线AB上画线段BC=2cm,则AC的长是()A.3cmB.7cmC.3cm或7cmD.无法确定8、如图,在中,,,,为边上一动点,于点,于点为的中点,则的最小值为()A. B. C. D.9、如图,下列结论正确的是()A. 和是同旁内角B. 和是对顶角C. 和是内错角D. 和是同位角10、已知∠AOB=120°,OC在它的内部,且把∠AOB分成1:3的两个角,那么∠AOC的度数为( )A. 40°B.40°或80°C.30°D.30°或90°11、如图,,则和的关系是()A.不是同位角但相等B.是同位角且相等C.是同位角但不相等 D.不是同位角也不相等12、若点P是直线m外一点,点A、B、C分别是直线m上不同的三点,且PA=5,PB=6,PC=7,则点P到直线m的距离不可能是()A.3B.4C.5D.613、下列说法:①两点之间的所有连线中,线段最短;②在数轴上与表示-1的点距离是3的点表示的数是2 ;③连接两点的线段叫做两点间的距离;④2.692475精确到千分位是2.6924;⑤若AC=BC,则点C是线段AB的中点;⑥一条射线把一个角分成两个相等的角,这条射线是这个角的平分线.其中错误的有( )A.2个B.3个C.4个D.5个14、角度是()进制.A.二B.八C.十D.六十15、如图,A是直线l外一点,过点A作AB⊥l于点B,在直线l上取一点C,连结AC,使AC=2AB,P在线段BC上连结AP.若AB=3,则线段AP的长不可能是()A.3.5B.4C.5.5D.6.5二、填空题(共10题,共计30分)16、如图,直线AB、CD相交于点O,OE⊥AB于O,∠COE=55°,则∠BOD=________度;17、已知线段AB=7cm,在直线AB上截取BC=2cm,D是AC的中点,则线段BD=________.18、如图,AB⊥m,BC⊥m,B为垂足,那么点A、B、C在同一直线上的依据是________.19、如图,直线AB、CD相交于点O,∠COE为直角,∠AOE=60°,则∠BOD=________°.20、如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为________cm.21、两条直线相交所构成的四个角,其中:①有三个角都相等;②有一对对顶角相等;③有一个角是直角;④有一对邻补角相等,能判定这两条直线垂直的有________.22、如图,在Rt△ABC中,∠ACB=90°,AC BC=2,以BC为直径的半圆交AB于点D,P是弧CD上的一个动点,连结AP,则AP的最小值是________23、如果一个角是23°15′,那么这个角的余角是________°.24、将一把直尺和一块直角三角板如图放置,如果∠α=43°,则∠β的度数是________度.25、如图,已知直线AB与CD相交于点O,OA平分∠COE,若∠DOE=70°,则∠BOD=________.三、解答题(共5题,共计25分)26、一个角的余角比它的补角还多1°,求这个角.27、如图,已知∠AOC=∠BOD=70°,∠BOC=31°,求∠AOD 的度数.28、如图,有三个论断①∠1=∠2;②∠B=∠D;③∠A=∠C,请从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.29、如图,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分别是E,F.求证:CE=DF.30、如图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,在它北偏东30°、西北(即北偏西45°)方向上又分别发现了客轮B和海岛C.(1)仿照表示灯塔方位的方法,分别画出表示客轮B和海岛C方向的射线OB,OC(不写作法);(2)若图中有一艘渔船D,且∠AOD的补角是它的余角的3倍,画出表示渔船D方向的射线OD,则渔船D在货轮O的方位角 参考答案一、单选题(共15题,共计45分)1、C2、D3、B4、C5、D6、C7、C8、D9、C10、D12、D13、D14、D15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、30、。

苏科版七年级上册数学第6章 平面图形的认识(一)含答案(完整版)

苏科版七年级上册数学第6章 平面图形的认识(一)含答案(完整版)

苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、如图所示,∠α的度数是()A.10°B.20°C.30°D.40°2、下列说法正确的是()A.相等的两个角是对顶角B.同位角相等C.图形平移后的大小可以发生改变 D.两条直线相交所成的四个角都相等,则这两条直线互相垂直3、如图,∠AOC 和∠BOD都是直角,如果∠AOB=140◦则∠DOC的度数是( )A.30 ◦B.40 ◦C.50 ◦D. 60 ◦4、某街道分布示意图如图所示,一个居民从A处前往B处,若规定只能走从左到右或从上到下的方向,这样该居民共有可选择的不同路线条数是()A.5B.6C.7D.85、下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是()A.把弯曲的公路改直,就能缩短路程B.用两个钉子就可以把木条固定在墙上C.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线 D.利用圆规可以比较两条线段的大小关系6、下列哪种情况下,直线a与b不一定是平行线()A.a与b是不相交的两条直线B.a与b被直线c所截,且内错角互补 C.a与b都平行于直线c D.a与b被直线c所截,且同位角相等7、如果从甲船看乙船,乙船在甲船的南偏东40°方向,那么从乙船看甲船,甲船在乙船的()A.北偏东50°B.北偏西50C.北偏东40°D.北偏西40°8、下列定理中没有逆定理的是()A.内错角相等,两直线平行B.直角三角形中,两锐角互余C.等腰三角形两底角相等D.相反数的绝对值相等9、下列说法中,正确的是( )A.两条不相交的直线叫平行线B.一条直线的平行线有且只有一条C.若直线a∥b,a∥c,则b∥cD.两条直线不相交就平行10、如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.点动成线;B.两点确定一条直线;C.垂线段最短;D.两点之间,线段最短;11、如图,直线l与直线a、b相交,且a b,∠1=80°,则∠2的度数是()A.60°B.80°C.100°D.120°12、下列说法正确是()A.相等的两个角是对顶角;B.过一点有且只有一条直线与已知直线平行; C.直线外一点与直线上各点连接的所有线中,垂线最短; D.平面内,过一点有且只有一条直线与已知直线垂直13、若数轴上点A表示的数是,则与它相距2个单位的点B表示的数是()A.±5B.-7或-3C.7D.-8或314、下列说法中正确的是A.过一点有且仅有一条直线与已知直线平行B.若,则点C是线段AB的中点C.两点之间的所有连线中,线段最短D.相等的角是对顶角15、下面4个图形中,∠1与∠2是对顶角的是( )A. B. C. D.二、填空题(共10题,共计30分)16、己知在纸面上有一数轴(如图所示)一般地,数轴上表示数m和数n的两点间距离可用|m﹣n|表示,|x﹣4|+|x﹣5|的最小值是________17、如图,∠AOD=135°,∠AOC=75°,∠DOB=105°,则∠BOC=________.18、已知∠A=55°,则∠A的余角等于________度.19、如图,OA是北偏东30°方向的一条射线,若射线OB与射线OA垂直,则OB的方位角是________.20、如图,已知平分平分,,则________°.21、探究:如图①,,试说明.下面给出了这道题的解题过程,请在下列解答中,填上适当的理由.解: ∵ .(已知)∴ .(________)同理可证,.∵ ,∴ .(________)应用:如图②,,点F在之间,与交于点M,与交于点N.若,,则的大小为________度.拓展:如图③,直线在直线之间,且,点分别在直线上,点Q是直线上的一个动点,且不在直线上,连结.若,则=________度.22、如图,直线a、b相交于点O,将量角器的中心与点O重合,发现表示60°的点在直线a上,表示138°的点在直线b上,则∠1=________°.23、已知一个角的余角为28°40′,则这个角的度数为________.24、直角三角形的一锐角为60°,则另一锐角为________25、如果一个角的补角是150°,那么这个角的余角的度数是________三、解答题(共5题,共计25分)26、一个角的余角比它的补角还多1°,求这个角.27、如图,AB、CD交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.28、如图,AB交CD于O,OE⊥AB.(1)若∠EOD=20°,求∠AOC的度数;(2)若∠AOC:∠BOC=1:2,求∠EOD的度数.29、如图,是平角,,,,分别是,的平分线,求的度数.30、下面是小马虎解的一道题题目:在同一平面上,若∠BOA=70°,∠BOC=15°求∠AOC的度数.解:根据题意可画出图,∵∠AOC=∠BOA-∠BOC=70°-15°=55°,∴∠AOC=55°.若你是老师,会判小马虎满分吗?若会,说明理由.若不会,请将小马虎的的不符合题意指出,并给出你认为正确的解法.参考答案一、单选题(共15题,共计45分)1、A2、D3、B4、D6、B7、D8、D9、C10、B11、B12、D13、B14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、29、30、。

苏科版七年级数学上册第6章平面图形的认识(一)单元测试卷 【含答案】

苏科版七年级数学上册第6章平面图形的认识(一)单元测试卷 【含答案】

苏科版七年级数学上册第6章平面图形的认识(一)单元测试卷一、选择题1.如图所示,下列说法中正确的是( )A.∠ADE就是∠D B.∠ABC可以用∠B表示C.∠ABC和∠ACB是同一个角D.∠BAC和∠DAE是不同的两个角2.如图所示,关于线段、射线和直线的条数,下列说法正确的是( )A.五条线段,三条射线B.三条线段,两条射线,一条直线C.三条射线,三条线段D.三条线段,三条射线3.轩轩同学带领自己的学习小组成员预习了“线段、射线、直线”一节的内容后,对图展开了讨论,下列说法不正确的是( )A.直线MN与直线NM是同一条直线B.射线PM与射线MN是同一条射线C.射线PM与射线PN是同一条射线D.线段MN与线段NM是同一条线段4.如图,遵义的红军烈士陵园集中了建国后在遵义各处找到的红军遗骨,故又称红军山,陵园正面是在纪念遵义会议五十周年时兴建的一座别具特色的纪念碑.从山脚一点A到纪念碑底部一点B,沿右边楼梯直行和沿左边弯曲的盘山公路走相比,缩短了行走的路程,其中蕴含的数学道理是( )A .两点确定一条直线B .两点之间,线段最短C .垂线段最短D .同一平面内垂直于同一条直线的两直线平行5.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③利用圆规可以比较两条线段的大小;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( )A .①④B .②③C .①②④D .①③④6.下列说法①一个角的补角大于这个角②小于平角的角是钝角③同角或等角的余角相等④若,123180∠+∠+∠= 则、、互为补角.其中正确的说法有( )1∠2∠3∠A .4个B .3个C .2个D .1个7.如图,AM 为∠BAC 的平分线,下列等式错误的是( )A .∠BAC =∠BAM B .∠BAM =∠CAM C .∠BAM =2∠CAM D .2∠CAM =∠BAC128.点P 为直线外一点,点A ,B ,C 在直线l 上,若PA=4cm ,PB=5cm ,PC=6cm ,则点P 到直线l 的距离是( )A. 4cmB. 5cmC. 不大于4cm D. 6cm 9.如果线段AB=5cm ,BC=4cm ,且A ,B ,C 在同一条直线上,那么A 、C 两点的距离是( ) A. 1cm B. 9cm C. 1cm 或9cmD. 以上答案都不正确10.同一平面内,三条不同直线的交点个数可能是( )个.A. 1或3B. 0、1或3C. 0、1或2 D. 0、1、2或3二、填空题11.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因_____.12将30°15′36″换算成度:30°15′36″= °.13如图,AB⊥CD,垂足为点B,EF平分∠ABD,则∠CBF的度数为 °.14如图,OC平分∠AOB,若∠AOC=25°,则∠AOB= 度.15如图,点A位于点O的 方向上.16.从12点整开始到1点,经过____分钟,钟表上时针和分针的夹角恰好为99°.三、解答题17.如图,已知同一平面内的四个点A、B、C、D,根据要求用直尺画图.(1)画线段AB,∠ADC;(2)找一点P,使P点既在直线AD上,又在直线BC上;(3)找一点Q,使Q到A、B、C、D四个点的距离和最短.18线段AB依次被分为2:3:4三部分,已知第一部分和第三部分中点的距离是5.4 cm,求线段AB的长.19.如图,已知∠AOC=60°,∠BOD=90°,∠AOB是∠DOC的3倍,求∠AOB的度数.20已知∠AOB内部有三条射线,其中OE平分∠BOC,OF平分∠AOC.(1)如图1,若∠AOB=90°,∠AOC=30°,求EOF的度数;(2)如图2,若∠AOB=α,求∠EOF的度数(用含α的式子表示);(3)若将题中的“OE平分∠BOC,OF平分∠AOC”的条件改为“∠EOB=∠BOC,∠COF=∠AOC”,且∠AOB=α,求∠EOF的度数(用含α的式子表示)21.如图1直角三角板的直角顶点O在直线AB上,OC,OD是三角板的两条直角边,射线OE平分∠AOD.(1)若∠COE=40°,则∠BOD=.(2)若∠COE=α,求∠BOD(请用含α的代数式表示);(3)当三角板绕O逆时针旋转到图2的位置时,其它条件不变,试猜测∠COE与∠BOD之间有怎样的数量关系?并说明理由.22.将一副三角板中的两块直角三角尺的直角顶点C按照如图①的方式叠放在一起(∠A=30°,∠ABC=60°,∠E=∠EDC=45°),且三角板ACB的位置保持不动.(1)将三角板DCE绕点C按顺时针方向旋转至图②,若∠ACE=60°,求∠DCB的度数.(2)将三角板DCE绕点C按顺时针方向旋转,当旋转到ED∥AB时,求∠BCE的度数(请先在备用图上补全相应的图形).(3)当0°<∠BCE<180°且点E在直线BC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠BCE所有可能的值;若不存在,请说明理由.23.如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C 在线段AP上,D在线段BP上),运动的时间为t.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.24.已知直线AB过点O,∠COD=90°,OE是∠BOC的平分线.(1)操作发现:①如图1,若∠AOC=40°,则∠DOE=②如图1,若∠AOC=α,则∠DOE=(用含α的代数式表示)(2)操作探究:将图1中的∠COD绕顶点O顺时针旋转到图2的位置,其他条件不变,②中的结论是否成立?试说明理由.(3)拓展应用:将图2中的∠COD绕顶点O逆时针旋转到图3的位置,其他条件不变,若∠AOC=α,求∠DOE 的度数,(用含α的代数式表示)答案一、选择题1.B2.解:如图:由直线、射线及线段的定义可知:线段有:AB、BC、CA;射线有:AD、AE;直线有:DE.即有三条线段,两条射线,一条直线.故选:B.3.解:A、直线MN与直线NM是同一条直线,原说法正确,故本选项不符合题意;B、射线PM与射线MN不一定是同一条射线,原说法错误,故本选项符合题意;C、射线PM与射线PN是同一条射线,原说法正确,故本选项不符合题意;D、线段MN与线段NM是同一条线段,原说法正确,故本选项不符合题意;故选:B.4.解:从山脚一点A到纪念碑底部一点B,沿右边楼梯直行和沿左边弯曲的盘山公路走相比,缩短了行走的路程,其中蕴含的数学道理是:两点之间,线段最短.故选:B.5.A 6.D 7.C8. C【考点】点到直线的距离解:∵4<5<6,∴根据从直线外一点到这条直线上所有点连线中,垂线段最短,可知点P到直线l的距离是4cm或比4cm小的数,即不大于4cm,故选C.【分析】根据垂线段最短得出点P到直线l的距离是4cm或比4cm小的数,即可得出选项9. C【考点】两点间的距离解:当点C在AB之间时,AC=AB﹣BC=5﹣4=1(cm);当点C在点B的右侧时,AC=AB+BC=5+4=9(cm).故选:C.【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,再根据正确画出的图形解题.当点C在AB之间时,AC=AB﹣BC;当点C在点B的右侧时,AC=AB+BC.10. D【考点】点到直线的距离解:如图,三条直线的交点个数可能是0或1或2或3.故选D.【分析】根据两直线平行和相交的定义作出图形即可得解.二、填空题11.两点之间线段最短12将30°15′36″换算成度:30°15′36″= °.【考点】度分秒的换算.见试题解答内容【分析】先把36″除以60化为0.6′,再加上15′为15.6′,再除以60化为度,与30合并在一起即可.解:36″=36÷60=0.6′;30°15′36″=30+15.6÷60=30.26°.故30.26.13如图,AB⊥CD,垂足为点B,EF平分∠ABD,则∠CBF的度数为 °.【考点】角平分线的定义;垂线.见试题解答内容【分析】根据垂线的定义可知,∠ABD的度数是90°,根据角平分线的定义,可求∠DBE的度数,再根据对顶角相等可求∠CBF的度数.解:∵AB⊥CD,∴∠ABD=90°,∵EF平分∠ABD,∴∠DBE=45°,∴∠CBF=45°.故45.14如图,OC平分∠AOB,若∠AOC=25°,则∠AOB= 度.【考点】角平分线的定义.见试题解答内容【分析】根据角平分线的定义求解.解:∵∠AOC=25°,OC平分∠AOB,∴∠AOB=2∠AOC=50°,故答案为50°.15如图,点A位于点O的 方向上.【考点】方向角.见试题解答内容【分析】根据方位角的概念直接解答即可.解:点A 位于点O 的北偏西30°方向上.16.18或52211三、解答题17.解:(1)如图所示,线段AB 、∠ADC 即为所求;(2)直线AD 与直线BC 交点P 即为所求;(3)如图所示,点Q即为所求.18.73°.19.解:(1)∵M 是AB 的中点∴MB=40(2)∵N 为PB 的中点,且NB=14 ∴PB=2NB=2×14=28(3)∵MB=40,PB=28 ∴PM=MB﹣PB=40﹣28=1220.解:AB=8.1 cm21.解:(1)若∠COE =40°,∵∠COD =90°,∴∠EOD =90°﹣40°=50°,∵OE 平分∠AOD ,∴∠AOD =2∠EOD =100°,∴∠BOD =180°﹣100°=80°;(2)∵∠COE =α,∴∠EOD =90﹣α,∵OE 平分∠AOD ,∴∠AOD =2∠EOD =2(90﹣α)=180﹣2α,∴∠BOD =180°﹣(180﹣2α)=2α;(3)如图2,∠BOD +2∠COE =360°,理由是:设∠BOD =β,则∠AOD =180°﹣β,∵OE 平分∠AOD ,∴∠EOD = ∠AOD = =90°﹣β,121802β︒-12∵∠COD =90°,∴∠COE =90°+(90°﹣β)=180°﹣β,1212即∠BOD +2∠COE =360°.故(1)80°;(2)2α;(3)∠BOD +2∠COE =360°,理由见详解.22.解:(1)如图中,∵∠ACB =∠ECD =90°,∴∠ECB =∠ACD ,∵∠ACE =60°,∴∠BCE =∠ACD =30°,∴∠BCD =∠BCE +∠ECD =30°+90°=120°,故答案为120°;(2)如图中,当DE ∥AB 时,延长BC 交DE 于M ,∴∠B =∠DMC =60°,∵∠DMC =∠E +∠MCE ,∴∠ECM =15°,∴∠BCE =165°,当D ′E ′∥AB 时,∠E ′CB =∠ECM =15°,∴当ED ∥AB 时,∠BCE 的度数为165°或15°;(3)存在.如图,①CD ∥AB 时,∠BCE =30°,②DE ∥BC 时,∠BCE =45°,③CE ∥AB 时,∠BCE =120°,④DE ∥AB 时,∠BCE =165°,⑤当AC ∥DE 时,∠BCE =135°综上所述,当0°<∠BCE <180°且点E 在直线BC 的上方时,这两块三角尺存在一组边互相平行,∠BCE 的值为30°或45°或120°或165°或135°.23.(1) 因为点C 从P 出发以1(cm/s)的速度运动,运动的时间为t =1(s),所以(cm).111PC =⨯=因为点D 从B 出发以2(cm/s)的速度运动,运动的时间为t =1(s),所以(cm).故BD =2PC.212BD =⨯=因为PD =2AC ,BD =2PC ,所以BD +PD =2(PC +AC ),即PB =2AP .故AB =AP +PB =3AP .因为AB =12cm ,所以(cm).1112433AP AB ==⨯=(2) 因为点C 从P 出发以1(cm/s)的速度运动,运动的时间为t =2(s),所以(cm).122PC =⨯=因为点D 从B 出发以2(cm/s)的速度运动,运动的时间为t =2(s),所以(cm).故BD =2PC.224BD =⨯=因为PD =2AC ,BD =2PC ,所以BD +PD =2(PC +AC ),即PB =2AP .故AB =AP +PB =3AP .因为AB =12cm ,所以(cm).1112433AP AB ==⨯=(3) 因为点C 从P 出发以1(cm/s)的速度运动,运动的时间为t (s),所以(cm).PC t =因为点D 从B 出发以2(cm/s)的速度运动,运动的时间为t (s),所以(cm).故BD =2PC.2BD t =因为PD =2AC ,BD =2PC ,所以BD +PD =2(PC +AC ),即PB =2AP .故AB =AP +PB =3AP .因为AB =12cm ,所以(cm).1112433AP AB ==⨯=(4) 本题需要对以下两种情况分别进行讨论.(i) 点Q 在线段AB 上(如图①).因为AQ -BQ =PQ ,所以AQ =PQ +BQ .因为AQ =AP +PQ ,所以AP =BQ .因为,所以.13AP AB =13BQ AP AB ==故.因为AB =12cm ,所以(cm).13PQ AB AP BQ AB =--=1112433PQ AB ==⨯=(ii) 点Q 不在线段AB 上,则点Q 在线段AB 的延长线上(如图②).因为AQ -BQ =PQ ,所以AQ =PQ +BQ .因为AQ =AP +PQ ,所以AP =BQ .因为,所以.故.13AP AB =13BQ AP AB ==1433AQ AB BQ AB AB AB =+=+=因为AB =12cm ,所以(cm).411233PQ AQ AP AB AB AB =-=-==综上所述,PQ 的长为4cm 或12cm.24.解:(1)如图1,∵∠COD=90°,∴∠AOC+∠BOD=90°,∵∠AOC=40°,∴∠BOD=50°,∴∠BOC=∠COD+∠BOD=90°+50°=140°,∵OE 平分∠BOC,∴∠BOE=∠BOC=70°,∴∠DOE=∠BOE-∠BOD=20°,12②如图1,由(1)知:∠AOC+∠BOD=90°,∵∠AOC=α,∴∠BOD=90°﹣α,∴∠BOC=∠COD+∠BOD=90°+90°﹣α=180°﹣α,∵OE 平分∠BOC,∴∠BOE=∠BOC=90°﹣α,1212∴∠DOE=∠BOE﹣∠BOD=90°﹣α﹣(90°﹣α)=α,1212(2)(1)中的结论还成立,理由是:如图2,∵∠AOC+∠BOC=180°,∠AOC=α,∴∠BOC=180°﹣α,∵OE 平分∠BOC,∴∠EOC=∠BOC=90°﹣α,1212∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣(90°﹣α)=α;1212(3)如图3,∵∠AOC+∠BOC=180°,∠AOC=α,∴∠BOC=180°﹣α,∵OE 平分∠BOC,∴∠EOC=∠BOC=90°﹣α,1212∵∠COD=90°,∴∠DOE=∠COD+∠COE=90°+(90°﹣α)=180°﹣α.1212。

第六章《平面图形的认识(一)》综合测试卷(含解析)

第六章《平面图形的认识(一)》综合测试卷(含解析)

第六章《平面图形的认识(一)》综合测试卷一.选择题1.下列各图中,∠1与∠2是对顶角的是()A.B.C.D.2.如图∠AOB=60°,射线OC平分∠AOB,以OC为一边作∠COP=15°,则∠BOP=()A.15°B.45°C.15°或30°D.15°或45°3.两根木条,一根长10cm,另一根长12cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.1cm B.11cm C.1cm或11cm D.2cm或11cm 4.已知三条不同的射线OA、OB、OC,有下列条件,其中能确定OC平分∠AOB的有()①∠AOC=∠BOC②∠AOB=2∠AOC③∠AOC+∠COB=∠AOB④∠BOC∠AOBA.1个B.2个C.3个D.4个5.在所给的:①15°、②65°、③75°、④135°、⑤145°的角中,可以用一副三角板画出来的是()A.②④⑤B.①②④C.①③⑤D.①③④6.上午8点整时,钟表表面的时针与分针的夹角是()A.30°B.45°C.90°D.120°7.线段AB=9,点C在线段AB上,且有AC AB,M是AB的中点,则MC等于()A.3 B.C.D.8.某教科局提出开展“三有课堂”,某中学在一节体现“三有课堂”公开展示课上,李老师展示一幅图,条件是:C为直线AB上一点,∠DCE为直角,CF平分∠ACD,CH平分∠BCD,CG平分∠BCE,各个小组经过讨论后得到以下结论:①∠ACF与∠BCH互余②∠FCG与∠HCG互补③∠ECF与∠GCH互补④∠ACD﹣∠BCE=90°,聪明的你认为哪些组的结论是正确的,正确的有()个.A.1 B.2 C.3 D.49.某公司员工分别在A、B、C三个住宅区,A区有30人,B区有15人,C区有10人,三个区在一条直线上,位置如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()A.A区B.B区C.C区D.A、B两区之间10.在同一平面内,已知∠AOB=50°,∠COB=30°,则∠AOC等于()A.80°B.20°C.80°或20°D.10°11.如图,C、D在线段BE上,下列说法:①直线CD上以B、C、D、E为端点的线段共有6条;②图中有2对互补的角;③若∠BAE=90°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和为360°;④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B、C、D、E的距离之和最大值为15,最小值为11,其中说法正确的个数有()A.1个B.2个C.3个D.4个12.如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.A,B之间D.B,C之间13.如图棋盘上有黑、白两色棋子若干,找出所有三颗颜色相同的棋并且在同一直线上的直线,这样直线共有多少条()A.2条B.3条C.4条D.5条二.填空题14.已知OC平分∠AOB,若∠AOB=70°,∠COD=10°,则∠AOD的度数为.15.如图,点C在线段AB上,且AC:BC=2:3,点D在线段AB的延长线上,且BD=AC,E为AD的中点,若AB=40cm,则线段CE=.16.如图,将一张长方形纸片ABCD分别沿着BE、BF折叠,使边AB、CB均落在BD上,得到折痕BE、BF,则∠ABE+∠CBF=.17.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,OD是OB的反向延长线.(1)射线OC的方向是;(2)∠COD的度数是.18.观察下列图形,2条直线相交,有1个交点,3条直线相交最多有3个交点,4条直线相交最多有6个交点,…,像这样,10条直线相交最多有个交点.19.如图,∠AOC和∠BOD都是直角,且∠DOC=30°,OM是∠DOC平分线,ON是∠COB的平分线,则∠MON的度数是.20.线段AB=12cm,点C在线段AB上,且AC BC,M为BC的中点,则AM的长为cm.21.已知射线OA,从O点再引射线OB,OC,使∠AOB=67°31′,∠BOC=48°39′,则∠AOC的度数为22.如图,已知∠AOB=150°,∠COD=40°,∠COD在∠AOB的内部绕点O任意旋转,若OE平分∠AOC,则2∠BOE﹣∠BOD的值为°.23.已知∠AOB和∠BOC互为邻补角,且∠AOB<∠BOC,OD平分∠BOC,射线OE在∠AOB内部,且4∠BOE+∠BOC=180°,∠DOE=70°,OM⊥OB,则∠MOE=.24.如图,已知OB、OC是∠AOD内部的两条射线,OM平分∠AOB,ON平分∠COD.①若∠BOC=40°,∠MON=80°,则∠AOD的度数为度;②若∠AOD=x°,∠MON=80°,则∠BOC的度数为度(用含x的代数式表示).25.一条直街上有5栋楼,按从左至右顺序编号为1、2、3、4、5,第k号楼恰好有k(k =1、2、3、4、5)个A厂的职工,相邻两楼之间的距离为50米.A厂打算在直街上建一车站,为使这5栋楼所有A厂职工去车站所走的路程之和最小,车站应建在距1号楼米处.26.如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE.(1)若∠AOC=76°,∠BOF=度;(2)若∠BOF=36°,∠AOC=度.三.解答题27.已知点O是直线AB上一点,∠COD是直角.(1)如图(1),若OE平分∠AOD,∠BOD=40°,求∠COE的度数.(2)在图(1)中,若OE平分∠AOD,∠BOD=a,请直接写出∠COE的度数(用含a的代数式表示).(3)将图(1)中的∠COD按顺时针方向旋转至图(2)所示的位置,且OF平分∠BOC,其他条件不变,探究∠AOC与∠DOF的度数之间的等量关系,写出你的结论,并说明理由.28.已知:OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若∠AOD=156°,OM平分∠AOB,ON平分∠BOD,∠BOD=96°,则∠MON的度数为.(2)如图2,若∠AOD=m°,∠NOC=23°,OM平分∠AOB,ON平分∠BOD,求∠COM 的度数(用m的式子表示);(3)如图3,若∠AOD=156°,∠BOC=22°,∠AOB=30°,OM平分∠AOC,ON平分∠BOD,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM和∠DON中的一个角的度数恰好是另一个角的度数的两倍,求t的值.29.如图,已知∠AOB=75°,OC是∠AOB内部的一条射线,过点O作射线OD,使得∠COD=∠AOB.(1)若∠AOD=120°,则∠BOC=°;(2)若∠AOD=5∠BOC,则∠BOD=°;(3)当∠COD绕着点O旋转时,∠AOD+∠BOC是否变化?若不变,求出其大小;若变化,说明理由.30.已知直角三角板ABC和直角三角板DEF,∠ACB=∠EDF=90°,∠ABC=60°,∠DEF=45°.(1)如图1.将顶点C和顶点D重合.保持三角板ABC不动,将三角板DEF绕点C旋转,当CF平分∠ACB时,求∠ACE的度数;(2)在(1)的条件下,继续旋转三角板DEF,猜想∠ACE与∠BCF有怎样的数量关系?并利用图2所给的情形说明理由;(3)如图3,将顶点C和顶点E重合,保持三角板ABC不动,将三角板DEF绕点C旋转.当CA落在∠DCF内部时,直接写出∠ACD与∠BCF之间的数量关系.31.已知O为直线AB上的一点,射线OA表示正北方向,∠COE=90°,射线OF平分∠AOE.(1)如图1,若∠BOE=110°,求∠COF的度数.(2)若将∠COE绕点O旋转至图2的位置,试判断∠COF和∠BOE之间的数量关系,并证明你的结果.(3)若将∠COE绕点O旋转至图3的位置,求满足:4∠COF﹣3∠BOE=20°时,∠EOF 的度数.32.已知点O为直线AB上的一点,∠BOC=∠DOE=90°.(1)如图1,当射线OC、射线OD在直线AB的两侧时,请回答结论并说明理由;①∠COD和∠BOE相等吗?②∠BOD和∠COE有什么关系?(2)如图2,当射线OC、射线OD在直线AB的同侧时,请直接回答;①∠COD和∠BOE相等吗?②第(1)题中的∠BOD和∠COE的关系还成立吗?一.选择题1.下列各图中,∠1与∠2是对顶角的是()A.B.C.D.【解答】C【解析】根据两条直线相交,才能构成对顶角进行判断,A、B、D都不是由两条直线相交构成的图形,错误,C是由两条直线相交构成的图形,正确,故选C.2.如图∠AOB=60°,射线OC平分∠AOB,以OC为一边作∠COP=15°,则∠BOP=()A.15°B.45°C.15°或30°D.15°或45°【解答】D【解析】∵∠AOB=60°,射线OC平分∠AOB,∴∠AOC=∠BOC AOB=30°,又∠COP=15°①当OP在∠BOC内,∠BOP=∠BOC﹣∠COP=30°﹣15°=15°,②当OP在∠AOC内,∠BOP=∠BOC+∠COP=30°+15°=45°,综上所述:∠BOP=15°或45°.故选D.3.两根木条,一根长10cm,另一根长12cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.1cm B.11cm C.1cm或11cm D.2cm或11cm【解答】C【解析】如图,设较长的木条为AB=12cm,较短的木条为BC=10cm,∵M、N分别为AB、BC的中点,∴BM=6cm,BN=5cm,①如图1,BC不在AB上时,MN=BM+BN=6+5=11cm,②如图2,BC在AB上时,MN=BM﹣BN=6﹣5=1cm,综上所述,两根木条的中点间的距离是1cm或11cm,故选C.4.已知三条不同的射线OA、OB、OC,有下列条件,其中能确定OC平分∠AOB的有()①∠AOC=∠BOC②∠AOB=2∠AOC③∠AOC+∠COB=∠AOB④∠BOC∠AOBA.1个B.2个C.3个D.4个【解答】A【解析】①由∠AOC=∠BOC能确定OC平分∠AOB;②如图1,∠AOB=2∠AOC所以不能确定OC平分∠AOB;③∠AOC+∠COB=∠AOB不能确定OC平分∠AOB;④如图2,∠BOC∠AOB,不能确定OC平分∠AOB;所以只有①能确定OC平分∠AOB;故选A.5.在所给的:①15°、②65°、③75°、④135°、⑤145°的角中,可以用一副三角板画出来的是()A.②④⑤B.①②④C.①③⑤D.①③④【解答】D【解析】①45°﹣30°=15°,可以用一副三角板画出来;②65°不可以用一副三角板画出来;③45°+30°=75°,可以用一副三角板画出来;④90°+45°=135°,可以用一副三角板画出来;⑤145°不可以用一副三角板画出来;故选D.6.上午8点整时,钟表表面的时针与分针的夹角是()A.30°B.45°C.90°D.120°【解答】D【解析】如图,上午8点整时,钟表表面的时针与分针的夹角是4×30°=120°故选D.7.线段AB=9,点C在线段AB上,且有AC AB,M是AB的中点,则MC等于()A.3 B.C.D.【解答】B【解析】∵AB=9,∴AC AB=3,∵M是AB的中点,∴AM AB∴MC=AM﹣AC3故选B.8.某教科局提出开展“三有课堂”,某中学在一节体现“三有课堂”公开展示课上,李老师展示一幅图,条件是:C为直线AB上一点,∠DCE为直角,CF平分∠ACD,CH平分∠BCD,CG平分∠BCE,各个小组经过讨论后得到以下结论:①∠ACF与∠BCH互余②∠FCG与∠HCG互补③∠ECF与∠GCH互补④∠ACD﹣∠BCE=90°,聪明的你认为哪些组的结论是正确的,正确的有()个.A.1 B.2 C.3 D.4【解答】C【解析】∵CF平分∠ACD,CH平分∠BCD,CG平分∠BCE,∴∠ACF=∠FCD∠ACD,∠DCH=∠HCB∠DCB,∠BCG=∠ECG∠BCE,∵∠ACB=180°,∠DCE=90°,∴∠FCH=90°,∠HCG=45°,∠FCG=135°∴∠ACF+∠BCH=90°,∠FCG+∠HCG=180°,故①②正确,∵∠ECF=∠DCE+∠FCD=90°+∠FCD,∠FCD+∠DCH=90°,∴∠ECF+∠DCH=180°,∵∠HCG≠∠DCH,∴∠ECF与∠GCH不互补,故③错误,∵∠ACD﹣∠BCE=180°﹣∠DCB﹣∠BCE=90°,故④正确.故选C.9.某公司员工分别在A、B、C三个住宅区,A区有30人,B区有15人,C区有10人,三个区在一条直线上,位置如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()A.A区B.B区C.C区D.A、B两区之间【解答】A【解析】∵当停靠点在A区时,所有员工步行到停靠点路程和是:15×100+10×300=4500m,当停靠点在B区时,所有员工步行到停靠点路程和是:30×100+10×200=5000m,当停靠点在C区时,所有员工步行到停靠点路程和是:30×300+15×200=12000m,当停靠点在A、B区之间时,设在A区、B区之间时,设距离A区x米,则所有员工步行路程之和=30x+15(100﹣x)+10(100+200﹣x),=30x+1500﹣15x+3000﹣10x,=5x+4500,∴当x=0时,即在A区时,路程之和最小,为4500米;综上,当停靠点在A区时,所有员工步行到停靠点路程和最小,那么停靠点的位置应该在A 区.故选A.10.在同一平面内,已知∠AOB=50°,∠COB=30°,则∠AOC等于()A.80°B.20°C.80°或20°D.10°【解答】C【解析】①如图1,OC在∠AOB内,∵∠AOB=50°,∠COB=30°,∴∠AOC=∠AOB﹣∠COB=50°﹣30°=20°;②如图2,OC在∠AOB外,∵∠AOB=50°,∠COB=30°,∴∠AOC=∠AOB+∠COB=50°+30°=80°;综上所述,∠AOC的度数是20°或80°.故选C.11.如图,C、D在线段BE上,下列说法:①直线CD上以B、C、D、E为端点的线段共有6条;②图中有2对互补的角;③若∠BAE=90°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和为360°;④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B、C、D、E的距离之和最大值为15,最小值为11,其中说法正确的个数有()A.1个B.2个C.3个D.4个【解答】B【解析】①以B、C、D、E为端点的线段BC、BD、BE、CE、CD、DE共6条,故①正确;②图中互补的角就是分别以C、D为顶点的两对邻补角,即∠BCA和∠ACD互补,∠ADE 和∠ADC互补,故②正确;③由∠BAE=90°,∠CAD=40°,根据图形可以求出∠BAC+∠DAE+∠DAC+∠BAE+∠BAD+∠CAE=90°+90°+90°+40°=310°,故③错误;④当F在线段CD上,则点F到点B、C、D、E的距离之和最小为FB+FE+FD+FC=11,当F和E重合,则点F到点B、C、D、E的距离之和最大为FB+FE+FD+FC=8+0+6+3=17,故④错误.故选B.12.如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.A,B之间D.B,C之间【解答】A【解析】①以点A为停靠点,则所有人的路程的和=15×100+10×300=4500(米),②以点B为停靠点,则所有人的路程的和=30×100+10×200=5000(米),③以点C为停靠点,则所有人的路程的和=30×300+15×200=12000(米),④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<100),则所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=4500+5m>4500,⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<200),则总路程为30(100+n)+15n+10(200﹣n)=5000+35n>4500.∴该停靠点的位置应设在点A;故选A.13.如图棋盘上有黑、白两色棋子若干,找出所有三颗颜色相同的棋并且在同一直线上的直线,这样直线共有多少条()A.2条B.3条C.4条D.5条【解答】D【解析】如图,共有5条.故选D.二.填空题14.已知OC平分∠AOB,若∠AOB=70°,∠COD=10°,则∠AOD的度数为.【解答】25°或45°【解析】(1)若射线OD在OC的下方时,如图1所示:∵OC平分∠AOB,∴∠AOC,又∵∠AOB=70°,∴∠AOC35°,又∵∠AOC=∠COD+∠AOD,∠COD=10°,∴∠AOD=35°﹣10°=25°;(2)若射线OD在OC的上方时,如图2所示:同(1)可得:∠AOC=35°,又∵∠AOD=∠AOC+∠COD,∴∠AOD=35°+10°=45°;综合所述∠AOD的度数为25°或45°,故答案为25°或45°.15.如图,点C在线段AB上,且AC:BC=2:3,点D在线段AB的延长线上,且BD=AC,E为AD的中点,若AB=40cm,则线段CE=.【解答】12cm【解析】∵AC:BC=2:3,BD=AC,∴设AC=BD=2x,BC=3x,∵AC+BC=2x+3x=40,解得:x=8,∴AC=BD=16cm,BC=24cm,∵E为AD的中点,∴AE=ED(16×2+24)=28cm,∴EC=AE﹣AC=28﹣16=12cm.故答案为12cm.16.如图,将一张长方形纸片ABCD分别沿着BE、BF折叠,使边AB、CB均落在BD上,得到折痕BE、BF,则∠ABE+∠CBF=.【解答】45°【解析】由折叠得,∠ABE=∠DBE,∠CBF=∠DBF,∵∠ABE+∠DBE+∠CBF+∠DBF=∠ABC=90°,∴∠ABE+∠CBF∠ABC90°=45°,故答案为45°.17.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,OD是OB的反向延长线.(1)射线OC的方向是;(2)∠COD的度数是.【解答】(1)北偏东70°;(2)70°【解析】(1)由图知:∠AOB=15°+40°=55°,∴∠AOC=55°∴∠NOC=∠NOA+∠AOC=15°+55°=70°∴射线OC在北偏东70°方向上.故答案为北偏东70°;(2)∵∠BOC=∠AOB+∠AOC=55°×2=110°,∴∠COD=180°﹣∠BOC=180°﹣110°=70°故答案为70°18.观察下列图形,2条直线相交,有1个交点,3条直线相交最多有3个交点,4条直线相交最多有6个交点,…,像这样,10条直线相交最多有个交点.【解答】45【解析】两条直线相交最多有1个交点,三条直线相交最多有1+2=3个交点,四条直线相交最多有1+2+3=6个交点,五条直线相交最多有1+2+3+4=10个交点,……十条直线相交最多有1+2+3+4+5+6+7+8+9=45个交点;故答案为45.19.如图,∠AOC和∠BOD都是直角,且∠DOC=30°,OM是∠DOC平分线,ON是∠COB的平分线,则∠MON的度数是.【解答】45°【解析】∵OM是∠DOC平分线,ON是∠COB的平分线,∴∠COM=∠DOM∠COD,∠BON=∠CON∠BOC,∵∠BOC+∠COD=∠BOD=90°,∴∠COM+∠CON∠BOD=45°=∠MON,故答案为45°20.线段AB=12cm,点C在线段AB上,且AC BC,M为BC的中点,则AM的长为cm.【解答】7.5【解析】如图,∵点C在线段AB上,AC BC,即BC=3AC,∴AC+BC=AB=12即4AC=12AC=3∴BC=9∵M为BC的中点,∴CM BC=4.5∴AM=AC+CM=7.5cm.故答案为7.5.21.已知射线OA,从O点再引射线OB,OC,使∠AOB=67°31′,∠BOC=48°39′,则∠AOC的度数为【解答】18°52′或116°10′【解析】如右图所示,①OC在OA、OB之间,∵∠AOB=67°31′,∠BOC=48°39′,∴∠AOC=∠AOB﹣∠BOC,=67°31′﹣48°39′,=66°91′﹣48°39′,=18°52′;②OB在OA、OC之间,∵∠AOB=67°31′,∠BOC=48°39′,∴∠AOC=∠AOB+∠BOC=67°31′+48°39′=115°70′=116°10′;故答案是18°52′或116°10′.22.如图,已知∠AOB=150°,∠COD=40°,∠COD在∠AOB的内部绕点O任意旋转,若OE平分∠AOC,则2∠BOE﹣∠BOD的值为°.【解答】110【解析】如图:∵OE平分∠AOC,∴∠AOE=∠COE,设∠DOE=x,∵∠COD=40°,∴∠AOE=∠COE=x+40°,∴∠BOC=∠AOB﹣∠AOC=150°﹣2(x+40°)=70°﹣2x,∴2∠BOE﹣∠BOD=2(70°﹣2x+40°+x)﹣(70°﹣2x+40°)=140°﹣4x+80°+2x﹣70°+2x﹣40°=110°,故答案为110.23.已知∠AOB和∠BOC互为邻补角,且∠AOB<∠BOC,OD平分∠BOC,射线OE在∠AOB内部,且4∠BOE+∠BOC=180°,∠DOE=70°,OM⊥OB,则∠MOE=.【解答】110°或70°【解析】分两种情况进行讨论:①如图1所示,若OM在AC上方,∵OD平分∠BOC,∴∠COD=∠BOD,∵4∠BOE+∠BOC=180°,∠AOB+∠BOC=180°,∴∠AOB=4∠BOE,即∠AOE=3∠BOE,设∠BOE=α,则∠AOE=3α,∠BOD=70°﹣α=∠COD,∵∠AOC为平角,∴∠AOE+∠DOE+∠COD=180°,即3α+70°+70°﹣α=180°,解得α=20°,∴∠BOE=20°,又∵OM⊥OB,∴∠MOB=90°,∴∠MOE=∠BOE+∠MOB=20°+90°=110°;②如图2所示,若OM在AC下方,同理可得,∠BOE=20°,又∵OM⊥OB,∴∠MOB=90°,∴∠MOE=∠MOB﹣∠BOE=90°﹣20°=70°;综上所述,∠MOE的度数为110°或70°.故答案为110°或70°.24.如图,已知OB、OC是∠AOD内部的两条射线,OM平分∠AOB,ON平分∠COD.(1)若∠BOC=40°,∠MON=80°,则∠AOD的度数为度;(2)若∠AOD=x°,∠MON=80°,则∠BOC的度数为度(用含x的代数式表示).【解答】(1)120°;(2)(160﹣x)【解析】(1)∵∠MON﹣∠BOC=∠BOM+∠CON,∠BOC=40°,∠MON=80°,∴∠BOM+∠CON=80°﹣40°=40°,∵OM平分∠AOB,ON平分∠COD,∴∠AOM=∠BOM,∠DON=∠CON,∴∠AOM+∠DON=40°,∴∠AOD=∠MON+∠AOM+∠DON=80°+40°=120°,故答案为120°;(2)∵∠AOD=x°,∠MON=80°,∴∠AOM+∠DON=∠AOD﹣∠MON=(x﹣80)°,∵∠BOM+∠CON=∠AOM+∠DON=(x﹣80)°,∴∠BOC=∠MON﹣(∠BOM+∠CON)=80°﹣(x﹣80)°=(160﹣x)°,故答案为(160﹣x).25.一条直街上有5栋楼,按从左至右顺序编号为1、2、3、4、5,第k号楼恰好有k(k =1、2、3、4、5)个A厂的职工,相邻两楼之间的距离为50米.A厂打算在直街上建一车站,为使这5栋楼所有A厂职工去车站所走的路程之和最小,车站应建在距1号楼米处.【解答】150【解析】假设车站距离1号楼x米,则总距离S=|x|+2|x﹣50|+3|x﹣100|+4|x﹣150|+5|x﹣200|,①当0≤x≤50时,S=2000﹣13x,最小值为1350;②当50≤x≤100时,S=1800﹣9x,最小值为900;②当100≤x≤150时,S=1200﹣3x,最小值为750(此时x=150);当150≤x≤200时,S=5x,最小值为750(此时x=150).∴综上,当车站距离1号楼150米时,总距离最小,为750米.故答案为150.26.如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE.(1)若∠AOC=76°,∠BOF=度;(2)若∠BOF=36°,∠AOC=度.【解答】(1)33;(2)72【解析】(1)∵∠DOB和∠AOC是对顶角,∴∠DOB=∠AOC=76°,∵OE平分∠BOD,∴∠DOE=∠EOB∠DOB=38°,∴∠COE=180°﹣∠DOE=142°,∵OF平分∠COE,∴∠COF=∠FOE∠COE=71°,∴∠BOF=∠FOE﹣∠EOB=33°.故答案为33°.(2))∵∠DOB和∠AOC是对顶角,∴∠DOB=∠AOC,∵OE平分∠BOD,∴∠DOE=∠EOB∠DOB,∵OF平分∠COE,∴∠COF=∠FOE∠COE,∵∠AOC=180°﹣∠COF﹣∠BOF=180°﹣(∠EOB+∠BOF)﹣∠BOF=108°﹣∠EOB=108°∠AOC∴∠AOC=72°.故答案为72°.三.解答题27.已知点O是直线AB上一点,∠COD是直角.(1)如图(1),若OE平分∠AOD,∠BOD=40°,求∠COE的度数.(2)在图(1)中,若OE平分∠AOD,∠BOD=a,请直接写出∠COE的度数(用含a的代数式表示).(3)将图(1)中的∠COD按顺时针方向旋转至图(2)所示的位置,且OF平分∠BOC,其他条件不变,探究∠AOC与∠DOF的度数之间的等量关系,写出你的结论,并说明理由.【解答】(1)20°;(2);(3)见解析【解析】(1)∵∠BOD=40°,∠AOD+∠BOD=180°,∴∠AOD=180°﹣40°=140°,∵OE平分∠AOD,∴∠DOE∠AOD=70°,∵∠COD=90°,∴∠COE=∠COD﹣∠DOE=90°﹣70°=20°;(2)∠COE.∵∠BOD=a,∠AOD+∠BOD=180°,∴∠AOD=180°﹣a,∵OE平分∠AOD,∴∠DOE∠AOD,∵∠COD=90°,∴∠COE=∠COD﹣∠DOE=90°﹣();(3)∠AOC=360°﹣2∠DOF.理由:∵OF平分∠BOC,∴∠BOC=2∠COF,∵∠COD=90°,∴∠COF=∠DOF﹣90°,∵∠AOC+∠BOC=∠AOC+2∠COF=180°,∴∠AOC=180°﹣2∠COF,∴∠AOC=180°﹣2(∠DOF﹣90°)=360°﹣2∠DOF.28.已知:OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若∠AOD=156°,OM平分∠AOB,ON平分∠BOD,∠BOD=96°,则∠MON的度数为.(2)如图2,若∠AOD=m°,∠NOC=23°,OM平分∠AOB,ON平分∠BOD,求∠COM 的度数(用m的式子表示);(3)如图3,若∠AOD=156°,∠BOC=22°,∠AOB=30°,OM平分∠AOC,ON平分∠BOD,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM和∠DON中的一个角的度数恰好是另一个角的度数的两倍,求t的值.【解答】(1)78°;(2);(3)t或【解析】(1)∵∠AOD=156°,∠BOD=96°,∴∠AOB=156°﹣96°=60°,∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=30°,∠BON=48°,∴∠MON=∠BOM+∠BON=78°;(2)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM∠AOB,∠BON∠BOD,∵∠MON=∠BOM+∠BON(∠AOB+∠BOD)∠AOD,∴;(3)∵∠BOC在∠AOD内绕点O以2°/秒的速度逆时针旋转t秒时,∴∠AOC=(52+2t)°,∠BOD(126﹣2t)°,∵OM平分∠AOC,ON平分∠BOD,∴∠AOM═(26+t)°,∠DON=(63﹣t)°,当∠AOM=2∠DON时,26+t=2(63﹣t),则t;当∠DON=2∠AOM时,63﹣t=2(26+t),则t.故当t或时,∠AOM和∠DON中的一个角的度数恰好是另一个角的度数的两倍,29.如图,已知∠AOB=75°,OC是∠AOB内部的一条射线,过点O作射线OD,使得∠COD=∠AOB.(1)若∠AOD=120°,则∠BOC=°;(2)若∠AOD=5∠BOC,则∠BOD=°;(3)当∠COD绕着点O旋转时,∠AOD+∠BOC是否变化?若不变,求出其大小;若变化,说明理由.【解答】(1)30;(2)50;(3)见解析【解析】(1)∵∠COD=∠AOB.即∠AOC+∠BOC=∠BOC+∠BOD,∴∠AOC=∠BOD,∵∠AOD=120°,∠AOB=75°,∴∠AOC=∠BOD=120°﹣75°=45°,∴∠BOC=∠AOB﹣∠AOC=75°﹣45°=30°,故答案为30,(2)设∠BOD=x°,由(1)得∠AOC=∠BOD=x°,则∠BOC=75°﹣x°由∠AOD=5∠BOC得,75+x=5(75﹣x),解得,x=50,即:∠BOD=50°,故答案为50;(3)不变;∵∠COD=∠AOB=75°,∠AOC=∠BOD,∴∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC=∠AOB+∠COD=75°×2=150°,答:当∠COD绕着点O旋转时,∠AOD+∠BOC=150°,其值不变.30.已知直角三角板ABC和直角三角板DEF,∠ACB=∠EDF=90°,∠ABC=60°,∠DEF=45°.(1)如图1.将顶点C和顶点D重合.保持三角板ABC不动,将三角板DEF绕点C旋转,当CF平分∠ACB时,求∠ACE的度数;(2)在(1)的条件下,继续旋转三角板DEF,猜想∠ACE与∠BCF有怎样的数量关系?并利用图2所给的情形说明理由;(3)如图3,将顶点C和顶点E重合,保持三角板ABC不动,将三角板DEF绕点C旋转.当CA落在∠DCF内部时,直接写出∠ACD与∠BCF之间的数量关系.【解答】(1)45°;(2)∠ACE=∠BCF;(3)45°【解析】(1)∵CF平分∠ACB,∴∠BCF=∠ACF∠ACB90°=45°,∴∠ACE=∠ECF﹣∠ACF=90°﹣45°=45°;(2)∠ACE=∠BCF,∵∠BCF+∠ACF=90°=∠ACE+ACF,∴∠ACE=∠BCF;(3)∠BCF﹣∠ACD=45°,∵∠ACF+∠BCF=90°,∠ACD+∠ACF=∠DCF=45°,∴(∠ACF+∠BCF)﹣(∠ACD+∠ACF)=90°﹣45°,即:∠BCF﹣∠ACD=45°.31.已知O为直线AB上的一点,射线OA表示正北方向,∠COE=90°,射线OF平分∠AOE.(1)如图1,若∠BOE=110°,求∠COF的度数.(2)若将∠COE绕点O旋转至图2的位置,试判断∠COF和∠BOE之间的数量关系,并证明你的结果.(3)若将∠COE绕点O旋转至图3的位置,求满足:4∠COF﹣3∠BOE=20°时,∠EOF 的度数.【解答】(1)55°;(2)∠BOE=2∠COF;(3)20°【解析】(1)∵∠BOE=110°,∴∠AOE=180°﹣∠BOE=70°∵OF平分∠AOE∴∠EOF AOE=35°∵∠COE=90°∴∠COF=∠COE﹣∠EOF=55°答:∠COF的度数为55°;(2)∠COF和∠BOE之间的数量关系为:∠BOE=2∠COF,理由如下:∵OF平分∠AOE∴∠AOE=2∠AOF∴∠BOE=180°﹣∠AOE=180°﹣2∠AOF=180°﹣2(∠AOC+∠COF)=180°﹣2(90°﹣∠BOE+∠COF)=2∠BOE﹣2∠COF∴∠BOE=2∠COF;答:∠COF和∠BOE之间的数量关系为:∠BOE=2∠COF;(3)∵OF平分∠AOE∴∠FOE=∠AOF∴4∠COF﹣3∠BOE=20°4(∠COE+∠EOF)﹣3(180°﹣∠EOA)=20°4(90°+∠EOF)﹣3(180°﹣2∠EOF)=20°∴∠EOF=20°答:∠EOF的度数为20°.32.已知点O为直线AB上的一点,∠BOC=∠DOE=90°.(1)如图1,当射线OC、射线OD在直线AB的两侧时,请回答结论并说明理由;①∠COD和∠BOE相等吗?②∠BOD和∠COE有什么关系?(2)如图2,当射线OC、射线OD在直线AB的同侧时,请直接回答;①∠COD和∠BOE相等吗?②第(1)题中的∠BOD和∠COE的关系还成立吗?【解答】(1)①相等,②∠BOD+∠COE=180°;(2)①相等,②依然成立【解析】(1)①∠COD=∠BOE,∵∠BOC=∠DOE=90°,∴∠BOC+∠BOD=∠DOE+∠BOD,即:∠COD=∠BOE,②∠BOD+∠COE=180°,∵∠DOE=90°,∠AOE+∠DOE+∠BOD=∠AOB=180°,∴∠BOD+∠AOE=180°﹣90°=90°,∴∠BOD+∠COE=∠BOD+∠AOE+∠AOC=90°+90°=180°,(2)①∠COD=∠BOE,∵∠COD+∠BOD=∠BOC=90°=∠DOE=∠BOD+∠BOE,∴∠COD=∠BOE,②∠BOD+∠COE=180°,∵∠DOE=90°=∠BOC,∴∠COD+∠BOD=∠BOE+∠BOD=90°,∴∠BOD+∠COE=∠BOD+∠COD+∠BOE+∠BOD=∠BOC+∠DOE=90°+90°=180°,因此(1)中的∠BOD和∠COE的关系仍成立.。

苏科版七年级上册数学第6章 平面图形的认识(一)含答案

苏科版七年级上册数学第6章 平面图形的认识(一)含答案

苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、如图,在平面直角坐标系中,点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O'A'B',A的对应点A'是直线上一点,则点B与其对应点B'间的距离为()A.3B.4C.5D.62、如图,点P是直线a外一点,过点P作于点A,在直线a上取一点B,连结PB,使,C在线段AB上,连结PC.若,则线段PC 的长不可能是()A.3.8B.4.9C.5.6D.5.93、下列说法中:①40°35′=2455′;②如果∠A+∠B=180°,那么∠A与∠B互为余角;③经过两点有一条直线,并且只有一条直线;④在同一平面内,不重合的两条直线不是平行就是相交.正确的个数为().A.1个B.2个C.3个D.4个4、如图,钟表中9点30分时,时钟的分针与时针所成角的度数为A. B. C. D.5、如图,已知直线a∥b,则∠1、∠2、∠3的关系是()A.∠1+∠2+∠3=360°B.∠1+∠2﹣∠3=180°C.∠1﹣∠2+∠3=180°D.∠1+∠2+∠3=180°6、已知α为锐角,sin (α-20°)=,则α等于( )A.20°B.40°C.60°D.80°7、在下列说法中,正确的有()①比较角的大小就是比较它们角的度数大小②角的大小与边的长短无关③从角的顶点出发的一条射线把这个角分成两个角,这条射线叫做这个角的平分线④如果∠ADC=∠ACB,则OC是∠ADB的平分线A.1个B.2个C.3个D.4个8、在一次夏令营活动中,小霞同学从营地A点出发,要到距离A点1000m的A 地去,先沿北偏东70°方向到达B地,然后再沿北偏西20°方向走了500m到达目的地C,此时小霞在营地A的A.北偏东20 °方向上B.北偏东30 °方向上C.北偏东40 °方向上 D.北偏西30 °方向上9、下列说法正确的是( )A. 连接两点的线段叫做两点间的距离B. 射线AB和射线BA是同一条射线C. 若点C是线段AB的中点,则 AB=2ACD. 角的两边越长角越大10、下列结论:①平面内3条直线两两相交,共有3个交点;②在平面内,若∠AOB =40°,∠AOC= ∠BOC,则∠AOC的度数为20°;③若线段AB=3, BC=2,则线段AC的长为1或5;④若∠a+∠β=180°,且∠a<∠β,则∠a的余角为 (∠β-∠a).其中正确结论的个数()A.1个B.2个C.3个D.4个11、下列说法错误的是()A.若AP=BP,则点P是线段的中点B.若点C在线段AB上,则AB=AC+BC C.若AC+BC>AB,则点C一定在线段AB外 D.两点之间,线段最短12、如图,在边长为4的正方形ABCD中,M为边AB上的点,且AM= BM,延长MB至点E,使ME=MC,连接EC,则点M到直线CE的距离是()A.2B.C.5D.213、如图,把一条绳子折成3折,用剪刀从中剪断,得到几条绳子?()A.3B.4C.5D.614、如图,点P,Q分别是菱形ABCD的边AD,BC上的两个动点,若线段PQ长的最大值为8 ,最小值为8,则菱形ABCD的边长为( )A.4B.10C.12D.1615、将直尺和直角三角板按如图方式摆放,己知∠1=40°,则∠2的大小是()A.60°B.50°C.40°D.30°二、填空题(共10题,共计30分)16、如图,∠ABC=30°,AB=8,F是射线BC上一动点,D在线段AF上,以AD 为腰作等腰直角三角形ADE(点A,D,E以逆时针方向排列),且AD=DE=1,连结EF,则EF的最小值为________.17、如图,三角形中,.三条边中最长的边是________.18、钟表上的时间是2时30分,此时时针与分针所成的夹角是________ 度.19、探究:如图①,,试说明.下面给出了这道题的解题过程,请在下列解答中,填上适当的理由.解: ∵.(已知)∴.(________)同理可证,.∵,∴.(________)应用:如图②,,点F在之间,与交于点M,与交于点N.若,,则的大小为________度.拓展:如图③,直线在直线之间,且,点分别在直线上,点Q是直线上的一个动点,且不在直线上,连结.若,则=________度.20、已知∠AOB=50°,∠BOC=30°,则∠AOC=________ .21、如图,船A在灯塔O的正东方向,船B在灯塔O的北偏东处,则的度数是________.22、如图,∠AOB与∠COD都是直角,∠AOD= 则∠COB=________°.23、若与互为补角,并且的一半比小,则为________.24、在平面直角坐标系中,若点到原点的距离是5,则x的值是________.25、36.35° ________(用度、分、秒表示)三、解答题(共5题,共计25分)26、如图,已知,∠,求、、的度数.27、如图,M是线段AC中点,B在线段AC上,且AB=2cm、BC=2AB,求BM长度.28、建筑工人在砌墙时,总是在墙角的地方立两根标志杆,并要两根杆之间拉一根准线,这样做的道理是什么?29、已知一条射线OA,如果从点O再引两条射线OB和OC,使∠AOB=60°,∠BOC=20°,求∠AOC的度数.30、如图,平分,平分,,求的度数.参考答案一、单选题(共15题,共计45分)1、C2、A3、B4、B5、B7、B8、C9、C10、A11、A12、D13、B14、B15、B二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。

苏科版七年级上册数学第6章 平面图形的认识(一) 含答案(完美版)

苏科版七年级上册数学第6章 平面图形的认识(一) 含答案(完美版)

苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、图中∠1、∠2、∠3都是平行线a、b被直线c所截得到的角,其中相等的两个角有几对()A.1B.2C.3D.42、下列命题的逆命题不正确的是()A.平行四边形的对角线互相平分B.两直线平行,内错角相等C.等腰三角形的两个底角相等D.对顶角相等3、已知点M(9,-5)、N(-3,-5),则直线MN与x轴、y轴的位置关系分别为( )A.相交、相交B.平行、平行C.垂直相交、平行D.平行、垂直相交4、平面内有三条直线,那么它们的交点个数有()A.0个或1个B.0个或2个C.0个或1个或2个D.0个或1个或2个或3个5、下列说法中,正确的是()A.在同一平面内,两条直线的位置关系只有相交,平行两种B.在同一平面内,不相交的两条线段互相平行C.在同一平面内,不相交的两条直线互相平行D.在同一平面内,不相交的两条射线互相平行6、若数轴上点A表示的数是 -3, 则与点A相距6个单位长度的点表示的数是()A.±6B.±3C.-9或3D.-3或97、两个锐角的和().A.必定是锐角;B.必定是钝角;C.必定是直角;D.可能是锐角,可能是直角,也可能是钝角8、如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条这样的墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.垂线段最短C.在同一平面内,过一点有且只有一条直线与已知直线垂直D.两点之间,线段最短9、下列命题: (1)两直线平行,同旁内角互补(2) 同角的补角相等. (3) 直角三角形的两个锐角互余. (4) 同位角相等。

其中真命题的个数()A.1个B.2个C.3个D.4个10、如图,按照上北下南,左西右东的规定画出东南西北的十字线,其中点A 位于点O的( )A.北偏西65°方向B.北偏东65°方向C.南偏东35°方向D.南偏西65°方向11、下列命题是真命题的个数为()①两条直线被第三条直线所截,内错角相等.②三角形的内角和是180°.③在同一平面内平行于同一条直线的两条直线平行.④相等的角是对顶角.⑤两点之间,线段最短.A.2B.3C.4D.512、已知,为的余角,则()A. B. C. D.13、如图,直线a∥b,直线c与a、b分别交于A、B两点,若∠1=46°,则∠2=()A.44°B.46°C.134°D.54°14、如图所示,,,平分,则图中与相等的角有()个.A. B. C. D.15、如果一个角的度数为28°14′,那么它的余角的度数为()A. B. C. D.二、填空题(共10题,共计30分)16、68°30′的补角为________.17、如图,直线、交于点,于点,,则的度数为________.18、如图,直线AB,CD相交于点O,射线OE⊥CD,给出下列结论:①∠2和∠4互为对顶角;②∠3+∠2=180°;③∠5与∠4互补;④∠5=∠3-∠1;其中正确的是________。

苏科版七年级上册数学第6章 平面图形的认识(一) 含答案

苏科版七年级上册数学第6章 平面图形的认识(一) 含答案

苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、轮船航行到A处时,观测到小岛B的方向是北偏西65°,那么同时从B处观测到轮船的方向是()A.南偏西65°B.东偏西65°C.南偏东65°D.西偏东65°2、如图,OA⊥OB,∠BOC=30°,OD平分∠AOC,则∠BOD= ()A.60°B.50°C.40°D.30°3、将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A. B. C.D.4、如图,B处在 A的南偏西 38°方向,C处在 A处的南偏东 22°方向,C处在 B处的北偏东 78°方向,则∠ACB的度数是( )A.80°B.75°C.70°D.65°5、如图,AB∥CD,若∠2是∠1的3倍,则∠1的度数是( ).A.30°B.45°C.55°D.60°6、过平面上A,B,C三点中的任意两点作直线,可作直线的条数为()A.1条B.3条C.1条或3条D.无数条7、下面命题中是真命题的有()①相等的角是对顶角②直角三角形两锐角互余③三角形内角和等于180°④两直线平行内错角相等A.1个B.2个C.3个D.4个8、如图,在平面直角坐标系xOy中,点A(3,0),判断在M,N,P,Q 四点中,满足到点O和点A的距离都小于2的点是()A.点P和QB.点P和MC.点P和ND.点M和N9、确定一个地点的位置,下列说法正确的是()A.偏西50°,1000米B.东南方向,距此800米C.距此1000米 D.正北方向10、一个角的补角是它的余角的度数的3倍,则这个角的度数是()A.45°B.50°C.55°D.60°11、已知点A(3,4),B(3,1),C(4,1),则AB与AC的大小关系是()A.AB<ACB.AB=ACC.AB>ACD.无法判断12、已知∠A、∠B互余,∠A比∠B大30°,设∠A、∠B的度数分别为x°、y°,下列方程组中正确的是()A. B. C. D.13、把一条弯曲的公路改成直道,可以缩短路程,这其中蕴含的数学道理是()A.垂线段最短B.两点确定一条直线C.两点之间线段最短D.两点之间直线最短14、下列图形中,∠2>∠1的是()A. B. C. D.15、如图,∠AOB是直角,OA平分∠COD,OE平分∠BOD,若∠BOE=23°,则∠BOC的度数是()A.113°B.134°C.136°D.144°二、填空题(共10题,共计30分)16、∠α=25°20′,则∠α的余角为________.17、钟面上 8 点 30 分时,时针与分针的夹角的度数是________ .18、如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为________cm.19、如图,在利用量角器画一个 40°的∠AOB 的过程中,对于“先找点 B,再画射线OB.”这一步骤的画图依据,小王同学认为是两点确定一条直线;小李同学认为是两点之间,线段最短. 说法正确的同学是________.20、若∠α的补角为76°28′,则∠α=________.21、木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点得出一条墨线,这是根据数学原理________.22、如图,直线,相交于点,,,则________度.23、如图,在中,,,,,,点在上,交于点,交于点,当时,________.24、如图,点O在直线AB上,且OC⊥OD,若∠COA=36°,则∠DOB大小为________°25、若数轴上表示数的点位于-1与3之间,则________.三、解答题(共5题,共计25分)26、一个角的余角比它的补角还多1°,求这个角.27、一个锐角的补角等于这个锐角的余角的3倍,求这个锐角?28、如图,AF、BD、CE是直线,点B在直线AC上,点E在直线DF上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章平面图形的认识(一) 检测卷
(总分100分时间90分钟)
一、选择题(每小题3分,共30分)
1.图中射线AB、线段MN能和直线PQ相交的是( )
2.如图,若AB=DE,则( )
A.AD=EB B.AC=EC
C.BC=DC D.AB=BC
3.已知∠α=32°,求∠α的补角为( )
A.58°B.68°C.148°D.168°
4.借助一副三角尺,你能画出下面哪个度数的角?( )
A.65°B.75°C.85°D.95°
5.如图,直线AB、CD交于O点,OE平分∠AOD,OF⊥OE于O点,
若∠BOC=80°,则∠DOF等于( )
A.100°B.120°
C.130°D.115°
6.下列语句中,正确的是( )
A.射线AB与射线BA表示同一条射线
B.经过一点有且只有一条直线与已知直线平行
C.经过一点有且只有一条直线与已知直线垂直.
D.直线l1∥l2,l2//l3,则l1∥l3,理由是等量代换
7.如图,点O在直线AB上,∠COB=∠DOE=90°,那么图中相等的角的对数和互余
两角的对数分别为( )
A.3;3 B.4;4
C.5;4 D.7;5
8.点P是直线l外一点,A,B,C为直线l上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线l的距离是( )
A.2cm B.小于2cm C.不大于2cm D.4cm
9.已知AB=8cm,BC=3cm,则线段AC的长是( )
A.5 cm B.11cm C.5 cm或11 cm D.不确定
10.已知∠AOB=3∠BOC,若∠BOC=30°,则∠AOC等于( )
A.120°B.120°或60°C.30°D.30°或90°
二、填空题(每小题3分,共30分)
11.如图,用文字或字母符号表达它们的关系_______.
12.如图,以OD为一边的角有_______,它们之间的大小关系用“>”连接为_______.
13.如图,C是线段AB上的一点,M是线段AC的中点,若BM=5cm,BC=2cm,则AB的长是_______.
14.计算:71°28'36"-35°31'42"=_______.
15.一次测验从开始到结束,手表的时针转了50°的角,这次测验的时间是_______.16.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠AOD=104°,则
∠BOM=_______.
17.如图,OA的方向是北偏东15°,OB的方向是北偏西40°.
(1)若∠AOC=∠AOB,则OC的方向是_______,
(2)OD是OB的反向延长线,OD的方向是_______.
18.平面内不同的两点确定一条直线,不同的三点最多确定三条直线,若平面内不同的n个点最多可确定15条直线,则n的值为_______.
19.如图是幼儿园跷跷板的图形,其横板AD通过点O,它可以绕点O上下转动,若
∠OCA=90°,∠CAO=20°,且∠CAO+∠AOC=90°,则小朋友玩该跷跷板时,上下最多可转动_______度的角.
20.把一张长方形纸条按图6-10的方式折叠后,量得∠AOB'=110°,则
∠B'OC=_______.
三、解答题(本题共6小题,共40分)
21.(4分)如图,在方格纸上有一条线段AB和一点C.
(1)过点C 画出与AB 平行的直线;
(2)过点C 画出与AB 垂直的直线.
22.(6分)如图,点P 是∠AOB 的边OB 上的一点.
(1)过点P 画OB 的垂线,交OA 于点C ;
(2)过点P 画OA 的垂线,垂足为H ;
(3)线段PH 的长度是点P 到_______的距离,_______是点C 到直线OB 的距离,线段PC 、PH 、OC 这三条线段大小关系是_______(用“<”号连接),其根据是
___________.
23.(5分)一个角的补角比它的余角的4倍还多15°,求这个角的度数.
24.(5分)如图,AOC 为一直线,OD 是∠AOB 的平分线,
∠BOE =12
∠EOC ,∠DOE =72°.求∠EOC 的度数.
25.(6分)已知A 、B 、C 三点在同一条直线上,AB =100cm ,BC =AB ,E 是AC 的35
中点,求BE 的长.
26.(8分)如图,已知∠AOB ,画射线OC ⊥OA ,射线OD ⊥OB .
(1)画出符合要求的图形;
(2)如果∠AOB =30°,其他条件不变,则∠COD =_______°;
(3)如果(2)中∠AOB =α°,其他条件不变,则∠COD =_______°; (4)结合(1)中画图和(2)(3)的结果,你从中能看出什么规律?(用一句话来归纳)
27.(8分)如图①,已知线段AB =12cm ,点C 为AB 上的一个动点,点D 、E 分别是AC 和BC 的中点.
(1)若点C 恰好是AB 中点,则DE =_______cm ;
(2)若AC =4cm ,求DE 的长;
(3)试说明不论AC 取何值(不超过12cm ),DE 的长不变;
(4)如图②,已知∠AOB =120°,过角的内部任一点C 画射线OC ,若OD 、OE 分别平分∠AOC 和∠BOC ,试说明∠DOE =60°与射线OC 的位置无关.
参考答案
1—10 DACBC CCCDB
11.直线AB和直线BC相交于点B
12.∠DOA,∠DOB,∠DOC;∠DOA>∠DOB>∠DOC
13.8 cm
14.35°56'54"
15.100分钟
16.142°
17.(1)北偏东70°;(2)南偏东40°
18.六
19.40°
20.35°
21.如图所示,(1)直线CD即为所画平行线;(2)CB即为所画垂线.
22.(1)(2)如图答.(3)OA,CP的长度,PH<PC<OC,垂线段最短.
23.65°
24.72°.
25.80cm或20cm
26.(1)有4种情况,如图所示:
(2)30°或150°;(3)a°或(180°-a°);(4)如果一个角的两边分别与另一个角的两边互
相垂直,那么这两个角相等或互补.27.(1)6 (2)6cm。

相关文档
最新文档