中考数学高频考点
中考数学必考知识点大全
中考数学必考知识点大全1.整数的加减乘除运算:掌握整数的加减乘除运算法则,包括加法、减法、乘法和除法。
2.分数的加减乘除运算:掌握分数的加减乘除运算法则,包括分数的加法、减法、乘法和除法。
3.百分数的计算:掌握百分数的计算方法,包括百分数的转化和百分数之间的比较。
4.小数的加减乘除运算:掌握小数的加减乘除运算法则,包括小数的加法、减法、乘法和除法。
5.整式的加减乘除运算:掌握整式的加减乘除运算法则,包括整式的加法、减法、乘法和除法。
6.一元一次方程与一元一次不等式:掌握一元一次方程和一元一次不等式的解法和问题的应用。
7.二次根式:掌握二次根式的定义和性质,包括二次根式的化简和运算。
8.平方根与立方根:掌握平方根和立方根的计算方法和性质,包括平方根和立方根的开放计算和化简。
9.平面图形的面积和周长:掌握各种平面图形的面积和周长的计算方法,包括矩形、正方形、三角形、梯形、圆等。
10.空间图形的体积和表面积:掌握各种空间图形的体积和表面积的计算方法,包括长方体、正方体、三棱锥、四棱锥、棱柱、棱台、球等。
11.初等概率与统计:掌握初等概率和统计的基本概念和计算方法,包括样本空间、事件、概率、频率、直方图等。
12.等比数列与等差数列:掌握等比数列和等差数列的定义和性质,包括等比数列和等差数列的通项公式和求和公式。
13.直角三角形的性质与应用:掌握直角三角形的性质和定理,包括勾股定理、正弦定理、余弦定理等。
14.平行线与相交线:掌握平行线和相交线的基本性质和判定方法,包括平行线的性质、相交线的性质和相交线的角度关系。
15.二次函数与二次方程:掌握二次函数和二次方程的定义和性质,包括二次函数的图像、二次方程的解法和二次函数和二次方程在实际问题中的应用。
2023年数学中考复习高频考点专练——二次函数的最值
2023年数学中考复习高频考点专练——二次函数的最值一、单选题1.二次函数 241y ax x =-+ 有最小值 3- ,则 a 的值为( )A .1B .-1C .1±D .122.对于二次函数y=−(x−1)2+2的图象与性质,下列说法正确的是( )A .对称轴是直线x=1,最小值是2B .对称轴是直线x=1,最大值是2C .对称轴是直线x=−1,最小值是2D .对称轴是直线x=−1,最大值是23.已知a≥2,m 2﹣2am+2=0,n 2﹣2an+2=0,则(m ﹣1)2+(n ﹣1)2的最小值是( )A .6B .3C .﹣3D .04.把二次函数y =ax 2+bx+c (a >0)的图象作关于x 轴的对称变换,所得图象的解析式为y =﹣a (x﹣1)2+4a ,若(m ﹣1)a+b+c≤0,则m 的最大值是( ) A .﹣4B .0C .2D .65.如图,已知抛物线y=ax 2+bx+c (a <0)的对称轴为x=1,交x 轴的一个交点为(x 1,0),且﹣1<x 1<0,有下列5个结论:①abc >0;②9a ﹣3b+c <0;③2c <3b ;④(a+c )2<b 2;⑤a+b >m (am+b )(m≠1的实数)其中正确的结论有( )A .1个B .2个C .3个D .4个6.设a ,b 是实数,定义@的一种运算如下:a@b=(a+b )2﹣(a ﹣b )2,则下列结论:①若a@b=0,则a=0或b=0 ②a@(b+c )=a@b+a@c③不存在实数a ,b ,满足a@b=a 2+5b 2④设a ,b 是矩形的长和宽,若矩形的周长固定,则当a=b 时,a@b 最大.其中正确的是( ) A .②③④B .①③④C .①②④D .①②③7.四位同学在研究函数 2y ax bx c =++ (b ,c 是常数)时,甲发现当 1x = 时,函数有最小值;乙发现 1- 是方程 20ax bx c ++= 的一个根;丙发现函数的最小值为3;丁发现当 2x = 时, 4y = .已知这四位同学中只有一位发现的结论是错误的,则该同学是( ) A .甲B .乙C .丙D .丁8.如图,在△ABC 中,△B=90°,tan△C=34,AB=6cm .动点P 从点A 开始沿边AB 向点B 以1cm/s 的速度移动,动点Q 从点B 开始沿边BC 向点C 以2cm/s 的速度移动.若P ,Q 两点分别从A ,B 两点同时出发,在运动过程中,△PBQ 的最大面积是( )A .18cm 2B .12cm 2C .9cm 2D .3cm 29.如图,在矩形ABCD 中,AB=8,AD=6,点M 为对角线AC 上的一个动点(不与端点A ,C 重合),过点M 作ME△AD ,MF△DC ,垂足分别为E ,F ,则四边形EMFD 面积的最大值为( )A .6B .12C .18D .2410.如图,抛物线y=﹣112 x 2+ 23 x+ 53与x 轴交于A ,B 两点,与y 轴交于点C .若点P 是线段AC 上方的抛物线上一动点,当△ACP 的面积取得最大值时,点P 的坐标是( )A .(4,3)B .(5,3512)C .(4,3512) D .(5,3)二、填空题11.二次函数y=-(x-6)2+8的最大值是 。
2024年中考数学高频考点专题复习——反比例函数的实际应用(含解析)
2024年中考数学高频考点专题复习——反比例函数的实际应用1.如图,利用已有的一面长为的墙,用篱笆围一个面积为的矩形花圃.设的长为,的长为.(1)求y 关于x 的函数表达式和自变量x 的取值范围.(2)边和的长都是整数,若围成的矩形花圃的三边篱笆的总长不超过,试求出满足条件且用料最省的方案.2.通过实验研究发现:初中生在数学课上听课注意力指标数随上课时间的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散,学生注意力指标数y 随时间x (分)变化的函数图象如图所示,当和时,图象是线段;当时,图象是双曲线的一部分,根据函数图象回答下列问题:(1)点A 的注意力指标数是 ;(2)当时,求注意力指标数y 随时间x (分)的函数解析式;(3)张老师在一节课上讲解一道数学综合题需要21分钟,他能否经过适当的安排,使学生在听这道综合题的讲解时,注意力指标数都不低于36?请说明理由.5m 220m ABCD AB ()m x BC ()m y AB BC ABCD 20m 010x ≤<1020x ≤<2040x ≤≤010x ≤<3.如图,帆船A 和帆船B 在太湖湖面上训练,O 为湖面上的一个定点,教练船静候于O 点,训练时要求A 、B 两船始终关于O 点对称.以O 为原点,建立如图所示的坐标系,x 轴、y 轴的正方向分别表示正东、正北方向.设A 、B 两船可近似看成在双曲线y =上运动,湖面风平浪静,双帆远影优美,训练中当教练船与A 、B 两船恰好在直线y =x 上时,三船同时发现湖面上有一遇险的C 船,此时教练船测得C 船在东南45°方向上,A 船测得AC 与AB 的夹角为60°,B 船也同时测得C 船的位置(假设C 船位置不再改变,A 、B 、C 三船可分别用A 、B 、C 三点表示).(1)发现C 船时,A 、B 、C 三船所在位置的坐标分别为A( , )、B( , )和C( , );(2)发现C 船,三船立即停止训练,并分别从A 、O 、B 三点出发沿最短路线同时前往救援,设A 、B 两船的速度相等,教练船与A 船的速度之比为3:4,问教练船是否最先赶到?请说明理由.4.某气象研究中心观测到一场沙尘暴从发生到减弱的过程,开始一段时间风速平均每小时增加2千米,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米,然后风速不变,当沙尘暴遇到绿色植被区时,风速y (千米/小时),时间x (小时)成反比例关系地慢慢减弱,结合风速与时间的图象,回答下列问题:(1)这场沙尘暴的最高风速是多少?最高风速维持了多长时间;(2)求出当x≥20时,风速y (千米/小时)与时间x (小时)之间的函数关系?(3)在这次沙尘暴的形成过程中,当风速不超过10千米/小时称为“安全时刻”,其余时刻是“危险时刻”.问这次风暴的整个过程中,“危险时刻”一共有多长时间?4x5.为了做好新冠疫情防控工作,某学校要求全校各班级每天对各班教室进行消毒.现有一种备选药物,根据测定,教室内每立方米空气中的药含量y (单位:mg )随时间x (单位:h )的变化情况如图所示,根据图中提供的信息,解决下面的问题.(1)如图反映的是那两个变量之间的关系?哪个是自变量?哪个是因变量?(2)什么时刻每立方米空气中药含量最多?此时药含量是多少?(3)在什么时间范围内,每立方米空气中药含量在增加?在什么时间范围内,每立方米空气中药含量在减少?(4)据测定,当空气中每立方米的药物含量降低到mg 以下时,才能保证对人身无害,若该校课间操时间为40分钟,据此判断,学校能否选用这种药物用于教室消毒?请说明理由.6.水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:第1天第2天第3天第4天第5天第6天第7天第8天售价x(元/千克)400300250240200150125120销售量y(千克)30404850608096100观察表中数据,发现可以用反比例函数刻画这种海产品每天的销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?1167.某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作.已知该品牌运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示: 第1天第2天第3天第4天售价x(元/双)150200250300销售量y(双)40302420(1)观察表中数据,x,y满足什么函数关系?写出用x表示y的函数表达式;(2)若商场计划每天的销售利润为3000元,则每双运动鞋的售价应定为多少元?8.心理学家研究发现,在一节45分钟的课中,学生的注意力随教师讲课的时间的变化而变化,开始学生的注意力逐渐增强,中间学生的注意力保持稳定的状态,随后开始分散,经实验学生的注意力指数y 随时间x(分钟)的变化规律如图所示.(1)一位教师为了达到最好的上课效果,准备课前复习,要求学生的注意力指数至少达到30时,开始上新课,问他应该复习多长时间?(2)如果(1)的这位教师本节新课内容需要22分钟,为了使学生的听课效果最好,问这位教师能否在学生听课效果最好时,讲完新课内容?9.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度 与时间 之间的函数关系,其中线段 ,表示恒温系统开启阶段,双曲线的一部分 表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求 与 ( )的函数表达式;(2)若大棚内的温度低于 时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多长时间,才能使蔬菜避免受到伤害?10.某小组进行漂洗实验,每次漂洗的衣服量和添加洗衣粉量固定不变实验发现,当每次漂洗用水量v(升)一定时,衣服中残留的洗衣粉量y (克)与漂洗次数x (次)满足y=(k 为常数),已知当使用5升水,漂洗1次后,衣服中残留洗衣粉2克.(1)求k 的值.(2)如果每次用水5升,要求漂洗后残留的洗衣粉量小于0.8克,求至少漂洗多少次?(3)现将20升水等分成x 次(x>1)漂洗,要使残留的洗衣粉量降到0.5克,求每次漂洗用水多少升?()C y ︒()h x AB BC CD y x 1024x ≤≤10C ︒ 2.5kv x+11.汛期到来,山洪暴发,下表记录了某水库 内水位的变化情况,其中 表示时间(单位:), 表示水位高度(单位: ),当 ( )时,达到警戒水位,开始开闸放水. 02468101214161820141516171814.41210.3987.2(1)在给出的平面直角坐标系中,根据表格中的数据画出水位变化图象,并写出水位高出16米的时间 的取值范围 ▲ .(精确到0.1)(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到 .12.如图,直线与双曲线交于A ,两点,点A 的坐标为,点是双曲线第一象限分支上的一点,连结并延长交轴于点,且.(1)求的值,并直接写出点的坐标;(2)点是轴上的动点,连结,,求的最小值和点坐标;(3)是坐标轴上的点,是平面内一点,是否存在点,,使得四边形是矩形?若存20h x h y m 8x =h /h x /my x 6m 32y x =(0)ky k x=≠B (3)m -,C BC xD 2BC CD =k B G y GB GC GB GC +G P Q P Q ABPQ在,请求出所有符合条件的点的坐标;若不存在,请说明理由.13.泡茶需要将电热水壶中的水先烧到100℃,然后停止烧水,等水温降低到适合的温度时再泡茶,烧水时水温y(℃)与时间x(min)成一次函数关系;停止加热过了1分钟后,水壶中水的温度y(℃)与时间x(min)近似于反比例函数关系(如图).已知水壶中水的初始温度是20℃,降温过程中水温不低于20℃.(1)分别求出图中所对应的函数关系式,并且写出自变量x 的取值范围:(2)从水壶中的水烧开(100℃)降到90℃就可以泡茶,问从水烧开到泡茶需要等待多长时间?14.某种商品上市之初采用了大量的广告宣传,其销售量与上市的天数之间成正比,当广告停止后,销售量与上市的天数之间成反比(如图),现已知上市30天时,当日销售量为120万件.(1)写出该商品上市以后销售量y (万件)与时间x (天数)之间的表达式;(2)求上市至第100天(含第100天),日销售量在36万件以下(不含36万件)的天数;(3)广告合同约定,当销售量不低于100万件,并且持续天数不少于12天时,广告设计师就可以拿到“特殊贡献奖”,那么本次广告策划,设计师能否拿到“特殊贡献奖”?P答案解析部分1.【答案】(1)解:由题意得:,,已有的一面墙长为,,,y 关于x 的函数表达式为(2)解:边和的长都是整数,且, 的值可以为4、5、10、20,围成的矩形花圃的三边篱笆的总长不超过,,的值可以为4、5,当时,,则,当时,,则,满足条件且用料最省的方案为,.2.【答案】(1)24(2)解:设线段(0≤x <10)∵,,∴{b =2410k +b =48 解之:{k =125b =24∴当0≤x <10时的函数解析式为(3)解:当时,代入和得 和∵,20xy =20y x∴=5m 205x∴≤4x ∴≥∴()204y x x=≥ AB BC ()204y x x=≥x ∴ ABCD 20m 220x y ∴+≤x ∴4x =5y =224513x y +=⨯+=5x =4y =225414x y +=⨯+=∴4m AB =5m BC =AB y kx b =+:(024)A ,(1048)B ,12245y x =+36y =12245y x =+960y x=15x =2803x =806552133-=>∴他能经过适当的安排,使学生在听这道综合题的讲解时,注意力指标数都不低于36.3.【答案】(1)2;2;-2;-2;22 ;(2)解:作AD ⊥x 轴于D,连AC 、BC 和OC,∵A (2,2),∴∠AOD=45°,AO=2,∵C 在O 的东南45°方向上,∴∠AOC=45°+45°=90°,∵AO=BO ,∴AC=BC ,又∵∠BAC=60°,∴△ABC 为正三角形,∴AC=BC=AB=2AO=4,∴ ,由条件设教练船的速度为3m ,A、B 两船的速度都为4m ,则教练船所用时间为,A 、B 两船所用时间均为 = ,= , =,> ;∴教练船没有最先赶到.4.【答案】(1)解:0~4时,风速平均每小时增加2千米,所以4时风速为8千米/时;4~10时,风速变为平均每小时增加4千米,10时达到最高风速,为8+6×4=32千米/时,OC ==10~20时,风速不变,最高风速维持时间为20﹣10=10小时;答:这场沙尘暴的最高风速是32千米/时,最高风速维持了10小时(2)解:设y =, 将(20,32)代入,得32= ,解得k =640.所以当x≥20时,风速y (千米/小时)与时间x (小时)之间的函数关系为y =(3)解:∵4时风速为8千米/时,而4小时后,风速变为平均每小时增加4千米, ∴4.5时风速为10千米/时,将y =10代入y = ,得10=,解得x =64,64﹣4.5=59.5(小时).故沙尘暴的风速从开始形成过程中的10千米/小时到最后减弱过程中的10千米/小时,共经过59.5小时.答:这次风暴的整个过程中,“危险时刻”一共经过59.5小时.5.【答案】(1)解:图象反应的是时间x 和每立方米空气中的药含量y 之间的关系;自变量为时间x ;因变量为每立方米空气中的药含量y ;(2)解:从函数图象可得:当x=h 时,空气中药含量最多,最多为1mg ;(3)解:从图象可得:当0<x<h 时,每立方米空气中药含量在增加;当x≥h 时,每立方米空气中药含量在减少(4)解:不能选用这种药物消毒,理由如下:由图象可得,当x=1时,y=,∴,∴学校不能选用这种药物用于教室消毒.6.【答案】(1)解:设 , ∵当x=400时y=30,∴k=400×30=12000,kxk 20640x640x640x151515116116048405⎛⎫-⨯=> ⎪⎝⎭ky x=∴函数解析式为 .(2)解:2104-(30+40+48+50+60+80+96+100)=1600.即8天试销后,余下的海产品还有1 600千克.当x=150时, =80.1600÷80=20(天).答:余下的这些海产品预计再用20天可以全部售出.(3)解:1600-80×15=400(千克),设新确定的价格为每千克x 元. ,解得:x≤60,答:新确定的价格最高不超过60元/千克才能完成销售任务.7.【答案】(1)解:由表中数据得: ∴∴y 是x 的反比例函数,故所求函数关系式为 (2)解:由题意得: 把 代入得: 解得: 经检验, 是原方程的根;∴单价应定为240元8.【答案】(1)解:设DA 的函数关系式为y=kx+b (x≠0),∵y=kx+b 过(0,20),(10,40),∴{b =2010k +b =40,∴{b =20k =2,∴y=2x+20(0≤x≤10);当y=30时,30=2x+20,∴x=5;答:他应该复习5分钟;12000y x=12000150y =120002400x⨯≥6000xy =6000y x=6000y x =()1203000x y -=6000y x =()60001203000x x-=240x =240x =(2)解:设BC 的函数关系式(k 1≠0)(21≤x≤45),∵过B (21,40),∴,∴K 1=840,∴(21≤x≤45),当x=30时,,28﹣5=23,∵23>22,∴这位老师能在学生听课效果最好时讲完新课内容.9.【答案】(1)解:当 时,设 把 代入 得: 所以: (2)解:当 时,经检验: 是原方程的解,且符合题意,所以恒温系统最多可以关闭 小时,才能使蔬菜避免受到伤害.10.【答案】(1)解:∵使用5升水,漂洗1次后,衣服中残留洗衣粉2克,∴v=5,x=1,y=2,∴2=,∴k=-0.1.(2)解:∵v=5,∴y=, ∵反比例函数y=,在x>0的范围内y 随x 的增大而减少,∴当y<0.8时,漂洗的次数x>2.5,∴至少漂洗3次,衣服中残留的洗衣粉量小于0.8克.(3)解:由(1)得y=, 1k y x =14021k =840y x=8402830y ==1024x ≤≤k y x=()1020,k y x =,1020200k =⨯=,200.y x=10y =20010x =,20x ∴=,20x =201010∴-=,105 2.51k +0.15 2.52x x-⨯+=2x 0.1 2.5v x-+∴xy=-0.1v+2.5,即x 2y=-0.1vx+2.5x ,∵将20升水等分成x 次,∴vx=20,∴x 2y=-2+2.5x ,∵y=0.5,∴0.5x 2=-2+2.5x ,即x 2-5x+4=0,∴x 1=4,x 2=1(舍去,x >1),∴当x=4时,每次漂洗用水v=20÷4=5升.答:每次漂洗用水5升.11.【答案】(1)解:在平面直角坐标系中,根据表格中的数据水位变化图象如图所示,;4≤x <8.8(2)解:观察图象当0<x <8时,y 与x 可能是一次函数关系:设y=kx+b ,把(0,14),(8,18)代入得 {b =148k +b =18 解得: {k =12b =14 , y 与x 的关系式为: ,经验证(2,15),(4,16),(6,17)都满足 因此放水前y 与x 的关系式为: (0<x <8).观察图象当x >8时,y 与x 就不是一次函数关系:通过观察数据发现:8×18=10×14.4=12×12=16×9=18×8=144.1142y x =+1142y x =+1142y x =+因此放水后y 与x 的关系最符合反比例函数,关系式为:设 ,则 ,y 与x 的关系式为: .( )所以开闸放水前和放水后最符合表中数据的函数解析式为: (0<x <8)和 .( )(3)解:当y=6时, ,解得: , 因此预计24h 水位达到6m.12.【答案】(1)解:将点A 的坐标为代入直线中,得,解得:,,,B 的坐标为(2)解:如图,作轴于点E ,轴于点F ,则,,,,, ,,,,k y x =144k =144=y x8x ≥1142y x =+144=y x 8x ≥1446=x24x =()-3A m ,32y x =332m =﹣-2m =()2-3A ∴-,=-2(3)=6k ∴⨯-()23,BE x ⊥CF x ⊥BE CF BE CF DCF DBE ∴ ∽DC CF DB BE∴=2BC CD = 13DC CF DB BE ∴==()23B ,3BE ∴=1CF ∴=,作点B 关于y 轴的对称点,连接交y 轴于点G ,则即为的最小值,,设的解析式为,,,解得: ,解析式为,当时,,;(3)解:存在.理由如下:当点P 在x 轴上时,如图,设点 的坐标为 ,过点B 作轴于点M ,四边形是矩形,,()61C ∴,B 'B C 'B C 'BG GC +()()2361B C -' ,,,B C ∴=='=BG GC B C '∴+B C 'y kx b =+()()2361B C -' ,,,3216k b k b =-+⎧⎨=+⎩1452k b ⎧=-⎪⎪⎨⎪=⎪⎩∴B C '1542y x =-+0x =52y =502G ⎛⎫∴ ⎪⎝⎭,1P ()0a ,BM x ⊥ 11ABPQ 190OBP ∴∠=︒,,,,,,,,,经检验符合题意,∴点 的坐标为;当点P 在y 轴上时,过点B 作轴于点N ,如图2,设点 的坐标为,四边形是矩形,,,,,,,经检验符合题意,∴点的坐标为,1==90OMB OBP ∴∠∠︒1=BOM POB ∠∠1OBM OPB ∴ ∽1OB OM OP OB ∴=()23B ,OB ∴==2OM ==132a ∴=1P 1302⎛⎫ ⎪⎝⎭,BN y ⊥2P ()0b , 22ABP Q 290OBP ∴∠=︒2==90ONB P BO ∠∠︒ 2BON P OB ∠=∠2BON P OB ∴ ∽2OB ON OP OB∴==133b ∴=2P 1303⎛⎫⎪⎝⎭,综上所述,点P 的坐标为或.13.【答案】(1)解:停止加热 分钟后,设 , 由题意得: , 解得: ,, 当 时,解得: ,当 时, ,点坐标为 , 点坐标为 , 当加热烧水时,设 ,由题意将 点坐标 代入上式得 , 解得: ,当加热烧水时,函数关系式为 ;当停止加热时 与 的函数关系式为 ; ;(2)解:把 代入 ,得 , 因此从水壶中的水烧开 降到 可以泡茶需要等待 分钟.14.【答案】(1)解:根据题意可知:当时,设y 与x 的函数解析式为,∴,解得:,∴;当时,设y 与x 的函数解析式为,∴,解得:1302⎛⎫ ⎪⎝⎭,1303⎛⎫ ⎪⎝⎭,1k y x =5018k =900k =900y x∴=100y =9x =20y =45x =C ∴()9100,B ∴()8100,20y ax =+B ()8100,100820a =+10a =∴()102008y x x =+≤≤y x 100(89)y x =<≤900(945)y x x =<≤90y =900y x=10x =()100℃90℃1082-=030x ≤≤1y k x =112030k =14k =()4030y x x =≤≤30x ≥2k y x =212030k =23600k =∴综上所述,该商品上市以后销售量y (万件)与时间x (天数)之间的表达式为:;.(2)解:当时,令,解得:,∴,∴销量不到36万件的天数为8天;当时,令,解得: (不符合题意),∴上市至第100天(含第100天),日销售量在36万件以下(不含36万件)的天数为8天;(3)解:当时,令,解得:∴,∴销量超过100万件的天数为6天,当时,令,解得:∴,销量超过100万件的天数为6天,综上所述,销售量不低于100万件,并且持续天数为12天,广告设计师可以拿到“特殊贡献奖”.()360030y x x=≥()4030y x x =≤≤()360030y x x=≥030x ≤≤436x <9x <09x ≤<30x ≥360036x<100x >030x ≤≤4100x ≥25x ≥2530x ≤≤30x ≥3600100x≥36x ≤3036x ≤≤。
中考数学高频考点
中考数学高频考点
中考数学的高频考点主要包括以下几个方面:1. 代数与方程:
* 代数式的计算与化简;
* 一元一次方程和一元二次方程的解法;
* 负指数与分数指数的计算;
* 平方根和立方根的计算。
2. 几何:
* 平行线与相交线的性质;
* 三角形和四边形的性质;
* 圆的性质与圆的面积;
* 三视图、截面图;
* 相似三角形与勾股定理。
3. 概率与统计:
* 抽样调查与统计图的制作;
* 频率与概率的计算。
4. 函数与图像:
* 线性函数与一次函数;
* 函数的概念与函数图像;
* 常见函数的图像与性质。
5. 数与式:
* 实数的性质;
* 整式的加减乘除;
* 分式的四则运算。
6. 解题方法:
* 常见的解题方法,如数学建模、归纳法、逆向思维等。
7. 空间与位置:
* 空间图形的视图、截面、投影;
* 空间坐标系与三维图形的性质。
8. 利益问题:
* 利润、利率、本金、时间等方面的计算。
9. 应用题:
* 针对实际生活问题的数学建模与解答。
在备考中考数学时,重点关注这些高频考点,通过大量的例题和模拟题进行练习,同时要注意掌握解题的基本方法和思维逻辑。
理解数学知识点的背后原理,能够熟练运用相关的公式和定理解决问题,是取得良好成绩的关键。
中考数学高频考点
中考数学高频考点1、相似三角形(5个考点)考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小。
考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理。
考点3:相似三角形的概念。
考点4:相似三角形的判定和性质及其应用。
考点5:三角形的外心、内心、重心。
2、锐角三角函数(2个考点)考点6:锐角三角形(锐角的正弦、余弦、正切)的概念,30度、45度、60度角的三角比值。
考点7:解直角三角形及其应用。
3、二次函数(4个考点)考点8:函数以及自变量、因变量等有关概念,函数的表示法。
考点9:用待定系数法求二次函数的解析式(一设、二代、三列、四还原)。
考点10:画二次函数的图象。
(1)知道函数图象的意义,会在平面直角坐标系中用描点法画函数图象。
(2)理解二次函数的图象,体会数形结合思想。
(3)会画二次函数的大致图象。
考点11:二次函数的图象及其基本性质。
(1)借助图象的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;(2)会用配求二次函数的顶点坐标,并说出二次函数的有关性质。
4、圆的相关概念(5个考点)考点12:圆心角、弦、弦心距的概念。
考点13:圆心角、弧、弦、弦心距之间的关系。
考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明。
考点14:垂径定理及其推论。
考点15:直线与圆、圆与圆的位置关系及其相应的数量关系。
考点16:正多边形的有关概念和基本性质。
考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题。
5、数据整理和概率统计(9个考点)考点17:确定事件和随机事件。
(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系。
2024年中考数学总复习高频考点培优训练七、圆
以AB为直径作⊙O,交AC于点D,点E是AB延长线上的一点,
且∠BDE=∠A.
(1)求证:DE为⊙O的切线;
(1)证明:如图,连接OD.
∵AB为⊙O的直径,∴∠ADB=90°,
∴∠ADO+∠BDO=90°.
∵OA=OD,∴∠A=∠ADO.
第8题图
七、圆
∵∠BDE=∠A, ∴∠BDE=∠ADO, ∴∠BDE+∠BDO=90°, 即∠ODE=90°, ∴OD⊥DE. ∵OD是⊙O的半径, ∴DE为⊙O的切线;
池塘周围是草地,若AC=2 m,则小羊在草地上的最大活动区域
面积为(
A. 1 π m2
4
C.19 π m2
4
C)
B. 9 π m2
2
D. 19 π m2
2
第5题图
七、圆
6. (北师九下P103第2题改编)如图,⊙O是△ABC的外接圆,∠B =60°,⊙O的半径为4,则AC的长为( D ) A. 2 3 B. 4 C. 6 D. 4 3
在Rt△DBC中,∵∠C=60°,
∴CD=
DB tan C
=
3.
第8题图
七、圆
9. (北师九下P104第8题改编)如图,在△ABC中,以AB为直径作
⊙O,交BC于点D,交AC于点E,且BD=CD,过点D作⊙O的
切线交AC于点F,过点D作AB的垂线,交AB于点G.
(1)求证:DF⊥AC; (1)证明:如图,连接OD.
第3题 图
七、圆
4. (北师九下P96习题3.9第3题改编)如图,PA,PB分别与⊙O相
切于点A,B,C为⊙O上一点,∠ACB=124°,则∠P的度数为
( D) A. 62°
B. 64°
2024年初中数学中考高频考点解答题测试卷 (146)
一、解答题1. 画一画.(1)画出三角形以所在直线为对称轴的轴对称图形.(2)画出三角形按放大后的三角形,放大后的三角形的面积增加( ).2. 如图是由四个大小相同的小正方体搭成的一个立体图形,画出从正面,从上面,从左面三个方向看到的立体图形的形状图.3. 如图,在矩形的边上找到一点P,使得为等腰三角形,请画出所有的点P.4. 如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,的三个顶点,,均在格点上.(1)画出绕点顺时针旋转后得到的,并写出点的坐标;(2)求线段在旋转过程中扫过的面积.5. 如图,在6×6的正方形网格中,每个小正方形的边长都为1,请在所给网格中按下列要求画出图形.(1)以点A为一端点的一条线段AB,使它的另一个端点落在格点上(即小正方形的顶点),且长度为;(2)以(1)中的AB为边的一个等腰三角形ABC,使点C在格点上,且另两边的长都是无理数;(3)画出△ABC关于点B的中心对称图形.6. 已知:在直角坐标平面内,三个顶点的坐标分别为、、(网格中每个小正方形的边长是一个单位长度).(1)将向下平移3个单位长度得,则点的坐标是______;(2)作图:以点B为位似中心,在网格内画出,使与位似,且相似比为;(3)点的坐标是______,的面积是______平方单位.7. 轮船在海面上以每小时海里的速度向正北方向航行,上午时到达处,测得灯塔在北偏西方向,上午时到达处,又测得灯塔在北偏西方向.选用适当的比例尺画出图形;量出的图上距离,并推算出的实际距离.8. 按要求画出函数y=|2x﹣4|的图象,并回答后面的问题.(1)先填写下表中的空格,然后在下列平面直角坐标系中画出函数图象.x…﹣101234…y…2024…(2)填空题①关于函数y=|2x﹣4|的性质,下列说法错误的是______.A.当x<2时,函数y随自变量x的增大而减小;B.当x>2时,函数y随自变量x的增大而增大;C.当x=2时,函数取得最小值,最小值y=0;D.无论自变量x取任何实数,总有函数y>0;E.函数图象关于直线y=2成轴对称.②当自变量x=______时,函数y=10.9. 如图,已知钝角中.(1)请用无刻度直尺和圆规在上定一点P,使得.(保留痕迹,不写作法)(2)请用数学语言简述作图的合理性.10. 作图题.小峰一边哼着歌“我是一条鱼,快乐的游来游去”,一边试着在平面直角坐标系中画出了一条鱼.如图,O(0,0),A(5,4),B(3,0),C(5,1),D(5,-1),E(4,-2).(1)作“小鱼”关于原点O的对称图形,其中点O,A,B,C,D,E的对应点分别为O1,A1,B1,C1,D1,E1(不要求写作法);(2)写出点A1,E1的坐标.11. 如图所示的正方形网格中,每个小正方形的边长均为个单位,的三个顶点都在格点上.(1)在网格中画出关于直线对称;(2)在直线上作一点,使得的值最小:(3)求的面积.12. 如图,三个顶点坐标分别为,,.(1)请画出关于轴对称的;(2)以原点为位似中心,将放大为原来的2倍,得到,请在第三象限内画出,并求出:的值.13. 手机支付已成为消费者的主要支付形式.数学兴趣小组将手机支付的使用情况分为“经常使用”“偶尔使用”和“不使用”三种类型,借助大数据功能,汇总出该校八(1)班和八(2)班全体家长的使用情况,并绘制成如图所示的两辐不完整的统计图:(1)此次调查的家长总人数为__________人;(2)扇形统计图中代表“不使用”类型的扇形圆心角的度数是_______,并补全条形统计图;(3)若该校八年级学生家长共有1500人,根据此次调查结果估计该校八年级中“经常使用”类型的家长约有多少人?14. 某中学的数学兴趣小组在学习了统计相关知识以后,结合国内近两年的新闻事件,以“我最敬佩的职业”为主题的进行了一次调查活动,就“在医生,军人,科研工作者,教师,演员这五类职业中,你最敬佩哪一类?(必选且只选一类)”这个问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少学生;(2)补全条形统计图,并求出圆心角的度数;(3)若该中学共有2160名学生,请你估计该中学最敬佩科研工作者这一职业的学生有多少人.15. 在边长均为1个单位长度的小正方形组成的网格中,建立平面直角坐标系,的顶点都在格点上,位置如图所示.(1)把向下平移5个单位长度得到,在网格中画出;(2)作关于原点成中心对称的.16. 如图,在直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5),请回答下列问题:(1)作出△ABC关于x轴的对称图形△A1B1C1,并直接写出△A1B1C1的顶点坐标.(2)求△A1B1C1的面积.17. 如图,已知均在上,请用无刻度的直尺作图.如图1,若点是的中点,试画出的平分线;如图2,若.试画出的平分线.18. 补全解题过程.如图所示,点C是线段AB的中点,延长线段AB至点D,使BD=AB,若BC=3,求线段CD的长.解:∵点C是线段AB的中点,且BC=3(已知),∴AB=2× (①填线段名称)= (②填数值)∵BD=AB(已知),∴BD= (③填数值),∴.CD= (④填线段名称)+BD= (⑤填数值).19. 如图,在平面直角坐标系中,各顶点的坐标分别为:,,.在图中作出关于轴对称的,并写出点的对应点的坐标.20. 某校为了提高学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,对部分学生的每天体育锻炼时间进行了调查统计,并将调查结果绘制作成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)补全条形统计图,本次所抽取学生每天参加体育锻炼的众数为______小时,扇形统计图中n =____;(2)计算本次所抽取学生每天参加体育锻炼的平均时间;(3)若该校共有1000名学生,请估计该校每天参加体育锻炼时间为2小时的学生人数.21.如图,等边中,是上一点,过点作于点,作于点,是的中点,连接,.(1)依题意补全图形;(2)用等式表示线段,与的数量关系,并加以证明;(3)求证:.22. 如图,在△中,三个顶点的坐标分别为A (2,3),B (5,),C (1,1),将△向左平移4个单位长度,再向下平移2个单位长度,得到△,其中点A 的对应点为点D ,点B 的对应点为点E ,点C 的对应点为点F .(1)直接写出平移后的△的顶点坐标: 、 、 ;(2)在网格中画出△ABC 绕原点顺时针旋转90°后的图形△A 1B 1C 1;(3)求出△A 1B 1C 1的面积.23. 快车和慢车同时从甲、乙两地出发开往乙地和甲地,匀速行驶,快车到达乙地后休息一个小时按原速返回,慢车在快车前一个小时到达甲地.如图表示慢车行驶过程中离甲地的路程y (km )与出发时间x (h )的函数图象,请结合图中的信息,解答下列问题:二、解答题(1)甲、乙两地的距离为 km ,慢车的速度为 km/h ,快车的速度为 km/h ;(2)在图①中画出快车离甲地的路程y (km )与出发时间x (h )的函数图象(坐标轴标注相关数值);(3)求出发多长时间,两车相距150km .24. 如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC 的三个顶点的坐标分别为A (-1,3),B (-4,0),C (0,0).(1)画出将ABC 向上平移1个单位长度,再向右平移5个单位长度后得到的,点A 、B 、C 的对应点分别为、、;(2)画出将△ABC 绕原点O 顺时针方向旋转90°得到的,点A 、B的对应点分别为、.25. 在平面直角坐标系中,△ABC 的顶点坐标是A(-7,1),B(1,1),C(1,7).线段DE 的端点坐标是D(7,-1),E(-1,-7).(1)试说明如何平移线段AC ,使其与线段ED 重合;(2)将△ABC 绕坐标原点O 逆时针旋转,使AC 的对应边为DE ,请直接写出点B 的对应点F 的坐标;(3)画出(2)中的△DEF ,并和△ABC 同时绕坐标原点O 逆时针旋转90°.画出旋转后的图形.26. 水果店进口一种高档水果,卖出每斤水果盈利(毛利润)5元,每天可卖出1000斤,经市场调查后发现,在进价不变的情况下,若每斤售价涨0.5元,每天销量将减少40斤.(1)若以每斤盈利9元的价钱出售,问每天能盈利多少元?(2)若水果店要保证每天销售这种水果的毛利润为6000元,同时又要使顾客觉得价不太贵,则每斤水果应涨价多少元?27. 交通工程学理论把在单向道路上行驶的汽车看成连续的流体,并用流量和速度来描述车流的基本特征,其中流量(辆/小时)指单位时间内通过道路指定断面的车辆数;速度(千米/小时)指通过道路指定断面的车辆速度.为配合大数据治堵行动,测得某路段流量与速度之间的关系式为.(1)若该路段上汽车行驶的速度为40千米/小时,则该路段的流量为多少?(2)当该路段的车辆速度为多少时,流量达到最大?最大流量是多少?28. 过年包饺子是中国新年传统习俗之一,在中国,饺子不仅仅是一种食物,它还象征着团圆、和谐和幸福.大年三十当天,小美的爸爸、妈妈一起为全家制作美味的饺子,小美的爸爸擀皮,妈妈包饺子,一共制作了80个饺子,小美发现爸爸每分钟擀皮的个数是妈妈包饺子的4倍,爸爸擀面皮的时间比妈妈包饺子的时间少用了20分钟,请你根据以上信息,求出爸爸每分钟擀皮的个数和妈妈每分钟包饺子的个数.29. 大学生小明在假期中利用网络平台“直播带货”,销售一批成本为40元/箱的水果,并根据一段时间的销售数据整理出每天的售价与销售量的相关信息如下表:售价/元销售量/箱(1)若某天每箱售价为60元,则该天销售量为多少箱.(2)设每天的销售利润为w元,求w与x之间的函数表达式.若某天的销售利润为4320元,本着薄利多销的原则,求该天的销售量.(3)试说明销售利润w(元)随售价x(元)的变化而变化的情况,并指出当售价为多少时获得最大利润,最大利润是多少.30. 2022年足球世界杯在卡塔尔举行.某工厂设计了某款足球纪念品并进行生产,原计划每天生产10000个该款足球纪念品,但由于种种原因,实际每天的生产量与计划量相比有出入,下表是某一周的生产情况(超出记为正,不足记为负,单位:个):星期一二三四五六日与计划量的差值(1)根据记录的数据可知,本周生产量最多的一天比生产量最少的一天多生产多少个?(2)本周实际生产总量是否达到了计划数量?说明理由.(3)若该款足球纪念品每个生成成本25元,并按每个30元出售,则该工厂本周的生产总利润是多少元?31. 某种蔬菜每千克售价y1(元)与销售月份x之间的关系如图1所示,每千克成本y2(元)与销售月份x之间的关系如图2所示,其中图1中的点在同一条线段上,图2中的点在对称轴平行于y轴的同一条抛物线上,且抛物线的最低点的坐标为(6,1).(1)求出y1与x函数关系式;(2)求出y2与x函数关系式;(3)设这种蔬菜每千克收益为w元,试问在哪个月份出售这种蔬菜,w将取得最大值?并求出此最大值.(收益=售价﹣成本)32. 某校七年级(1)班学生在劳动课上采收成熟的白萝卜,一共采收了9筐,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称重后记录如下:.(1)这9筐白萝卜中,最接近25千克的这筐白萝卜的实际质量为____________千克;(2)以每筐25千克为标准,这9筐白萝卜总计超过或不足多少千克?(3)若白萝卜每千克售价2元,则售出这9筐白萝卜可得多少元?33. 为深化疫情防控国际合作、共同应对全球公共卫生危机,我国有序开展医疗物资出口工作.2020年10月,国内某企业口罩出口订单额为100万元,2020年12月该企业口罩出口订单额为121万元.(1)求该企业2020年10月到12月口罩出口订单额的月平均增长率;(2)按照(1)的月平均增长率,预计该企业2021年1月口罩出口订单额能否达到140万元?34. 为了防止蚊虫污染饭菜,小丽用细竹篾编了一个罩子保护饭菜(如图1).将罩子开口朝下放在水平桌面上,其截面为抛物线形.小丽测得罩子的跨度为厘米,高度为厘米,小丽以罩子左边缘为原点、水平线为轴建立平面直角坐标系(如图2),求抛物线的函数表达式.35. 某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场采取了降价措施,假设在一定范围内,衬衫的单价每降1元,商场平均每天可多售出2件,如果降价后商场销售这批衬衫每天盈利1250元,设衬衫的单价降了元.(1)完成下表(用含的整式填空)每天的销售量/件每件衬衫的利润/元总利润/元降价前2040800降价后1250(2)求衬衫的单价降了多少元?36. 为庆祝元旦活动,某中学组织大合唱比赛,甲、乙两个班级共92人(其中甲班51人以上,不足55人)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的价格表为:购买服装的套数1套至50套51套至90套91套及以上每套服装的价格50元40元30元(1)甲、乙两个班级共92人合起来统一购买服装共需付款____________元;(2)如果两个班级分别单独购买服装一共应付4080元,甲、乙两个班级各有多少学生准备参加演出?(3)如果甲班有8名同学抽调去参加书法绘画比赛不能参加演出,请你为两个班级设计一种最省钱的购买服装方案.37. 某商家销售一种成本为40元的商品,当售价定为50元/件时,每天可销售450件,根据以往经验,售价每涨价1元,每天销售将减少15件.单件该商品的销售利润不能超过.(1)求每天的销量(件)与当天的销售单价(元/件)满足的函数关系(不用写出自变量的取值范围);(2)当销售单价定为多少元时,商家销售该商品每天获得的利润最大,并求出最大利润;(3)问当销售单价定为什么范围时,商家销售该商品每天获得的利润不低于4500元?38. 上饶县道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天完成此项工程.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?39. 鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售量为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?40. 在“阳光体育”活动时间,小英、小丽、小敏、小洁四位同学进行一次羽毛球单打比赛,要从中选出两位同学打第一场比赛.(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,求恰好选中小丽同学的概率;(2)用画树状图或列表的方法,求恰好选中小敏、小洁两位同学进行比赛的概率.41. 某文具店计划购进、两种笔记本,已知种笔记本的进价比种笔记本的进价每本便宜3元.现分别购进种笔记本150本,种笔记本300本,共计6300元.(1)求、两种笔记本的进价;(2)文具店第二次又购进、两种笔记本共100本,且投入的资金不超过1380元.在销售过程中,、两种笔记本的标价分别为20元/本、25元/本.两种笔记本按标价各卖出本以后,该店进行促销活动,剩余的种笔记本按标价的七折销售,剩余的种笔记本按标价的八折销售.若第二次购进的100本笔记本全部售出后的最大利润不少于600元,请求出的最小值.42. 为弘扬传统文化,某校举行“校园谜语大赛”,比赛结束后,组织者将所有参赛选手的比赛成绩(得分均为5的倍数)进行整理,并分别绘制成扇形统计图和频数直方图,部分信息如下:(1)本次比赛参赛选手共有人,其中分有人,分有人;(2)赛前规定,成绩达到平均分的参赛选手即可获奖.某参赛选手的比赛成绩为75分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.43. 在学校组织的社会实践活动中,甲、乙两人参加了射击比赛,每人射击七次,命中的环数如表:根据以上信息,解决以下问题:(1)写出甲、乙两人命中环数的众数;(2)已知通过计算器求得=8,≈1.43,试比较甲、乙两人谁的成绩更稳定?44. 2022年在中国举办冬奥会和残奥会时,吉祥物冰墩墩深受大家的喜爱,某超市在今年1月份销售冰墩墩256个,冰墩墩十分畅销,2、3月份销量持续走高,在售价不变的基础上,3月份销售量达到了400个.(1)求冰墩墩2、3月这两个月销售量的月平均增长率;(2)若冰墩墩每个进价25元;原售价每个40元,该超市在今年4月进行降价促销,经调查发现,每降价1元,销售量可增加40个,当冰墩墩降价m元时,写出利润w与m之间的函数表达式,并求出当售价为多少元时利润最大?45. 为弘扬赣江文化,育华学校九年级学生举办了“赣江诗文大赛”活动,从中随机抽取部分学生比赛成绩,根据成绩(成绩都高于75分),绘制了两幅不完整的统计图表.根据图表中提供的信息,解答下列问题:(1)求a,b的值;(2)计算扇形统计图中“第1组”所在扇形圆心角的度数;(3)若九年级共有480名学生,请估计成绩高于90分的学生共有多少人?级别分数人数第1组8第2组a第3组10第4组7第5组b46. 某校在七、八年级举行了“新冠疫情防控知识”调查活动,从七、八年级各随机抽取了10名学生进行比赛(百分制),比赛成绩整理、描述和分析如下(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100):七年级10名学生的成绩是:95,84,99,89,99,86,100,80,89,99.八年级10名学生的成绩在C组中的数据是:93,90,91.现已画出了八年级抽取的学生成绩扇形统计图(如图),并列出了七、八年级抽取的学生竞赛成绩统计表(不完整).年级平均数中位数众数极差方差七年级53.6八年级921001941.1根据以上信息,解答下列问题:(1)这次比赛中______年级成绩更稳定;(2)求出扇形统计图中的a的值;(3)填写统计表中的空格;(4)已知八年级只有2名学生考取了相同的分数,现在学校要随机选取2名满分的学生代表学校参赛,用画树状图或列表的方法求出恰好选到七、八年级各一名学生的概率.47. 某水果店购进一批水果,进价为10元/千克,售价不低于16元/千克,且不超过35元/千克,根据销售情况,发现该水果在一天内的销售量y(千克)与该天的售价x(元/千克)之间的关系满足下表所示的一次函数关系.销售量y(千克)…32302624…三、解答题售价x (元/千克)…18202426…(1)若某天这种水果售价为28元/千克,求当天该水果的销售量;(2)设某天销售这种水果获利W 元,写出W 与售价x 之间的函数关系式;如果水果店该天获利400元,那么这天水果的售价为多少元?48. 某人想把10000元钱存入银行,存两年.一年定期年利率6%,两年定期年利率为6.2%.方式一:采用一年期的利率存一年后到期取出再存一年;方式二:一次性存两年再取出,问两种方式哪种划算?49. 杭州亚运会的三个吉祥物“琮琮”“宸宸”“莲莲”组合名为“江南忆”,出自唐朝诗人白居易的名句“江南忆,最忆是杭州”,它融合了杭州的历史人文、自然生态和创新基因.吉祥物一开售,就深受大家的喜爱.某商店销售这种吉祥物,每件进价60元,规定销售单价不能超过每件100元,试销售期间发现,当销售单价定为80元时,每天可售出100件,销售单价每上涨1元,每天销售量减少2件,设每天销售量为y 件,销售单价上涨x 元.(1)则y 与x 的函数关系式是 .(2)每件吉祥物销售单价是多少元时,商店每天获利2250元?50. 小亮和小莹进行飞镖比赛,两人各投了10次,成绩如图所示:根据图中信息,回答下列问题:(1)小亮的中位数为______,小莹的平均数为______;(2)分别计算小亮、小莹成绩的方差,并从计算结果来分析,你认为哪位运动员的飞镖射击成绩更稳定?51.平行四边形中,分别平分和交于点交于点G.(1)求证:;(2)判断和的大小关系,并说明理由52. 如图,在中,,,为上一点,连接,分别过点、作,.(1)求证:;(2)若点满足::,求的长;(3)如图2,若点为中点,连接,求证:.53. 如图1,在中,点是边的中点,点在内,平分,,点在边上,.(1)求证:四边形是平行四边形.(2)判断线段、、的数量之间具有怎样的关系?证明你所得到的结论.(3)点是的边上的一点,若的面积,请直接写出的面积(不需要写出解答过程).54. 阅读材料:如图所示,将两个含角的三角尺摆放在一起,可以证得是等边三角形,于是我们得到:在直角三角形中,如果一个锐角等于,那么它所对的直角边等于斜边的一半.即“在中,,,则” .你可以利用以上这个结论解决问题.(1)如图①,平分,点在射线上,,,垂足分别是点、,若,请直接写出的长;(2)如图②,在中,,、分别是、的平分线,、相交于点,求证:;(3)如图③,在中,,、的角平分线相交于点,把三角板上的顶点放在点处,角的两边分别与边、相交于点、,连结、,,求的周长.55. 如图,在和中,,,与交于点M.求证:(1);(2)点M在的垂直平分线上.56. 【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,中,若,,求边上的中线的取值范围.小丽在组内经过合作交流,得到了如下的解决方法:如图2,延长到点M,使,连接,可证,从而把,,集中在中,利用三角形三边的关系即可判断中线的取值范围.【方法总结】解题时,条件中若出现“中点”“中线”字样,有时需要考虑倍长中线(或与中点有关的线段)构造全等三角形,把分散的已知条件和所求集中到同一个三角形中.我们把这种添加辅助线称为“倍长中线法”.【问题解决】(1)直接写出图1中的取值范围:(2)猜想图2中与的数量关系和位置关系,并加以证明.(3)如图3,是的中线,,,,判断线段和线段的数量关系,并加以证明.57. 如图,已知:EC=AC,∠BCE=∠DCA,∠A=∠E.求证:∠B=∠D.58. 如图所示,以□ABCD的顶点A为圆心,AB为半径作圆,分别交AD,BC于点E,F,延长BA交⊙A于G.(1)求证:弧GE=弧EF;(2)若弧BF的度数为70°,求∠C的度数.59. 如图,在正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交直线DC于点Q.(1)如图1,当点Q在DC边上时,求证:;(2)如图2,当点Q在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并加以证明.60. 如图,将边长为4的正方形ABCD沿着折痕EF折叠,使点B落在边AD的中点G处.(1)求线段BE的长;(2)连接BF、GF,求证:BF=GF;(3)求四边形BCFE的面积.61. 如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.(1)求证:AC平分∠DAB;(2)若sin∠ABC=,求tan∠BDC的值.62. 已知:如图在ABC中,∠BAC=90°,AB=AC,点E在边BC上,∠EAD=90°,AD=AE.求证:(1)ABE≌ACD;(2)如果点F是DE的中点,联结AF、CF,求证:AF=CF.63. 如图,E是正方形ABCD的边DC上的一点,过A作AF⊥AE,交CB延长线于点F.AE的延长线交BC的延长线于点G.(1)求证:AE=AF;(2)若AF=7,DE=2,求EG的长.64. 如图,的半径为1,点A,B,C是上的三个点,点P在劣弧上,,平分.求证:(1)是等边三角形;(2).65. 如图,△ABD ,△AEC 都是等边三角形(1)求证:BE =DC .(2)设 BE 、DC 交于 M ,连 AM,求的值.66. 如图,M 为线段AB 的中点,AE 与BD 交于点C ,∠DME=∠A=∠B=α,且DM 交AC 于F ,ME 交BC 于G.(1)写出图中三对相似三角形,并证明其中的一对;(2)连结FG ,如果α=45°,AB=,AF=3,求FC 和FG 的长.67. 观察以下等式:第1个等式:; 第2个等式:;第3个等式:;第4个等式:;……;按照以上规律,解决下列问题:(1)写出第5个等式 ;(2)写出你猜想的第n 个等式 (用含n 的等式表示),并证明.68. 如图1,分别以的、为斜边间外作等腰直角三角形和等腰直角三角形,点是的中点,连接、.(1)求证:;(2)如图2,若,,,求的正切值;(3)如图3,以的边为斜边问外作等腰直角三角形,连接,试探究线段、的关系,并加以证明.。
二元一次方程组【四大题型】—2024年中考数学高频考点精讲(全国通用)(解析版)
二元一次方程组【四大题型】一、解二元一次方程组【高频考点精讲】1.用“代入法”解二元一次方程组的一般步骤(1)从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来; (2)将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程; (3)解这个一元一次方程,求出x (或y )的值;(4)将求得未知数的值代入变形后的关系式,求出另一个未知数的值; (5)把求得的x 、y 的值写在一起,用的形式表示,就是方程组的解。
2.用“加减法”解二元一次方程组的一般步骤(1)方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数;(2)把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程; (3)解这个一元一次方程,求得x (或y )的值;(4)将求得未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值; (5)把求得的x 、y 的值写在一起,用的形式表示,就是方程组的解。
【热点题型精练】1.(2023•无锡)下列4组数中,不是二元一次方程2x +y =4的解的是( ) A .{x =1y =2B .{x =2y =0C .{x =0.5y =3D .{x =−2y =4解:A 、把x =1,y =2代入方程,左边=2+2=右边,所以是方程的解; B 、把x =2,y =0代入方程,左边=右边=4,所以是方程的解; C 、把x =0.5,y =3代入方程,左边=4=右边,所以是方程的解; D 、把x =﹣2,y =4代入方程,左边=0≠右边,所以不是方程的解. 答案:D .2.(2023•南通)若实数x ,y ,m 满足x +y +m =6,3x ﹣y +m =4,则代数式﹣2xy +1的值可以是( ) A .3B .52C .2D .32解:由题意可得{x +y =6−m 3x −y =4−m,解得:{x =5−m 2y =7−m 2, 则﹣2xy +1=﹣2×5−m 2×7−m2+1=−(5−m)(7−m)2+1 =−m 2−12m+352+1=−(m 2−12m+36)−12+1=−(m−6)22+32≤32,∵3>52>2>32,∴A ,B ,C 不符合题意,D 符合题意, 答案:D .3.(2023•眉山)已知关于x ,y 的二元一次方程组{3x −y =4m +1x +y =2m −5的解满足x ﹣y =4,则m 的值为( )A .0B .1C .2D .3解:∵关于x 、y 的二元一次方程组为{3x −y =4m +1①x +y =2m −5②,①﹣②,得:2x ﹣2y =2m +6, ∴x ﹣y =m +3, ∵x ﹣y =4, ∴m +3=4, ∴m =1. 答案:B .4.(2022•株洲)对于二元一次方程组{y =x −1①x +2y =7②,将①式代入②式,消去y 可以得到( )A .x +2x ﹣1=7B .x +2x ﹣2=7C .x +x ﹣1=7D .x +2x +2=7解:{y =x −1①x +2y =7②,将①式代入②式,得x +2(x ﹣1)=7, ∴x +2x ﹣2=7, 答案:B .5.(2022•雅安)已知{x =1y =2是方程ax +by =3的解,则代数式2a +4b ﹣5的值为 .解:把{x =1y =2代入ax +by =3得:a +2b =3,则原式=2(a +2b )﹣5=2×3﹣5=6﹣5=1. 答案:1.6.(2023•杭州二模)已知二元一次方程x +3y =14,请写出该方程的一组整数解 . 解:x +3y =14, x =14﹣3y , 当y =1时,x =11,则方程的一组整数解为{x =11y =1.答案:{x =11y =1(答案不唯一).7.(2023•苏州一模)若一个二元一次方程的一个解为{x =2y =−1,则这个方程可能是 .解:这个方程可能是:x +y =1,答案不唯一. 答案:x +y =1,答案不唯一. 8.(2023•连云港)解方程组{3x +y =8①2x −y =7②.解:{3x +y =8①2x −y =7②,①+②得:5x =15, 解得:x =3,将x =3代入①得:3×3+y =8, 解得:y =﹣1,故原方程组的解为:{x =3y =−1.二、由实际问题抽象出二元一次方程组【高频考点精讲】1.由实际问题列方程组是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系;2.一般来说,有几个未知量就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相符。
中考数学必背知识点(精简必背)
中考数学必背知识点(精简必背)中考数学必背知识点一、不为零的量1.分式 $\frac{A}{B}$,分母 $B\neq 0$;2.二次方程 $ax^2+bx+c=0$($a\neq 0$);3.一次函数 $y=kx+b$($k\neq 0$);4.反比例函数 $y=\frac{k}{x}$($k\neq 0$);5.二次函数 $y=ax^2+bx+c=0$($a\neq 0$)。
二、非负数1.$|a|\geq 0$;2.$a\geq 0$($a\geq 0$);3.$a^{2n}\geq 0$($n$ 为自然数)。
三、绝对值:$|a|=\begin{cases}a。
& a\geq 0\\-a。
& a<0\end{cases}$四、重要概念1.平方根与算术平方根:如果 $x^2=a$($a\geq 0$),则称 $x$ 为 $a$ 的平方根,记作:$x=\pm\sqrt{a}$,其中$x=\sqrt{a}$ 称为 $x$ 的算术平方根;2.负指数:$a^{-p}=\frac{1}{a^p}$;3.零指数:$a=1$($a\neq 0$);4.科学计数法:$a\times 10^n$($n$ 为整数,$1\leqa<10$)。
五、重要公式一)幂的运算性质1.同底数幂的乘法法则:$a^m\timesa^n=a^{m+n}$($a\neq 0$,$m$,$n$ 都是正数);2.幂的乘方法则:$(a^m)^n=a^{mn}$($m$,$n$ 都是正数);3.积的乘方法则:$(ab)^n=a^n\times b^n$($n$ 为正整数);4.同底数幂的除法法则:$\frac{a^m}{a^n}=a^{m-n}$($a\neq 0$,$m$,$n$ 都是正数,且 $m>n$)。
二)整式的运算1.平方差公式:$(a+b)(a-b)=a^2-b^2$;2.完全平方公式:$(a\pm b)^2=a^2\pm 2ab+b^2$。
中考数学必考知识点归纳
中考数学必考知识点归纳一、数与代数。
1. 有理数。
- 有理数的概念:整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
- 数轴:规定了原点、正方向和单位长度的直线叫做数轴。
数轴上的点与有理数一一对应。
- 相反数:只有符号不同的两个数叫做互为相反数,0的相反数是0。
若a与b互为相反数,则a + b=0。
- 绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
即| a|=a(a≥0) -a(a<0)。
- 有理数的运算:- 加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。
- 减法法则:减去一个数等于加上这个数的相反数。
- 乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
- 除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。
- 乘方:求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。
a^n 中,a叫做底数,n叫做指数。
2. 实数。
- 无理数:无限不循环小数叫做无理数,如√(2)、π等。
- 实数的概念:有理数和无理数统称为实数。
实数与数轴上的点一一对应。
- 实数的运算:实数的运算顺序为先算乘方、开方,再算乘除,最后算加减;有括号的先算括号里面的。
3. 代数式。
- 代数式的概念:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式,单独的一个数或者一个字母也是代数式。
- 整式:单项式和多项式统称为整式。
单项式是数与字母的乘积,单独的一个数或一个字母也是单项式;多项式是几个单项式的和。
- 整式的加减:实质是合并同类项,同类项是指所含字母相同,并且相同字母的指数也相同的项。
中考数学高频考点--新定义
中考数学高频考点--新定义一、新定义解题技巧题目可为选择题、填空题,当是解答题时,一般和函数、几何综合等结合,难度就变大,需要综合考虑的点比较多。
在解决这类问题时,一定要注意读懂“新定义”中蕴含的意义,以及可能具有的性质等。
新定义常考的题型有:定义新运算,定义新概念等,常与函数、几何图形、综合问题等相结合。
对于这类题求解的步骤是“阅读→分析→理解→创新应用”,其中最关键的是理解材料的作用和用意,那是启发你解决问题而提供的工具及素材,这种试题是考查大家随机应变能力和知识的迁移能力。
当新定义的问题比较综合时,可能不是简单的读懂题目就可以完成解答的,需要同步应用分类讨论、整体思想、转化思想、类比思想等来分析问题。
二、新定义典例剖析例1:我们定义:有两组邻边相等的凸四边形叫做“等邻边四边形”,如菱形、筝形都是特殊的“等邻边四边形”。
(1)如图1,四边形ABCD中,若∠ABC=∠BCD,BC//AD,对角线BD恰平分∠ABC,则四边形ABCD _______等邻边四边形(填“是”或“不是”)。
(2)在探究“等邻边四边形”性质时:①小红画了一个“等邻边四边形”ABCD(如图2),其中AB=AD,BC=CD,若∠A=80°,∠C=60°,写出∠B、∠D的度数。
②小红猜想:对于任意四边形,若有一组邻边相等,一组对角相等,则这个四边形为“等邻边四边形”,你认为他的猜想正确吗?若正确,请证明;若不正确,请举出反例。
(3)在锐角△ABC中,AB=AC,在平面内存在一点P,使PB=BA,PA=PC,四边形PABC可能是“等邻边四边形”吗?若可能,请画出示意图,并直接写出∠BAC的度数;若不可能,请说明理由。
例2:定义1:只有一组对边平行的四边形是梯形,平行的两边叫做梯形的底边,较长的一条底边叫下底,较短的一条底边叫上底,另外两边叫腰。
定义2:如果梯形的一条对角线等于上、下底之和,那么这个梯形叫和等梯形,这条对角线叫和等线.(1)如图1,在梯形ABCD中。
中考数学高频考点
中考数学高频考点中考数学对于每一位初中毕业生来说都是至关重要的,它不仅是对初中阶段数学知识的综合考查,更是决定能否升入理想高中的关键因素之一。
在中考数学中,有一些考点出现的频率较高,掌握这些高频考点对于提高中考数学成绩有着重要的意义。
一、函数函数是中考数学的重点和难点之一,包括一次函数、二次函数和反比例函数。
一次函数的表达式为 y = kx + b(k、b 为常数,k ≠ 0),它的图像是一条直线。
在中考中,经常考查一次函数的图像与性质、求解析式、与方程和不等式的综合应用等。
二次函数的表达式为 y = ax²+ bx + c(a ≠ 0),其图像是一条抛物线。
这部分内容是中考的重中之重,常考的有抛物线的开口方向、对称轴、顶点坐标、最值问题,以及与一元二次方程的关系。
例如,通过抛物线与 x 轴的交点个数来判断一元二次方程根的判别式。
反比例函数的表达式为 y = k/x(k 为常数,k ≠ 0),其图像是双曲线。
中考中会考查反比例函数的图像性质、解析式的确定,以及与其他函数的综合应用。
二、几何图形1、三角形三角形是几何中的基础图形,包括三角形的内角和定理、三边关系、全等三角形和相似三角形。
全等三角形的判定方法(SSS、SAS、ASA、AAS、HL)以及相似三角形的判定方法(两角对应相等、两边对应成比例且夹角相等、三边对应成比例)是常考的知识点。
2、四边形平行四边形、矩形、菱形、正方形的性质和判定是中考的热门考点。
需要熟练掌握它们的边、角、对角线的性质,以及各种判定条件。
3、圆圆的相关知识也是中考的重点,如圆的基本性质(垂径定理、圆周角定理)、圆的切线的性质和判定、弧长和扇形面积的计算等。
三、方程与不等式1、一元一次方程一元一次方程是最简单的方程类型,考查重点在于解方程的步骤和实际应用问题。
2、二元一次方程组解二元一次方程组(代入消元法和加减消元法)以及通过方程组解决实际问题是常见的考查形式。
2024年中考数学高频考点专题复习-销售问题(实际问题与二次函数)
2024年中考数学高频考点专题复习-销售问题(实际问题与二次函数)1.某商家出售的一种商品成本价为20元/千克,市场调查发现,该商品每天的销售量y (千克)与售价x (元/千克)满足一次函数2100y x =-+.设这种商品每天的销售利润为w 元.(1)求w 关于x 的函数解析式;(2)该商品售价定为每千克多少元时,每天的销售利润最大?最大销售利润是多少?2.2022年北京冬奥会前夕,某网络经销商以5元/件的价格购进了一批以冬奥会为主题的饰品进行销售,该饰品的日销售量y (单位:件)与销售单价x (单位:元)之间有如表所示的关系:x … 6 6.5 7 8 …y … 180 170 160 140 …(1)已知上表数据满足我们初中所学函数中的一种,请判断是何种函数并求出y 关于x 的函数表达式;(2)当该饰品的销售单价定为多少时,日销售利润最大?(3)销售一段时间后,物价部门出台新的规定:单件利润不得超过80%.在新的规定下,求该饰品的最大日利润.3.大熊猫属于中国独有的一种动物,数量稀少,被称为“中国国宝”,某店专门销售熊猫公仔玩具,成本为30元/件,每天销售量y (件)与销售单价x (元)之间存在如图所示的一次函数关系.(1)求y与x之间的函数关系式;(2)如果规定每天熊猫公仔玩具的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?4.但愿人长久,千里共婵娟,9月29日是今年的中秋佳节,某商店销售一种礼盒月饼,这种月饼的成本价为60元/盒,依照相关规定,每盒月饼的售价不能低于成本价且不能高于成本价的两倍,经过市场调查发现,月饼的销售数量y(盒)与销售单价x(元)存在如图所示的函数关系,在销售过程中,商店还需每天付给促销员200元的工资,设每天所得利润为W元.(1)求y与x的函数关系式,并写出x的取值范围;(2)求每天销售月饼能获得的最大利润.5.2023年9月26日,第十四届中国(合肥)国际园林博览会正式开幕.吉祥物“小喜”,以合肥市鸟喜鹊为原型,活泼可爱、神情欢快,突出了地域特色,也体现了合肥开放包容、热情友好的城市气质.某商家新开发了一款“小喜”玩偶套装,每套成本为30元,规定销售单价不低于成本且不高于52元,且为整数.销售一段时间发现,每天的销售量y (套)与售价x(元/套)满足一次函数关系,部分数据如表所示.售价x(元/套)…354045…每天销售量y(套)…908070…(1)请求出y与x之间的函数关系式;(2)若每天销售所得利润为1200元,那么售价应定为每套多少元?(3)若要使每天销售所得利润不低于1200元,请写出所能确定的售价x的值.6.第20届中国草莓文化旅游节于2023年12月在我市邹城举办,邹城有11个镇种植,涉及20多个品种,是我市最大的绿色草莓生产基地。
2024年初中数学中考高频考点解答题测试卷 (195)
一、解答题1. 【定义】如果1条线段将一个三角形分成2个等腰三角形,那么这1条线段称为这个三角形的“分割线”;如果2条段将一个三角形分成3个等腰三角形,那么这2条线段称为这个三角形的“黄金分割钱”.【理解】(1)如图1,在中,,,请你在这个三角形中画出它的“分割线”,并标出所分得的各等腰三角形顶角的度数;如图2,已知是等腰直角三角形,,请你在这个三角形中画出它的“黄金分割线”,并标出所分得的各等腰三角形顶角的度数.(2)填空:等边三角形____________(填“存在”或“不存在”)“分割线”;顶角为钝角的等腰三角形____________(填“存在”或“不存在”)“黄金分割线”.(3)【应用】在中,,为钝角,若这个三角形存在“分割线”,直接写出的所有可能值:__________________________________.2. 如图,在正方形网格中,每个小正方形的边长为1个单位,点O,A,B都在格点上,△OAB绕点O顺时针旋转180°,得到△OA1B1.(1)画出△OA1B1;(2)求出线段OA旋转过程中扫过的面积.3. 如图,已知.(1)用尺规作图方法作的垂直平分线,交于点,交于点,连接.(保留作图痕迹,不写作法)(2)若,周长为13,求的周长.4. 如图,在下列6×6的网格中,横、纵坐标均为整数的点叫做格点.例如A(0,3)、B(5,3)、C(1,5)都是格点,在网格中仅用无刻度的直尺作图,保留作图痕迹.(1)画出以AB 为斜边的等腰Rt △ABD (D 在AB 下方);(2)连接CD 交AB 于点E ,则∠ACE = ;(3)由上述作图直接写出点E 到直线BC 的距离为 ;(4)在直线AB 下方和x 轴上方之间找一个格点F ,连接CF ,使∠ACF =∠AEC ,则F 点的坐标为 .5. 如图,中,.(1)用直尺和圆规在的内部作射线,使(不要求写作法,保留作图痕迹);(2)若(1)中的射线交于点,,,求的长.6. 如图1,抛物线y = ax 2+bx-3经过A 、B 、C 三点,已知点A(-3,0)、C (1,0).(1)求此抛物线的解析式;(2)点P 是直线AB 下方的抛物线上一动点(不与A 、B 重合).①过点P 作x 轴的垂线,垂足为D ,交直线AB 于点E ,动点P 在什么位置时,PE 最大,求出此时P 点的坐标;②如图2,连接AP ,以AP 为边作图示一侧的正方形APMN ,当它恰好有一个顶点落在抛物线对称轴上时,求出对应的P点的坐标.7. 正方形的周长为,面积为.(1)求与之间的解析式.(2)画出此函数的图象.(3)根据图象,求当时,正方形的周长.(4)根据图象,求时,的取值范围.8. 如图,在每个小正方形的边长均为1的方格纸中,有线段和线段,点,,,均在小正方形的顶点上.(1)在方格纸中画出以为一边的矩形,点,都在小正方形的顶点上,且矩形的周长为;(2)在方格纸中画出以为边的菱形,点,都在小正方形的顶点上,且菱形的面积为4;连接,请直接写出的长.9. 如图,O是AB上一点,过点O作射线OC.(1)利用尺规作图分别作∠AOC和∠BOC的平分线OD,OE(保留作图痕迹,不写作法).(2)试判断OD与OE的位置关系,并说明理由.10. 如图,方格纸中的每个小方格都是边长为1个单位的正方形,的顶点均在格点.(1)作出△ABC关于y轴对称的△A1B1C1;(2) 写出A1、B1、C1三点的坐标,并求△A1B1C1的面积.11. 在平面直角坐标系中,已知点,,.(1)画出;(2)画出关于轴对称的.连接,请直接写出线段的长.12. 如图,已知不在同一条直线上的三点,,.按下面的要求用尺规作图(不必写出结论):连接,,作射线;在射线上取一点,使.13. 在平面直角坐标系中,已知点及两个图形和,若对于图形上任意一点,在图形上总存在点,使得点是线段的中点,则称点是点关于点的关联点,图形是图形关于点的关联图形,此时三个点的坐标满足,.(1)点是点关于原点的关联点,则点的坐标是 ;(2)已知,点,,,以及点①画出正方形关于点的关联图形;②在轴上是否存在点,使得正方形关于点的关联图形恰好被直线分成面积相等的两部分?若存在,求出点的坐标;若不存在,说明理由.14. 某市建设森林城市需要大量的树苗,某生态示范园负责对甲、乙、丙、丁四个品种的树苗共500株进行树苗成活率试验,从中选择成活率高的品种进行推广.通过实验得知:丙种树苗的成活率为89.6%,把实验数据绘制成下面两幅统计图(部分信息未给出).(1)实验所用的乙种树苗的数量是________株.(2)求出丙种树苗的成活数,并把图2补充完整.(3)你认为应选哪种树苗进行推广?(4)请通过计算说明理由.15. 如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).(1)将△ABC向右平移4个单位得到的△A1B1C1,请画出△A1B1C1;(2)△A2B2C2与△ABC关于原点O成中心对称,请画出△A2B2C2;(3)求出△A2B2C2的面积.16. 如图,在中,,.(1)求作:线段,使点在线段上,且.(要求:尺规作图,保留痕迹,不写作法);(2)若,求的长.17. 尺规作图并完成证明.如图,点,、点在外,连接、、,且,,.(1)用尺规完成以下基本作图:作的平分线交于点,连接(保留作图痕迹,不写作法);(2)根据(1)中作图,求证:;请完善下面的证明过程.证明:∵平分,∴______.∵,∴______,∴.∴______.在和中,∵∴()∴.18. 某校数学兴趣小组就近期人们比较关注的五个话题:“A.通讯;B.民法典;C.北斗导航;D.数字经济;E.小康社会”,对某小区居民进行了随机抽样调查,每人只能从中选择一个本人最关注的话题,根据调查结果绘制了如下两幅不完整的统计图.请结合统计图中的信息,解决下列问题:(1)将上面的最关注话题条形统计图补充完整;(2)求扇形统计图中的的值及话题所在扇形的圆心角的度数;(3)该兴趣组决定从这五个话题中随机抽取两个话题,然后收集相关知识进行深度学习,请用列表法或树状图求恰好抽中“话题”和“话题”的概率.19. 如图,用(0,0)表示A点的位置,用(3,1)表示B点的位置,那么:(1)画出直角坐标系;(2)写出△DEF的三个顶点的坐标;(3)在图中表示出点M(6,2),N(4,4)的位置.20. 下面是小明设计的“在已知三角形的一边上取一点,使得这点到这个三角形的另外两边的距离相等”的尺规作图过程:已知:△ABC.求作:点D,使得点D在BC边上,且到AB,AC边的距离相等.作法:如图,作∠BAC的平分线,交BC于点D.则点D即为所求.根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形 (保留作图痕迹);(2)完成下面的证明.证明:作DE⊥AB于点E,作DF⊥AC于点F,∵AD平分∠BAC,∴ = ( ) (填推理的依据) .21. 如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.的顶点在格点上.仅用无刻度的直尺在给定网格中画图,画图过程用虚线表示,画图结果用实线表示.(1)在图1中,将线段绕点顺时针旋转得到线段,画出线段;在内部找一点,使,连接、;(2)在图2中,为线段的中点,作关于的对称点,再以为旋转中心,将顺时针旋转得到△,画出△(点、、分别对应点、、;若的度数为,则的度数为_____(直接用含的式子写出答案).22. 已知:如图,在中,(1)作的角平分线(用尺规作图,保留作图痕迹)(2)作的高(用尺规作图,保留作图痕迹),交于点F(3)图中的与相等吗?证明你的结论.23. 如图在边长为1的正方形网格中,点A的坐标为(1,7),点B坐标为(5,5),点C的坐标为(7,5),点P的坐标为(5,4).(1)如图1,将线段AB绕点P逆时针旋转90°,得到对应线段A′B′,画出线段A′B′,并直接写出线段AB扫过的面积;(2)如图2,作出点C关于直线AB的对称点C′;(3)如图3,点D坐标为(5,1),将线段AB绕着某一点旋转一个角度得到线段CD,找出这个旋转中心并写出旋转中心的坐标.24. 某校为了调查学生对卫生健康知识,特别是疫情防控下的卫生常识的了解,现从九年级名学生中随机抽取了部分学生参加测试,并根据测试成绩绘制了如下频数分布表和扇形统计图(尚不完整).组别成绩/分人数第组第组第组第组第组请结合图表信息完成下列各题.(1)表中a的值为_____,b的值为______;在扇形统计图中,第组所在扇形的圆心角度数为______°;(2)若测试成绩不低于分为优秀,请你估计从该校九年级学生中随机抽查一个学生,成绩为优秀的概率.(3)若测试成绩在分以上(含分)均为合格,其他为不合格,请你估计该校九年级学生中成绩不合格的有多少人.25. 如图,在正方形网格中,每个小正方形的边长为1个单位长度.平面直角坐标系的原点O在格点上,x轴、y轴都在网格线上,二、解答题点A 、B在格点上.(1)将线段绕点O 顺时针旋转得到线段,在图中画出线段.(2)线段与线段关于原点O 成中心对称,在图中画出线段.(3)连接和,请直接写出四边形的面积为______.26. 在某节日前夕,几位同学到学校附近文具店调查一种进价为2元的节日贺卡的销售情况,每张定价3元,每天能卖出500张,每张售价每上涨0.1元,其每天销售量就减少10个.另外,物价局规定,售价不得超过商品进价的240%.据此,请你解答下面问题:(1)要实现每天800元的利润,应如何定价?(2)800元的利润是否最大?如何定价,才能获得最大利润?27. 电信部门推出两种电话计费方式如表:AB月租费元月通话费元分钟当通话时间是多少分钟时两种方式收费一样多?28. 如图,在一个长方形操场的四角都设计一块半径相同的四分之一圆形的花坛,若圆形的半径为米,广场的长为米,宽为米.(1)请列式表示操场空地的面积;(2)若休闲广场的长为米,宽为米,圆形花坛的半径为米,求操场空地的面积.(取,计算结果保留)29. 某花店采购了一批康乃馨,进价是每枝8元,当每枝售价为12元时,可销售30枝;当每枝售价为10元时,可销售40枝.在销售过程中,发现这种康乃馨的销售量y (枝)是每枝售价x (元)的一次函数().(1)求y 与x 之间的函数关系式;(2)根据题意,当销售单价为多少元时,商家获得的利润最大?30. 为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:甲、乙射击成绩统计表平均数中位数方差命中10环的次数甲70乙 5.41(1)请补全上述图表(请直接在表中填空和补全折线图);(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由;(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?31. 某汽车出租公司有50辆汽车对外出租,下面是该公司经理租车的方案:公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出.如果每辆汽车的月租费每增加40元,那么每月将少租出1辆汽车.另外,公司为每辆租出的汽车支付月维护费200元.若该公司月出租的汽车是辆,月利润为元.(1)求与的函数关系式;(2)该公司热心公益事业,每租出1辆汽车捐出10元给慈善机构,该公司捐款后的月利润为元,求与的函数关系式;并求出该公司某月租出30辆汽车,捐款后剩余的月利润是多少?32. 某演讲比赛中只有甲、乙、丙三位同学进行决赛,他们通过抽签决定演讲顺序,用列表法或画树状图法求:(1)第二个出场为甲的概率;(2)丙在乙前面出场的概率.33. 为预防新冠病毒,口罩成了生活必需品,某药店销售一种口罩,每包进价为6元,日均销售量y(包)与每包售价x(元)满足y=﹣5x+80,且10≤x≤16.(1)每包售价定为多少元时,药店的日均利润最大?最大为多少元?(2)当进价提高了a元,且每包售价为13元时,日均利润达到最大,求a的值.34. 五人制足球是足球的一个变种,比赛通常在室内进行,在五人制足球中,一场比赛由两队参加,每队只有5名队员上场,其中必须有1人为守门员,为了进一步普及足球知识,传播足球文化,某市举行了中小学“五人制足球”比赛活动.为了选拔参赛队员,其学校从七、八年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为“优秀”、“良好”、“及格”“不及格”四个等级,并将测试结果绘制成统计表和统计图,请根据统计图、表中的信息回答下列问题:级别分数人数优秀85分以上(含85分)m良好75≤x<8518及格60≤x<7516不及格60分以下6(1)求出表中的m值;(2)若该校七、八年级共有2000名学生,请你估计这所学校中,测试等级为“良好”(含“良好”)以上的学生共有多少名?(3)学校决定,从等级为“优秀”的七年级学生中,选拔出2名参赛队员,七年级有A、B、C、D四位学生符合条件,若从这四位学生中随机选出两名队员,请用树状图或列表的方法,求出恰好选中A、C二人的概率.35. 小李在一网上购物平台购物,恰逢周年庆,平台推出优惠活动,如图广告所示:(1)请写出小李的实付金额y(元)关方购物的商品总价x(元)的函数解析式及其定义域;(2)小李和好朋友小方拼单购物,小李和小方所购商品的总价分别为60元和40元,那么小李和小方应如何分配实付金额?请写出你的理由.36. 某物流总公司新购进的甲、乙两条自动分拣线,经测试甲分拣线每小时分拣件数是乙分拣线每小时分拣件数的1.5倍,甲分拣线分拣30000件商品比乙分拣线分拣28000件商品还少用1小时.(1)问两条分拣线的分拣速度分别是多少?(2)若物流公司每名分拣员每小时分拣200件商品.请你计算这两条分拣线同时工作1小时相当于多少名分拣员的工作?37. 某商场销售一种成本为40元/千克的水产品,若按50元/千克销售,每月可售出500千克,销售价每涨价1元,月销售量就减少10千克.销售价定为多少元时,每月获得最大利润?求出最大利润.38. 在11月,榕榕利用某手机软件投资“纸黄金”,其中10天的收益情况如下表所示.(上涨为正,下跌为负,每天的数据均是相对于前一天而言)日期20日21日22日23日24日收益情况(元)日期225日26日27日28日29日收益情况(元)00(1)观察表格,在这段时间内.收益为上涨的有___________天.(2)表格中的25日、26日为休息日,这两天交易暂停.除这两天外,收益变动最小的日期是_______.(3)假如榕榕在11月29日全部卖出,结束投资,试求她的收益是盈利还是亏损?盈利(或亏损)了多少钱?39. 组织一次排球邀请赛,参赛的每两个队都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,则比赛组织者应邀请多少个队参赛?40. 新农村建设有效促进了乡村旅游业的发展.某镇2018年实现旅游收入1500万元,到2020年该项收入达到2160万元,且从2018年到2020年,每年旅游收入的年增长率相同.(1)该镇旅游收入的年增长率;(2)若该镇旅游收入的年增长率保持不变,预计2021年旅游收入达到多少万元?41. 某商场经销一种商品,已知其每件进价为40元.现在每件售价为70元,每星期可卖出500件.该商场通过市场调查发现;若每件涨价1元,则每星期少卖出10件;若每件降价1元,则每星期多卖出m(m为正整数)件.设调查价格后每星期的销售利润为W元.(1)设该商品每件涨价x(x为正整数)元,①若,则每星期可卖出______件,每星期的销售利润为______元;②当x为何值时,W最大,W的最大值是多少?(2)设该商品每件降价y(y为正整数)元,写出W与y的函数关系式,并通过计算判断;当时每星期销售利润能否达到(1)中W的最大值;(3)若每件降价5元时的每星期销售利润,不低于每件涨价15元时的每星期销售利润,求m的取值范围.42. 如图,“丰收1号”小麦的试验田是边长为()的正方形去掉一个边长为1m的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为m的正方形,两块试验田收获了相同数量的小麦.(1)哪种小麦的单位面积产量高?请说明理由.(2)若“丰收1号”与“丰收2号”小麦单位面积产量之比为10∶11,求a的值.43. 随着全国人民环保意识的增强,春节期间烟花爆竹的销售量逐年下降.为了解某市2022年烟花销售量情况,某环境保护局随机抽取该市部分地区进行烟花爆竹销量调查,以下是根据调查结果绘制的统计图表的一部分.抽测市区频数/频率A区12bB区a0.45C区cD区3合计1根据以上信息,回答下列问题:(1)填空:_____,_______,________.(2)A区对应的圆心角度数为__________;(3)若该市所对应的省有5个市,每个市有4个区,请你估计销售烟花总量的区数.44. 中国科技发展日新月异,有些电子产品会随着科技发展而降价,某电脑经销店2022年开始销售A款电脑,第一季度售价为万元/台,利润为4万元;第二季度售价为万元/台,利润为3万元.(1)如果两个季度销售A款电脑的数最相同,则A款电脑的进价为多少万元?(2)为增加收入,电脑经销店决定再经销B款电脑,若B款电脑的进价为万元/台,经销店预计用不多于万元且不少于万元的资金购进两种电脑共台,有几种进货方案?(3)如果两种电脑的进价不变,A款电脑的售价为万元/台,B款电脑的售价为万元/台,为了打开B款电脑的销路,经销店决定每一台B款电脑降价a万元销售,要使(2)中的所有方案获利相同,a值应是多少?45. 学校计划种植一块草坪,形状为如图所示的四边形,其中,,,,.若每种植1平方米草坪成本为元,求学校种植该草坪的成本为多少.46. 一辆出租车一天上午以某商场为出发地在东西大街上运行,规定向东为正,向西为负,出租车的行驶里程(单位:)如下:.(1)将最后一名乘客送到目的地,相对于商场出租车的位置在哪里?(2)这天上午出租车总共行驶了 千米.(3)已知出租车每行驶1千米耗油,每升汽油的售价为元,如果不计其它成本,出租车司机每千米收费元,那么这半天出租车盈利(或亏损)了多少元?47. 寿宁“金丝粉扣”是地方名优特产,深受消费者喜爱,某超市购进一批“金丝粉扣”,进价为每千克24元,调查发现,当销售单价为每千克40元时,平均每天能售出20千克,而当销售单价每降价1元时,平均每天能多售出2千克.(1)设每千克降价x元,用含x的代数式表示实际销售单价和销售数量;(2)若超市要使这种“金丝粉扣”的销售利润每天达到330元,且让顾客得到实惠,则每千克应降价多少元?48. 为了引导学生积极参与体育运动,某校举办了一分钟跳绳比赛,随机抽取了m名学生,将一分钟跳绳的次数进行调查统计,并根据调查统计结果绘制了如下的统计图和统计表:等级次数频数不合格4合格三、解答题良好12优秀10请结合上述信息完成下列问题:(1)_________,_________;(2)请补全频数分布直方图;(3)在扇形统计图中,“良好”等级对应的圆心角的度数是_________;(4)若该校有1600名学生,根据抽样调查结果,请估计该校有多少名学生一分钟跳绳次数达到合格及以上.49. 2023年4月16日,世界泳联跳水世界杯首站比赛在西安圆满落幕,中国队共收获9金2银,位列奖牌榜第一.赛场上运动员优美的翻腾、漂亮的入水令人赞叹不已.在10米跳台跳水训练时,运动员起跳后在空中的运动路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系,从起跳到入水的过程中,运动员的竖直高度(单位:)与水平距离(单位:)近似满足函数关系.某跳水运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离与竖直高度的几组数据如下:水平距离竖直高度①根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系;②运动员必须在距水面前完成规定的翻腾动作并调整好入水姿势,否则就会出现失误.在这次训练中,测得运动员在空中调整好入水姿势时,水平距离为,判断此次跳水会不会出现失误,并说明理由;(2)第二次训练时,该运动员的竖直高度与水平距离近似满足函数关系.如图,记该运动员第一次训练的入水点为A,若运动员在区域内(含A ,B )入水能达到压水花的要求,则第二次训练__________达到要求(填“能”或“不能”).50. 某共享单车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划生产量相比有出入,下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减产量(辆)(1)根据记录的数据可知该厂星期三生产自行车多少辆?(2)根据记录的数据可知该厂本周实际生产自行车多少辆?(3)该厂实行每日计件工资制,每生产一辆车可得70元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂这一周的工资总额是多少元?51. 如图,把矩形ABCD 沿AC 折叠,使点D 与点E 重合,AE 交BC 于点F ,过点E 作EG //CD 交AC 于点G ,交CF 于点H ,连接DG .(1)求证:四边形ECDG是菱形;(2)若cm,cm,求AC的长.52. 综合与实践:问题情境:在中,,,.直角三角板中,将三角板的直角顶点D放在斜边的中点处,并将三角板绕点D旋转,三角板的两边,分别与边,交于点M,N.猜想证明:(1)如图①,在三角板旋转过程中,当点M为边的中点时,试判断四边形的形状,并说明理由;问题解决:(2)如图②,在三角板旋转过程中,当时,求线段的长;53. 已知,四点在⊙上,延长交于点,且.(1)若①求证:;②当时,求的度数;(2)若⊙的半径为,求的最大值.54. 已知:如图,在△ABC中,点D是BC的中点,过点D作直线交AB,CA的延长线于点E,F.当BE=CF时,求证:AE=AF.55. 如图,是的直径,点D,E在上,,点C在的延长线上,.(1)求证:是的切线;(2)若,求的半径长.56. 如图, 平行四边形 的周长为36,BD =12,点是对角线AC 、BD 的交点,点是边的中点,点交的延长线于.(1)求证:四边形OCFE 是平行四边形;(2)求△DOE 的周长.57.如图,是的直径,点C 、D 在圆上,,过点C 作,交的延长线于点E .求证:是的切线.58.定义:到三角形的两边距离相等的点,叫做此三角形的准内心.(1)求证:等腰三角形底边的中点是它的准内心;(2)如图,在△ABC 中,以AC 为直径作⊙O 交BC 于点D ,过点D 作⊙O 的切线EF ,分别交AB 与AC 的延长线于点E ,F ,若点D 是△ABC 的准内心,AE =6,tan ∠CFD=,求EB 的长.59. 已知:如图,E ,F分别是的边,上的点,且.求证:,.60. △ACB 和△ECD 均为等腰直角三角形,∠ACB =∠ECD =90°.(1)如图1,点E 在BC 上,则线段AE 和BD 有怎样的关系?请直接写出结论(不需证明);(2)若将△DCE 绕点C 旋转一定的角度得图2,则(1)中的结论是否仍然成立?请说明理由;(3)当△DCE 旋转到使∠ADC =90°时,若AC =5,CD =3,求BE 的长.61. 已知:如图,∠1=∠2,请添加一个条件,使得△ABD≌△CDB,然后再加以证明.62. 如图,的直径交弦(不是直径)于点P,且.求证:.63. 如图,PA与⊙O相切于点A,AB是直径,点C在⊙O上,连接CB,CP,2∠B+∠P=180°.(1)求证:PC是⊙O的切线;(2)过O作OD∥PC,交AP于点D,若AB=8,∠AOD=30°.求由线段PA,PC及弧AC所围成阴影部分的面积.64. 已知关于x的一元二次方程.(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为,,且,求m的值.65. 已知,.(1)求证的值;(2)求的值.66. 如图,四边形的对角线交于点O,且,E是上一点,连接.(1)求证:.(2)若,试判断四边形的形状,并说明理由.67. 综合与实践如图1所示,已知△ABC中,∠ACB=90°,AC=BC,直线m经过点C,过A、B两点分别作直线m的垂线,垂足分别为E、F.(1)如图1,当直线m在A、B两点同侧时,直接写出EF与AE、BF之间的数量关系;(2)若直线m绕点C旋转到图2所示的位置时(BF<AE),其余条件不变,猜想EF与AE,BF有什么数量关系?并证明你的猜想;(3)若直线m绕点C旋转到图3所示的位置时(BF>AE)其余条件不变,问EF与AE,BF的数量关系如何?直接写出猜想结论,不需证明.68. 如图,是的直径,点E为线段上一点(不与O,B重合),作,交于点C,作直径,过点C的切线交的延长线于点P,作于点F,连接.(1)求证:平分;(2)求证:;(3)当且时,求劣弧的长度.69. 已知:如图,在中,于点D,E为AC上一点,且,.求证:.70. 已知:如图,∠BAC=∠DAM,AB=AN,AD=AM,求证:∠B=∠ANM.71. 如图,在中,平分交于点D,交于点是中点.。
中考数学高频考点突破——轴对称的应用——最短距离问题
中考数学高频考点突破——轴对称的应用——最短距离问题一、综合题1.已知二次函数y =﹣x 2+bx+c 的图象经过点A (2,0),B (5,0),过点D (0, 54)作y 轴的垂线DP 交图象于E 、F .(1)求b 、c 的值和抛物线的顶点M 的坐标;(2)求证:四边形OAFE 是平行四边形;(3)将抛物线向左平移的过程中,抛物线的顶点记为M′,直线DP 与抛物线的左交点为E′,连接OM′,OE′,当OE′+OM′的值最小时求直线OE′的解析式. 2.(1)问题提出:如图①在 ABC 中, AD 是 ABC 边 BC 的高,点E 是 BC 上任意一点,若 3,AD = 则 AE 的最小值为_ ;(2)如图②,在等腰 ABC 中, ,120,AB AC BAC DE =∠=︒ 是 AC 的垂直平分线,分别交 BC AC 、 于点 D E 、 , 1DE cm = ,求 ABD 的周长;(3)问题解决:如图③,某公园管理员拟在园内规划一个 ABC 区域种植花卉,且为方便游客游览,欲在各顶点之间规划道路 AB BC 、 和 AC ,满足 90,BAC ∠=︒ 点 A 到 BC 的距离为 2km .为了节约成本,要使得 ,,AB BC AC 之和最短,试求AB BC AC ++ 的最小值(路宽忽略不计).3.(1)【问题提出】如图1,在矩形ABCD 中, 10AD = , 12AB = ,点E 为AD 的中点,点P 为矩形ABCD 内以BC 为直径的半圆上一点,则PE 的最小值为 ;(2)【问题探究】如图2,在ABC 中,AD 为BC 边上的高,且 4AD BC == ,点P 为 ABC 内一点,当 12PBC ABC S S = 时,求 PB PC + 的最小值;(3)【问题解决】李伯伯家有一块直角三角形菜园ABC ,如图3, 2003BC = 米,90C ∠=︒ , 60ABC ∠=︒ ,李伯伯准备在该三角形菜园内取一点P ,使得120APB ∠=︒ ,并在 ABP 内种植当季蔬菜,边BC 的中点D 为菜园出入口,为了种植方便,李伯伯打算在AC 边上取点E ,并沿PE 、DE 修两条人行走道,为了节省时间,要求人行走道的总长度( PE DE + )尽可能小,问 PE DE + 的长度是否存在最小值?若存在,求出其最小值;若不存在,请说明理由.4.如图1,已知直线l 的同侧有两个点A ,B ,在直线l 上找一点P ,使P 点到A ,B 两点的距离之和最短的问题,可以通过轴对称来确定,即作出其中一点关于直线l 的对称点,对称点与另一点的连线与直线l 的交点就是所要找的点,通过这种方法可以求解很多问题(1)如图2,在平面直角坐标系内,点A 的坐标为(1,1),点B 的坐标为(5,4),动点P 在x 轴上,求PA+PB 的最小值;(2)如图3,在锐角三角形ABC 中,AB=8,∠BAC=45°,∠BAC 的角平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值为(3)如图4,∠AOB=30°,OC=4,OD=10,点E ,F 分别是射线OA ,OB 上的动点,则CF+EF+DE 的最小值为 。
中考数学高频考点全解
中考数学高频考点全解在中考数学中,有一些考点是经常出现的,掌握了这些考点,就能在考试中取得更好的成绩。
下面将对中考数学的高频考点进行全面解析。
一、代数与函数1. 平方差公式平方差公式是解决两个完全平方数之差的因式分解问题的重要方法。
具体公式为:$a^2 - b^2 = (a-b)(a+b)$通过这个公式,我们可以将一个平方数差分解为两个因子的乘积。
2. 一元一次方程与一次不等式一元一次方程和一次不等式是代数中常见的问题。
对于一元一次方程,我们可以通过移项、消元等方法来求解方程的根;对于一次不等式,我们可以通过绘制数轴、区间判断等方法找到不等式的解集。
3. 平均数、中位数和众数平均数是一组数的总和除以数的个数,中位数是一组数按照大小排列后位于中间位置的数,众数是一组数中出现次数最多的数。
在中考数学中,经常会涉及到对平均数、中位数和众数进行计算、比较和分析的问题。
二、几何1. 直角三角形直角三角形是三角形中最基本的一种类型。
在直角三角形中,有着特殊的三边关系和角度关系,例如勾股定理$a^2 + b^2 = c^2$以及正弦、余弦和正切等三角函数的定义。
2. 相似三角形相似三角形是指两个三角形的对应角相等,对应边成比例。
在中考数学中,我们需要通过观察两个三角形的角度关系和边长比例来判断它们是否相似。
3. 平行线与比例平行线与比例是几何中常见的概念。
在中考数学中,我们需要熟练掌握使用平行线的特性来解决线段比例、三角形面积比等问题。
三、概率与统计1. 样本空间与事件样本空间是指随机试验中所有可能结果的集合,事件是样本空间的一个子集。
在概率与统计中,我们需要根据问题给出的条件,确定样本空间和事件,并计算事件发生的概率。
2. 抽样与调查抽样与调查是统计学中重要的内容之一。
在中考数学中,我们需要了解不同的抽样方法,如简单随机抽样、分层抽样等,并运用这些方法来进行数据分析和推断。
3. 直方图与折线图的读图与绘图直方图和折线图是概率与统计中常用的图表形式。
中考数学高频考点 因动点产生的全等三角形
因动点产生的全等三角形概述:全等三角形是学习相似三角形的基础,这一部分题目正、反比例函数,一次函数见多,也有动点移动时形成全等形。
全等三角形基础性很强,由于是动态题,往往答案很多,旨在锻炼学生综合分析问题的能力和发散性思维。
一、点在图形上运动1.如图,已知ΔABC中,,,点为的中点。
如果点在线段上以的速度由点向点运动,同时,点在线段上由点向点运动。
(1)若点的运动速度与点的运动速度相等,经过后,ΔBPD与ΔCQP是否全等,请说明理由;(2)若点的运动速度与点的运动速度不相等,当点的运动速度为多少时,能够使ΔBPD与ΔCQP全等?2.如图,在△ABC中,已知AB=AC,∠BAC=90°,AH是△ABC的高,AH=4 cm,BC=8 cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒3厘米的速度运动,动点E也同时从点C开始在直线CM上以每秒1厘米的速度向远离C点的方向运动,连接AD、AE,设运动时间为t(t>0)秒.(1)请写出CD、CE的长度(用含有t的代数式表示):CD= cm,CE=cm;(2)当t为多少时,△ABD的面积为12 cm2?(3)请利用备用图探究,当t为多少时,△ABD≌△ACE?并简要说明理由.3.已知正方形ABCD中,AB=BC=CD=DA=4,∠A=∠B=∠C=∠D=90°.动点P以每秒1个单位速度从点B出发沿线段BC方向运动,动点Q同时以每秒4个单位速度从A点出发沿正方形的边AD﹣DC﹣CB方向顺时针作折线运动,当点P与点Q 相遇时停止运动,设点P的运动时间为t.(1)当运动时间为秒时,点P与点Q相遇;(2)当AP∥CQ时,求线段DQ的长度;(3)连接PA,当以点Q及正方形的某两个顶点组成的三角形和△PAB全等时,求t的值.4.如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)求△COM的面积S与M的移动时间t之间的函数关系式;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.5.在平面直角坐标系中,点A的坐标(0,4),点C的坐标(6,0),点P是x轴上的一个动点,从点C出发,沿x轴的负半轴方向运动,速度为2个单位/秒,运动时间为t秒,点B在x轴的负半轴上,且S△AOC =3S△AOB.(1)求点B的坐标;(2)若点D在y轴上,是否存在点P,使以P、D、O为顶点的三角形与△AOB 全等?若存在,直接写出点D坐标;若不存在,请说明理由(3)点Q是y轴上的一个动点,从点A出发,向y轴的负半轴运动,速度为2个单位/秒.若P、Q分别从C、A两点同时出发,求:t为何值时,以P、Q、O 三点构成的三角形与△AOB全等.二、点在函数图像上运动1.直线与x轴的交点A的坐标为,与y轴的交点B的坐标为(1)求这条直线的表达式.(2)直线经过第二、三、四象限,且与x轴、y轴分别交于点C,点D,如果和全等,求直线的表达式.2.如图,在平面直角坐标系xoy内,点P在直线上(点P在第一象限),过点P作轴,垂足为点A,且.(1)求点P的坐标;(2)如果点M和点P都在反比例函数图象上,过点M作轴,垂足为点N,如果和全等(点M、N、A分别和点O、A、P对应),求点M的坐标.3.已知点和点,点R在反比例函数上,作轴于T,在x轴上是否存在点P,使R、T、P构成的三角形与全等?若存在,请求出点P的坐标,若不存在说明理由.4.如图:直线与x轴、y轴分别交于A、B两点,点是直线与A、B不重合的动点.(1)当点C运动到什么位置时的面积是6;(2)过点C的另一直线CD与y轴相交于D点,是否存在点C使与全等?若存在,请求出点C的坐标;若不存在,请说明理由.28.(10分)(2011•常州)在平面直角坐标系XOY中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点E为直线l2上一点,反比例函数(k>0)的图象过点E与直线l1相交于点F.(1)若点E与点P重合,求k的值;(2)连接OE、OF、EF.若k>2,且△OEF的面积为△PEF的面积的2倍,求E点的坐标;(3)是否存在点E及y轴上的点M,使得以点M、E、F为顶点的三角形与△PEF 全等?若存在,求E点坐标;若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高频命题点一、选择题、填空题常考点1、相反数、绝对值、倒数①相反数:a 的相反数为a -(解题时找其数字一样,符号不一样的) ②绝对值:(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩③倒数:a b 的倒数为b a,倒数等于本身的数为±1(解题时找符号一样,分子、分母颠倒的) 性质:①实数a 、b 互为相反数⇔0a b +=;②实数a 、b 互为倒数⇔1ab = 2、科学记数法:10n a ⨯⑴确定a :110a ≤<;⑵确定n :①当原数≥10时,n 等于原数的整数位数减去1;②当0<原数<1时,n 是负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位数的零)。
3、幂的运算①同底数幂相乘:m n m n a a a+⋅=; ②同底数幂相除:m n m n a a a -÷=; ③幂的乘方:()()m n mn n m a a a == ④积的乘方:()n n n ab a b =; ⑤零次幂:01(0)a a =≠;⑥负整数次幂:1n na a -= 4、整式运算①合并同类项:字母和指数不变,系数相加减;②幂的运算:(同3)④平方差公式:22()()a b a b a b +-=-,完全平方公式:222()2a b a ab b ±=±+。
5、因式分解(1)方法:①提公因式法:()pa pb pc p a b c ++=++; ②公式法22222:()():2()a b a b a b a ab b a b ⎧-=+-⎨±+=±⎩平方差公式逆用完全平方公式逆用 (2)步骤:一提二套三检查6、二次根式⑴性质:①2(0)a a =≥a =(同1-②)。
==被开方数相同的二次根式进行合并。
7、不等式组解法及解集表示⑴、解法步骤:去分母,移项,合并同类项,系数化为1.⑵、注意事项:①不等式两边同时除以或乘以一个负数,不等号要改变方向;②求不等式组的解集有两种方法:第一种,口诀法:同大取大,同小取小,大小小大取中间,小小大大去不了;第二种,数形结合法:用数轴表示;③边界:有等号用实心圆点,无等号用空心圆圈;方向:大于向右,小于向左.8、函数自变量取值范围(1)分式:分母不能为0;(2)二次根式:被开方数大于等于0;(3)分式+二次根式:分母不能为0和被开方数大于等于0.9、利用平行线的性质计算角度性质:两直线平行,同位角相等,内错角相等,同旁内角互补.考法:结合余角、补角、对顶角、内错角以及三角形内角和、内外角关系等知识考查.10、利用圆周角定理及推论求角度定理:一条弧多对的圆周角等于它所对的圆心角的一半。
推论:同弧或等弧所对的圆周角相等;半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
温馨提示:①在运用圆周角定理时一定要注意“在同圆或等圆中”的条件;②一条弦对着两条弧,对着两种圆周角且这两种圆周角互补;③一条弧只对着一个圆心角,但却对着无数个圆周角。
11、扇形的相关计算⑴弧长公式:180n R l π= ; ⑵扇形面积:2360n R S π=; ⑶圆锥全面积:2=rL r S ππ+全(L 是母线) 12、三视图的判断及还原几何体考点:⑴判断常见几何体的视图:圆锥、圆柱、长方体、正方体、棱柱、球等几何体的三视图;⑵判断正方体组合体的三视图及求小正方体的个数;⑶已知三视图还原几何体。
13、平均数、众数、中位数、方差的计算⑴平均数:121()n x x x x n-=+++ ⑵加权平均数:1122k k x f x f x f x n -+++= ⑶众数:一组数据中出现次数最多的数。
⑷中位数:将一组数据从小到大排列,如果数据的个数是奇数,则中位数就是最中间的数,如果是偶数,则中位数是中间两个数的平均数。
⑸方差:2222121[()()()]n s x x x x x x n ---=-+-++-二、解答题常考点1、实数的运算考点:零次幂、-1次幂、绝对值、负整数指数幂、开根号、-1的奇偶次幂、特殊角的三角函数等。
2、分式化简求值⑴步骤:①有括号的一般先算括号里面的(分式加减法关键是通分);②化除式为乘式;③计算分式乘法,将分式中的多项式因式分解再约去相同因式;④按照式子顺序从左到右进行加减运算。
⑵若要自己选择恰当的数代入求值,一定要注意所选择的值不能使任何一个分母为0。
3、方程实际应用⑴基础知识:①一元一次方程:去分母,去括号,移项,合并同类项,系数化为1。
②二元一次方程组:代入消元法,加减消元法。
③一元二次方程:Ⅰ、直接开平方法:①直接开平方,得到两个一元一次方程; ②解一元一次方程得原方程的两个根。
Ⅱ、配方法:①将二次项系数化为1;②移项,使方程左边只含有二次项和一次项,右边为常数项;③方程两边都加上一次项系数一半的平方;④原方程变为()2x m n ±=;⑤直接开平方,得到两个一元一次方程;⑥解一元一次方程得原方程的两个根。
Ⅲ、公式法:①把方程化为一般式;②确定a b c 、、的值;③求出24b ac ∆=-的值;④当2402b b ac x a -±-∆≥⇒=,当0∆<⇒方程无解。
Ⅳ、因式分解法:①将方程右边化为0;②将方程左边进行因式分解;③令每个因式为0,得两个一元一次方程;④解这两个一元一次方程得原方程的两个根。
④分式方程:1、方程两边同乘最简公分母,约去分母,化为整式方程;2、解整式方程;3、检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则,这个解不是原方程的解。
⑵常见类型及关系:①行程问题:路程=速度×时间;顺流(风)速度=静水(风)速度+水流(风)速度;逆流(风)速度=静水(风)速度-水流(风)速度。
②利润问题:售价=标价×折扣;利润=售价-进价;利润率=利润÷进价×100%;总利润=单价利润×数量 ③工程问题:工作量=工作效率×工作时间(工作总量常设为1)④储蓄问题:利息=本金×利率×期数;本息和=本金+利息⑤数量问题:数量=总价÷单价⑥传染问题:(1)n x a +=(n 指传染轮数)⑦增长率问题:(1)n a x b ±=⑧循环问题:单循环:(1)2x x a -÷=;双循环:(1)x x a -=⑨面积问题:4、反比例函数与一次函数结合考点:⑴求函数解析式。
步骤:①通过一个已知点求得反比例函数;②由反比例函数求另一个交点坐标;③将两个交点坐标代入即可求出一次函数。
⑵与图形面积有关的问题。
①善于把点的横、纵坐标转化为图形边长的长度,对于不好直接求面积的图形进行分割转换为好求的三角形面积。
②反比例函数k 的几何意义:S k =,S k ∆=。
⑶反比例函数与一次函数大小的比较:那个图象在上那个大,并对应看x 的取值范围。
5、三角形全等的相关证明考点:⑴直接证明全等;⑵利用全等证明线段、角相等;⑶通过全等探索或判断线段的数量、位置关系;⑷以四边形为背景利用全等三角形性质判定特殊四边形;⑸添加条件证明三角形全等。
常用知识点:①中位线性质:平行于第三边,且等于第三边的一半;②平行线性质:同位角、内错角相等;③平行四边形的性质;④对顶角相等,公共边相等;⑤平移或旋转前后图形全等。
6、解直角三角形的实际应用考点:⑴仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
⑵坡度:坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。
用字母i 表示,tan h i l α==⑶方位角:将正北或正南方向作为始方向旋转到目标方向所成的角。
:i h l =hl α仰角铅垂线水平线视线视线俯角7、平行四边形以及特殊平行四边形的判定及计算⑴平行四边形的判定:①两组对边分别平行;②两组对边分别相等;③一组对边平行且相等;④两组对角分别相等;⑤对角线互相平分。
⑵菱形的判定:①四边形+四条边相等;②平行四边形+有一组领边相等;③平行四边形+对角线互相垂直。
⑶矩形的判定:①四边形+三个角是直角;②平行四边形+有一个角是直角;③平行四边形+对角线相等。
⑷正方形的判定:①平行四边形+对角线互相垂直且相等;②矩形+有一组领边相等;③菱形+有一个角是直角。
8、切线判定的相关证明及计算知识点:①切线的判定:经过半径外端并且垂直于这条半径的直线是圆的切线。
证明直线是圆的切线的方法:Ⅰ、连半径证垂直(有一个交点);Ⅱ、作垂直证半径。
②切线的性质:圆的切线垂直于过切点的半径。
③切线长定理:从圆外一点可以引圆的两条切线,它们切线长相等,这一点和圆心的连线平分两条切线的夹角。
④常添加辅助线:连接圆心和切点。
9、网格中图形变换作图考点:①根据图形的平移性质、对称变换、旋转变换作图;②求点坐标或三角形、四边形的面积;③求图形旋转后的路径长或扫过的面积。
10、分析补全统计图表⑴计算调查的样本容量:①样本容量=各组频数之和;②样本容量=某组的频数÷改组的频率(百分比)⑵补全条形统计图:①未知组频数=样本容量-已知组频数之和;②未知组频数=样本容量×该组所占样本百分比。
⑶扇形统计图:①未知组百分比=1-已知组百分比之和;②未知组百分比=未知组频数÷样本容量×100%;③未知组在扇形统计图中圆心角度数=360º×其所占百分比。
⑷计算总体里某组的数量:总体中某组的数量=总体数量×样本中该组的百分比。
11、概率计算考点:⑴以摸球游戏为背景利用树状图或列表法求概率;⑵以抽卡片或转转盘数字游戏为背景计算概率及判断游戏的公平性;⑶与其它知识结合求概率。