高一数学对数函数及其性质4
高一数学对数函数知识点总结
1.对数(1)对数的定义:如果ab=N(a>0,a≠1),那么b叫做以a为底N的对数,记作logaN=b.(2)指数式与对数式的关系:ab=NlogaN=b(a>0,a≠1,N>0).两个式子表示的a、b、N三个数之间的关系是一样的,并且可以互化.(3)对数运算性质:①loga(MN)=logaM+logaN.②loga(M/N)=logaM-logaN.③logaMn=nlogaM.(M>0,N>0,a>0,a≠1)④对数换底公式:logbN=(logab/logaN)(a>0,a≠1,b>0,b≠1,N>0).2.对数函数(1)对数函数的`定义函数y=loga某(a>0,a≠1)叫做对数函数,其中某是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数那么要大于0且不为1对数函数的底数为什么要大于0且不为1呢在一个普通对数式里 a<0,或=1 的时候是会有相应b的值的。
但是,根据对数定义: logaa=1;如果a=1或=0那么logaa就可以等于一切实数(比方log1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:loga M^n = nloga M 如果a<0,那么这个等式两边就不会成立 (比方,log(-2) 4^(-2) 就不等于(-2)某log(-2) 4;一个等于1/16,另一个等于-1/16(2)对数函数的性质:①定义域:(0,+∞).②值域:R.③过点(1,0),即当某=1时,y=0.④当a>1时,在(0,+∞)上是增函数;当0。
对数函数及其性质(第一课时)课件-高一上学期数学人教A版(2019)必修第一册
)
(1)A已.知cab0.3a0.4 ,A.b cB.lobga34ab,cc lBo.g0.a3 4C,b.则b(c a c )C. b Da.bc c a D.b c a
A. c b a B. a b c
C.b a c
D.b c a
例题讲练
(2)设 a log3 , b log2 3 , c log3 2 ,则(
x lxogaloyg(a ya ( 0a且 a0 且 1a),1x),也是x 也以是y以为自y 为变自量变的量函的数函(数其(中其y 中 0y, 0x , Rx ),R ), 根据根我据们我的们认的知认习知惯习,惯我,们我把们x 把 lxogaloyg中a 字y 中母字x 母, xy,对调y 对,调, 写成写y成 lyogaloxg(a 其x (中其x 中 0x, 0y, Ry ).R ).
例题讲练
【练习习 55】】
((11))已已知知ff((xx))的的定定义义域域为为[0[,10],1,] ,则函则数函数f [lof g[l1o(g31(3x)] 的x)定] 的义定域义为域___为____________._____.
22
例题讲练
(2)已知函数 y f [lg(x 1)] 的定义域为 (0,99] ,则函数 y f [log2 (x 2)] 的定义域为__________.
§4.4 对数函数及其性质 (第一课时)
人教版高中数学必修一
课堂引入:
通过前面的学习我们知道,某细胞经过 x 次分裂后,变成的细胞个数 y 2x ,
得由到一由y 个y2指x 数2x函x数x.lo由gglo22gyyy2y2对x 于对任于x意任的意lo细的g2胞细y个胞,数个对数y于,任y 我,意们我的都们细可都胞以可个通以数过通y对过,数对我运数们算运都算可 得到以得唯通到一唯过的一对的数x 与运x 之与算对之得应对到,应唯所,一以所的细以x胞细与分胞之裂分对次裂应数次,所数x以也x细可也胞以可分看以裂出看次以出数细以x胞细也个胞可数个以数y看为y成自为以变自细变胞个 量的数量函的y数函为.数自.变量的函数. 同样同地样,地根,据根指据数指与数对与数对的数关的系关,系由,y由 ayx(aax ( 0a且 a0 且 1a)可1)以可得以到得:到:
高一数学知识点对数函数
高一数学知识点对数函数对数函数是数学中重要的一类函数,它在高一数学学习中占据着重要的地位。
本文将对数函数的定义、性质和应用进行探讨,帮助同学们更好地理解和应用对数函数。
一、对数函数的定义对数函数是指以一个正数为底数,另一个正数为真数,求得的指数称为对数。
对数函数可以表示为y=logₐx,其中a为底数,x 为真数,y为对数。
在对数函数中,底数a通常取常用对数的底数10或自然对数的底数e。
二、对数函数的性质1. 对数函数的定义域和值域对数函数的定义域是正实数集,即x>0。
值域是全体实数集,即y∈R。
2. 对数函数的单调性对数函数随着真数的增大而单调增加。
3. 对数函数的图像特点对数函数的图像是一条逐渐上升的曲线,对数函数在x轴上的渐近线是y=0,对数函数在y轴上的渐近线是x=0。
4. 对数函数的奇偶性对数函数是奇函数,即f(-x)=-f(x)。
三、对数函数的应用1. 对数函数在科学计算中的应用对数函数在科学计算中有着广泛的应用。
以常用对数为例,常用对数的底数为10,它可以简化大数的运算。
例如,当我们需要计算10的n次方时,可以利用对数函数的性质,将幂运算转化为乘法运算。
2. 对数函数在指数增长中的应用对数函数在描述指数增长过程中经常被使用。
例如,人口增长模型中常常使用对数函数来描述人口的增长趋势,因为人口的增长一开始是指数级的,但随着时间的推移,增长速度逐渐减缓。
3. 对数函数在音乐与声音领域的应用对数函数在音乐与声音领域具有重要的应用。
在音乐中,音高是以对数函数的形式进行调节的,从而使得音高变化更加连续平稳。
在声音领域,声音强度的测量也可以利用对数函数进行,这是由于人类对声音的感知呈现对数关系。
四、对数函数的解题技巧在解题过程中,对数函数可以利用其性质和公式来简化计算。
常见的计算技巧包括:1. 对数与指数的互化对数函数和指数函数之间可以相互转化,通过利用对数函数和指数函数之间的相互关系,可以简化问题的计算。
高一数学对数函数及其性质4
下载全民双色球彩票软件
[单选]制动轮表面温度不得超过()°C。A.100B.200C.250D.300 [填空题]SF6的缺点是它的电气性能受电场均匀程度()和()影响特别大。 [单选,A1型题]以下不是放射性核素示踪技术主要特点的是()。A.灵敏度高B.方法相对简便、准确性较好C.合乎生理条件D.定性、定量与定位研究相结合E.具有较大辐射效应 [单选,A2型题,A1/A2型题]划分非电离辐射与电离辐射的电磁辐射量子能量水平是()。A.2eVB.12eVIC.20eVD.12库仑E.12Ci [单选]2004年2月1日某建设单位与某施工单位签订了施工合同,约定开工日期为2004年5月1日,竣工日期为2005年12月31日。2004年2月10日施工单位与保险公司签订了建筑工程一切险保险合同。施工单位为保证工期,于2004年4月20日将建筑材料运至工地。后因设备原因,工程实际开工日为200 [单选]涡轮螺旋桨式发动机的当量轴马力(ESPH)用于度量().A.涡轮进气道温度B.轴马力和喷气推力C.螺旋桨推力 [单选]下列不属于注册消防工程师职业道德原则特点的是()。A.稳定性B.普遍性C.本质性D.基准性 [填空题]量臀围时应在臀围()部位量一周。 [填空题]旅游业的四要素是指()、()、旅行社、()。 [单选]门静脉高压症时最早的病理变化为()A.交通支开放B.腹水形成C.脾大D.脾功能亢进E.蜘蛛痣 [单选]关于肺癌治疗方法,正确的是()A.腺癌首选放疗B.鳞癌首选放疗C.小细胞肺癌首选手术D.鳞癌首选化疗E.小细胞未分化癌首选化疗和放疗 [单选]沸点温度是随着压力增加而()。A.增加B.降低C.先增加后降低D.不变 [单选]某压力容器按承受压力为1MPa,则属于()容器。A.低压B.中压C.高压D.超高压 [单选,A1型题]医学模式转变对医师提出的根本性医德要求是()A.学习伦理学B.学习生命价值论C.学习公益理论D.更加关注处于社会关系中的、作为一个整体的病人的人文方面E.注重改变传统的医学道德观念 [单选,A1型题]最容易诱导免疫耐受的细胞是()A.B细胞B.MФC.单核细胞D.T细胞E.NK细胞 [单选]城乡规划是()。A.一定时期内城市和乡村建设、发展和管理的依据B.包括城市规划和乡村规划C.城市或乡村在一定时期内的发展计划D.城乡空间布局各项建设的综合部署和具体安排E.以上都是 [单选]杀虫剂、杀菌剂和除草剂是按照()来分类的。A.原料的来源B.成分C.用途D.机理 [问答题,简答题]我国某沿海城市某建设工程项目承包合同形式为采用工程量清单计价的主体总承包总价合同,其工程量清单某章节中包括如下内容:(1)对安装玻璃幕墙工程之指定分包暂定造价RMB1500000.00元,总承包单位对上述工程提供协调及施工设施的配合费用45000.00元。(2)对外围 [单选]下列情况下()更容易产生绕射。A.波长大于障碍物尺寸B.波长等于障碍物尺寸C.波长小于障碍物尺寸D.波长远大于障碍物尺寸 [填空题]()等级事故,事故发生地与事故发生单位不在同一个县级以上行政区域的,由()负责调查,事故发生单位所在地人民政府应当派人参加。 [单选,A2型题,A1/A2型题]关于有机氯农药叙述不正确的是()。A.有致畸性和致癌性B.急性中毒可出现肝肾损伤C.我国现已停止生产使用D.慢性中毒损害肝脏、血液E.蓄积性强但易降解 [单选]下列不属于涉烟案件调查取证方案作用的是()。A、有利于为决策提供依据,辅助决策,支持处罚B、有利于保证调查取证工作的依法进行C、有利于提高调查取证的效率D、有利于保障执法人员和相对人的人身和财产安全 [判断题]纵横等分线相交法放样,比较简便,误差也比较小。A.正确B.错误 [名词解释]免疫监视(immunologicsurveillance) [问答题,简答题]简述生物工程设备清洁程度的确认方式。 [单选]以下哪一部份不属于我国社会主义职业道德“五爱”的范畴()A.受劳动B.爱科学C.爱党D.爱人民 [多选]设在疏散走道上的防火卷帘应在防火卷帘的两侧设置启闭装置,并应有()的功能。A.自动B.手动C.机械控制D.断电后由易熔合金控制下降 [单选,A1型题]根据《药品说明书和标签管理规定》,下列叙述错误的是()A.药品说明书由省级人民政府药品监督管理部门核准B.药品标签由国务院药品监督管理部门核准C.药品包装必须按照规定印有标签D.药品包装必须按照规定贴有标签E.药品生产企业生产供上市销售的最小包装必须附有说 [单选]下列不属于基金销售机构职责规范的是()。A.严格账户管理B.基金托管人应制定业务规则并监督实施C.签订销售协议,明确权利和义务D.禁止提前发行 [单选]通过一定的法律行为或基于法定的事实从原所有人处取得所有权的方式称为()。A.善意取得B.继受取得C.原始取得D.非法取得 [单选]患者外感风寒,恶寒发热,无汗,腹痛,吐泻,舌苔白腻。治疗宜选用()A.麻黄B.桂枝C.香薷D.防风E.白芷 [单选,A2型题,A1/A2型题]有关分裂情感性精神障碍的病因与发病机制,以下说法错误的是()A.病前个性一般无明显缺陷B.有研究表明:在遗传学上介于精神分裂症和双相情感性精神病之间C.发病与应激诱因无关D.有关本病的发病机制,可以参考精神分裂症的素质模式E.有研究表明:在遗传学 [单选]皮肤病最常见的局部自觉症状是()A.疼痛B.烧灼感C.皮疹D.麻木感E.瘙痒 [单选]关于尿道恶性肿瘤的临床特点,正确的是()A.发病年龄50~60岁,男性发病率低于女性B.长期慢性炎症刺激是重要的诱因C.病理分为覃状型、环状狭窄型和溃疡型三型D.进行性排尿困难和尿道滴血是两大主要症状E.以上都是 [多选]关节镜术后处理正确的有()。A.术后伤口冰敷B.术后常规放置负压引流盒48小时C.术后患肢要加压包扎D.术后制动1周E.拔除引流管后可在助行器辅助下行走 [单选,A1型题]不属于六一散主治证的是()A.身热B.小便不利C.泄泻D.盗汗E.烦渴 [单选]我国《农村土地承包法》于()正式实施。A.1998年10月1日B.2002年8月92日C.2003年3月1日D.2004年9月2日 [单选]为了减少心脏搏动伪影对心脏大血管MRI图像的影响,一般采用心电门控技术,应用本法的FR时间决定于()。A.R-R间期B.P-R间期C.R-P间期D.2R-R间期E.2P-R间期 [单选,A1型题]输血后非溶血性发热反应的最常见原因是()A.输血后感染B.输血导致凝集反应C.过敏反应D.血液中存在致热原E.血型不合 [单选]患者男性,65岁,因脑血栓后遗症,长期卧床,生活不能自理,入院时护士发现其骶尾部皮肤发红,除去压力无法恢复原来的肤色,护士使用50%乙醇按摩局部皮肤的作用是()A.消毒皮肤B.润滑皮肤C.去除污垢D.促进血液循环E.降低局部温度
高一对数知识点高中总结
高一对数知识点高中总结对数是数学中的一个重要概念,它在高中数学中扮演着重要角色。
在高一阶段,我们学习了许多关于对数的知识点,通过总结和归纳,可以更好地理解和应用这些知识。
本文将对高一阶段的对数知识点进行整理和总结。
一、对数的定义和性质对数的定义是:如果一个正数a不等于1,且b大于0,那么称符号logₐb为以a为底b的对数,记作logₐb=c。
对数具有以下性质:1. logₐ1=0,因为a的0次方等于1。
2. logₐa=1,因为a的1次方等于a。
3. logₐ(㏑ₐb+㏑ₐc)=logₐb+c,对数的乘法公式。
4. logₐ(b/c)=logₐb-logₐc,对数的除法公式。
二、换底公式和常用对数对数的底数可以是任意正数,但常用的对数底数是10和e(自然对数)。
1. 换底公式:如果知道了一个数的对数以及底数,可以通过换底公式将其转化为另一个底数的对数。
换底公式为:logₐb=㏑b/㏑a。
2. 常用对数:以10为底的对数称为常用对数,常用对数的符号是㏑,常用对数表是我们常用的工具之一。
三、对数方程和对数不等式对数方程和对数不等式是对数的应用之一,要解决对数方程和对数不等式,需要利用对数的性质和换底公式,通过变量的替换和代数运算来求解。
1. 对数方程:是形如logₐx=b的方程,其中a、b为已知常数,x为未知数。
求解对数方程时,可以通过对数的性质和换底公式进行变换,最终得出x的值。
2. 对数不等式:是形如㏑ₐx>b的不等式,其中a、b为已知常数,x为未知数。
求解对数不等式时,需要注意不等式的取值范围,并通过对数的性质和换底公式进行变换,找到x的取值范围。
四、指数函数与对数函数的图像和性质在高一阶段,我们学习了指数函数和对数函数的图像和性质,这对我们理解对数与指数的关系、解决相关问题非常有帮助。
1. 指数函数的图像和性质:指数函数y=a^x的图像呈现出递增或递减的特点,且过原点。
指数函数具有指数遇加法、指数遇乘法和指数函数的值域等性质。
高一数学对数函数及其性质4
对数函数y=logax的图象和性质 高一上学期数学北师大版(2019)必修第一册
位置逐渐下降,过点( 1,0),继续下降,函数值越来越小,直
至无穷.
当0 < < 1时,函数 = log 的性质:
在定义域 0, + ∞ 上是减函数,且值域为R .
当0<x<1时, y>0,当x>1时, y<0;
当x趋近于正无穷大时, y趋近于负无穷大;当x趋近于0时, y趋近于正无穷大.
2
方法1 描点法
y
列表:
⋯
1
4
1
2
1
2
4
8
⋯
= log 1
⋯
2
1
0
-1
-2
-3
⋯
2
描点画出函数图象:
x
方法2 由指数函数的图象得到对数函数的图象
1
=
2
1
O
= log 1
2
O
(2)
(1)
= log 1
= log 1
2
2
1
1
O
(3)
O
1
(4)
➢ 对数函数 = log 和指数函数 = 所表示的和这两个变量之间的关系是一样的,在同一
比较下列各题中两个数的大小:(1)log 2 5.3,log 2 4.7;(2)log 0.2 7,log 0.2 9;
(3)log 3 π,log π 3;(4)log 3.1,log 5.2 > 0,且 ≠ 1 .
底数相同,真数不同的,可利用函数的单调性比较大小;底数不同的,可以利用特殊值比
高一人教A版《4.4对数函数》说课课件
设计意图:考察函数定义域,加深对对数
函数的概念的理解,改为填空,节省时间,
点到为止。
环节二
(一)对数函数的概念
2.对数函数与指数函数的关系:
互为反函数
设计意图:对数函数的概念比较抽象,利用已经学
过的知识逐步分析,这样引出对数函数的概念过渡
自然,学生易于接受。因为对数函数是指数函数的
反函数,让学生比较它们的定义域、值域、对应法
log .
小结:既不同底数,也不同真数的对数比大
小的方法:找中间量(常用0、1)
环节三
典型例题,巩固达标
ቤተ መጻሕፍቲ ባይዱ
(三)同真数的对数比大小(小组合作探究)
例3.比较下列各题中两个值的大小:
() log
(2)log .
log
log .
(学生以小组为单位探究解题方法)
对数函数的定义,在概念理解上,用步步设问、课
堂讨论来加深理解。在对数函数图像的画法上,我
借助多媒体,演示作图过程及图像变化的动画过程,
从而使学生直接地接受并提高学生的学习兴趣和积
极性,很好地突破难点和提高教学效率。
说学法
学法指导
对照比较
学习法:
学习对数
函数,处处
与指数函
数相对照
合作探究
式学习法:
学生通过
看待数学知识,形成一个逻
角度分析之前熟悉的指数变化规律,
辑严密的知识体系.
通过与指数函数的联系更好地理解
对数函数
对数函数的研究内容和方
法既有继承也有发展,借助
性质研究环节不仅研究对数函数
对数函数的研究,可以进一
自身的性质,还增加了同底指对
高一数学对数函数及其性质4
Hale Waihona Puke 皇冠多少钱 [单选]声卡是多媒体计算机不可缺少的硬件设备,以下(1)采样频率是其不支持的,(2)功能也是声卡不支持的。空白(2)处应选择()A.录制声音B.MIDI合成CD播放D.语音识别 [单选]国家信息化的首要核心任务是()。A.信息技术应用B.信息资源的开发利用C.建设国家信息网络D.发展信息技术与产业 [单选]拆结构复杂的桥梁或拆除过程复杂、困难时,应采取()手段,确保施工安全。A.仪器监测B.计算分析C.实时控制D.局部临时加固 [判断题]空调压缩机润滑油的牌号越大,黏度越大,凝固点越高。()A.正确B.错误 [单选]将充有nmLNO和mmLNO2气体的试管倒立于盛水的水槽中,然后通入nmLO2。m>n,则充分反应后,试管中气体在同温同压下的体积为()。A.(m-n)/3mLB.(n-m)/3mLC.(4m-1)/13mLD.3/(m-n)mL [单选]()是指反映企业在某一特定日期的财务状况的会计报表。A.利润表B.现金流量表C.附注D.资产负债表 [单选]女性,45岁。间歇性无痛性肉眼血尿2个月,伴蚯蚓状血块。膀胱镜检查:膀胱内未见肿瘤。左输尿管口喷血。为尽快明确诊断,最有价值的检查是()A.CTB超C.MRID.左肾穿刺顺行造影E.左肾盂输尿管逆行造影 [单选]病人X线片可见Codman三角,可能的诊断为()A.脂肪肉瘤B.骨肉瘤C.皮质旁肉瘤D.骨髓瘤E.骨巨细胞瘤 [多选]队列研究中的发病密度具有下列哪些特征()A.适应于一个观察人数变动较大的动态人群B.是表示一定时期内的平均发病率C.没有时间单位D.分子为一个人群在一定时期内新发生的病例数E.分母是研究人群中所有成员所提供的人时的总和 [单选,A型题]以下属于胃癌的X线征象是()A.黏膜皱襞纠集B.胃蠕动增强C.龛影显著D.胃腔变形和狭窄E.激惹征 [单选]行李室考核制度规定:受到公司通报表扬的,奖当月绩效工资的()。A.20%B.10%C.15%D.5% [判断题]某些病原菌生长过程中能产生对动物体有害的毒素,称为类毒素。()A.正确B.错误 [多选]角速度的SI单位可写成()。ABCD [填空题]甲醇的密度为();沸点为()。 [单选,A1型题]枕先露肛诊检查时,胎头下降程度为+2是指()A.胎头最低点在坐骨棘平面下2cmB.胎儿头部最低在坐骨结节平面下2cmC.胎头颅骨最低点在坐骨棘平面下2cmD.胎儿顶骨在坐骨棘平面上2cmE.胎儿顶骨在坐骨结节平面上2cm [问答题,案例分析题]某建设项目的一期工程基坑土方开挖任务委托给某机械化施工公司。该场地自然地坪标高-0.60m,基坑底标高-3.10m,无地下水,基坑底面尺寸为20×40(m2)。经甲方代表认可的施工方案为:基坑边坡1:m=1:0.67(Ⅲ类土),挖出土方量在现场附近堆放。挖土采用 [单选]作为荧光抗体标记的荧光素必须具备的条件中,可以提高观察效果的是()A.必须具有化学上的活性基团能与蛋白稳定结合B.性质稳定不会影响抗体的活性C.荧光效率高,荧光与背景组织色泽对比鲜明D.与蛋白质结合的方法简便快速E.与蛋白质的结合物稳定 [多选]下列叙述或操作正确的是()。A.浓硫酸具有强氧化性,稀硫酸无氧化性B.浓硫酸不慎沾到皮肤上,立即用大量的水冲洗C.稀释浓硫酸时应将浓硫酸沿着烧杯壁慢慢地注入盛有水的烧杯中,并不断搅拌D.浓硫酸与铜的反应中,浓硫酸仅表现强氧化性 [单选,B型题]属于同期控制的是()A.急救物品完好率B.压疮发生率C.护理差错事故发生次数D.查对医嘱及时纠正E.基础护理合格率 [单选]根据显像剂对病变组织的亲和能力可将放射性核素显像分为()A.局部显像和全身显像B.静态显像和动态显像C.平面显像和断层显像D.早期显像和晚期显像E.阴性显像和阳性显像 [单选]拟定沿岸航线,确定航线离岸距离时应考虑下列哪项因素()。Ⅰ.经济航速;Ⅱ.船员技术水平;Ⅲ.船舶操纵性能;Ⅳ.测定船位的难易;Ⅴ.能见度的好坏。A.Ⅱ~ⅤB.Ⅰ~ⅢC.Ⅰ,Ⅱ,Ⅳ,ⅤD.Ⅰ,Ⅱ,Ⅲ,Ⅴ [问答题,简答题]我国现行国库的权限主要有哪些? [问答题,简答题]简述啤酒厂糖化设备的组合方式及优点: [单选]以下性传播疾病不是由病毒引起的是()A.尖锐湿疣B.生殖器疱疹C.艾滋病D.扁平湿疣 [单选]等角正圆柱投影在航海上常被用来绘制()。A.半球星图B.大圆海图C.墨卡托航用海图D.大比例尺港泊图 [单选,A1型题]一侧瞳孔散大,直接和间接光反射消失,对侧间接光反射正常,病损位于()。A.对侧视神经B.同侧视神经C.对侧动眼神经D.同侧动眼神经E.同侧视神经及动眼神经 [单选]Smith骨折的典型移位是()A.远侧端向掌侧、尺侧移位B.远侧端向尺侧移位C.远侧端向桡、背侧移位D.近侧端向背侧移位E.近侧端旋转移位 [单选,A2型题,A1/A2型题]吴茱萸汤的功用是()A.温中补虚,和里缓急B.温中祛寒,益气健脾C.温中补虚,降逆止呕D.温肾暖脾,涩肠止泻E.温中补虚,散寒止痛 [单选]美国心理学家卡特尔认为,()是人的一种潜在智力,很少受社会教育的影响,它与个体通过遗传获得的学习和解决问题的能力有联系。A.普通智力B.晶体智力C.特殊智力D.流体智力 [填空题]化验室大量使用玻璃仪器,是因为玻璃具有很高的()、()有很好的()一定的()和良好绝缘性能. [单选]通过遥控器的以下组合操作来操作高清变焦摄像机的变焦()A、shift键↑+滚转指令→B、shift键↑+俯仰指令↓↑C、shift键↑+滚转指令←D、shift键↑+油门指令↓↑ [单选]对心律失常患者进行病史采集时,下列哪项不能提供对诊断有用的线索().A.心律失常的存在及其类型B.心律失常的诱发因素,如烟、酒、咖啡、运动及精神刺激等C.心律失常发作的频繁程度、起止方式D.心律失常是触发机制还是自律性增高E.心律失常对药物和非药物方法(如体位、呼 [填空题]犹豫期一般是()天,但对于银保渠道销售的保险产品犹豫期延长至()天。 [单选]甲公司作为上市公司,欲对目标公司乙公司实施收购行为,根据预测分析,得到并购重组后乙公司未来8年的增量自由现金流量的现值为1000万元,8年后以后每年的增量自由现金流量均为600万元,折现率为10%,乙公司的负债总额为2000万元,则乙公司的预计总体价值为()万元。[已知 [单选]专一保险合同与重复保险合同的主要区别在于()。A.保险标的是否为特定物B.保险金额的确定方式C.保险人的数量D.保险人所负责任的次序 [单选,A2型题,A1/A2型题]点彩红细胞胞质中的颗粒为()A.残存变性的DNAB.残存变性的RNAC.残存变性的脂蛋白D.核糖体E.金属颗粒沉淀 [多选]命令统一原则,的内容的说法正确的是?()A、命令的精神要一致B、命令要逐级发布C、避免多头指挥D、监督不等于命令 [单选]在银行贷款的偿还方式中,分期还本付息的基本特征是()。A.在整个借款期内,按某一相等金额偿付借款本金和利息B.分期等额偿还本金,对未还本金则按期支付利息C.按约定时间支付借款利息D.借款到期后一次偿还本金 [单选]现代企业对信息处理的要求可归结为及时、适用、经济和()。A、准确B、保存C、统一D、共享 [单选]初孕妇,平时月经正常,停经43周,无产兆,NST2次无反应,OCT10min内宫缩2次持续40~50s,均出现晚期减速,1周前雌激素/肌酐(E/C)比值为15,现仅为8。应如何处理?()A.催产素引产B.人工破膜引产C.立即剖宫产D.吸氧密观1周后复查E.服雌激素3天后复查
高一数学对数函数性质知识点
高一数学对数函数性质知识点对数函数是高中数学中重要的函数之一,它在解决各种实际问题中扮演着重要的角色。
在学习对数函数的性质时,我们需要掌握以下几个知识点。
一、对数函数的定义对数函数是指以一个常数为底数,求指数的运算。
常用的对数函数有以10为底的常用对数函数和以自然对数e为底的自然对数函数。
对于以10为底的对数函数,用log表示;对于以e为底的对数函数,用ln表示。
二、对数函数的性质1. 对数函数的定义域和值域以10为底的对数函数的定义域为正实数集(0, +∞),值域为实数集(-∞,+∞);以e为底的对数函数的定义域为正实数集(0, +∞),值域为实数集(-∞,+∞)。
2. 对数函数的单调性以10为底的对数函数是递增函数,即当x1 < x2时,logx1 < logx2;以e为底的对数函数是递增函数,即当x1 < x2时,lnx1 < lnx2。
3. 对数函数的图像和对称轴对数函数y = logx或y = ln x的图像都位于一、四象限,并且与y轴互为对称。
4. 对数函数的性质运算(1)对数函数的乘积性质:loga (mn) = loga m + loga n;(2)对数函数的商性质:loga (m/n) = loga m - loga n;(3)对数函数的幂性质:loga (m^k) = k loga m。
三、对数函数的应用对数函数的应用非常广泛,特别是在科学和工程领域。
以下是一些常见的应用示例:1. 指数增长模型对数函数可以用来描述指数增长模型,例如人口增长、病菌的传染速度等。
通过对数函数的计算,我们可以更好地理解和研究这些问题。
2. 负指数衰减模型对数函数也可以用来描述负指数衰减模型,例如放射性物质的衰变速度、温度的下降速度等。
对数函数能够提供我们更多的定量信息,使我们能够更好地预测和分析这些问题。
3. 声音的强度和音量声音的强度和音量与传播距离之间存在着对数关系。
通过对数函数的运算,我们可以计算声音在不同距离上的强度差异,并进行相关的声学研究和设计。
高一数学对数函数及其性质4
高一上册对数函数知识点
高一上册对数函数知识点对数函数是高中数学中十分重要的一个概念,也是接下来学习指数函数的基础。
在本文中,我们将详细介绍高一上册对数函数的知识点。
一、对数函数的定义与性质对数函数y=logₐx的定义为:x=a^y,其中a>0且a≠1,x>0。
其中,a称为底数,x称为真数,y称为对数。
1. 对数函数的定义域与值域对数函数y=logₐx的定义域为x>0,值域为R。
2. 对数函数的图像特点当底数a>1时,随着x的增大,对数函数的图像呈现上升趋势,y=logₐx的图像在y轴上无渐近线,对x轴是若干条斜率为负的异于0的射线。
当底数0<a<1时,对数函数的图像呈现下降趋势,y=logₐx的图像在y轴上无渐近线,对x轴是若干条斜率为负的异于0的射线。
3. 对数函数的性质(1)logₐ1 = 0,即底数为a的对数函数以a为底数的1的对数为0;(2)logₐa = 1,即底数为a的对数函数以a为底数的a的对数为1;(3)对数函数的对数相加等于底数相乘,即logₐxy = logₐx +lo gₐy;(4)对数函数的对数相减等于底数相除,即logₐ(x/y) = logₐx - logₐy;(5)对数函数的乘方等于对数的乘法,即logₐ(x^k) = k·logₐx;(6)底数为a的对数函数的图像关于y轴对称。
二、对数函数的常用换底公式常用的换底公式有两条,可以将一个底数为a的对数函数转化为另一个底数为b的对数函数。
1. 换底公式一logₐx = log_bx / log_ba2. 换底公式二logₐx = 1 / (log_ax / log_ab)三、对数函数的常用性质与等式的求解对数函数的常用性质和等式求解是高一上册对数函数的重要内容。
下面我们将介绍其中两个重要的性质。
1. 对数函数的指数形式的性质指数形式的性质可以将对数函数转化为指数函数,以便进行等式求解。
(1)指数形式一a^logₐx = x,其中a>0且a≠1,x>0(2)指数形式二logₐa^x = x,其中a>0且a≠1,x为实数2. 对数函数的常用等式的求解对数函数常用等式求解可以通过使用性质转化为简单的指数函数等式,进而求解。
高一数学对数函数知识点
高一数学对数函数知识点一、对数函数的基本概念对数函数是数学中的一种基本函数,它与指数函数有着密切的关系。
在高一数学的学习中,对数函数的概念、性质和应用是重要的知识点。
对数函数可以定义为:如果a^b=c(其中a>0,且a≠1,b和c为实数),那么数b就称为以a为底c的对数,记作b=log_a c。
二、对数的运算法则对数的运算法则是解决对数问题的基础。
以下是几个基本的对数运算法则:1. 乘法变加法:log_a (xy) = log_a x + log_a y2. 除法变减法:log_a (x/y) = log_a x - log_a y3. 幂的对数:log_a (x^b) = b * log_a x4. 对数的换底公式:log_a x = log_c x / log_c a,其中c为新的底数。
掌握这些运算法则对于解决复杂的对数问题至关重要。
三、常用对数函数在高中数学中,最常用的对数函数是自然对数和常用对数。
1. 自然对数:以e(约等于2.71828)为底的对数称为自然对数,记作ln x。
自然对数在数学、物理和工程等领域有着广泛的应用。
2. 常用对数:以10为底的对数称为常用对数,记作log x。
常用对数在科学计数法中经常被使用。
四、对数函数的图像和性质对数函数的图像和性质是理解对数函数行为的关键。
对数函数y=log_a x具有以下性质:1. 函数图像总是通过点(1,0),因为任何底数的0次幂都等于1。
2. 对数函数是单调递增的,这意味着随着x的增加,y也会增加。
3. 当x>0时,函数有定义;当x<=0时,函数无定义。
4. 对数函数的图像是一条在y轴右侧的曲线,永远不会与x轴相交。
五、对数函数的应用对数函数在实际问题中有许多应用,例如:1. 复利计算:在金融领域,对数函数可以用来计算连续复利。
2. 地震强度:地震的强度常常用对数来表示,因为地震能量的增加与震级不是线性关系。
3. pH值计算:在化学中,pH值是衡量溶液酸碱度的指标,它是基于对数的计算。
高一数学人必修件第四章对数函数的概念
在化学领域,酸碱度的测量使用对数刻度,即pH值。这是因为酸 碱度的变化与氢离子浓度的对数呈线性关系。
跨学科综合应用案例
01
生物医学中的药物剂量计算
在生物医学领域,药物剂量的计算常常涉及对数函数。通过使用对数函
数,医生可以根据患者的体重、体表面积等因素精确地计算药物剂量。
02 03
对数定义及性质
对数的性质 $log_a 1 = 0$ $log_a a = 1$
对数定义及性质
$log_a (MN) = log_a M + log_a N$
$log_a frac{M}{N} = log_a M - log_a N$ $log_a M^n = nlog_a M$
对数运算规则
对数的换底公式
对于底数大于1的对数函数,其图像 位于第一象限;对于底数小于1的对 数函数,其图像位于第四象限。
恒过定点(1,0)
所有对数函数的图像都经过点(1,0 )。
x轴为渐近线
对数函数的图像无限接近x轴,但永 远不会与x轴相交。
单调性
底数大于1的对数函数在第一象限内 单调递增;底数小于1的对数函数在 第四象限内单调递减。
04
幂指对综合运算技巧
幂指对运算法则回顾
幂的运算法则
包括同底数幂的乘法、除 法、乘方和幂的乘方等运 算法则。
指数的运算法则
包括指数的加法、减法、 乘法和除法等运算法则。
对数的运算法则
包括对数的乘法、除法、 指数和换底等运算法则。
幂指对互换原理及应用
幂指对互换原理
在特定条件下,幂、指数和对数 之间可以相互转换,从而简化计 算或解决问题。
高一数学人必修件第四章对数 函数的概念
数学高一上对数函数知识点
数学高一上对数函数知识点对数函数是高中数学中的重要知识点之一,在高一上学期,学生首次接触到了对数函数的概念和基本性质。
下面我们就来系统地了解一下高一上对数函数的知识点。
1. 对数函数的定义和性质:对数函数是指满足一定条件的函数,其中最常见和常用的是以10为底的对数函数,即常用对数函数。
常用对数函数的定义是:y = log10x,其中x和y分别表示自变量和因变量,log10x表示以10为底的x的对数。
对数函数的性质有:- 定义域:对数函数的定义域是正实数集。
- 值域:对数函数的值域是实数集。
- 单调性:对于正数x1和x2,如果x1 > x2,则log10x1 >log10x2。
也就是说,对数函数是递增函数。
- 零点:对数函数的零点是x = 1,因为log101 = 0。
- 对称性:对数函数关于直线y = x对称。
- 拉伸和压缩:对数函数y = log10(x/a)表示将函数的图像沿x轴拉伸a倍,而y = log10(ax)表示将函数的图像沿x轴压缩a倍。
- 幂函数与对数函数的互逆关系:指数函数与对数函数是互为反函数的关系。
2. 对数函数的图像和性质:对数函数的图像特点与函数的性质密切相关。
对数函数y =log10x的图像在x轴的右侧是递增的,而在x轴的左侧是递减的。
当x取正数时,函数图像在y轴的右侧上方,当x取0时,函数图像经过(0, -∞)的点,当x取负数时,函数图像在y轴的左侧下方。
对数函数的图像是一个渐近线为y = 0的曲线,该曲线在点(1, 0)处与x轴相交。
当x趋近于无穷大时,函数的值也趋近于无穷大,反之亦然。
3. 对数函数的运算和性质:对数函数的运算是基于指数函数的运算规律的。
对数函数的运算包括:- 指数和对数之间的互化:指数函数和对数函数是互为反函数的关系,两者之间可以通过指数函数的计算特性进行换算。
- 对数的乘除法:log10(a * b) = log10a + log10b,log10(a / b) = log10a - log10b。
4.4.2对数函数的图象和性质(教学课件)高一数学(人教A版2019)
lg[H ],
国家规定,饮用纯净水的pH应该在5.0 ~ 7.0之间.
3.反函数
已知函数 y=2x (x∈R ,y ∈(0,+∞)) 可得到x=log2y ,对于任意一个 y∈(0,+∞),通过式子x=log2y ,x在R中都有唯一确定的值和它对应。也就 是说,可以把y作为自变量,x作为y的函数,这是我们就说x=log2y (y∈(0, +∞))是函数 y=2x ( x∈R) 的反函数。
从图象中你能发现函数y=2x 与 y=log2x的图象间有什么关系?
y=2x
y
y=x
y (1)x 2
y
y=x
2A
2
两个函数的图象
B
1 11
42A10 1B来自2 3y=log2x4
x
1 11
关于直线y=x对称.
42
0 1 23 4
x
-
-
1-
1-
y log 1 x
2
2
2
1.(多选)对于函数 f(x)=3-x,g(x)=log 1 x,下列说法正确的是( )
目录
1 学习目标 3 课本例题 5 题型分类讲解 7 课后作业
2 新课讲解 4 课本练习 6 随堂检测
学习目标
1.通过具体对数函数图象,掌握对数函数的图象和性质 特征,并能解决问题。
2.知道同底的对数函数与指数函数互为反函数。
情境导入
历史上纳皮尔是当之无愧的“对数缔造者”,理应在数学史上享有这份殊 荣。伟大的导师恩格斯在他的著作《自然辩证法》中,曾经把笛卡尔的坐标 、纳皮尔的对数、牛顿和莱布尼兹的微积分共同称为十七世纪的三大数学发 明。法国著名的数学家、天文学家拉普拉斯(PierreSimonLaplace,17491827)曾说:对数,可以缩短计算时间,“在实效上等于把天文学家的寿命 延长了许多倍”.
高一数学对数函数
高一数学对数函数对数函数是高中数学中的重要内容之一,是指以某个既定的底数为基数,求一个数的对数时,使用的函数关系。
在实际生活和科学研究中,对数函数有着广泛的应用。
下面将介绍对数函数的定义、性质以及应用。
对数函数的定义:对数函数是指数函数的反函数。
设a为一个正实数且a≠1,x为一个正实数,那么以a为底x的对数函数定义为:y=loga(x),即x=a^y。
其中,a称为底数,x称为实际数,y称为对数。
对数函数的性质:1.对数函数的定义域为正实数集合,值域为所有实数。
2.底数小于1的对数函数是递减函数,底数大于1的对数函数是递增函数。
3.对数函数y=loga(x)与指数函数y=a^x是互为反函数的关系,即对于任何实数x,有(loga(x))^a=x。
4.对于同一个底数,loga(x1*x2)=loga(x1)+loga(x2),loga(x1/x2)=loga(x1)-loga(x2),loga(x^k)=k*loga(x)。
5.换底公式:loga(x)=logb(x)/logb(a),其中b为正实数且b≠1。
换底公式可以用来计算以外底数的对数。
对数函数的应用:1.求解指数方程:对数函数常用于求解指数方程。
通过将指数方程转化为对数方程,可以更容易地求解。
例如,求解2^x=8,可以转化为log2(8)=x,即使用对数函数求出x=3。
2.化简复杂计算:对数函数能够化简一些复杂的计算。
例如,计算log2(32),可以将32表示为2的某个次幂,即32=2^5,那么log2(32)=5。
3.描述增长趋势:对数函数广泛应用于描述各种日益增长的现象。
例如,人口增长、物质衰变、金融复利等。
对数函数能够将指数增长变为线性增长,便于分析和预测。
4.信号处理:在信号处理领域,对数函数常用于对音频和图像信号进行变换和处理。
对数函数可以将原始信号的动态范围缩小,并增强低强度信号的可视化效果。
总之,对数函数在数学和实际应用中具有重要地位。
高一数学对数函数的图像与性质(PPT)4-1
讨论复合函数单调性的步骤是: 1、求出复合函数的定义域; 2、把复合函数分解成若干个常见的基本 函数,并分别判定其单调性和单调区间; 3、根据复合函数的单调性规律判定其单 调性和单调区间.复合函数y=f[g(x)]的单 调规律是“同则增,异则减”,即f(t)与g(x) 若有相同的单调性则y=f[g(x)]必为增函数, 若具有不同的单调性则y=f[g(x)]必为减函数.
1.观察 函数 y lg x 是什么函数?
2.思考
该函数既不是幂函数,也不是对数函数;既不
该函数既不是幂函数,也不是对数函数;既不是两个函数的和函数,也不是两个函
是两个函数的和函数,数1也的.积观不函察数是.两个函数的积函数.
3.讨论
该函数可看作在幂函数 y t 2 的自变量 t 的位
置上,代入一个关于 x 的函数 t lg x 而得到的.
箱养殖,宜做约长厘米,宽厘米,高厘米的箱子,一层层架起将集中饲养。箱内铺~厘米厚的腐殖土,放上菜叶等,两箱放~只蜗牛,两天傍晚用喷水壶浇
一次水,使箱子内壁潮湿。 [] 蜗牛饲喂宜每晚喂食一次,可用各季蔬菜、农作物、绿肥作物、杂草根、茎、叶、花和果实,瓜皮、果皮、剩渣及废纸等,再 配上一些精饲料、蛋白料及; 验货公司 ; 矿物质饲料。也可两日喂一次,蜗牛可食剩残菜饭、腐殖物。保持洒水,使场地湿 度在~7%,PH~7,空气湿度7~%。当年孵化幼蜗,个月即达个螺层,体重达克以上,大的达克左右。养殖中应预防鸡、鸭、麻雀、鸽子、老鼠等天敌危 害。 [] 养殖要点 温度~℃,最佳℃,一般能高不低。加温必须采取地龙火道,且常年备好,尤其是春末夏初,要防止突然降温,有条件暖气最好,不要采 取火炉加温。 [] 湿度。饲养土的土表湿度要保持到%~%,空气相对湿度8%~%,能湿不干,控湿、保湿采取塑料布盖顶。 [] 防止干风、冷气直接吹进, 进口应采取双门、挂布、挡风板。 [] 坚决控制有异味的气体进入饲养场地。 [] 饲养土必须控制在pH.~7.,切忌使用施过农药、化学物质的污染砂土。 [] 养 殖容器一定要具有很好的透水性和透气性。 [] 不工作时不要强光照射,阴暗最好,夜间采用W红色灯泡照明,这样能刺激产卵。 [] 卵的孵化。蜗牛的养殖 成败,关键在卵的孵化,控制室内温度在~℃,空气湿度在%~%,土表湿度在%~%,改进采卵孵化方法,采用种蜗牛天轮倒法,此法能大大提高蜗牛的 养殖效益,一般出壳率达%以上。 [] 幼蜗牛的饲养关系到迅速发展蜗牛数量与产量的成败关键,要特别注意温度与湿度的控制。温度一般应控制在~℃之间, 饲养土含水量以%~%为宜,空气相对湿度在8%~%为宜,多食鲜嫩多汁的饲料,辅以钙质食物。 [] ~月龄蜗牛饲养池内加湿,坚决不能用水泼,采用喷 雾器喷,最好用温水。 [] 发现病、死蜗牛及时清除。 [] 勤清粪便,最好采取蚯蚓与蜗牛混养,一举两得。 [] 防止天敌侵害、灭鼠、灭蚁,定时用/的敌百虫 溶液喷洒,能有效地杀灭蜗牛的最大天敌--螨,定期用过氧乙酸稀释液,对蜗牛的养殖场所进行消毒,杀灭病源微生物。 [] 成本最低,效果最佳饲料配方: 米糠%,贝壳%,酵母粉8%,其他%。 [] 饲养与管理 饲养方式 大体分为室外开放式和室内封闭式两种。 [] 室外开放式包括沟式、棚式、庭院式等,让其
高一上学期数学人教A版必修第一册4.4.2对数函数的图象和性质
3、点P(1,2) 关于y x 的对称点P3( ) ;
4、点 P(a,b) 关于 y x 的对称点P4( ) 。
探究II
II.在同一坐标第中,画出 y= 2x与 y=log2x
图象,你能发现两个函数的图象有什么对
称关系?再画出 y=(1)x 与 y=log1 x 图象验证
2
2
y=2x
y. . 1. .
O. 1
y=x
y
y=(
1 2
)x=
0.50
. . y=log2x
. . 1 .
x
O
1
y=x
. .x
y=log1 x 2 = 0.50
III.取函数y 2x 的图象上的几个点,如:
y 2x
的图象上,那么
P0 (x0 , y0 )关于
直线 y x的对称点的坐标是什么?
它在函数 y log2 x 的图象上吗?为什么?你得到什么结论?
问题V:上述结论对于指数函数 y ax (a 0,a 1) 及其反函数y loga x(a 0,a 1) 也成立吗?为 什么?
问题V:上述结论对于指数函数 y ax(a 0,a 1)及其反函
y log2 x 的图象上?为什么?
答:
P1
,
P2
,
P3
关于直线
y
x
的对称点的坐标分别为
P1,(
1 2
,-1)
,
P(2,1,0), P(3,2,1)。
因为
log2
1 2
1
,log2
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。