概率论与数理统计期中试题解答
概率论和数理统计考试试题和答案解析
一.填空题(每空题2分,共计60分)1、A 、B 是两个随机事件,已知0.3)B (p ,5.0)(,4.0)A (p ===A B P ,则=)B A (p 0.6 ,=)B -A (p 0.1 ,)(B A P ⋅= 0.4 , =)B A (p 0.6。
2、一个袋子中有大小相同的红球6只、黑球4只。
(1)从中不放回地任取2只,则第一次、第二次取红色球的概率为: 1/3 。
(2)若有放回地任取2只,则第一次、第二次取红色球的概率为: 9/25 。
(3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为: 21/55 。
3、设随机变量X 服从B (2,0.5)的二项分布,则{}=≥1X p 0.75, Y 服从二项分布B(98, 0.5), X 与Y 相互独立, 则X+Y 服从 B(100,0.5),E(X+Y)= 50 ,方差D(X+Y)= 25 。
4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1、0.15.现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取一件。
(1)抽到次品的概率为: 0.12 。
(2)若发现该件是次品,则该次品为甲厂生产的概率为: 0.5 . 5、设二维随机向量),(Y X 的分布律如右,则=a 0.1, =)(X E 0.4,Y X 与的协方差为: - 0.2 ,2Y X Z +=的分布律为:6、若随机变量X ~)4 ,2(N 且8413.0)1(=Φ,9772.0)2(=Φ,则=<<-}42{X P 0.815 ,(~,12N Y X Y 则+= 5 , 16 )。
7、随机变量X 、Y 的数学期望E(X)= -1,E(Y)=2, 方差D(X)=1,D(Y)=2, 且X 、Y 相互独立,则:=-)2(Y X E - 4 ,=-)2(Y X D 6 。
8、设2),(125===Y X Cov Y D X D,)(,)(,则=+)(Y X D 30 9、设261,,X X 是总体)16,8(N 的容量为26的样本,X 为样本均值,2S 为样本方差。
概率论期中考试试卷及答案
1。
将4个不同的球随机地放在5个不同的盒子里,求下列事件的概率: (1) 4个球全在一个盒子里; (2) 恰有一个盒子有2个球。
解:把4个球随机放入5个盒子中共有45=625种等可能结果。
(1)A={4个球全在一个盒子里}共有5种等可能结果,故P(A )=5/625=1/125 (2) 5个盒子中选一个放两个球,再选两个各放一球有302415=C C 种方法4个球中取2个放在一个盒子里,其他2个各放在一个盒子里有12种方法因此,B={恰有一个盒子有2个球}共有12×30=360种等可能结果. 故12572625360)(==B P2.某货运码头仅能容纳一只船卸货,而,甲乙两船在码头卸货时间分别为1小时和2小时,设甲、乙在24小时内随时可能到达,求它们中间任何一船都不需要等待码头空出的概率。
解:设x,y 分别为两船到达码头的时刻.由于两船随时可以到达,故x,y 分别等可能地在[0,60]上取值,如右图 方形区域,记为Ω.设A 为“两船不碰面",则表现为阴影部分。
222024,024024,024,2111()24576,()2322506.522()()0.8793()x y x y x y y x m m A m A P A m Ω≤<≤<≤<≤<->->Ω===⨯+⨯===Ω={(x,y)},A={(x,y)或},有所以,3。
设商场出售的某种商品由三个厂家供货,其供应量之比是3:1:1,且第一、二、三厂家的正品率依次为98%、98%、96%,若在该商场随机购买一件商品,求:(1) 该件商品是次品的概率。
(2) 该件次品是由第一厂家生产的概率。
厦门大学概统课程期中试卷____学院___系___年级___专业考试时间 2013.11.8解:1231122331,(1)()()(|)()(|)()(|)=60%*(1-98%)+20%*(1-98%)+20%*(1-96%) =0.024(2) (|)A B B B P A P B P A B P B P A B P B P A B P B A =++=设为该产品为次品,,分别为三个厂家产品,则由全概率公式可知由贝叶斯公式可知111()()(|)60%*(1-98%)()()0.024=0.5P AB P B P A B P A P A ==4。
《概率论》期中测试题参考解答
《概率论》期中测试题参考解答1、(10分)设A B C、、的运算分别表、、表示三个随机事件,试用事件A B C示下列各事件:(1)A不发生而B C、都发生;表示为:ABC(2)A B C、、三个事件至少有一个发生;表示为:A B C;或表示为:ABC ABC ABC ABC ABC ABC ABC(3)A B C、、三个事件至多有一个发生;表示为:ABC ABC ABC ABC(4)A B C、、恰有两个不发生;表示为:ABC CAB BAC;(5)A B C、、都不发生;表示为:ABC(6)A B C、、三个事件不少于两个发生;表示为:AB BC AC;或表示为:ABC ABC ABC ABC(7)A B C、、同时发生;表示为:ABC(8)A B C、、三个事件不多于两个发生;表示为:A B C;或表示为:ABC或表示为:ABC ABC ABC ABC ABC ABC ABC(9)A B C、、不全发生;表示为:A B C;或表示为:ABC 或表示为:ABCABC ABC ABC ABC ABC ABC(10)A B C 、、恰有一个发生. 或表示为:ABC ABC ABC2、(14分)已知()0.6,()0.3,()0.6,P A P AB P B ===求:(1)()P AB ;(2)()P A B -;(3)()P A B ;(4)()P AB ;(5)()P A B ;(6)()P B A ;(7)()P A B A .解:(1)因为0.3()()()()P AB P A B P A P AB ==-=-,所以有()()0.3[1()]0.30.40.30.1P AB P A P A =-=--=-=;(2)()()()[1()]()(10.6)0.10.3P A B P A P AB P A P AB -=-=--=--=(3)()()()()0.40.60.10.9P A B P A P B P AB =+-=+-=; (4)()()1()10.90.1P AB P A B P A B ==-=-=; (5)()0.11()()0.66P AB P A B P B ===; (6)()()0.33()()1()0.44P AB P A B P B A P A P A -====-; (7)[()]()()()()()()P A B A P AB AA P A B A P B A P B P A P BA ==+- ()()()[()()]P AB P B P A P B P AB =+--()0.11()()0.60.17P AB P A P AB ===++3、(8分)一个盒子中有10个球,其中4个黑球6个红球,求下列事件的概率:(1)A =“从盒子中任取一球,这个球是黑球”;(2)B =“从盒子中任取两球,刚好一黑一红”;(3)C =“从盒子中任取两球,都是红球”;(4)D =“从盒子中任取五球,恰好有两个黑球”.解:(1)141102()5C P A C ==;(2)11462108()15C C P B C ==;(3)262101()3C P C C ==; (4)234651010()21C C P C C ==4、(3分)设甲、乙、丙三人同时独立地向同一目标各射击一次,命中率分别为112,,323,求目标被命中的概率. 解:设1A =“甲命中目标”;2A =“乙命中目标”;3A =“丙命中目标”;A =“目标被击中”。
(完整word版)概率论和数理统计考试试题和答案解析.doc
一. 填空题(每空题 2 分,共计 60 分)1、A、B是两个随机事件,已知p(A )0.4, P(B) 0.5,p( AB) 0.3 ,则p(A B)0.6 ,p(A - B)0.1,P( A B )= 0.4 ,p(A B)0.6 。
2、一个袋子中有大小相同的红球 6 只、黑球 4 只。
(1)从中不放回地任取 2 只,则第一次、第二次取红色球的概率为:1/3。
(2)若有放回地任取2只,则第一次、第二次取红色球的概率为:9/25。
(3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为:21/55。
3、设随机变量 X 服从 B(2,0.5 )的二项分布,则p X 1 0.75, Y 服从二项分布 B(98, 0.5), X 与 Y 相互独立 , 则 X+Y服从 B(100,0.5) ,E(X+Y)= 50 ,方差 D(X+Y)= 25 。
4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1 、0.15 .现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取一件。
(1)抽到次品的概率为:0.12 。
(2)若发现该件是次品,则该次品为甲厂生产的概率为:0.5 .5、设二维随机向量( X ,Y)的分布律如右,则 a 0.1, E( X ) 0.4 ,X 0 1X与 Y 的协方差为: - 0.2Y,-1 0.2 0.3Z X Y2的分布律为 : z 1 21 0.4 a概率0.6 0.46、若随机变量X ~ N(2,4)且(1) 0.8413 ,(2) 0.9772 ,则 P{ 2 X 4}0.815,Y 2X 1,则Y~N( 5,16)。
7、随机变量X、Y 的数学期望E(X)= -1,E(Y)=2,方差D(X)=1,D(Y)=2,且X、Y相互独立,则:E(2X Y)-4,D(2X Y)6。
8、设D(X)25,D(Y)1,Cov ( X ,Y ) 2 ,则 D( X Y)309、设X1,, X 26是总体 N (8,16) 的容量为26 的样本,X为样本均值,S2为样本方差。
(完整版)概率论与数理统计试卷与答案
《概率论与数理统计》课程期中试卷班级 姓名 学号____________ 得分注意:答案写在答题纸上,标注题号,做在试卷上无效。
考试不需要计算器。
一、选择题(每题3分,共30分)1. 以A 表示事件“泰州地区下雨或扬州地区不下雨”,则其对立事件A :( ) A .“泰州地区不下雨” B .“泰州地区不下雨或扬州地区下雨” C .“泰州地区不下雨,扬州地区下雨” D .“泰州、扬州地区都下雨”2. 在区间(0,1)中任取两个数,则事件{两数之和小于25}的概率为( ) A .225 B .425 C .2125 D .23253. 已知()0.7P A =,()0.5P B =,()0.3P A B -=,则(|)P A B =( ) A .0.5 B . 0.6 C .0.7 D . 0.84. 设()F x 和()f x 分别是某随机变量的分布函数和概率密度,则下列说法正确的是( ) A .()F x 单调不增 B . ()()xF x f t dt -∞=⎰C .0()1f x ≤≤D .() 1 F x dx +∞-∞=⎰.5. 设二维随机变量(,)X Y 的概率分布为已知随机事件{X = A . a=0.2,b=0.3 B . a=0.4,b=0.1 C . a=0.3,b=0.2 D . a=0.1,b=0.4 6. 已知()0.7P A =,()0.5P B =,(|)0.8P A B =,则()P A B -=( ) A .0.1 B . 0.2 C .0.3 D . 0.47. 设两个随机变量X 和Y 相互独立且同分布:{}{}1112P X P Y =-==-=,{}{}1112P X P Y ====,则下列各式成立的是( ) A .{}12P X Y ==B {}1P X Y ==C .{}104P X Y +==D .{}114P XY == 8. 设随机变量~(2,),~(3,),X B p Y B p 若19{1}27P Y ≥=,则{1}P X ≥= ( ) A .13 B .23 C .49D .599. 连续随机变量X 的概率密度为⎪⎩⎪⎨⎧≤<-≤≤=其它,021,210,)(x x x x x f ,则随机变量X 落在区间 (0.4, 1.2) 内的概率为( )A .0.42B .0.5C .0.6D .0.64 10. 将3粒红豆随机地放入4个杯子,则杯子中盛红豆最多为一粒的概率为( ) A .332B .38C .116D .18二、填空题(每题4分,共20分)11. 设概率()0.3,()0.5,()0.6P A P B P A B ==+=, 则()P AB = . 12. 设随机变量X 服从参数为1的泊松分布,则{3}P X == . 13. 某大楼有4部独立运行的电梯,在某时刻T ,各电梯正在运行的概率均为43,则在此时刻恰好有1个电梯在运行的概率为 .14. 某种型号的电子的寿命X (以小时计)的概率密度210001000()0x f x x ⎧>⎪=⎨⎪⎩其它任取1只,其寿命大于2500小时的概率为 .15. 设随机变量X 的分布函数为:0(1),0.2(12),()0.5(23),1(3).x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≤⎩当时当时当时当时则 X 的分布律为 . 三、解答题(每题10分,共50分)16. 已知0.30.40.5+P A P B P AB P A A B ===()()()(|),,,求17. 从只含3红, 4白两种颜色的球袋中逐次取一球, 令1,,0,i i X i ⎧=⎨⎩第次取出红球第次取出白球,1,2i =. 在不放回模式下求12,X X 的联合分布律, 并考虑独立性(要说明原因).18. 某工厂有两个车间生产同型号家用电器,第1车间的次品率为0.15,第2车间的次品率为0.12.两个车间生产的成品都混合堆放在一个仓库中,假设1、2车间生产的成品比例为2:3,今有一客户从成品仓库中随机提台产品,求该产品合格的概率.19. 设某城市成年男子的身高()2~170,6X N (单位:cm )(1)问应如何设计公交车车门高度,使得男子与车门碰头的概率小于0.01? (2)若车门高为182cm ,求100个成年男子中没有人与车门顶碰头的概率. ( 2.330.9920.9772Φ=Φ=(),())20. 已知随机变量(,)X Y 的分布律为问:(1)当,αβ为何值时,X 和Y 相互独立;(2)在上述条件下。
张广亮概率论与数理统计期中测试试卷答案.doc
经济与管理学院2012/2013学年(一)学期试卷《概率论与数理统计》期中测试试卷答案专业________ 年级 _____ 班级_姓名_____ 学号题号—二三四五六七八九十总分得分一、填空题(每小题3分,共15分):1、设A、B 为随机事件,P (A)=0.5 , P(B)=0.6, P(B|A)=0.8 .则P(BU/!)= 0. 73 0 < x < 丨2、设随机变量X的密度函数为/(x) = ^X’,设r表示对X的10次独0,具匕立观察中事件<! X S 出现的次数,则= 2) = O.24^C?o(|)2(|y3、设£(;0 =仏£>(;0 = /?,则£(X2) = “2+/?。
4、三人独立的破译一个密码,他们能译出密码的概率分别为1/5、1/4、1/3,此密码能被译出的概率是_ 0.6 __________ 。
5、设随机变量f的密度函数为/?(x) = Ce_2v,x〉0,則常数C的值为 2 。
二、选择题(每小题3分,共15分):1、从一个由五男生和二女生组成的学习小组屮随机地抽出三个人,则“抽出的三人中至少有一个是男学生”的事件为(C)(A)随机事件(B)不可能事件(C)必然事件(D)偶然事件2、设随机变量《服从正态分布的yv(o,i),其密度函数为炉(%),则炉(o)= (A )3、若每次试验的成功率为(0 < /? < 1),则在3次重复试验中至少失败一次的概率为(B )(A)(l —厂)3(B) 1-p3(C) 3(1 —p) (D) (1 —/))3+p(l —/?)2+p2(l —p).4、甲乙进行乒乓球比赛,一局甲的胜率大于二分之一。
对乙而言,下列哪种赛制较有利(A )(A)三局两胜(B)五局三胜(C)七局四胜(D)九局五胜5、设事件A与B互不相容,= = 则尸(25)= (A )(A) 1 —(“ + /?)(B) 2 — 6/ — /? (C) (1 — 6/)(1—b)(I)) 1 —ab三、(8分)已知男人中有5%是色盲,女人中有0.25%是色盲.今从男女人数相等的人群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少? 解:rdA :挑选出的人是男人;B :挑选出的人是色盲. 取{A ,为样本空间的划分. 由w 叶斯公式:馴娜)_ _P(B | A)P(A) + P {B | A)P(A)0.05x0.5_ 0.05x0.5 + 0.0025x0.5四、(8分)某种动物由出生算起活20岁以上的概率为0.8,活到25岁以上的概 率为0.4,如果现在有一个20岁的这种动物,问它能活到25岁以上的概率是多 少?五、(9分)一个机床冇三分之一的时间加工零件A,其余时间加工零件B,加工 零件A 吋,停机的概率吋0.3,加工零件B 时,停机的概率是0.4,求这个机床 停机吋正在生产零件A 的概率.解:设A 表示生产零件A ,B 表示生产零件B ,C 表示机床停机,由题意可得 勝謂= 0.4P(C|A)P(A)P(C\A)P(A)-hP(C\B)P(B) 常数A; (2) PfX<\}; (3) X 的数学期望£(X)和方差解:由密度函数的归一性得1 = f Ar(l - x)dx = A 丄,故 A = 6 Jo6P{ X < 1 / = J f( x )dx = £ 6x( 1 - x )dx = (3%2 - 2x 3) |r=, = 1= 20/21设A 表示“能活20岁以上”的事件,B 表示“能活25岁以上”的事件,则P(B|A) = P(AB)尸⑷因为 p(A) = 0.8,P(B) = 0.4, P(AB) = P(B),所以 P(B|A) =P(A8)_0A_l P(A)0i~2由贝叶斯公式得=0.4 + 04!六、(15分)设随机变量X 的密度函数为/(x) =Ax(l - x),0,0 < x < 1 其它£(X) = £x6x(l-x)t/x = 0.5 D(X) =J>26X (1-^A -0.25 = 0.05七、(20分)一种电子管的使用寿命X (单位:小吋)的概率密度函数为设某种仪器中装有5个这种工作相互独立的电子管,求: (1) 使用最初1500小时没有一个电子管损坏的概率; (2) 这段时间内至少有两个电子管损坏的概率。
概率论与数理统计试题期中考试-答案
概率论与数理统计课程期中考试考试时间:90分钟姓名:班级:学号:一、单项选择题(本大题共有5个小题,每小题4分,共20分)1,设..~(100,0.1)R V X B,1..~()2R V Yπ,且X和Y相互独立,令72+-=YXZ,则D(Z)=(D )。
A:7 B:8 C:10 D:11 2,若P(A)=1/2,P(B|A)=1/3,则P(AB)=( B )A:1/2 B: 1/3 C: 5/6 D:1/63,设X的概率密度函数为30()xke xf x-⎧>=⎨⎩其它,则=k( C )A:1/3 B:1/9 C: 3 D: 94, 如果X,Y为两个随机变量,满足COV(X,Y)=0,下列命题中正确的是( A )。
A:X,Y不相关B:X,Y相互独立C:D(XY) =D(X)+D(Y) D:D(X-Y) =D(X)-D(Y)5,在8片药中有4片是安慰剂,从中任取3片,则取到2片是安慰剂的概率为( B )A:1/4 B :3/7 C:1/2 D:6/7二、填空题(本大题共有6个小题,每空2分,共20分)4 A,B为两个随机事件,若P(A)=0.4,P(B)=0.6,P(B A)=0.2.则P(AB)= 0.4 ,P(AB)= 0.25 甲乙两人独立射击,击中目标的概率分别为0.8,0.7,现在两人同时射击同一目标,则目标被击中的概率为 0.946.若某产品平均数量为73,均方差为7,利用切比雪夫不等式估计数量在52~94之间的概率为 8/97.在8件产品中有2件次品。
从中随机抽取2次,每次抽取一件,做不放回抽取。
则两次都是正品的概率为 15/28 抽取的产品分别有一正品和一件次品的概率为 3/7 ,第二次取出的产品为次品的概率为 1/48若X~N(2,1),Y~U[1,4],X,Y互相独立,则E(X+2Y-XY+2)= 4 ,D(X-2Y+3)=49 设D(X)=D(Y)=2,0.3XY ρ=,则D(X-Y)= 2.8三、解答题(本大题共有3个小题,共32分)10(7分)病树主人外出,委托邻居浇水。
《概率论与数理统计》期中考试2014-2015-2+答案
西南政法大学试卷(期中卷)2014—2015学年 第二学期课程 概率论与数理统计 专业 国贸、金融、经统 年级2013本试卷共6页,满分 100分;考试时间: 90 分钟;考试方式: 闭卷一、选择题(本大题共5小题,每小题3分,共15分)1.设A ,B ,C 是三个随机事件,()0P ABC =,且()01P C <<,则一定有( B )。
A .()()()()P ABC P A P B P C = B .()()()()|||P A B C P A C P B C +=+C. ()()()()P A B C P A P B P B ++=++D. ()()()()|||P A B C P A C P B C +=+2.设随机变量X 服从正态分布()2,Nμσ,则随着σ增大,概率()P X μσ-<( C )。
A .单调增大 B .单调减少 C .保持不变 D .增减不定 3.设随机变量X 的分布函数为()F x ,概率密度函数为()p x 。
若X 与X -有相同的分布函数,则( C )A. ()()F x F x =-B. ()()F x F x =--C. ()()p x p x =-D. ()()p x p x =-- 4.假设随机变量X 与Y 都服从正态分布()20,N σ,且()11,14P X Y ≤≤-=,则()1,1P X Y >>-的值是( A )A.14 B. 25 C. 24 D. 34 5. 设随机事件A ,B ,C 两两独立,且()()0,1P A ∈,()()0,1P B ∈,()()0,1P C ∈。
那么,下列一定成立的是( D )。
A. C 与A B -独立 B. C 与A B -不独立C. A C ⋃ 与B C ⋃ 独立D.A C ⋃ 与BC ⋃ 不独立学生姓名:___________________ 学号 :_________________ 专业年级 :_________________ 考试教室:____________-密-----------------封-----------------线-------------------内-------------------不---------------------要-----------------------答-------------------题-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------3分,共15分) 1. 设A 、B 是两个随机事件,且()14P A =,()1|3P B A =,()1|2P A B =,则()P AB =23。
概率论期中测试答案
概率论与数理统计期中测试答案一、 单项选择题1.当事件A 、B 同时发生时,事件C 必发生,则( B )(A) ()()()1-+≤B P A P C P (B) ()()()1-+≥B P A P C P (C) ()()AB P C P = (D) ()()B A P C P ⋃=2.设随机变量X 的概率密度是()x f ,则下列函数中一定可以作为概率密度的是( )(A) ()x f 2 (B) ()x f 2 (C) ()x f - (D) ()x f 3.设1{0,0}5P X Y ≥≥=,2{0}{0}5P X P Y ≥=≥=,则{max{,}0}P X Y ≥=( )(A)15 (B) 25 (C) 35 (D) 454.设,X Y 相互独立,X 服从()0,2上的均匀分布,Y 的概率密度函数为,0()0,0y Y e y f y y -⎧≥=⎨<⎩,则{}1P X Y +≥=( )(A) 11e -- (B) 21e -- (C) 212e -- (D) 110.5e -- 二 填空题1 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P 1/e .2 设和ξη是两个相互独立且均服从正态分布N (0,21)的随机变量,则=-|)(|ηξE3 设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式有≤≥+}6|{|Y X P 1/12.4 设平面区域D 由曲线所围成及直线2,1,01e x x y xy ====,二维随机变量(X ,Y )在区域D 上服从均匀分布,则(X ,Y )关于X 的边缘概率密度在x =2处的值为1/4。
三 计算题1、自动包装机把白色和淡黄色的乒乓球混装入盒子,每盒装12只,已知每盒内装有的白球的个数是等可能的。
为检查某一盒子内装有白球的数量,从盒中任取一球发现是白球,求此盒中装的全是白球的概率。
概率论与数理统计考试试卷(附答案)
概率论与数理统计考试试卷(附答案)一、选择题(共6小题,每小题5分,满分30分) 1. 事件表达式B A -的意思是 ( ) (A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 (C) 事件B 发生但事件A 不发生(D) 事件A 与事件B 至少有一件发生2. 假设事件A 与事件B 互为对立,则事件A B ( ) (A) 是不可能事件 (B) 是可能事件 (C) 发生的概率为1(D) 是必然事件3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布(D) 自由度为2的F 分布4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( )(A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3)5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计(C) 22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计6. 随机变量X 服从在区间(2,5)上的均匀分布,则X 的方差D (X )的值为( ) (A) 0.25(B) 3.5(C) 0.75(D) 0.5二、填空题(共6小题,每小题5分,满分30分。
把答案填在题中横线上) 1. 已知P (A )=0.6, P (B |A )=0.3, 则P (AB )= __________2. 三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为__________3. 一个袋内有5个红球,3个白球,2个黑球,任取3个球恰为一红、一白、一黑的概率为_____4. 已知连续型随机变量,01,~()2,12,0,.x x X f x x x ≤≤⎧⎪=-<≤⎨⎪⎩其它 则P {X ≤1.5}=_______.5. 假设X ~B (5, 0.5)(二项分布), Y ~N (2, 36), 则E (2X +Y )=__________6. 一种动物的体重X 是一随机变量,设E (X )=33, D (X )=4,10个这种动物的平均体重记作Y ,则D (Y )=_____________________ _______三、有两个口袋,甲袋中盛有两个白球,一个黑球,乙袋中盛有一个白球,两个黑球。
数理统计期中考试试题及答案
数理统计期中考试试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项是描述数据集中趋势的度量?A. 方差B. 标准差C. 平均值D. 极差答案:C2. 在统计学中,正态分布曲线的对称轴是什么?A. 均值B. 中位数C. 众数D. 标准差答案:A3. 以下哪个不是描述数据离散程度的统计量?A. 方差B. 标准差C. 平均值D. 极差答案:C4. 假设检验中,拒绝原假设意味着什么?A. 原假设是正确的B. 原假设是错误的C. 无法确定原假设的正确性D. 需要更多的数据答案:B5. 以下哪个统计量用于衡量两个变量之间的相关性?A. 均值B. 标准差C. 相关系数D. 方差答案:C6. 以下哪个选项是描述数据分布形状的度量?A. 平均值B. 方差C. 偏度D. 峰度答案:C7. 以下哪个选项是描述数据分布中心位置的度量?A. 方差B. 标准差C. 中位数D. 众数答案:C8. 以下哪个选项是描述数据分布集中程度的度量?A. 极差B. 方差C. 标准差D. 偏度答案:B9. 以下哪个选项是描述数据分布的峰值的度量?A. 方差B. 标准差C. 峰度D. 偏度答案:C10. 以下哪个选项是描述数据分布的偏斜程度的度量?A. 方差B. 标准差C. 偏度D. 峰度答案:C二、填空题(每题3分,共15分)1. 一组数据的均值是50,标准差是10,则这组数据的方差是______。
答案:1002. 如果一组数据服从正态分布,那么它的均值和中位数是______。
答案:相等的3. 相关系数的取值范围是______。
答案:-1到14. 在进行假设检验时,如果p值小于显著性水平α,则我们______原假设。
答案:拒绝5. 一组数据的偏度为0,说明这组数据是______。
答案:对称的三、简答题(每题5分,共20分)1. 请简述什么是置信区间,并给出其计算方法。
答案:置信区间是用于估计一个未知参数的区间,它表明了在给定的置信水平下,参数值落在这个区间内的概率。
概率论与数理统计试卷及参考答案
概率论与数理统计 试卷及其答案一、填空题(每空4分,共20分)1、设随机变量ξ的密度函数为2(0,1)()0ax x x φ⎧∈=⎨⎩其它,则常数a =3 。
2、设总体2(,)XN μσ,其中μ与2σ均未知,12,,,n X X X 是来自总体X 的一个样本,2σ的矩估计为211()i ni i X X n ==-∑ 。
3、已知随机变量X 的概率分布为{},1,2,3,4,5,15kP X k k ===则1()15P X E X ⎧⎫<=⎨⎬⎩⎭___ 0.4___。
4、设随机变量~(0,4)X U ,则(34)P X <<= 0.25 。
5、某厂产品中一等品的合格率为90%,二等品合格率80%,现将二者以1:2的比例混合,则混合后产品的合格率为 5/6 。
二、计算题(第1、2、3题每题8分,第4题16分,第5题16分,共56分)1、一批灯泡共20只,其中5只是次品,其余为正品。
做不放回抽取,每次取一只,求第三次才取到次品的概率。
解:设i A 表示第i 次取到次品,i=1,2,3,B 表示第三次才取到次品, 则123121312()()()()()1514535201918228P B P A A A P A P A A P A A A ===⨯⨯=2、设X 服从参数为λ的指数分布,其概率密度函数为0()00xe xf x x λλ-⎧≥=⎨<⎩,求λ的极大似然估计。
解:由题知似然函数为:11()(0)i niii x i nx ni i L eex λλλλλ==-=-=∑=∏=≥对数似然函数为:1ln ()ln i ni i L n x λλλ===-∑由1ln ()0i ni i d L n x d λλλ===-=∑,得:*11i nii nxxλ====∑ 因为ln ()L λ的二阶导数总是负值,故*1Xλ=3、设随机变量X 与Y 相互独立,概率密度分别为:,0()0,0x X e x f x x -⎧>=⎨≤⎩,1,01()0,Y y f y <<⎧=⎨⎩其他, 求随机变量Z X Y =+的概率密度解:()()()Z X Y f z f x f z x dx +∞-∞=-⎰1,01,10,0z x z x ze dy z e dy z z ---⎧<<⎪⎪=≥⎨⎪≤⎪⎩⎰⎰ 11,01,10,0z z z e z e e z z ---⎧-<<⎪=-≥⎨⎪≤⎩4、 设随机变量X 的密度函数为,01,()2,12,0,x x f x x x <≤⎧⎪=-<≤⎨⎪⎩其它.求(),()E X D X 。
数理统计期中考试试题及答案
数理统计期中考试试题及答案一、选择题(每题5分,共20分)1. 下列哪项是描述数据离散程度的统计量?A. 平均数B. 中位数C. 众数D. 方差答案:D2. 以下哪个分布是描述二项分布的?A. 正态分布B. 泊松分布C. 均匀分布D. 二项分布答案:D3. 以下哪个公式是计算样本方差的?A. \( \bar{x} = \frac{\sum_{i=1}^{n}x_i}{n} \)B. \( s^2 = \frac{\sum_{i=1}^{n}(x_i - \bar{x})^2}{n-1} \)C. \( \sigma^2 = \frac{\sum_{i=1}^{n}(x_i - \mu)^2}{n} \)D. \( \mu = \frac{\sum_{i=1}^{n}x_i}{n} \)答案:B4. 以下哪个统计量用于衡量两个变量之间的相关性?A. 标准差B. 相关系数C. 回归系数D. 均值答案:B二、填空题(每题5分,共20分)1. 一组数据的均值是50,中位数是45,众数是40,这组数据的分布是_____。
答案:右偏分布2. 如果一个随机变量服从标准正态分布,那么其均值μ和标准差σ分别是_____和_____。
答案:0,13. 在回归分析中,如果自变量X的增加导致因变量Y的增加,那么X和Y之间的相关系数是_____。
答案:正数4. 假设检验的目的是确定一个统计假设是否_____。
答案:成立三、计算题(每题10分,共30分)1. 已知样本数据:2, 4, 6, 8, 10,求样本均值和样本方差。
答案:均值 = 6,方差 = 82. 假设一个二项分布的随机变量X,其成功概率为0.5,试求X=2的概率。
答案:\( P(X=2) = C_4^2 \times 0.5^2 \times 0.5^2 = 0.25 \)3. 已知两个变量X和Y的相关系数为0.8,求X和Y的线性回归方程。
答案:需要更多信息,如X和Y的均值和方差,才能求解。
概率论与数理统计期中试卷(1-4章)附答案及详解
X,23π+=X Y5.设随机变量1X ,2X ,3X 相互独立,1X 在)5,1(-服从均匀分布,)2,0(~22N X,)2(~3Exp X (指数分布),记32132X X X Y +-=,则)(Y E )(Y D6. 设二维正态分布的随机变量)0,3,4,2,1( ),(22-N ~Y X ,且知8413.0)1(=Φ,则-<+)4(Y X P7. 已知随机变量X 的概率密度201()0 a bx x f x⎧+<<=⎨⎩其他, 且41)(=X E ,则a b )(X D 8. 设4.0,36)(,25)(===XY Y D X D ρ,则=+)(Y X D =-)(Y X D 二. (10分) 某车间有甲乙两台机床加工同一种零件,甲机床加工的零件数量比乙机床多一倍,甲乙机床加工零件的废品率分别为0.03,0.02. 两机床加工出的零件放在一起. 试求 (1)任取一个零件是合格品的概率;(2)任取一个零件经检验是废品,试求它是由乙机床生产的概率.解:设“从放在一起的零件中任取一件发现是甲/乙机床加工的”分别记为事件,A .A再记“从放在一起的零件中任取一件发现是废品”为事件.B 由已知得.02.0)(,03.0)(;31)(,32)(====A B P A B P A P A P …… 3’(1)由全概率公式知027.075202.03103.032)()()()()(≈=⨯+⨯=+=A B P A P A B P A P B P . …… 3’ 故任取一个零件是合格品的概率73()1()0.973.75P B P B =-=≈ …… 1’ (2)由贝叶斯公式知.4102.03103.03202.031)()()()()()()(=⨯+⨯⨯=+=A B P A P A B P A P A B P A P B A P …… 3’三. (10分)设某型号的电子元件的寿命X (单位: 小时)的分布密度为⎪⎩⎪⎨⎧>=其它,01000,1000)(2x x x f各元件在使用中损坏与否相互独立,现在从一大批这种元件中任取5只,求其中至少有一只元件的寿命大于1500小时的概率。
概率论与数理统计试题及答案
概率论与数理统计一、单选题1.随机地掷一骰子两次,则两次出现的点数之和等于8的概率为()。
(4分)A :3/36B :4/36C :5/36D :2/362.A,B为任意两事件,若A,B之积为不可能事件,则称()。
(4分)A :A与B相互独立B :A与B互不相容C :A与B互为对立事件D :A与B为样本空间Ω的一个划分3.设A,B,C是三个事件,在下列各式中,不成立的是( ) .(4分)A :(A-B)UB=AUBB :(AUB)-B=AC :(AUB)-AB= UBD :(AUB)-C=(A-C)U(B-C)4.以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A为().(4分)A :“甲种产品滞销,乙种产品畅销”;B :“甲,乙两种产品均畅销”;C :“甲种产品滞销”;D :“甲种产品滞销或乙种产品畅销”。
5..掷二枚骰子,事件A为出现的点数之和等于3的概率为()。
(4分)A :11B :44,214C :44,202D :都不对6.设A,B为两个事件,且B A,则下列各式中正确的是( ).(4分)A :P(AUB)= P(A)B :P(AB)=P(A)C :P(BIA)= P(B)D :P(B-A)=P(B)- P(A)7.某小组共9人,分得一张观看亚运会的入场券,组长将一张写有“得票”字样和8张写有“不得票”字样的纸签混合后让大家依次各抽一张,以决定谁得入场券,则()。
(4分)A :A.第1个抽签者得“得票”的概率最大B :第5个抽签者“得票”的概率最大C :每个抽签者得“得票”的概率相等D :最后抽签者得“得票”的概率最小8.设A,B是两个事件,且P(A)≤P(AIB)则有( ).(4分)A :P(A)= P(AIB)B :P(B)>0C :P(A)≥P(AIB)D :前三者都不一定成立9.设有10个零件,其中2个是次品,现随机抽取2个,恰有一个是正品的概率为().(4分)A :8/45B :16/45C :8/15D :8/3010.设盒中有10个木质球,6个玻璃球,玻璃球有两个为红色,4个为蓝色;木质球有3个为红色,7个为蓝色,现从盒中任取一球,用A表示“取到蓝色球”;B表示“取到玻璃球”。
概率论数理统计期中考试试卷
遵章守纪考试诚信承诺书在我填写考生信息后及签字之后,表示我已阅读和理解《学生考试违规处理办法(试行)》有关规定,承诺在考试中自觉遵守该考场纪律,如有违规行为愿意接受处分;我保证在本次考试中,本人所提供的个人信息是真实、准确的。
承诺人签字:数理(部)概率论与数理统计课程期中考试试卷 ( B )卷2014——2015学年第 一 学期 开卷/闭卷请注明 闭卷 考试时间: 90分钟 任课教师: 夏宇 (统一命题的课程可不填写)年级、专业、班级 学号 姓名一、单项选择题(每小题2分,共10分)1、设C B A 、、为三个事件,则“C B A 、、中至少有两个发生”这一事件可表示为( ).BC AC AB A ++).( C B A B ++).(BC A C B A C AB C ++).( C B A D ++).(2、设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则( ) (A ))(1)(B P A P -= (B ) )()()(B P A P AB P = (C ) 1)(=+B A P (D ) 1)(=AB P3、某人连续向一目标射击,每次命中目标的概率为43,则他连续射击直到第十次才命中4次的概率是( ))(A 644104143⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛C )(B 643104143⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛C )(C 64394143⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛C )(D 64394341⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛C 4、设二维随机变量),(Y X 的概率密度为),(y x f ,则=>)2(X P ( ))(A⎰⎰+∞∞-∞-dy y x f dx ),(2)(B ⎰⎰+∞∞-+∞dy y x f dx ),(2)(C⎰∞-2),(dx y x f )(D ⎰+∞2),(dx y x f5、设二维随机变量(X ,Y )的联合分布函数为F(x,y),其分布律为则F (0,1)=( ).(A)0.2; (B)0.4; (C)0.6; (D)0.8二、填空题(每空3分,共30分)6、设==⋃==)(,)(,)(,)(B A P k B A P n B P m A P 则 .7、袋中有6只白球与3只红球,每次取一只球,不放回地取两次,设i A 表示第i 次取到白球(2,1=i ),则=)(1A P ,=-)(12A A P .8、某型号灯泡能使用寿命X (单位:小时)服从参数为100=θ的指数分布。
概率论与数理统计试题及答案
概率论与数理统计试题及答案一、选择题(每题2分,共10分)1. 设随机变量X服从参数为λ的泊松分布,那么P(X=2)等于:A. λ^2B. e^(-λ)λ^2C. λ^2/2D. e^(-λ)λ^2/2答案:D2. 某工厂生产的零件长度服从正态分布N(50, 25),那么长度在45到55之间的零件所占的百分比是:A. 68.27%B. 95.45%C. 99.74%D. 50%答案:B3. 一袋中有10个红球和5个蓝球,随机抽取3个球,那么抽到至少2个红球的概率是:A. 0.4375B. 0.5625C. 0.8125D. 0.9375答案:C4. 设随机变量Y服从二项分布B(n, p),那么E(Y)等于:A. npB. n/2C. p/nD. n^2p答案:A5. 以下哪个事件是不可能事件:A. 抛硬币正面朝上B. 抛骰子得到1点C. 一天有25小时D. 随机变量X取负无穷答案:C二、填空题(每题3分,共15分)6. 设随机变量X服从均匀分布U(0, 4),那么P(X>2)等于______。
答案:1/27. 随机变量Z服从标准正态分布,那么P(Z ≤ -1.5)等于______(结果保留两位小数)。
答案:0.06688. 设随机变量W服从指数分布Exp(μ),那么W的期望E(W)等于______。
答案:1/μ9. 从一副不含大小王的扑克牌中随机抽取一张,抽到黑桃A的概率是______。
答案:1/5210. 设随机变量V服从二项分布B(15, 0.4),那么P(V=5)等于______(结果保留三位小数)。
答案:0.120三、解答题(共75分)11. (15分)设随机变量ξ服从二项分布B(n, p),已知P(ξ=1) = 0.4,P(ξ=2) = 0.3,求n和p的值。
答案:根据二项分布的性质,我们有:P(ξ=1) = C(n, 1)p^1(1-p)^(n-1) = 0.4P(ξ=2) = C(n, 2)p^2(1-p)^(n-2) = 0.3通过解这两个方程,我们可以得到n=5,p=0.4。
概率论与数理统计期中考试试题1
概率论与数理统计期中考试试题 1一.选择题(每题 4 分,共20 分)1.设A, B,C 为三个随机事件,A, B,C 中至少有一个发生,正确的表示是()A. ABCB. ABCC. A B CD. A B C2.一个袋子中有 5 个红球, 3 个白球,2 个黑球,现任取三个球恰为一红,一白,一黑的概率为( )A. 12B.14C.13D.153.设A, B 为随机事件,P( A) 0.5, P(B) 0.6, P( B | A) 0.8 ,则P(A B) ()A .0.7 B. 0.8 C. 0.6 D. 0.44. 一电话总机每分钟收到呼唤的次数服从参数为 2 的泊松分布,则某一分钟恰有 4 次呼唤的概率为()A. 234e B.232e C.122e D.12e 35.若连续性随机变量 2X N( , ) ,则XZ ()A . 2Z N( , ) B.2Z N (0, ) C. Z N (0,1) D. Z N (1,0)二. 填空题(每题 4 分,共20 分)6. 已知1P( A) ,且A,B 互不相容,则P( AB) 27. 老张今年年初买了一份为期一年的保险,保险公司赔付情况如下:若投保人在投保后一年内因意外死亡,则公司赔付30 万元;若投保人因其他原因死亡,则公司赔付10 万元;若投保人在投保期末生存,则公司无需付给任何费用。
若投保人在一年内因意外死亡的概率为0.2,因其他原因死亡的概率为0.0050,则保险公司赔付金额为0 元的概率为8. 设连续性随机变量X 具有分布函数0, x 1F (x) ln x,1 x e1,x e则概率密度函数 f (x)9. 设连续型随机变量 2X N (3,2 ) ,则P 2<X 5(注: (1)=0.8413, (0.5)=0.6915 )10.设离散型随机变量X 的分布律为1 0 1 2X ,则0.2 0.3 0.1 0.42Y (X 1) 的分布律为三.解答题(每题8 分,共48 分)11.将9 名新生随机地平均分配到两个班级中去,这9 名新生中有 3 名是优秀生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率论与数理统计》期中试题(二)解答姓名 班级 学号 成绩一、填空题(每小题4分,共13分)(1) 设()0.5P A =,()0.6P B =,(|)0.8P B A =,则,A B 至少发生一个的概率为_________.(2) 设X 服从泊松分布,若26EX =,则(1)P X >=___________. (3) 元件的寿命服从参数为1100的指数分布,由5个这种元件串联而组成的系统,能够正常工作100小时以上的概率为_____________.解:(1)()()()0.8(|)1()0.5P BA P B P AB P B A P A -===- 得 ()0.2P AB = ()()()() 1.10.20.9P A B P A P B P AB =+-=-= . (2)222~(),6()X P EX DX EX λλλ==+=+ 故 2λ=. (1)1(1)1(0)(1)P X P X P X P X >=-≤=-=-=2221213e e e ---=--=-. (3)设第i 件元件的寿命为i X ,则1~(),1,2,3,4,5100i X E i =. 系统的寿命为Y ,所求概率为125(100)(100,100,,100)P Y P X X X >=>>> 51551[(100)][11].P X e e --=>=-+=二、单项选择题(每小题4分,共16分)(1),,A B C 是任意事件,在下列各式中,不成立的是 (A )()A B B A B -= .(B )()A B A B -= .(C )()A B AB AB AB -= .(D )()()()A B C A C B C =-- . ( )(2)设12,X X 是随机变量,其分布函数分别为12(),()F x F x ,为使12()()()F x aF x bF x =+是某一随机变量的分布函数,在下列给定的各组数值中应取(A )32,55a b ==-. (B )22,33a b ==. (C )13,22a b =-=. (D )13,22a b ==. ( )(3)设随机变量X 的分布函数为()X F x ,则35Y X =-的分布函数为()Y F y =(A )(53)X F y -. (B )5()3X F y -.(C )3()5X y F +. (D )31()5X yF --. ( ) (4)设随机变量12,X X 的概率分布为101111424i X P- 1,2i =. 且满足12(0)1P X X ==,则12,X X 的相关系数为12X X ρ=(A )0. (B )14. (C )12. (D )1-. ( ) 解:(1)(A ):成立,(B ):()A B A B A B -=-≠ 应选(B )(2)()1F a b +∞==+. 应选(C ) (3)()()(35)((3)/5)Y F y P Y y P X y P X y =≤=-≤=>- 331()1()55X y yP X F --=-≥=- 应选(D ) (4)12(,)X X 的分布为12120,0,0EX EX EX X ===,所以12cov(,)0X X =, 于是 120X X ρ=. 应选(A )三、(12分)在一天中进入某超市的顾客人数服从参数为λ的泊松分布,而进入超市的每一个人购买A 种商品的概率为p ,若顾客购买商品是相互独立的, 求一天中恰有k 个顾客购买A 种商品的概率。
解:设B =‘一天中恰有k 个顾客购买A 种商品’ 0,1,k = n C =‘一天中有n 个顾客进入超市’ ,1,n k k =+则 ()()()(|nn n n knkP B P C B P C P B C∞∞====∑∑ (1)!nkk n k nn ke Cp p n λλ∞--==-∑()(1)!()!k n kn k n k p e p k n k λλλ-∞--==--∑()!k pp e k λλ-= 0,1,k = .四、(12分)设考生的外语成绩(百分制)X 服从正态分布,平均成绩(即参数μ之值)为72分,96以上的人占考生总数的2.3%,今任取100个考生 的成绩,以Y 表示成绩在60分至84分之间的人数,求(1)Y 的分布列. (2)EY 和DY . ((2)0.977,(1)0.8Φ=Φ= 解:(1)~(100,)Y B p ,其中8472(6084)()p P X σ-=<≤=Φ607212()2()1σσ--Φ=Φ-由 9672240.023(96)1()1()P X σσ-=>=-Φ=-Φ 得 24()0.977σΦ=,即242σ=,故121σ=所以 2(1)10.6826p =Φ-=.故Y 的分布列为100100()(0.6826)(0.3174)kk k P Y k C -==(2)1000.682668.26EY =⨯=,68.260.317421.6657DY =⨯=.五、(12分)设(,)X Y 在由直线21,,0x x e y ===及曲线1y x=所围成的区域 上服从均匀分布,求边缘密度()X f x 和()Y f y ,并说明X 与Y 是否独立. 解:区域D 的面积 22111ln 2e e D S dx x x===⎰(,)X Y 的概率密度为1,(,),(,)20,x y D f x y ⎧∈⎪=⎨⎪⎩其它.(1)1201,1,()(,)20,.x X dy x e f x f x y dy +∞-∞⎧≤≤⎪==⎨⎪⎩⎰⎰其它21,1,20,.x e x⎧≤≤⎪=⎨⎪⎩其它2211211,1,21,1,()(,)20,e y Y dx y e dx e y f y f x y dx -+∞--∞⎧≤≤⎪⎪⎪<≤==⎨⎪⎪⎪⎩⎰⎰⎰其它2221(1),1211,1220,e y e e y y --⎧-≤≤⎪⎪⎪-<≤=⎨⎪⎪⎪⎩其它(2)因(,)()()X Y f x y f x f y ≠⋅,所以,X Y 不独立.六、(12分)已知,3.0)(=A P 4.0)(=B P ,,5.0)|(=B A P 试求).|(),|(B A B P B A B P解由乘法公式, )(AB P )()|(B P B A P =4.05.0⨯=,2.0=因此)|(A B P )()(A P AB P =3.02.0=,32= 又因为,B A B ⊂ 所以,)(B B A B = 从而 )|(B A B P )())((B A P B A B P =)()()()(AB P B P A P B P -+=2.04.03.04.0-+=,54= )|(B A B A P )|(B A AB P =)|(1B A AB P -=)()(1B A P AB P -=5.02.01-=.53=七、(12分)设随机变量X 具有概率密度⎪⎪⎩⎪⎪⎨⎧≤≤-<≤=.,0,43,22,30,)(其它x x x kx x f}.2/71{)3();()2(;)1(≤<X P x F X k 求的分布函数求确定常数解 (1) 由⎰+∞∞-=,1)(dx x f 得,122433=⎪⎭⎫⎝⎛-+⎰⎰dx x kxdx解得,6/1=k 于是X 的概率密度为.,043,2230,6)(⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤-<≤=其它x x x xx f(2) X 的分布函数为)(x F ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤⎪⎭⎫ ⎝⎛-+<≤<=⎰⎰⎰4,143,22630,60,03030x x dt t dt tx dt t x x x .4,143,4/2330,12/0,022⎪⎪⎩⎪⎪⎨⎧≥<≤-+-<≤<=x x x x x x x (3) ⎰=≤<2/71)(}2/71{dx x f X P ⎰⎰⎪⎭⎫ ⎝⎛-+=2/73312261dx x xdx 2/73231242121⎪⎪⎭⎫ ⎝⎛-+=x x x ,4841=或)1()2/7(}2/71{F F X P -=≤<.48/41=八、(12分)设连续型随机变量),(Y X 的密度函数为 ⎩⎨⎧≤≤≤=其它,010,8),(y x xy y x f求),cov(Y X 和)(Y X D +.解 由),(Y X 的密度函数可求得其边缘密度函数分别为:,,010),1(4)(2⎩⎨⎧≤≤-=其它x x x x f X ,,010,4)(3⎩⎨⎧≤≤=其它y y y f Y于是⎰+∞∞-=dx x xf X E X )()(⎰-⋅=102)1(4dx x x x ,15/8=⎰+∞∞-=dy y yf Y E Y )()(⎰⋅=1034dy y y ,5/4=⎰⎰+∞∞-+∞∞-=dxdy y x xyf XY E ),()(⎰⎰⋅⋅=1108xdy xy xy dx ,9/4=从而)()()(),cov(Y E X E XY E Y X -=,225/4= 又⎰+∞∞-=dx x f x X E X )()(22⎰-⋅=122)1(4dx x x x,3/1=⎰+∞∞-=dy y f y Y E Y )()(22⎰⋅=1324dy y y ,3/2=所以22)]([)()(X E X E X D -=,225/11=,75/2)]([)()(22=-=Y E Y E Y D 故),cov(2)()()(Y X Y D X D Y X D ++=+.9/1=。