实验 线性霍尔式传感器位移特性实验

合集下载

传感器与检测技术实验报告

传感器与检测技术实验报告

传感器与检测技术实验报告前言:位移传感器又称为线性传感器,是一种属于金属感应的线性器件,传感器的作用是把各种被测物理量转换为电量。

在生产过程中,位移的测量一般分为测量实物尺寸和机械位移两种。

按被测变量变换的形式不同,位移传感器可分为模拟式和数字式两种。

模拟式又可分为物性型和结构型两种。

常用位移传感器以模拟式结构型居多,包括电位器式位移传感器、电感式位移传感器、自整角机、电容式位移传感器、电涡流式位移传感器、霍尔式位移传感器等。

数字式位移传感器的一个重要优点是便于将信号直接送入计算机系统。

这种传感器发展迅速,应用日益广泛。

一、电容式传感器1、传感器照片(luoshida-m30)2、应用场景管件材质:ABS塑料安装方式:齐平/非齐平检测距离:2-20mm/2-30mm可调节工作电压:10-40VDC输出方式:NPN/PNP NO/NC/NO+NC连接方式:2M PVC线缆3、测量原理这种开关的测量通常是构成电容器的一个极板,而另一个极板是开关的外壳。

这个外壳在测量过程中通常是接地或与设备的机壳相连接。

当有物体移向接近开关时,不论它是否为导体,由於它的接近,总要使电容的介电常数发生变化,从而使电容量发生变化,使得和测量头相连的电路状态也随之发生变化,由此便可控制开关的接通或断开。

这种接近开关检测的物件,不限於导体,可以绝缘的液体或粉状物等。

4、比较优点:温度稳定性好,结构简单,适应性强,动态响应好,可以实现非接触测量,具有平均效应:缺点:输出阻抗高,负载能力差,寄生电容影响大,输出特性非线性二、霍尔式位移传感器1、传感器照片(MIRAN-WOA-C-R角度位移)2、应用场景供电电压24V DC,输出信号有4-20MA、0-5V、0-10V等3、测量原理如果马达角度传感器构造运转,而齿轮不转,说明你的机器已经被障碍物给挡住了。

此技术使用起来非常简单,而且非常有效;唯一要求就是运动的轮子不能在地板上打滑(或者说打滑次数太多),否则你将无法检测到障碍物。

霍尔传感器位移特性实验报告

霍尔传感器位移特性实验报告

霍尔传感器位移特性实验报告霍尔传感器位移特性实验报告一、引言霍尔传感器是一种常用的非接触式位移传感器,广泛应用于工业自动化、汽车电子、航空航天等领域。

本实验旨在探究霍尔传感器的位移特性,通过实验数据的采集和分析,了解霍尔传感器在不同位移条件下的响应特点。

二、实验目的1. 理解霍尔传感器的工作原理;2. 掌握霍尔传感器的位移测量方法;3. 分析霍尔传感器在不同位移下的输出特性。

三、实验装置与方法1. 实验装置:- 霍尔传感器:将霍尔传感器固定在测量平台上,与位移装置相连;- 位移装置:通过手动旋钮控制位移装置的运动,使其产生不同的位移;- 数据采集系统:使用万用表或示波器对霍尔传感器的输出信号进行采集。

2. 实验方法:- 将霍尔传感器与位移装置连接后,将位移装置调整到初始位置;- 通过手动旋钮控制位移装置,逐步改变位移,记录下每个位移条件下的传感器输出信号;- 将采集到的数据进行整理和分析。

四、实验结果与分析在实验过程中,我们按照不同的位移条件,记录下了霍尔传感器的输出信号。

通过对数据的整理和分析,我们得到了以下结果:1. 位移与输出信号的关系:我们发现,随着位移的增加,霍尔传感器的输出信号呈线性增加的趋势。

这与霍尔传感器的工作原理相吻合,即霍尔传感器通过感应磁场的变化来测量位移。

2. 输出信号的稳定性:在一定范围内,霍尔传感器的输出信号相对稳定,变化较小。

然而,当位移超出一定范围时,输出信号的变化较大。

这可能是由于霍尔传感器的灵敏度有限,在较大位移下无法准确测量。

3. 温度对输出信号的影响:在实验过程中,我们还发现温度对霍尔传感器的输出信号有一定影响。

随着温度的升高,输出信号呈现出一定的波动。

这可能是由于温度变化引起霍尔传感器内部电路的参数变化,进而影响输出信号的稳定性。

五、实验总结通过本次实验,我们深入了解了霍尔传感器的位移特性。

我们发现霍尔传感器的输出信号与位移呈线性关系,在一定范围内相对稳定。

线性霍尔传感器位移特性实验

线性霍尔传感器位移特性实验

线性霍尔传感器位移特性实验1.实验目的通过对线性霍尔传感器位移特性的实验,使学生了解线性霍尔传感器的基本工作原理,并了解它在位移测量中的应用。

2.实验仪器线性霍尔传感器、数字万用表、调整电源。

3.实验原理线性霍尔传感器是一种基于霍尔效应工作的传感器。

当通过传感器的电流与磁场相互作用时,传感器的输出电压会发生变化。

通过调整传感器附近的磁场,可以改变传感器的输出电压。

线性霍尔传感器的输出电压与输出电流成正比,因此可以用来测量位移。

4.实验步骤(1)将调整电源的电压调整到3V左右,将线性霍尔传感器连接到数字万用表的电流输入端。

(2)将线性霍尔传感器固定在一个平面表面上,并将测量头固定在传动机构上。

(3)在传动机构上固定一块磁铁,并将磁铁与线性霍尔传感器保持一定的距离。

(4)用手慢慢地移动传动机构,观察及记录数字万用表的输出读数,同时测量传动机构的位移。

(5)按照步骤(4),沿一个方向不断地调整传动机构的位置,获得输出电压和位移数据。

然后,沿相反的方向重复这个过程。

(6)根据实验中获得的数据绘制线性霍尔传感器的位移特性曲线。

5.实验注意事项(1)实验时应防止磁场干扰,以免影响实验结果。

(2)在实验过程中需要减小环境磁场干扰。

(3)尽量减少传动机构的摩擦,以确保实验结果的准确性。

6.实验结果分析根据实验分析得到的数据,可以绘制线性霍尔传感器的位移特性曲线。

通过分析该曲线,可以了解线性霍尔传感器的工作特性。

根据曲线的斜率,可以计算出线性霍尔传感器的灵敏度,进一步推断出它在位移测量中的应用范围。

电容式传感器的位移特性实验报告

电容式传感器的位移特性实验报告
半径。当两圆筒相对移动 Δl 时,电容变化量 ΔC 为:
∆C =
2πεd
2πε( − ∆)
2πε∆


=
= 0
ln(r2 /r1 )
ln(r2 /r1 )
ln(r2 /r1 )

于是,可得其静态灵敏度为:
=

2πε( + ∆) 2πε( − ∆)
4πε
=[

]/∆ =

-418
-403
-388
X/mm
12
12.5
13
13.5
14
14.5
15
15.5
16
16.5
17
17.5
U/mv
-372
-356
-339
-322
-304
-286
-269
-251
-231
-211
-192
-171
X/mm
18
18.5
19
19.5
20
20.5
21
21.5
22
22.5
23
23.5
U/mv
-149
72
74
79
85
89
89
85
77
X/mm
23.5
23
22.5
22
21.5
21
20.5
20
19.5
19
18.5
18
U/mv
66
52
35
17

-1
-21
-40
-61
-82
-104
-125
-147

线性霍尔传感器位移特性实验

线性霍尔传感器位移特性实验

线性霍尔传感器位移特性实验一、实验目的:了解霍尔式传感器原理与应用。

二、基本原理:在半导体薄片两端通以控制电流I、并在薄片的垂直方向施加磁场强度为B的磁场,那么在垂直于电流和磁场的方向上将产生电势UH(称为霍尔电势或霍尔电压)。

这种现象称为霍尔效应。

霍尔效应原理霍尔传感器有霍尔元件和集成霍尔传感器两种类型。

集成霍尔传感器是把霍尔元件、放大器等做在一个芯片上的集成电路型结构,与霍尔元件相比,它具有微型化、灵敏度高、可靠性高、寿命长、功耗低、负载能力强以及使用方便等等优点。

本实验采用的霍尔式位移(小位移1mm~2mm)传感器是由线性霍尔元件、永久磁钢组成,其它很多物理量如:力、压力、机械振动等本质上都可转变成位移的变化来测量。

霍尔式位移传感器的工作原理和实验电路原理如图(a)、(b)所示。

将磁场强度相同的两块永久磁钢同极性相对放置着,线性霍尔元件置于两块磁钢间的中点,其磁感应强度为0,(a)工作原理(b)实验电路原理霍尔式位移传感器工作原理图设这个位置为位移的零点,即X=0,因磁感应强度B=0,故输出电压U H=0。

当霍尔元件沿X轴有位移时,由于B≠0,则有一电压U H输出,U H经差动放大器放大输出为V。

V与X有一一对应的特性关系。

*注意:线性霍尔元件有四个引线端。

涂黑二端是电源输入激励端,另外二端是输出端。

接线时,电源输入激励端与输出端千万不能颠倒,否则霍尔元件就损坏。

三、需用器件与单元:主机箱中的±2V~±10V(步进可调)直流稳压电源、±15V直流稳压电源、电压表;霍尔传感器实验模板、霍尔传感器、测微头。

四、实验步骤:1、调节测微头的微分筒(0.01mm/每小格),使微分筒的0刻度线对准轴套的10mm 刻度线。

按图示意图安装、接线,将主机箱上的电压表量程切换开关打到2V档,±2V~±10V (步进可调)直流稳压电源调节到±4V档。

2、检查接线无误后,开启主机箱电源,松开安装测微头的紧固螺钉,移动测微头的安装套,使传感器的PCB板(霍尔元件)处在两园形磁钢的中点位置(目测)时,拧紧紧固螺钉。

实验五霍尔传感器位移特性实验

实验五霍尔传感器位移特性实验

实验五霍尔传感器位移特性实验(共2页)(一)直流激励时位移特性实验一、实验目的:了解霍尔传感器的原理与应用。

二、实验仪器:霍尔传感器模块、霍尔传感器、测微头、直流电源、数显电压表。

三、实验原理:根据霍尔效应,霍尔电势U H=K H IB,其中K H为灵敏度系数,由霍尔材料的物理性质决定,当通过霍尔组件的电流I一定,霍尔组件在一个梯度磁场中运动时,就可以用来进行位移测量。

四、实验内容与步骤1.按图5-1接线。

图5-1 霍尔传感器直流激励接线图2.开启电源,直流数显电压表选择“2V”档,将测微头的起始位置调到“1cm”处,手动调节测微头的位置,先使霍尔片大概在磁钢的中间位置(数显表大致为0),固定测微头,再调节Rw1使数显表显示为零。

3.分别向左、右不同方向旋动测微头,每隔0.2mm记下一个读数,直到读数近似不变,将读数填入下表5-1及5-2。

五、实验报告1.作出U-X曲线,计算灵敏度。

2.何为霍尔效应?制作霍尔元件应采用什么材料,为什么?(二)交流激励时位移特性实验一、实验目的:了解交流激励时霍尔传感器的特性二、实验仪器:霍尔传感器模块、霍尔传感器、测微头、直流电源、数显电压表。

三、实验原理:交流激励时霍尔式传感器与直流激励一样,基本工作原理相同,不同之处是测量电路。

四、实验内容与步骤:1.接线如下图5-2。

图5-22.调节振荡器的音频调频和音频调幅旋钮,使音频振荡器的“00”输出端输出频率为1K,Vp-p=4V的正弦波(注意:峰峰值不应过大,否则烧毁霍尔组件)。

3.开启电源,直流数显电压表选择“2V”档,将测微头的起始位置调到“10mm”处,手动调节测微头的位置,使霍尔片大概在磁钢的中间位置(数显表大致为0),固定测微头,再调节Rw1使数显表为零。

4.分别向左、右不同方向旋动测微头,每隔0.2mm记一个读数,直到读数近似不变,将读数填入下表5-3及5-4。

五、实验报告1.作出U-X曲线,计算灵敏度。

电容式传感器的位移特性实验报告

电容式传感器的位移特性实验报告
72
72
72
72
∑ = 1062, ∑ = −18445, ∑ = −203594, ∑ 2 = 17607
=1
=1
=1
=1
因为
k=
∑ − ∑ ∑
∑ 2 − ( ∑ )
b=
2
∑ 2 ∑ − ∑ ∑
∆H
xi/mm
∆H
6
-9
15
-5
6.5
-5
15.5
-6
7
-5
16
-5
7.5
-6
16.5
-3
8
-5
17
-4
8.5
-4
17.5
-3
9
-6
18
-2
9.5
-7
18.5
-2
10
-7
19
-2
10.5
-7
19.5
-3
11
-7
20
-3
11.5
-7
20.5
-3
12
-6
21
-4
12.5
-5
21.5
-2
13
-5
22
-2
13.5
半径。当两圆筒相对移动 Δl 时,电容变化量 ΔC 为:
∆C =
2πεd
2πε( − ∆)
2πε∆


=
= 0
ln(r2 /r1 )
ln(r2 /r1 )
ln(r2 /r1 )

于是,可得其静态灵敏度为:
=

2πε( + ∆) 2πε( − ∆)
4πε

12 霍尔传感器的位移特性实验

12 霍尔传感器的位移特性实验

12 霍尔传感器的位移特性实验霍尔传感器是一种能够测量磁场强度的传感器,它的工作原理是利用霍尔效应。

通过测量磁场强度的变化来实现对物体位移的测量。

本次实验旨在探究霍尔传感器的位移特性,并且验证霍尔传感器与位移之间的关系。

实验系统主要由两个部分组成:霍尔传感器和实验对象,实验对象是一块带有磁性的铁片,通过移动铁片,可以改变磁场的强度,进而改变霍尔传感器的输出电压。

通过对不同距离下传感器输出电压的测量,得到霍尔传感器的位移特性曲线。

实验步骤如下:1. 实验前首先将霍尔传感器连接到电源,并将多功能测量仪连接到霍尔传感器输出端。

然后将铁片固定在传感器的前方,将传感器对准铁片。

2. 在将多功能测量仪切换到电压测量模式后,记录下没有铁片存在时的输出电压(V0)。

3. 将铁片离传感器移动不同的距离,并记录每一次的输出电压值。

每次测量前需要等待电路稳定后方可进行测量。

4. 取多组数据,实验中可以根据需要改变铁片和传感器之间的距离。

5. 将实验数据绘制成位移特性曲线。

横坐标为铁片与传感器的距离,纵坐标为霍尔传感器的输出电压。

6. 对实验数据进行分析,并结合理论分析来解释霍尔传感器的位移特性。

实验结果显示,当铁片距离传感器很远时,传感器的输出电压几乎为零。

当铁片靠近传感器时,输出电压会迅速增加,并呈现出一定的线性关系,随着铁片距离传感器的进一步缩短,输出电压逐渐饱和并趋于稳定。

根据理论分析,霍尔传感器在磁场作用下,输出电压与磁场的强度成正比,当铁片与传感器之间的距离越近,磁场的强度也会越强,导致输出电压增加。

因此,实验结果与理论分析一致。

通过本次实验,我们可以更深入地了解电磁学和传感器技术,同时也可以对霍尔传感器的位移特性有更准确的认识。

霍尔传感器具有响应快、精度高、使用寿命长等优点,可以广泛应用于工业自动化控制、作为安全装置、地磁测量等领域。

传感器测试实验报告

传感器测试实验报告

传感器测试实验报告实验一直流激励时霍尔传感器位移特性实验一、实验目的:了解霍尔式传感器原理与应用。

二、基本原理:金属或半导体薄片置于磁场中,当有电流流过时,在垂直于磁场和电流的方向上将产生电动势,这种物理现象称为霍尔效应。

具有这种效应的元件成为霍尔元件,根据霍尔效应,霍尔电势UH=KHIB,当保持霍尔元件的控制电流恒定,而使霍尔元件在一个均匀梯度的磁场中沿水平方向移动,则输出的霍尔电动势为UHk_,式中k—位移传感器的灵敏度。

这样它就可以用来测量位移。

霍尔电动势的极性表示了元件的方向。

磁场梯度越大,灵敏度越高;磁场梯度越均匀,输出线性度就越好。

三、需用器件与单元:霍尔传感器实验模板、霍尔传感器、15V直流电源、测微头、数显单元。

四、实验步骤:1、将霍尔传感器安装在霍尔传感器实验模块上,将传感器引线插头插入实验模板的插座中,实验板的连接线按图9-1进行。

1、3为电源5V,2、4为输出。

2、开启电源,调节测微头使霍XX大致在磁铁中间位置,再调节Rw1使数显表指示为零。

图9-1直流激励时霍尔传感器位移实验接线图3、测微头往轴向方向推进,每转动0.2mm记下一个读数,直到读数近似不变,将读数填入表9-1。

表9-1作出V-_曲线,计算不同线性范围时的灵敏度和非线性误差。

五、实验注意事项:1、对传感器要轻拿轻放,绝不可掉到地上。

2、不要将霍尔传感器的激励电压错接成15V,否则将可能烧毁霍尔元件。

六、思考题:本实验中霍尔元件位移的线性度实际上反映的时什么量的变化七、实验报告要求:1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。

2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。

实验二集成温度传感器的特性一、实验目的:了解常用的集成温度传感器基本原理、性能与应用。

二、基本原理:集成温度传器将温敏晶体管与相应的辅助电路集成在同一芯片上,它能直接给出正比于绝对温度的理想线性输出,一般用于-50℃-+150℃之间测量,温敏晶体管是利用管子的集电极电流恒定时,晶体管的基极—发射极电压与温度成线性关系。

12 霍尔传感器的位移特性实验

12 霍尔传感器的位移特性实验

• 霍尔电势与位移量成线性关系,其输出电 势的极性反映了元件位移方向。磁场梯度 越大,灵敏度越高;磁场梯度越均匀,输 出线性度就越好。利用这一原理可以测量 与位移有关的非电量,如力,压力,加速 度,液位和压差。这种传感器一般可测量12mm的微小位移,特点是惯性小,响应速 度快,无触点测量。
实验内容及步骤
• 由于磁路系统的气隙较大,应使霍尔片尽 量靠近极靴,以提高灵敏度。
• 一旦调整好后,测量过程中不能移动磁路 系统。 • 对传感器要轻拿轻放,绝不可掉到地上。 • 不要将霍尔传感器的激励电压错接成±15V, 否则将可能烧毁霍尔元件。
思考题
• 本实验中霍尔元件位移的线性度实际上反 映的是什么量的变化?
• 1、霍尔传感器安装将霍尔传感器安装在霍 尔传感器实验模块上,将传感器引线插头 插入实验模板的插座中,实验板的连接线。 • 2、数显表调零:开启电源,调节测微头使 霍尔片大致在磁铁中间位置,再调节RW1 使数显表指示为零。 • 3、实验记录:测微头往轴向方向推进,从 15.00mm到5.00mm左右为止。将读数填入
• 了解霍尔式传感器的结构、工作原理; • 学会用霍尔传感器做静态位移测试。
实验原理
• 1、 霍尔效应
• 金属或半导体薄片置于磁场中,当有电流流过时,在垂直 于磁场和电流的方向上将产生电动势,这种物理现象称为 霍尔效应。具有这种效应的元件成为霍尔元件。 • 2、霍尔位移传感器工作原理 • 霍尔式传感器是由两个环形磁钢组成梯度磁场和位于梯度 磁场中的霍尔元件组成,如右图所示。当霍尔元件通过恒 定电流时,霍尔元件有电势输出。 B • U H K H BI K 1 B x O • 当磁场与位移成正比时, B K2 x • U H K 1 K 2 x Kx (K ——位移传感器的灵敏度) •

霍尔传感器位移特性实验

霍尔传感器位移特性实验

实验14 直流激励时霍尔传感器位移特性实验141270046 自动化杨蕾生一、实验目的:了解直流激励时霍尔式传感器的特性。

二、基本原理:根据霍尔效应,霍尔电势U H=K H IB,当霍尔元件处在梯度磁场中运动时,它的电势会发生变化,利用这一性质可以进行位移测量。

三、需用器件与单元:主机箱、霍尔传感器实验模板、霍尔传感器、测微头、数显单元。

四、实验步骤:1、霍尔传感器和测微头的安装、使用参阅实验九。

按图14示意图接线(实验模板的输出V o1接主机箱电压表Vin),将主机箱上的电压表量程(显示选择)开关打到2V档。

2、检查接线无误后,开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1使数显表指示为零。

3、以某个方向调节测微头2mm位移,记录电压表读数作为实验起始点;再反方向调节测微头每增加0.2mm记下一个读数,将读数填入表14。

作出V-X曲线,计算不同线性范围时的灵敏度和非线性误差。

五、实验注意事项:1、对传感器要轻拿轻放,绝不可掉到地上。

2、不要将霍尔传感器的激励电压错接成±15V,否则将可能烧毁霍尔元件。

六、思考题:本实验中霍尔元件位移的线性度实际上反映的是什么量的变化?答:本人认为应该是实际的输入、输出与拟合的理想的直线的偏离程度的变化,当X不同的时候,实际的输出值与根据拟合直线得到的数值的偏离值是不相同的。

七、实验报告要求:1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。

实验数据如下:表9-2(1)由上图可知灵敏度为S=ΔV/ΔX=-0.9354V/mm(2)由上图可得非线性误差:当x=1mm时,Y=-0.9354×1+1.849=0.9136Δm =Y-0.89=0.0236VyFS=1.88Vδf =Δm /yFS×100%=1.256%当x=3mm时:Y=-0.9354×3+1.849=-0.9572VΔm =Y-(-0.94)=-0.0172VyFS=1.88Vδf =Δm /yFS×100%=0.915%2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。

传感器系列实验实验报告(3篇)

传感器系列实验实验报告(3篇)

第1篇一、实验目的1. 理解传感器的基本原理和分类。

2. 掌握常见传感器的工作原理和特性。

3. 学会传感器信号的采集和处理方法。

4. 提高实验操作能力和数据分析能力。

二、实验设备与器材1. 传感器实验平台2. 数据采集卡3. 信号发生器4. 示波器5. 计算机及相应软件6. 传感器:热敏电阻、霍尔传感器、光电传感器、电容式传感器、差动变压器等三、实验内容及步骤1. 热敏电阻实验(1)目的:了解热敏电阻的工作原理和特性。

(2)步骤:1. 将热敏电阻连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。

2. 通过数据采集卡采集热敏电阻的输出信号。

3. 使用示波器观察热敏电阻输出信号的波形和幅度。

4. 分析热敏电阻输出信号与温度的关系。

2. 霍尔传感器实验(1)目的:了解霍尔传感器的工作原理和特性。

1. 将霍尔传感器连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。

2. 通过数据采集卡采集霍尔传感器的输出信号。

3. 使用示波器观察霍尔传感器输出信号的波形和幅度。

4. 分析霍尔传感器输出信号与磁场强度的关系。

3. 光电传感器实验(1)目的:了解光电传感器的工作原理和特性。

(2)步骤:1. 将光电传感器连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。

2. 通过数据采集卡采集光电传感器的输出信号。

3. 使用示波器观察光电传感器输出信号的波形和幅度。

4. 分析光电传感器输出信号与光照强度的关系。

4. 电容式传感器实验(1)目的:了解电容式传感器的工作原理和特性。

(2)步骤:1. 将电容式传感器连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。

2. 通过数据采集卡采集电容式传感器的输出信号。

3. 使用示波器观察电容式传感器输出信号的波形和幅度。

4. 分析电容式传感器输出信号与电容变化的关系。

5. 差动变压器实验(1)目的:了解差动变压器的工作原理和特性。

1. 将差动变压器连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。

霍尔传感器实验数据

霍尔传感器实验数据

1.直流激励时霍尔传感器的位移特性实验数据
表1 直流激励时霍尔传感器的位移特性实验数据记录
2.交流激励时霍尔传感器的位移特性实验数据
表2 交流激励时霍尔传感器的位移特性实验数据记录
1.直流激励时霍尔传感器的位移特性实验
图1 直流激励时霍尔传感器的位移特性曲线
经观察,我们可以发现曲线可分为3部分,中间、左下和右上,下面对3部分分别进行拟合:
对曲线中间部分进行拟合
图2 直流激励时的位移特性曲线中间部分拟合曲线
对曲线左下部分进行拟合
图3 直流激励时的位移特性曲线左下部分拟合曲线
表5 直流激励时霍尔传感器的位移特性曲线右上部分数据
对曲线右上部分进行拟合
图4 直流激励时的位移特性曲线右上部分拟合曲线
2.交流激励时霍尔传感器的位移特性实验
图5 交流激励时霍尔传感器的位移特性曲线
下面分3段进行拟合,首先对中间段拟合,数据如下
表6 交流激励时霍尔传感器的位移特性曲线中间部分数据
拟合图如下: 图6 交流激励时的位移特性曲线中间部分拟合曲线
对左下段进行拟合,数据如下:
图7 交流激励时的位移特性曲线左下部分拟合曲线对右上段进行拟合,数据如下:
拟合图如下:
图8 交流激励时的位移特性曲线右上部分拟合曲线。

传感器实验报告

传感器实验报告

成绩:吉林大学仪器科学与电气工程学院《传感器实验及课程设计》本科实验报告实验项目:应变片单臂特性实验学生姓名:***学号:********E-mail:*****************实验地点:地质宫2015年月日一、实验目的(内容及要求)了解电阻应变片的工作原理与应用并掌握应变片测量电路二、实验所用仪器设备机头中的应变梁的应变片、测微头;显示面板中的F/V表、±2V~±10V步进可调直流稳压电源;调理电路面板中传感器输出单元中的箔式应变片、调理电路单元中的电桥、差动放大器、4½位数显万用表。

三、实验原理电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。

一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器。

此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将弹性元件的变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。

为了将电阻应变式传感器的电阻变化转换成电压或电流信号,在应用中一般采用电桥电路作为其测量电路。

电桥电路按其工作方式分有单臂、双臂和全桥三种,单臂工作输出信号最小、线性、稳定性较差;双臂输出是单臂的两倍,性能比单臂有所改善;全桥工作时的输出是单臂时的四倍,性能最好。

单臂特性实验基本电路如图1—2(a)所示。

Uo=U①-U③=〔(R1+△R1)/(R1+△R1+R5)-R7/(R7+R6)〕E={〔(R7+R6)(R1+△R1)-R7(R5+R1+△R1)〕/〔(R5+R1+△R1)(R7+R6)〕}E设R1=R5=R6=R7,且△R1/R1=ΔR/R<<1,ΔR/R=Kε,K为灵敏度系数。

则Uo≈(1/4)(△R1/R1)E=(1/4)(△R/R)E=(1/4)KεE箔式应变片单臂电桥实验原理图如下:图中R5、R6、R7为350Ω固定电阻,R1为应变片;RW1和R8组成电桥调平衡网络,E为供桥电源±4V。

线性霍尔式传感器位移特性实验

线性霍尔式传感器位移特性实验
霍尔传感器有霍尔元件和集成霍尔传感器两种类型。集成霍尔传感器是把霍尔元件、放
大器等做在一个芯片上的集成电路型结构,与霍尔元件相比,它具有微型化、灵敏度高、可
靠性高、寿命长、功耗低、负载能力强以及使用方便等等优点。
本实验采用的霍尔式位移(小位移1mm~2mm)传感器是由线性霍尔元件、两只半
圆形永久磁钢组成,其它很多物理量如:力、压力、机械振动等本质上都可转变成位移的变
外二个2(V-)、4(Vo-)是输出端。接线时,电源输入激励端与输出端千万不能颠倒,否则霍尔元件要损坏。
3、将测头从处调到3=处作为位移起点并记录电对针方向)仔细调节测微头的微分筒(0.01m/每小格)△x=0.1m(实验总位移从15mm~5mm)从电压表上读出相应的电压Vo值,填人下表24表24霍尔传感器位移实验数据
9.3
0.725
4.9
-0.038
0.6
-0.607
9.2
0.725
4.8
-0.067
0.5
-0.607
9.1
0.724
4.7
-0.1
0.4
-0.607
9
0.723
4.6
-0.135
0.3
-0.607
8.9
0.722
4.5
-0.159
0.2
-0.607
8.8
0.721
4.4
-0.187
0.1
-0.607
式中:RB=-1/(ne)是由半导体本身载流子迁移率决定的物理常数,称为霍尔系数
KH=R/d灵敏度系数,与材料的物理性质和几何尺寸有关。
具有上述霍尔效应的元件称为霍尔元件,霍尔元件大多采用N型半导体材料(金属材料中

电容式传感器位移特性实验报告

电容式传感器位移特性实验报告

电容式传感器位移特性实验报告篇一:实验十一电容式传感器的位移特性实验实验十一电容式传感器的位移特性实验一、实验目的:了解电容传感器的结构及特点二、实验仪器:电容传感器、电容传感器模块、测微头、数显直流电压表、直流稳压电源三、实验原理:电容式传感器是指能将被测物理量的变化转换为电容量变化的一种传感器它实质上是具有一个可变参数的电容器。

利用平板电容器原理:C??Sd??0??r?Sd(11-1)0真空介电常数,εr介质相对介电常数,由式中,S为极板面积,d为极板间距离,ε此可以看出当被测物理量使S、d 或εr发生变化时,电容量C随之发生改变,如果保持其中两个参数不变而仅改变另一参数,就可以将该参数的变化单值地转换为电容量的变化。

所以电容传感器可以分为三种类型:改变极间距离的变间隙式,改变极板面积的变面积式和改变介质电常数的变介电常数式。

这里采用变面积式,如图11-1两只平板电容器共享一个下极板,当下极板随被测物体移动时,两只电容器上下极板的有效面积一只增大,一只减小,将三个极板用导线引出,形成差动电容输出。

四、实验内容与步骤1.按图11-2将电容传感器安装在电容传感器模块上,将传感器引线插入实验模块插座中。

2.将电容传感器模块的输出UO接到数显直流电压表。

3.接入±15V电源,合上主控台电源开关,将电容传感器调至中间位置,调节Rw,使得数显直流电压表显示为0(选择2V档)。

(Rw确定后不能改动)4.旋动测微头推进电容传感器的共享极板(下极板),每隔记下位移量X与输出电压值V的变化,填入下表11-1五、实验报告:1.根据表11-1的数据计算电容传感器的系统灵敏度S和非线性误差δf。

六、实验数据曲线图:VX篇二:电涡流传感器的位移特性实验报告实验十九电涡流传感器的位移特性实验一、实验目的了解电涡流传感器测量位移的工作原理和特性。

二、实验仪器电涡流传感器、铁圆盘、电涡流传感器模块、测微头、直流稳压电源、数显直流电压表三、实验原理通过高频电流的线圈产生磁场,当有导电体接近时,因导电体涡流效应产生涡流损耗,而涡流损耗与导电体离线圈的距离有关,因此可以进行位移测量。

电容式传感器位移特性实验报告

电容式传感器位移特性实验报告

电容式传感器位移特性实验报告篇一:实验十一电容式传感器的位移特性实验实验十一电容式传感器的位移特性实验一、实验目的:了解电容传感器的结构及特点二、实验仪器:电容传感器、电容传感器模块、测微头、数显直流电压表、直流稳压电源三、实验原理:电容式传感器是指能将被测物理量的变化转换为电容量变化的一种传感器它实质上是具有一个可变参数的电容器。

利用平板电容器原理:C??Sd??0??r?Sd(11-1)0真空介电常数,εr介质相对介电常数,由式中,S为极板面积,d为极板间距离,ε此可以看出当被测物理量使S、d 或εr发生变化时,电容量C随之发生改变,如果保持其中两个参数不变而仅改变另一参数,就可以将该参数的变化单值地转换为电容量的变化。

所以电容传感器可以分为三种类型:改变极间距离的变间隙式,改变极板面积的变面积式和改变介质电常数的变介电常数式。

这里采用变面积式,如图11-1两只平板电容器共享一个下极板,当下极板随被测物体移动时,两只电容器上下极板的有效面积一只增大,一只减小,将三个极板用导线引出,形成差动电容输出。

四、实验内容与步骤1.按图11-2将电容传感器安装在电容传感器模块上,将传感器引线插入实验模块插座中。

2.将电容传感器模块的输出UO接到数显直流电压表。

3.接入±15V电源,合上主控台电源开关,将电容传感器调至中间位置,调节Rw,使得数显直流电压表显示为0(选择2V档)。

(Rw确定后不能改动)4.旋动测微头推进电容传感器的共享极板(下极板),每隔记下位移量X与输出电压值V的变化,填入下表11-1五、实验报告:1.根据表11-1的数据计算电容传感器的系统灵敏度S和非线性误差δf。

六、实验数据曲线图:VX篇二:电涡流传感器的位移特性实验报告实验十九电涡流传感器的位移特性实验一、实验目的了解电涡流传感器测量位移的工作原理和特性。

二、实验仪器电涡流传感器、铁圆盘、电涡流传感器模块、测微头、直流稳压电源、数显直流电压表三、实验原理通过高频电流的线圈产生磁场,当有导电体接近时,因导电体涡流效应产生涡流损耗,而涡流损耗与导电体离线圈的距离有关,因此可以进行位移测量。

霍尔传感器实验数据

霍尔传感器实验数据

1.直流激励时霍尔传感器的位移特性实验数据
表1 直流激励时霍尔传感器的位移特性实验数据记录
2.交流激励时霍尔传感器的位移特性实验数据
表2 交流激励时霍尔传感器的位移特性实验数据记录
1.直流激励时霍尔传感器的位移特性实验
图1 直流激励时霍尔传感器的位移特性曲线
经观察,我们可以发现曲线可分为3部分,中间、左下和右上,下面对3部分分别进行拟合:
对曲线中间部分进行拟合
图2 直流激励时的位移特性曲线中间部分拟合曲线
对曲线左下部分进行拟合
图3 直流激励时的位移特性曲线左下部分拟合曲线
表5 直流激励时霍尔传感器的位移特性曲线右上部分数据
对曲线右上部分进行拟合
图4 直流激励时的位移特性曲线右上部分拟合曲线
2.交流激励时霍尔传感器的位移特性实验
图5 交流激励时霍尔传感器的位移特性曲线
下面分3段进行拟合,首先对中间段拟合,数据如下
表6 交流激励时霍尔传感器的位移特性曲线中间部分数据
拟合图如下: 图6 交流激励时的位移特性曲线中间部分拟合曲线
对左下段进行拟合,数据如下:
图7 交流激励时的位移特性曲线左下部分拟合曲线对右上段进行拟合,数据如下:
拟合图如下:
图8 交流激励时的位移特性曲线右上部分拟合曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验 线性霍尔式传感器位移特性实验
一、实验目的:了解霍尔式传感器原理与应用。

二、基本原理:霍尔式传感器是一种磁敏传感器,基于霍尔效应原理工作。

它将被测量的磁场变化(或以磁场为媒体)转换成电动势输出。

霍尔效应是具有载流子的半导体同时处在电场和磁场中而产生电势的一种现象。

如图28—1(带正电的载流子)所示,把一块宽为b ,厚为d 的导电板放在磁感应强度为B 的磁场中,并在导电板中通以纵向电流I ,此时在板
图28—1霍尔效应原理
的横向两侧面A ,A 之间就呈现出一定的电势差,这一现象称为霍尔效应(霍尔效应可以用洛伦兹力来解释),所产生的电势差U H 称霍尔电压。

霍尔效应的数学表达式为:
U H =R H d
IB =K H IB 式中:R H =-1/(ne)是由半导体本身载流子迁移率决定的物理常数,称为霍尔系数;
K H = R H /d 灵敏度系数,与材料的物理性质和几何尺寸有关。

具有上述霍尔效应的元件称为霍尔元件,霍尔元件大多采用N 型半导体材料(金属材料中自由电子浓度n很高,因此R H 很小,使输出U H 极小,不宜作霍尔元件),厚度d 只有1µm 左右。

霍尔传感器有霍尔元件和集成霍尔传感器两种类型。

集成霍尔传感器是把霍尔元件、放大器等做在一个芯片上的集成电路型结构,与霍尔元件相比,它具有微型化、灵敏度高、可靠性高、寿命长、功耗低、负载能力强以及使用方便等等优点。

本实验采用的霍尔式位移(小位移1mm~2mm)传感器是由线性霍尔元件、永久磁钢组成,其它很多物理量如:力、压力、机械振动等本质上都可转变成位移的变化来测量。

霍尔式位移传感器的工作原理和实验电路原理如图28—2 (a)、(b)所示。

将磁场强度相同的两块永久磁钢同极性相对放置着,线性霍尔元件置于两块磁钢间的中点,其磁感应强度为0,
(a)工作原理(b)实验电路原理
图28—2霍尔式位移传感器工作原理图
设这个位置为位移的零点,即X=0,因磁感应强度B=0,故输出电压U H=0。

当霍尔元件沿X轴有位移时,由于B≠0,则有一电压U H输出,U H经差动放大器放大输出为V。

V与X有一一对应的特性关系。

*注意:线性霍尔元件有四个引线端。

涂黑二端1(V s+)、3(V s-)是电源输入激励端,另外二个2(V o+)、4(V o-)是输出端。

接线时,电源输入激励端与输出端千万不能颠倒,否则霍尔元件就损坏。

三、需用器件与单元:机头静态位移安装架、传感器输入插座、霍尔传感器、测微头;主板F/V表、±4V、霍尔、电桥、差动放大器。

四、实验步骤:
1、差动放大器调零:按图28—3示意接线,电压表(F/V表)量程切换开关打到2V 档,检查接线无误后合上主电源开关并将差动放大器的拨动开关拨到“开”位置。

将差动放大器的增益电位器顺时针慢悠悠转到底,再逆时针回转半周;调节差动放大器的调零电位器,使电压表显示为0。

维持差动放大器的调零电位器的位置不变,关闭主电源,拆除差动放大器的输入引线。

图28—3差动放大器调零接线图
2、调节测微头的微分筒(0.01mm/每小格),使微分筒的0刻度线对准轴套的10mm 刻度线。

按图28—4在机头上安装传感器与测微头并根据示意图接线。

检查接线无误后,开启主电源。

图28—4 线性霍尔传感器(直流激励)位移特性实验安装与接线示意图
3、松开安装测微头的紧固螺钉,移动测微头的安装套,使PCB板(霍尔元件)处在两园形磁钢的中点位置(目测)时,拧紧紧固螺钉。

仔细调节电桥单元中的W1电位器,使电压表显示0。

4、使用测微头时,当来回调节微分筒使测杆产生位移的过程中本身存在机械回程差,为消除这种机械回差可用单行程位移方法实验:顺时针调节测微头的微分筒3周,记录电压表读数(大约在1.6V~1.8V左右)作为位移起点。

以后,反方向(逆时针方向) 调节测微头的微分筒(0.01mm/每小格),每隔△X=0.1mm(总位移可取3~4mm)从电压表上读出输出电压Vo值,填入下表25(这样可以消除测微头的机械回差)。

表28 霍尔传感器(直流激励)位移实验数据
1、根据表28实验数据作出V-X特性曲线,分析曲线计算不同测量范围 (±0.5mm、±1mm、±2mm)时的灵敏度和非线性误差。

实验完毕,关闭电源。

相关文档
最新文档