机电一体化
机电一体化概论
2.计算机与信息处理技术
• 信息处理技术包括信息的交换、存取、运算、 判断和决策,实现信息处理的工具是计算机, 因此计算机技术与信息处理技术是密切相关 的。计算机技术包括计算机的软件技术和硬 件技术,网络与通信技术,数据技术等。 • 在机电一体化系统中,计算机信息处理部 分指挥整个系统的运行。信息处理是否正确、 及时,直接影响到系统工作的质量和效率。 因此计算机应用及信息处理技术已成为促进 机电一体化技术发展和变革的最活跃的因素。 • 人工智能技术、专家系统技术、神经网络 技术等都属于计算机信息处理技术。
5.传感与检测技术
• 传感与检测装置是系统的感受器官,它与信息系统的输 入端相联并将检测到的信息输送到信息处理部分。传感 与检测是实现自动控制、自动调节的关键环节,它的功 能越强,系统的自动化程度就越高。传感与检测的关键 元件是传感器。传感器是将被测量(包括各种物理量、 化学量和生物量等)变换成系统可识别的,与被测量有 确定对应关系的有用电信号的一种装置。 • 现代工程技术要求传感器能快速、精确地获取信息, 并能经受各种严酷环境的考验。与计算机技术相比,传 感器的发展显得缓慢,难以满足技术发展的要求。不少 机电一体化装置不能达到满意的效果或无法实现设计的 关键原因在于没有合适的传感器。因此大力开展传感器 的研究对于机电一体化技术的发展具有十分重要的意义。
1.机电一体化的高性能化
• 高性能化一般包含高速化、高精度、高效率和 高可靠性。新一代CNC系统就是以此”四高” 为满足生产急需而诞生的。它采用32位多CPU 结构,以多总线连接,以32位幅度进行高速数 据传递。因而,在相当高的分辨率(0.1μm)情况 下,系统仍有高速度(100m/min),可控及联 动坐标达16轴,并且有丰富的图形功能和自动 程序设计功能。为获取高效率,减少各辅助时 间这是一方面,而实现高速化的关键是CNC、 主轴转速进给率、刀具交换,托板交换等各关 键部分实现高速化。
机电一体化概述
单元一机电一体化概述1. 1. 1机电一体化的定义“机电一体化是在机械主功能、动力功能、信息功能和控制功能上引进微电子技术,并将机械装置与电子装置用相关软件有机结合而构成系统的总称。
”“机电一体化”是将机械技术、微电子技术、信息技术等多门技术学科在系统工程的基础上相互渗透、有机结合而形成和发展起来的一门新的边缘技术学科。
1. 1. 3机电一体化的内容机电一体化包含了技术和产品两方面的内容,首先是指机电一体化技术,其次是指机电一体化产品。
1. 1. 4机电一体化的特点机电一体化产品的显著特点是多功能、高效率、高智能、高可靠性,同时又具有轻、薄、细、小、巧的优点,其目的是不断满足人们生产生活的多样性和省时、省力、方便的需求。
1. 2机电一体化系统的基本组成1. 2. 1机电一体化系统的功能组成传统的机械产品主要是解决物质流和能量流的问题,而机电一体化产品除了解决物质流和能量流以外,还要解决信息流的问题。
机电一体化系统的主要功能就是对输入的物质、能量与信息(即所谓工业三大要素)按照要求进行处理,输出具有所需特性的物质、能量与信息。
机电一体化系统的主功能包括变换(加工、处理)、传递(移动、输送)、储存(保持、积蓄、记录)三个目的功能。
主功能也称为执行功能,是系统的主要特征部分,完成对物质、能量、信息的交换、传递和储存。
机电一体化系统还应具备动力功能、检测功能、控制功能、构造功能等其他功能。
加工机是以物料搬运、加工为主,输入物质(原料、毛坯等)、能量(电能、液能、气能等)和信息(操作及控制指令等),经过加工处理,主要输出改变了位置和形态的物质的系统(或产品)。
动力机,其中输出机械能的为原动机,是以能量转换为主,输入能量(或物质)和信息,输出不同能量(或物质)的系统(或产品)。
信息机是以信息处理为主,输入信息和能量,主要输出某种信息(如数据、图像、文字、声音等)的系统(或产品)。
1. 2. 2机电一体化系统的构成要素机电一体化系统一般由机械本体、传感检测、执行机构、控制及信息处理、动力系统等五部分组成,各部分之间通过接口相联系。
机电一体化概论
机电一体化概论第一章机电一体化概述2•机电一体化的发展趋势:智能化,模块化,网络化,微型化,绿色化,系统化.3•机电一体化的基本含义:机电一体化乃是在机械的主功能、动力功能、信息功能和控制功能上引进徽电子技术,并将机核装置与电子设备以及相关软件有机结合而构成的系统总称。
5•机电一体化的相关技术:机械技术、传感检测技术、信息处理技术、自动控制技术、伺服驱动技术、系统总体技术。
6.机电一体化系统的基本要素及其功能:8•机电一体化一词最早于1971年出现在日本。
它是取机械学的前半部和电子学的后半部拼合而成,但是,机电一体化并非机械技术和电子技术的简单叠加,而是有着自身体系的新型学科。
第二章机电一体化的相关技术L机电一体化系统中的机械系统:传动部分、导向机构、执行机构、轴系、机座或机架。
2.机电一体化中机械系统的基本要求:高精度、小惯量、大刚度、快速响应性、良好的稳定性。
9•传感器的定义:传感器是一种能感受规定的被测量,并按照一定的规律转换成可用的输出信号的器件或装置。
13•常见的接近开关及其应用:电涡式接近开关(金属)、电容式接近开关(导体和非导体)、霍尔接近开关(磁性物件)、光电开关:透射型,反射型(统计产量,检测包装,精确定位等)。
16.在控制系统中根据系统信号相对于时间的连续性,通常分为连续时间系统和离散时间系统(连续系统和离散系统)。
18•计算机控制系统的类型及计算机担当的角色:操作指导控制系统(助手)、宜接数字控制系统(DDC,决策者,操作者)、监督计算机控制系统(SCC, 操作指导系统与DDC系统的综合与发展,决策人)、分级控制系统、集散控制系统(DCS)、工厂自动化(FA)系统。
25•接口的分类(1)根据接口的变换和调整功能特征:零接口、被动接口、主动接口、智能接口。
(2)根据接口的输入\输出功能的性质:信息接口、机械接口、物理接口、环境接口。
(3)按照所联系的子系统不同:人机接口、机电接口。
机电一体化
机电一体化:是在机械的主功能、动力功能、信息功能和控制功能上引进微电子技术,并将机械装置与电子装置用相关软件有机结合而构成的系统总称。
是机械技术及信息技术相互交叉、融合的产物。
精密机械技术、微电子技术、信息技术有机结合新形势。
机电一体化的目的:是使系统高附价值化,即多功能化、高效率化、高可靠化、省材料省能源化、并使产品的结构向轻、薄、短、小巧化方向发展、不断满足人们生活的多样化需求和生产的省力化、自动化需求。
解决产品(系统)采用微电子技术所面临的共性关键技术:检测传感技术、信息处理技术、伺服驱动技术、自动控制技术、精密机械技术、系统总体技术系统必须具有的目的功能:变换(加工、处理)功能;传递(移动、输送)功能;储存(保持、积蓄、记录)功能机电一体化系统的五大要素(即相应功能):动力源(提供动力;内脏);控制器(控制;头脑);机构(构造;骨骼);检测传感器(计测;感官);执行元件(驱动;肌肉)接口:是各要素或各子系统相接处必须具备一定的联系条件接口变换、调整功能分为:零接口、无源接口、有源接口、智能接口接口输入/出功能分为:机械接口、物理接口、信息接口、环境接口工业三大要素:能量、物质、信息(省能、省资源、智能化)系统内部功能评价参数:1主功能:系统误差、抗干扰能力、废弃物输出、变换效率。
2动力功能:输入能量、能源。
3控制功能:控制输出/入口个数、手动操作。
4构造功能:尺寸重量、强度。
5计测功能:精度机电一体化系统的设计流程:1根据目的功能确定产品规格、性能指标;2系统功能部件、功能要素的划分;3接口的设计;4综合评价;5可靠性复查;6试调与调试运动参数:用来表征机器工作运动的轨迹、行程、方向和起、止点位置正确性的指标动力参数:用来表征机器输出动力大小的指标。
力、力矩、功率。
品质指标:用来表征运动参数和动力参数品质的指标。
机电一体化系统设计考虑方法:机电互补法;结合(融合)法;组合法机电一体化系统的设计类型:开发型设计;适应性设计;变异性设计设计程序分为:总体设计、部件的选择与设计、技术设计与工艺设计总体设计:明确设计思想;分析综合要求;划分功能模块;决定性功能参数;调研类似产品;你定总体方案;方案对比定性;编写总体设计论证书设计准则要考虑:人、机、材料、成本等。
机电一体化
1.1机电一体化的基本含义 1.1机电一体化的基本含义
日本机械振兴协会经济研究所于1981 日本机械振兴协会经济研究所于1981 年提出具有通用性定义: 年提出具有通用性定义: • 即“机电一体化是在机械主功能、动力功 机电一体化是在机械主功能、 能、信息功能和控制功能上引进微电子技 术,并将机械装置与电子装置用相关软件 有机结合而构成系统的总称”. 有机结合而构成系统的总称” • 它体现了机电一体化产品及其技术的基本 内容和特征,所以具有指导性的定义。 内容和特征,所以具有指导性的定义。 •
• 3)传感与检测系统:将机电一体化产品在运行过 传感与检测系统: 程中所需的自身和外界环境的各种参数及状态转 换成可以测定的物理量, 换成可以测定的物理量,同时利用检测系统的功 能对这些物理量进行测定, 能对这些物理量进行测定,为机电一体化产品提 供运行控制所需的各种信息。 供运行控制所需的各种信息。传感与检测系统的 功能一般有传感器或仪表来实现, 功能一般有传感器或仪表来实现,对其要求是体 积小、便与安装与连接、检测精度高、抗干扰等。 积小、便与安装与连接、检测精度高、抗干扰指的是机电一体化向微型机器和微观领域发 展的趋势。国外将其称为微电子机械系统( 展的趋势。国外将其称为微电子机械系统(micro ,MEMS), electro mechanical system ,MEMS),或微机电 一体化系统,泛指几何尺寸不超过1 一体化系统,泛指几何尺寸不超过1 机电产 并向微米、纳米即发展。 品,并向微米、纳米即发展。
• 4)信息处理及控制系统:根据机电一体化产品的 信息处理及控制系统: 功能和性能要求, 功能和性能要求,信息处理及控制系统接受传感 与检测系统反馈的信息,并对其进行相应的处理、 与检测系统反馈的信息,并对其进行相应的处理、 运算和决策, 运算和决策,以对产品的运行施以按照要求的控 实现控制功能。机电一体化产品中, 制,实现控制功能。机电一体化产品中,信息处 理及控制系统主要是由计算机的软件和硬件以及 相应的接口所组成。要求信息处理速度高, 相应的接口所组成。要求信息处理速度高,A/D D/A转换及分时处理时的输入 输出可靠, 转换及分时处理时的输入/ 和 D/A转换及分时处理时的输入/输出可靠,系统 的抗干扰能力强
机电一体化基础知识
按输出信 号性质分
模拟型
电阻型:电位器、电阻应变片等 电压、电流型:热电偶、光电电池、压电元件等
数字型
记数型:二值+计数器 代码型:编码器、磁尺等
传感与检测技术发展现状:
➢ 目前检测与传感技术的发展落后于机电一体化其它相关技术 的发展,使得不少机电一体化产品不能达到满意的效果或无 法实现设计。
传感器发展方向:
➢ 传感与检测技术研究对象是传感器及其信号检测装置,将各种被测参 数转换为标准的电信号输入到信息处理系统中。
➢ 传感器是实现检测的核心,传感器一般由敏感元件、转换元件、基本 转换电路三部分组成。
被测量 敏感பைடு நூலகம்件
转换元件
基本转换电路
电量
➢ 敏感元件直接感受被测量,并以确定关系输出某一物理量。 ➢ 转换元件将敏感元件输出的非电物理量转换成电路参数量。 ➢ 基本转换电路将电路参数量转换成便于测量的电信号。
➢ 自动控制技术范围很广,包括自动控制理论、控制系统设 计、系统仿真、现场调试、可靠运行等从理论到实践的整 个过程。
➢ 以传递函数为基础,研究单输入、单输出线性自动控制系 统分析与设计问题的古典控制技术发展较早,已趋成熟。
➢ 现代控制技术主要以状态空间法为基础,研究多输入、多 输出、非线性、高精度、高效能控制系统的分析和设计。
➢ 采用低摩擦阻力的传动部件和导向支撑部件。
➢ 缩短传动链,提高传动与支撑刚度。
➢ 选用最佳传动比,以达到提高系统分辨率, 并尽可能提高 加速能力。
➢ 缩小反向死区误差,采取消除传动间隙、减少支撑变形 的措施。
➢ 改进支撑及架体的结构设计以提高刚性,减小振动,降 低噪声。
➢ 适应精密化、高速化、小型化及轻量化的发展趋势 。
第1章 机电一体化
机电一体化系统的组成及工作原理 a)人的五大要素 b)机电一体化系统的要素 c)机电一体化系统的功能
第 一 章 机 电 一 体 化 概 述
第 一 章 机 电 一 体 化 概 述
各要素间联系
第 一 章 机 电 一 体 化 概 述
1、机械本体 机械本体包括机械传动装置和机械结构装置。其主要功 能是将构造系统的各子系统、零部件按照一定的空间和时间关 系安置在一定的位置上,并保持特定的关系。随着机电一体化
(机械学)
(电子学)
(机电一体化)
机电一体化不是机械技术和电子技术的简单叠加,而是 将电子设备的信息处理功能和控制功能“揉和”到机械装 置中去,从而达到扬长避短、互为补充的目的,使机电一 体化产品更具有系统性、完整性和科学性。
第 一 章 机 电 一 体 化 概 述
机电一体化是在机械主功能、动力功能、信息 功能和控制功能上引进微电子技术,并将机械装置 与电子设备以及相关软件有机结合而构成系统的总 称。
第 一 章 机 电 一 体 化 概 述
四、机电一体化的组成
机械技术 电气技术 微电子技术 机电一体化技术 接口技术 信息技术 机电一体化 控制技术 其他技术 机电一体化装置 机电一体化产品 机电一体化系统
二、机电一体化的基本概念
第 一 章 机 电 一 体 化 概 述
机电一体化:将多种技术融合为一体的产物 或者是将多种技术柔和地融合在一起的一门 综合学科。
微电子技术 (半导体技术、计 算机技术)
机械技术 (机械学、机构学)
机电一体化 技术领域
“机电一体化”也就是机械技术、微电子技术相互交叉、融 合的产物。
机电一体化最本质的特性仍然是一个机械系统,其最主 要功能仍然是进行机械能和其他形式的能的互换,利用机械 能实现物料搬移或形态变化以及实现信息传递和变换。机电 一体化系统与传统机械系统的不同之处是充分利用计算机技 术、传感技术和可控驱动元件特性,实现机械系统的现代化、 智能化、自动化。
机电一体化
机电一体化系统的功能构成: 机电一体化系统的功能构成:
School of Mechanical Engineering & Automation
机电一体化技术的主要特征: 机电一体化技术的主要特征: ①整体结构最优化:在传统机械产品中,为了增加功能,或实现某一种控制 整体结构最优化:在传统机械产品中,为了增加功能, 规律,往往靠增加机械机构的办法来实现。如果采用机电一体化系统, 规律,往往靠增加机械机构的办法来实现。如果采用机电一体化系统,可以 从机械、电子、硬件、软件四个方面去实现同一种功能。 从机械、电子、硬件、软件四个方面去实现同一种功能。 ②系统控制智能化:这是机电一体化技术与传统的工业自动化技术最主要的 系统控制智能化: 区别之一。电子技术的引入,显著地改变了传统机械那种单纯靠操作人员, 区别之一。电子技术的引入,显著地改变了传统机械那种单纯靠操作人员, 按照规定的工艺顺序频繁重复的工作状况。 按照规定的工艺顺序频繁重复的工作状况。 ③操作性能柔性化:计算机软件技术的引入,能使机电一体化系统的各个传 操作性能柔性化:计算机软件技术的引入, 动机构的动作通过预先给定的程序,一步一步地由电子系统来协调。 动机构的动作通过预先给定的程序,一步一步地由电子系统来协调。在生产 动作通过预先给定的程序 对象变更需要改变传动机构的动作规律时,无须改变其硬件机构, 对象变更需要改变传动机构的动作规律时,无须改变其硬件机构,只要调整 由一系列指令组成的软件,就可以达到预期的目的。 由一系列指令组成的软件,就可以达到预期的目的。
School of Mechanical Engineering & Automation
机电一体化的相关技术: 机电一体化的相关技术: ①机械技术:机械技术是机电一体化的基础。 机械技术:机械技术是机电一体化的基础。 ②计算机与信息处理技术:计算机应用及信息处理技术是促进机电一体化技 计算机与信息处理技术: 术和系统发展的最活跃的因素。 术和系统发展的最活跃的因素。 ③检测与传感技术:传感与检测是实现自动控制、自动调节的关键环节,它 检测与传感技术:传感与检测是实现自动控制、自动调节的关键环节, 的功能越强,系统的自动化程度就越高。 的功能越强,系统的自动化程度就越高。 ④自动控制技术:自动控制技术与计算机控制技术相联系,是机电一体化中 自动控制技术:自动控制技术与计算机控制技术相联系, 十分重要的关键技术。 十分重要的关键技术。 ⑤伺服驱动技术:伺服驱动技术是直接执行操作的技术,伺服系统是实现电 伺服驱动技术:伺服驱动技术是直接执行操作的技术, 信号到机械动作的转换装置与部件。它对系统的动态性能、 信号到机械动作的转换装置与部件。它对系统的动态性能、控制质量和功能 具有决定性的影响。 具有决定性的影响。
机电一体化
机电一体化1、机电一体化的概念:机电一体化是以机械、电子技术和计算机科学为主的多门学科相互渗透、相互结合的过程逐渐形成和发展得一门新兴边缘技术学科。
机电一体化又称机械电子学它是由机械学的前半部分与电子学的后半部分组成的。
2、变量施肥的过程:获取土壤的信息,通过农业专家决策,指定变量施肥处方图并将变量数据输入到施肥变量播种机控制系统中实现变量施肥。
不同变量施肥系统包括:步进电机驱动、电控无级变速器驱动、电控液压马达驱动。
3、伺服系统的组成:输出各部分的作用:(1)控制器:控制器的功能是根据输入信号和反馈信号比较的结果,决定控制方式。
常用的控制有PID 控制和最优控制等。
控制器一般都是电子线路或计算机组成等。
(2)功率放大器:控制器输出的信号通常都很微弱,需经功率放大器放大后,才能驱动执行机构动作。
功率放大器主要由电子器件组成。
(3)执行机构:执行机构直接与被控对象打交道,最后执行控制器的指令,完成某种特定的动作。
执行机构要准确,迅速,精准,可靠地实现对被控对象的调整和控制。
执行机构主要由各种执行元件和机械传动装置等组成。
(4)检测装置:为了提高工作精度和抗干扰能力,伺服系统一般采用闭环控制。
检测装置是系统反馈环节,通过检测装置的测量,将执行机构的输出信号反馈到伺服系统输入端,实现反馈控制。
反馈信号一般为位置反馈信号、速度反馈信号和电流反馈信号,要经过多种传感元件进行检测。
用来检测位置信号的装置有自整角机、旋转变压器、光电编码器等;用来检测速度信号的装置有测速发电机、旋转变压器、光电编码器等;用来检测电流信号的装置有取样电阻霍尔集成电路传感器等,可检测的装置要求是精度高、线性度好、可靠性高、响应快。
4、采样定理:为了保证在采样过程中不丢失原来信号中所包含的信息,采样频率必须按照香侬采样原理来确定,即要求; f≥fmax(L被来原信号f(t)的最高有效频率)在实际应用中,fn≥(5-10)fmax5、采样/保持电路的作用由于采样信号f※(t)在函数轴上仍是连续变化的模拟量,因此还需要A/D转换器将其转换成数字量。
机电一体化
要求:能快速、精确地获得信息并在相应的应 用环境中具有高可靠性。
1.4 共性关键技术
2、信息处理技术 主要完成信息的交换、存取、运算、判断 和决策等.其主要工具是计算机。
传感 器 A/D 计算 机 D/A 执行
装置
3、控制技术
关于软件方面的技术,主要以控制理论为 指导,对控制系统设计、仿真、现场调试、可 靠运行等。
数 控 铣 床
数控车床
焊接机器人
1.3 机电一体化的相关技术
机电一体化技术是自动化技术之一!
过程自动化 自动化 机械自动化 办公室自动化
主要目标
机电一体化
1.3 机电一体化的相关技术
1 2 3 4 5 6
检测传感技术 信息处理技术 自动控制技术 伺服驱动技术 机械技术 系统总体技术
1.2 机电一体化系统的构成
3、检测传感装置 检测产品内部状态和外部环境,实现计测 功能。 要求:体积小、精度高、抗干扰 4、电子控制单元
处理、运算、决策,实现控制功能。 要求:高可靠性、柔性、智能化
1.2 机电一体化系统的构成
5、执行机构
包括机械传动与操作机构,接收控制信息,完 成要求的动作,实现主功能。
1.2 发展概况
3.90年代后期开始为第三阶段,“智能化阶段”
① 光学、通信技术等进入了机电一体化,微细加工技术 也在机电一体化中崭露头脚,出现了光机电一体化和微机 电一体化等新分支; ② 对机电一体化系统的建模设计、分析和集成方法,机电 一体化的学科体系和发展趋势都进行了深入研究。 ③ 由于人工智能技术、神经网络技术及光纤技术等领域取 得的巨大进步,为机电一体化技术开辟了发展的广阔天地。 这些研究,将促使机电一体化进一步建立完整的基础和逐 渐形成完整的科学体系。
机电一体化
(2) 信息处理技术。信息处理技术是指在机电一体化产品工作过程中,与工作过程各种参数和状态以及自动控制有关的信息的交换、存取、运算、判断和决策分析等。在机电一体化产品中,实现信息处理技术的主要工具是计算机。计算机技术包括硬件和软件技术、网络与通信技术、数据处理技术和数据库技术等。在机电一体化产品中,计算机信息处理装置是产品的核心,它控制和指挥整个机电一体化产品的运行,因此,计算机应用及其信息处理技术是机电一体化技术中最关键的技术,它包括目前广泛研究并得到实际应用的人工智能技术、专家系统技术以及神经网络技术等。
机电一体化技术和产品的应用范围非常广泛,涉及到工业生产过程的所有领域,因此,机电一体化产品的种类很多,而且还在不断地增加。按照机电一体化产品的功能,可以将其分成下述几类。
①数控机械类。主要产品包括数控机床、机器人、发动机控制系统以及全自动洗衣机等。这类产品的特点是执行机构为机械装置。
(2) 生产能力和工作质量提高。机电一体化产品大都具有信息自动处理和自动控制功能,其控制和检测的灵敏度、精度以及范围都有很大程度的提高,通过自动控制系统可精确地保证机械的执行机构按照设计的要求完成预定的动作,使之不受机械操作者主观因素的影响,从而实现最佳操作,保证最佳的工作质量和产品的合格率。同时,由于机电一体化产品实现了工作的自动化,使得生产能力大大提高。例如,数控机床对工件的加工稳定性大大提高,生产效率比普通机床提高5 ~6 倍, 柔性制造系统的生产设备利用率可提高1 .5 ~3.5 倍,机床数量可减少约50 %,节省操作人员数量约50 %,缩短生产周期40 %,使加工成本降低50 %左右。
机电一体化
机电一体化1. 机电一体化的定义:在机械的主功能、动力功能、信息功能、控制功能基础上引入微电子技术,并将机械装置与电子装置用相关软件有机地结合所构成系统的总称。
2. 机电一体化一般包含:机电一体化产品(系统)和机电一体化技术两层含义。
3. 机电一体化产品的分类:按机电结合程度分类:✍机械电子化产品✍机械与电子融合的产品。
4. 机电一体化系统的构成:机械本体、检测传感部分、电子控制单元、执行器、动力源。
5. 执行元件:实现机电一体化系统主功能(三个目的功能):变换、传递、储存。
6. 机械本体(构造功能):机械本体包括机架、机械连接、机械传动等,它是机电一体化的基础,起着支撑系统中其他功能单元、传递运动和动力的作用。
7. 动力源(动力功能):是机电一体化产品的能量供应部分,其作用是按照系统控制要求,为系统提供能量和动力,使系统正常运行。
提供能量的方式包括电能、气能和液压能,以电能为主。
8. 传感检测单元(计测功能):对系统运行中所需要的本身和外界环境的各种参数及状态进行检测。
9. 共性关键技术:机械技术、传感检测技术、信息处理技术、自动控制技术、伺服驱动技术、系统总体技术。
10. 广义的接口功能有两种:一种是输入/输出;另一种是变换、调整。
11. 机电一体化系统(产品)的常用设计方法(三种)的区别:✍取代法(机电互补法):取代法就是用电气控制取代原系统中的机械控制机构。
✍整体设计法(融合法):将各构成要素有机结合为一体构成专用或者通用的功能部件(子系统),要素间的机电参数匹配比较充分。
✍组合法:选用各种标准功能模块组合设计成机电一体化系统。
12. 开发性设计、变异性设计、适应性设计有何异同:✍开发性设计:没有参照产品的设计,仅仅是根据抽象的设计原理和要求,设计出质量和性能方面满足目的要求的系统。
✍适应性设计(改进):是在总的方案原理基本保持不变的情况下,对现有产品进行局部更改,或用微电子技术代替原有的机械结构,或为了微电子控制进行局部适应性设计,以提高产品的性能和质量。
机电一体化全解
2.1 精密机械技术
四、轴系
轴系设计的基本要求
(1)旋转精度 (2)刚度 (3)抗振性 (4)热变形 (5)轴上零件的布置 (6)轴系的驱动方法
轴系的分类、特点和结构形式
2.2 传感检测技术
传感器技术是现代检测和自动化技术的重要基础之 一,机电一体化系统的自动化程度越高,对传感器 的依赖性也就越大。 能将各种非电物理量转换成电量的传感器及其应用 技术便成为机电一体化技术系统中不可缺少的组成 部分。 传感器是整个设备的感觉器官,其性能好坏直接影 响到工作机械的运动性能、控制精度和智能水平。
滚珠丝杠副的典型结构类型
单圆弧型
①按螺纹滚道截面形状分 双圆弧型 内循环 ②按滚珠的循环方式 外循环 端盖式外循环 插管式外循环 双螺母螺纹调隙预紧式 双螺母垫片调隙预紧式 ③按消除轴向间隙的调整方法 双螺母齿差调隙预紧式 单螺母增大滚珠直径法 单螺母偏置导程法
2.1 精密机械技术
二、机械导向机构
机械部分是主体,这不仅由于机械本体是系统重要的 组成部分,而且系统的主要功能必须要由机械装置来完成, 否则就不能称其为机电一体化产品。 机电一体化的核心是电子技术,这电子技术包括微电 子技术和电力电子技术,但重点是微电子技术,特别是微 型计算机或微处理器。
② 机电一体化将工业产品和过程都作为一个完整的系统看待,因此强 调各种技术的协同和集成,不是将各个单元或部件简单拼凑到一起。
1.6 机电一体化的发展
机电一体化的主要发展方向如下: (1)智能化 (2)模块化 (3)网络化 (4)微型化 (5)绿色化 (6)人性化
总之,机电一体化的发展前景: 性能上 高精度、高效率、高性 能、智能化 功能上 层次上 系统化、集成复合化
小型化、轻型化、多功 能
机电一体化概述
第一章机电一体化概述一、机电一体化定义及特征机电一体化是指在机构得主功能、动力功能、信息处理功能和控制功能上引进电子技术,将机械装置与电子化设计及软件结合起来所构成的系统的总称。
机电一体化发展至今也已成为一门有着自身体系的新型学科,随着科学技术的不但发展,还将被赋予新的内容。
但其基本特征可概括为:机电一体化是从系统的观点出发,综合运用机械技术、微电子技术、自动控制技术、计算机技术、信息技术、传感测控技术、电力电子技术、接口技术、信息变换技术以及软件编程技术等群体技术,根据系统功能目标和优化组织目标,合理配置与布局各功能单元,在多功能、高质量、高可靠性、低能耗的意义上实现特定功能价值,并使整个系统最优化的系统工程技术。
由此而产生的功能系统,则成为一个机电一体化系统或机电一体化产品。
二、.机电与机械电气的区别:机电一体化发展至今也已成为一门有着自身体系的新型学科,随着科学技术的不但发展,还将被赋予新的内容。
机电一体化从系统的观点出发,综合运用机械技术、微电子技术、自动控制技术、计算机技术、信息技术、传感测控技术、电力电子技术、接口技术、信息变换技术以及软件编程技术等群体技术,根据系统功能目标和优化组织目标,合理配置与布局各功能单元,在多功能、高质量、高可靠性、低能耗的意义上实现特定功能价值,并使整个系统最优化的系统工程技术。
由此而产生的功能系统,则成为一个机电一体化系统或机电一体化产品。
“机电一体化”涵盖“技术”和“产品”两个方面。
机电一体化技术是基于上述群体技术有机融合的一种综合技术,而不是机械技术、微电子技术以及其它新技术的简单组合、拼凑。
机电一体化发展至今也已成为一门有着自身体系的新型学科,随着科学技术的不但发展,还将被赋予新的内容。
这是机电一体化与机械加电气所形成的机械电气化在概念上的根本区别。
机械工程技术有纯技术发展到机械电气化,仍属传统机械,其主要功能依然是代替和放大的体力。
但是发展到机电一体化后,其中的微电子装置除可取代某些机械部件的原有功能外,还能赋予许多新的功能,如自动检测、自动处理信息、自动显示记录、自动调节与控制自动诊断与保护等。
机电一体化概述
信息和检测等多种技术相互交叉融合而成
5)高可靠性,高稳定性
的新兴技术。
非接触传感器检测、无刷电动机驱
2)层次多,覆盖面广
动、简化的机械系统以及计算机在线监
覆盖了包括机械、电子、信息、计算 测、误差补偿和校正等技术提高了系统
机、控制和检测技术等多门学科。
的可靠性和稳定性。
3)体小量轻,结构简化,方便操作
机电一体化概述
返回
1.1
机电一体化的基本概念
1.2
机电一体化系统的组成与实例
1.3
机电一体化相关技术及特点
1.4
机电一体化的发展
机电一体化概述
1.1 机电一体化的基本概念
返回
机电一体化Mechatronics是由机械学Mechanics的前半部分与电子学 Electronics的后半部分组合而成的。
2. 传感器技术
传感器检测的精度和分辨力直接决定 系统所能达到的最高精度,其检测的信息全 面与否决定着系统的自动化程度,而检测 信息的准确度和灵敏度直接影响系统的精 度。
3. 计算机控制技术
计算机控制技术主要是根据各种理论
和算法,通过计算机对信息进行运算、判 断与决策。
4. 接口技术
接口技术是系统中非常重要的
机电一体化概述
1.2 机电一体化系统的组成与实例
1.2.2 机电一体化系统的实例
2. 指针式石英钟
指针式石英钟的组成框图
指针式石英钟步进电动机原理图
机电一体化概述
1.3 机电一体化相关技术及特点
返回
1.3.1 机电一体化相关技术
1. 机械技术
与一般的机械装置相比,要求质量小、 转动惯量小、摩擦小、误差小、效率高、 精度高,同时要能提高刚度及改善性能。
机电一体化简述
第五节 机电一体化产品设计及其工程路线 一、机电一体化产品附加值与技术构成的关系
机械元器件为主,1948年出现电子元器件 发 展 历 程 机械元器件+电子元器件,1974年电子微处 理开始应用 机械元器件+标准电子电器硬件+软件, 1987年专用集成电路开始应用 机械元器件+标准电子电器硬件++专用硬件 +软件
对设计者的要求
开发性设计 要求设计者具有扎实的基础理论、丰富的想象力和敏锐 的市场洞察力。 适应性设计 要求设计者对原有产品及相关的市场需求、变化和技术 进步要有充分的了解和掌握。 变异性设计
要求设计者注意防止因参数变化可能对产品性能产生 的影响。
进行机电一体化产品设计时,应尽量以计算机为工具,充分利用计 算机辅助设计、仿真分析、模拟设计、优化设计、动态分析设计、可 靠性设计等现代化设计方法,以提高产品的效率和质量。 机电一体化设计同样也要遵循产品的一般性设计原则,即在保证 产品目的功能、性能和使用寿命的前提下,尽量降低成本。这意味着,
动力源
动力
计算机 执行件
计测
控制
操作
传感器
构造
机电一体化产品五大功能
机构
机电一体化产品功能部件
机电一体化产品的功能部件又称为结构要素
例1 人体五大要素及功能
食 物
运作 内脏
外 界 信 息
感官
头脑
手足
计测
控制
动作
构造
骨骼
人体五大要素 人体五大功能
例2
CNC机床的内部构成
热、振动 热、振动、切屑
毛 坯 ( 物 质 )
由图知:在当代机电一体化产品中,单纯的机械技术 的附加值越来越少,而微电子技术的附加值越来越高, 因此其经济效益也相应增高。
机电一体化
机电一体化一、机电一体化概念机电一体化技术又称机械电子技术,是机械技术、电子技术和信息技术有机结合的产物。
机电一体化在国外被称为Mechatronics,是日本人在20 世纪70 年代初提出来的,它是用英文Mechanics 的前半部分和Electronics 的后半部分结合在一起构成的一个新词,意思是机械技术和电子技术的有机结合,现已得到包括我国在内的世界各国的承认。
我国的工程技术人员习惯上把它译为机电一体化技术。
机械技术是一门古老的学科,它发展到今天经历了一个漫长的历史时期。
机械是现代工业的物质基础,国民经济的各个部门都离不开机械。
机械种类繁多,功能各异,不论哪一种机械,从诞生以来都经历了使用—改进—再使用—再改进,不断革新和逐步完善的过程。
对于某一种形式的机械,一般来说都有一定的局限性,或者说都有一定的适用范围、存在某些固有的缺点,这就迫使人们寻找新的工作原理,发明新型的机械.从而使得具有同一用途的机械具有不同的种类。
机械本身的发展也是无止境的,但是这种发展却是缓慢的。
各种机械发展到今天.单从机械角度对它们进行改进是越来越不容易了。
随着科学技术的发展,一个比较年轻的学科——电子技术正在蓬勃发展,从分立电子元件到集成电路(IC),从集成电路到大规模集成电路和超大规模集成电路,特别是微型计算机的出现,使电子技术与信息技术相结合并向其他学科渗透,把人类带人了一个神化般的世界。
信息技术(3C 技术)的主体包括计算机技术、控制技术和通信技术。
电子技术与计算机技术同机械技术相互交叉,相互渗透,使古老的机械技术焕发了青春。
在原有机械基础上引入电子计算机高性能的控制机能,并实现整体最优化,就使原来的机械产品产生了质的飞跃,变成功能更强、性能更好的新一代的机械产品或系统,这正是机电一体化的意义所在。
机电一体化技术是现代科学技术发展的必然结果。
由于大规模集成电路和超大规模集成电路的出现,特别是微型电子计算机的空前发展,促进了机械技术和电子技术相互交叉和相互渗透,并使机械技术和电子技术在系统论、信息论和控制论的基础上有机地结合起来.形成今天的机电一体化技术。
机电一体化
四大原则
四大原则
构成机电一体化系统的五大组成要素其内部及相互之间都必须遵循接口耦合、运动传递、信息控制与能量转 换四大原则。
接口耦合:
两个需要进行信息交换和传递的环节之间,由于信息模式不同(数字量与模拟量,串行码与并行码,连续脉 冲与序列脉冲等)无法直接传递和交换,必须通过接口耦合来实现。而两个信号强弱相差悬殊的环节之间,也必 须通过接口耦合后,才能匹配。变换放大后的信号要在两个环节之间可靠、快速、准确的交换、传递,必须遵循 一致的时序、信号格式和逻辑规范才行,因此接口耦合时就必须具有保证信息的逻辑控制功能,使信息按规定的 模式进行交换与传递。
机电一体化
机械微电子技术术语
01 发展
03 内容 05 组成要素
目录
02 研究目的 04 阶段 06 四大原则
07 选型与设计
09 就业前景 011 光
目录
08 课程简介 010 发展方向
基本信息
机电一体化又称机械电子工程,是机械工程与自动化的一种,英语称为Mechatronics,它是由英文机械学 Mechanics的前半部分与电子学Electronics的后半部分组合而成。机电一体化最早出现在1971年日本杂志《机 械设计》的副刊上,随着机电一体化技术的快速发展,机电一体化的概念被我们广泛接受和普遍应用。随着计算 机技术的迅猛发展和广泛应用,机电一体化技术获得前所未有的发展。现在的机电一体化技术,是机械和微电子 技术紧密集合的一门技术,他的发展使冷冰冰的机器有了人性化,智能化。
原型阶段
成功的测试之后,就会建立一个原型。这里要特别的是模型特性,这些特性特指通过特别费力的仿真所决定 的特性,比如组件损耗(性能)。这些数据结果,为模型基础性分析提供服务,同时为进一步研发提供知识基础。
机电一体化
机电一体化一、名词解释1、机电一体化:机电一体化技术综合应用了机械技术、微电子技术、信息处理技术、自动控制技术、检测技术、电力电子技术、接口技术及系统总体技术等群体技术,实现多种技术功能复合的最佳功能价值的系统工程技术。
2、柔性制造系统:柔性制造系统(Flexible Manufacturing System)是由两台或两台以上加工中心或数控机床组成,并在加工自动化的基础上实现物料流和信息流的自动化。
3、传感器:传感器是机电一体化系统中不可缺少的组成部分,能把各种不同的非电量转换成电量,对系统运行中所需的自身和外界环境参数及状态进行检测,将其变成系统可识别的电信号,传递给控制单元。
4、伺服电动机:伺服电动机又称控制电机,其起动停止、转速或转角随输入电压信号的大小及相位的改变而改变。
输入的电压信号又称控制信号或控制电压,改变控制信号可以改变电动机的转速及转向,驱动工作机构完成所要求的各种动作。
5、感应同步器: 感应同步器是一种应用电磁感应原理制造的高精度检测元件,有直线和圆盘式两种,分别用作检测直线位移和转角。
6、人机接口:人机接口(HMI)是操作者与机电系统(主要是控制微机)之间进行信息交换的接口,主要完成输入和输出两方面的工作。
7、PLC:可编程控制器(Programmable Logical Controller)简称PLC.是一种在继电器控制和计算机控制的基础上开发出来,并逐渐发展成为以微处理器为核心,把自动化技术、计算机技术、通信技术融为一体的新型工业自动控制装置,广泛应用在各种生产机械和生产过程的自动控制中。
8、变频器:变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置,能实现对交流异步电机的软起动、变频调速、提高运转精度、改变功率因素以及过流/过压/过载保护等功能。
9、通信协议:通信协议是指通信双方就如何交换信息所建立的一些规定和过程,包括逻辑电平的定义、应用何种物理传输介质、数据帧的格式、通信站地址的确定、数据传输方式等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论第一节机电一体化的定义1传统机械和现在机械的区别,机械和电子的优缺点:传统机械:主要以力学为理论基础,以经验为实践基础;现代机械:以力学、电子学、计算机学、控制论、信息论等为理论基础,以经验、机、电、计算机、传感与测试等技术为实践基础。
机械:强度高、输出功率大、承载大载荷;实现微小复杂运动难。
电子:可实现复杂的检测和控制;但无法实现重载运动。
2机电一体化和机械电气化的区别(1)电气机械在设计过程中不考虑或较少考虑电气与机械的内在联系。
(2)机械和电气装置之间界限分明(3)装置所需的控制以基于电磁学原理的各种电器,属于强电范畴。
3机电一体化的发展趋势:智能化、模块化、网络化、微型化、绿色化、人格化4机电一体化的定义机电一体化是在以机械、电子技术和计算机科学为主的多门学科相互渗透、相互结合过程中逐渐形成和发展起来的一门新兴边缘技术学科。
第二节机电一体化系统设计的目标与方法1机电一体化产品和系统的分类按机电一体化产品和系统的用途分类,有产业机械,信息机械,民用机械等;按机械和电子的功能和含量分类,有以机械装置为主体的机械电子产品和以电子装置为主体的电子产品;按机电结合的程度分类,有功能附加型、功能替代型和机电融合型。
2机电一体化产品的优越性(1)使用安全性和可靠性提高(2)生产能力和工作质量提高(3)调整和维护方便,使用性能改善(4)具有复合功能,适用面广(5)改善劳动条件,有利于自动化生产(6)节约能源,减少耗材3现代机械的机电一体化目标(1)提高精度(2)增强功能(3)提高生产效率(4)节约能源,降低能耗(5)提高安全性、可靠性改善操作性和实用性(6)减轻劳动强度,改善劳动条件(7)简化结构,减轻重量(8)降低价格(9)增强柔性应用功能4机电一体化技术方向(1)在原有机械系统的基础上采用微型计算机控制装置,使系统的性能提高,功能增强。
(2)用电子装置局部代替机械传动装置和机械控制装置,以简化结构,增强控制灵活性。
(3)用电子装置完全代替原来执行信息处理功能的机构,即减化了结构,又极大地丰富了信息传输内容,提高了速度。
(4)用电子装置替代机械的主要功能,形成特殊的加工能力。
(5)将机电技术完全融合形成新型机电一体化产品。
5机电一体化系统开发的设计思想在开发过程中,一方面要求设计机械系统时应选择与控制系统的电气参数相匹配的机械系统参数;同时也要求设计控制系统时,应根据机械系统的固有结构参数来选择和确定电气参数。
6机电一体化系统设计方法(1)取代法:这种方法是用电气控制取代原传统中机械控制机构。
这种方法是改造传统机械产品和开发新型产品常用的方法。
这种方法的缺点是跳不出原系统的框架,不利于开拓思路,尤其在开发全新的产品时更具有局限性(2)整体设计法:这种方法主要用于全新产品和系统的开发。
在设计时完全从系统的整体目标考虑各子系统的设计,所以接口简单,甚至可能互融一体。
(3)组合法:这种方法就是选用各种标准模块,像积木那样组合成各种机电一体化系统。
利用此方法可以缩短设计与研制周期、节约工装设备费用,有利于生产管理、使用和维修。
第三节机电一体化系统的基本功能要素1机械本体(机械系统)包括机械传动装置和机械结构装置。
其主要功能是使构造系统的各子系统、零部件按照一定的空间和时间关系安置在一定位置上,并保持特定的关系。
其开发重点是模块化、标准化和系列化,以便于机械系统的快速组合和更换2动力单元按照机电一体化系统的控制要求。
为系统提供能量和动力以保证系统正常运行。
其显著特征之一,是用尽可能小的动力输入获得尽可能大的功能输出。
3传感检测单元对系统运行过程中所需要的本身和外界环境的各种参数及状态进行检测,并转换成可识别信号,传输到控制信息处理单元,经过分析、处理产生相应的控制信息。
对其要求是体积小、便于安装与连接、检测精度高、抗干扰性强。
4执行单元根据控制信息和指令完成所要求的动作。
5驱动单元在控制信息作用下,驱动各种执行机构完成各种动作和功能。
6控制与信息处理单元控制与信息处理单元是机电一体化系统的核心单元。
其功能是将来自各传感器的检测信息和外部输入命令进行集中、存储、分析、加工,根据信息处理结果,按照一定的程序发出相应的控制信号,通过输出接口送往执行机构,控制整个系统有目的的运行,并达到预期的性能。
7接口将各要素或子系统连接成为一个有机整体,使各个功能环节有目的地协调一致运动,从而形成机电一体化的系统工程。
其基本功能主要有三个:变换、放大、传递第四节机电一体化的相关技术1机械技术(精密机械技术)是机电一体化的基础。
机电一体化的机械产品与传统的机械产品的区别在于:机械结构更简单、机械功能更强、性能更优越。
机械技术的出发点在于如何与机电一体化技术相适应,利用其他高新技术来更新概念,实现结构、材料、性能以及功能上的变更。
2传感检测技术是机电一体化系统的感觉器官,即从待测对象那获取能反映待测对象特征与状态的信息。
它是实现自动控制、自动调节的关键环节,其功能越强,系统的自动化程度就越高。
传感检测技术的研究内容包括两方面:一是研究如何将各种被测量转换为与之成比例的电量;二是研究如何将转换的电信号的加工处理。
3信息处理技术信息处理技术包括信息的交换、存取、运算、判断和决策。
实现信息处理的主要工具是计算机,因此信息处理技术与计算机技术是密切相关的。
信息处理的发展方向是如何提高信息处理的速度、可靠性和智能化程度。
4自动控制技术自动控制技术的目的在于实现机电一体化系统的目标最佳化。
机电一体化系统中的自动控制技术主要包括位置控制、速度控制、最优控制、自适应控制、模糊控制、神经网络控制等。
5伺服驱动技术伺服驱动技术就是在控制指令的指挥下,控制驱动元件,使机械的运动部件按照指令要求运动,并具有良好的动态性能。
常见的伺服驱动系统主要有电气伺服和液压伺服。
6系统总体技术系统总体技术是以整体的概念组织应用各种相关的应用技术。
即从全局的角度和系统的目标出发,将系统分解为若干子系统,从而实现整个系统技术协调的观点来考虑每个子系统的技术方案,对于子系统与子系统之间的矛盾或子系统和系统整体之间的矛盾都要从总体协调的需要来选择解决方案。
第二章机械系统设计传动机构:机电一体化系统中传动结构的主要功能是传递转矩和转速。
因此,它实际上是一种转矩、转速变化器。
导向机构:其作用是支撑和限制运动部件按给定的运动要求和规定的运动方向运动。
执行机构:用来完成操作任务。
能根据操作指令的要求在动力源的带动下,完成预定的操作。
2.1.1传动机构的种类及特点机电一体化系统中所用的传动机构主要有滑动丝杠副、滚珠丝杠副、齿轮传动副、同步带传动副、间歇机构、绕性传动机构等。
对于工作机中的传动机构,既要求能实现运动的转换,又要求能够实现动力的转换;对于信息机中的传动机构,主要要求运动的转换;对于动力,则只需要克服惯性力(力矩)和各种摩擦力(力矩)以及较小的工作负载即可。
2.1.2传动机构的基本要求1影响机电一体化系统中的传动链动力学性能的因素一般有以下几个(1)负载的变换(2)传动链惯性(3)传动链固有频率(4)间隙、摩擦、润滑和温升2在不影响系统刚度的条件下,传动机构的质量和转动惯量应尽可能小3刚度越大伺服系统动力损失越小;刚度越大机构固有频率越高,超出系统的频带宽度,不易产生共振;刚度越大闭环系统的稳定性越高4机械零件产生共振时,系统中阻尼越大,最大振幅就越小,且衰减越快;但大阻尼也会使系统的失动量和反转误差增大,稳态误差增大,精度降低5系统传动部件的静摩擦力应尽可能小;动摩擦力应是尽可能小的正斜率,若为负斜率则易产生爬行,精度降低,寿命减少。
6此外,还要求抗振性好,稳定性高,间隙小(减少误差,提高伺服系统中位置环的稳定性),避免谐振,特别是其动态特性与伺服电动等其他环节的动态性能相匹配。
7转动惯量在满足系统刚度的条件下,机械部分的质量和转动惯量越小越好。
转动惯量大会使机械负载增大、系统响应速度变慢、灵敏度降低、固有频率下降,容易产生谐振。
同时转动惯量的增大会使电气驱动部件的谐振频率降低,而阻尼增大。
8摩擦两物体接触面间的摩擦力在应用上可以简化为粘性摩擦力、库伦摩擦力与静摩擦力三类,方向均与运动方向(或运动趋势方向)相反。
粘性摩擦力大小与两物体相对运动的速度成正比;库伦摩擦力是接触面对运动物体的阻力,大小为一常数;静摩擦力是有相对运动趋势但仍处于静止状态时摩擦面间的摩擦力,其最大值发生在相对开始运动前的一瞬间,运动开始后静摩擦力即消失。
9阻尼运动中的机械部件容易产生振动,其振幅取决于系统的阻尼和固有频率,系统的阻尼越大,最大振幅越小,且衰减越快;线性阻尼下的振动为实模态,非线性阻尼下的振动为复模态。
机械部件振动时,金属材料的内摩擦较小,而运动副的摩擦阻尼占主导地位的。
在实际应用中一般将摩擦阻尼简化为粘性摩擦的线性阻尼10刚度刚度为弹性体产生单位变形量所需的作用力。
机械系统的刚度包括构件产生各种基本变形时的刚度和两接触面的接触刚度两类。
静态力和变形之比为静刚度;动态力和变形之比为动刚度。
11谐振频率包括机械传动部件在内的弹性系统,若阻尼不计,可简化为质量、弹簧系统。
由此可确定系统的固有频率。
当外界的激振频率接近或等于系统的固有频率时,系统将产生谐振而不能正常工作。
机械传动部件实际上是个多自由度系统,有一个基本固有频率和若干高阶固有频率,分别称为机械传动部件的一阶谐振频率和n阶谐振频率。
12间隙间隙将使机械传动系统中间产生回程误差,影响伺服系统中位置环的稳定性。
有间隙时,应减小位置环增益间隙的主要形式有齿轮传动的齿侧间隙、丝杠螺母的传动间隙、丝杠轴承的轴向间隙、连轴器的扭转间隙等。
在机电一体化系统中,为了保证系统良好的动态性能,要尽可能避免间隙的出现。
当间隙出现时,要采取消隙措施。
2.1.3 常用传动机构的设计方法(1)滚珠丝杠副传动机构(2)齿轮传动(3)同步带传动(4)谐波齿轮传动(5)棘轮传动机构(6)软轴传动机构一、滚珠丝杠副传动机构主要用来将旋转运动变换为直线运动或将直线运动变换为旋转运动滚珠丝杠副的特点:传动效率高运动具有可逆性系统刚度好传动精度高使用寿命长不能自锁工艺复杂二、齿轮传动齿轮传动是机电一体化系统中使用最多的机械传动装置,主要原因是齿轮传动的瞬时传动比为常数。
传动精确,且强度大、能承受重载、结构紧凑。
摩擦力小、效率高。
三、同步带传动同步带传动是综合了带传动、齿轮传动和链传动特点的一种新型传动同步带传动的特点:(1)能方便地实现较远中心距的传动,传动比准确,传动效率高(2)工作平稳,能吸收振动(3)不需要润滑,耐油、水,耐高温,耐腐蚀,维护保养方便(4)强度高,厚度小,质量轻(5)中心距要求严格,安装精度要求高(6)制造工艺复杂,成本高四、谐波齿轮传动依靠柔性齿轮所产生的可控制弹性变形波,引起齿间的相对位移来传递动力和运动的。