spss单样本t检验
spss -- t-test
Independent t-testห้องสมุดไป่ตู้practice
为了研究摄入酒精对驾驶汽车动作的影响,某研究者 随即抽取了20名成年司机,随机分成相等的两组。一 组摄入一定量的酒精,一组未摄入酒精,然后要求他 们在驾校的教练场驾驶汽车半个小时。结果每一位司 机遇到障碍物时平均的刹车距离为 3.5 3.0 4.5 2.8 5.0 4.0 2.6 5.0 4.5 6.0
Results
这14名数学兴趣小组的成员的数学平均分为 91.71分,标准差为4.39分.当把这组学生的平 均分(91.71)与全班平均分(80)进行单样 本t检验时,结果显示,t = 9.98,df = 13, p<.001.表明该数学小组成员数学的平均分显 著高于全班平均分。
Practice
摄 入 未 摄 入
3.2
2.5
2.5
1.0
3.5
2.0
2.0
2.5
1.5
1.0
Paired samples t-test
下面的数据是对12名技工学校学生进行某项劳动技能 实地训练前后的技能测试成绩,问实地训练是否有效 地提高了该项劳动技能的水平? 1 2 3 4 5 6 7 8 9 10 11 12
Xiaoyan Xu Sichuan Normal University
Single sample t-test (Onesample t-test)
某数学兴趣小组成员在期末考试中的数学成绩 如下所示,已知全班平均分为80分。请问该组 同学的平均数学成绩是否与全班同学的平均数 学成绩有显著差异。 90 85 88 92 95 99 100 89 92 91 93 88 87 95
(完整word版)单独样本T检验1
大连市住房建设规划中明确提出:到2010年大连市市内四区常住人口的住房条件要达到人均居住建筑面积30平方米的目标。试根据此调查数据,判断大连市市内四区家庭的现住房面积是否已达到人均30平方米的建设目标,如果没有达到目标,计算距离目标还有多大差距。
《SPSS)》实验报告
开课:年月 日
姓 名
成 绩
年级专业
学 号
课程名称
实验名称
实验小组成员
指导教师
教 师 评 语
教师签名:
年月日
※为全面了解大连市市内四区常住人口的住房现状和需求情况,在大连市政府统一组织和市国土资源和房屋管理局牵头协调下,国家统计局大连调查队从2006年4月份至9月初,历时5个月完成了大连市市内四区居民住房状况及需求的调查工作并获取了相关问题的第一手数据资料。
三、实验结果
单个样本统计量
N
均值
标准差
均值的标准误
家庭人均建筑面积
6952
30.5490
24.52867
.29418
单个样本检验
检验值= 30t源自dfSig.(双侧)均值差值
差分的95%置信区间
下限
上限
家庭人均建筑面积
1.866
6951
.062
.54896
-.0277
1.1256
根据上表结果可知,该市家庭人均建筑面积均值为30.5490,其中sig为0.062大于0.05所以该人均建筑面积为30的假设成立。所以已经达成了目标。
SPSS—单样本T检验
一、被调查学生对“云窗的打分值”总体平均值的推断:1、以71个被调查学生为样本做T 检验由表a 可知,71个观测的平均值为71.21,标准差为15,120,均值标准误为1.794。
表b 中,第二列是t 统计量的观测值为0.675,第三列是自由度n-1=70,第四列是t 统计量观测值的双尾概率p 值,第五列是样本均值与检验值的差(1.211),即t 统计量的分子部分,他除以表a 的均值标准误(1.794)后得到t 统计量的观测值0.675,第六列和第七列是总体均值与检验值差的95%的置信区间,为(67.63,74.79)。
对于研究的问题应采用双尾检验,因此比较2α和2p,即比较α和p 。
由于p 大于α(0.05),因此不能拒绝零假设,认为被调查学生对“云窗的打分值”总体平均值没有显著差异。
有95%的把握认为总体均值在 67.63~74.79 分之间。
70分包含在置信区间内,也证实了上述推断。
2、被调查学生对“云窗的打分值”的重抽样自举表cBootstrap 指定采样方法简单箱图样本数1000置信区间度95.0%置信区间类型百分位由表c可知,自举过程执行1000次,随机数种子指定为默认值2000000,采样方法为简单箱图。
中均值的重抽样自举均值与实际样本均值的差为-0.12,1000个均值的标准差为1.82,由此得到的均值95%的置信区间为(67.18,74.46)表e中没有给出双尾检验的概率p值,但是从检验的结果可知有95%的把握认为总体均值在67.184~74.463之间。
70包含在置信区间内。
用更大的样本量再一次说明了被调查学生对“云窗的打分值”总体平均值没有显著差异。
spss单一样本的T检验
spss单一样本的T检验SPSS是一款广泛使用的统计软件,可以用于各种统计分析,包括单一样本的T 检验。
下面是关于如何使用SPSS进行单一样本的T检验的详细步骤和解释。
一、目的单一样本的T检验主要用于比较一个样本的平均值与已知的或预设的数值,或者用于比较一个样本与已知的或预设的数值之间的差异。
这种检验通常用于检验一个样本是否显著地不同于已知的或预设的数值。
二、步骤1.打开SPSS软件,点击“分析”菜单,然后选择“比较平均值”>“独立样本T检验”。
2.在弹出的对话框中,将左侧的“独立样本T检验”选项卡中的“变量”字段拖到右侧的“变量”框中。
3.在“独立样本T检验”选项卡下方的“组”字段中输入已知的或预设的数值。
4.点击“确定”按钮,SPSS将计算并显示T检验的结果。
三、结果解释单一样本的T检验的结果通常包括T值和p值。
T值是计算出的统计量,而p 值是观察到的数据与零假设之间的不一致程度。
如果p值小于选择的显著性水平(通常为0.05),则可以拒绝零假设,认为样本平均值与已知的或预设的数值之间存在显著差异。
四、注意事项1.单一样本的T检验的前提是数据符合正态分布。
如果数据不符合正态分布,可以使用非参数检验,例如Mann-Whitney U检验或Wilcoxon符号秩检验。
2.在使用单一样本的T检验时,需要明确知道或预设的数值是什么,以及为什么要比较这个数值。
如果不知道或预设的数值是什么,或者比较的目的不明确,那么这种检验可能会没有意义或者导致错误的结论。
3.单一样本的T检验只能告诉我们一个样本的平均值与已知的或预设的数值之间的差异是否显著,但不能告诉我们这种差异的实际意义或影响。
因此,在解释结果时需要谨慎,并考虑实际应用背景。
4.在进行单一样本的T检验时,需要确保数据的质量和准确性。
如果数据存在缺失、异常值或错误,将会对结果产生影响。
在进行统计分析前,需要对数据进行清洗和预处理。
5.在进行单一样本的T检验时,需要考虑变量的类型和测量尺度。
spss数据统计分析(复习)
均值:方差检验(【单样本T检验】1.从某厂第一季度生产的电子元件中抽取了部分样品测量他们的电阻(单位:欧姆),数据资料在“小测1.sav”中。
按质量规定,元件的额定电阻为0.140欧姆,假定元件的电阻服从正态分布。
判断这批产品的质量是否合格。
从上表单样本数据统计量表中可以得测试电阻值的样品有35个,均值为0.1423,标准差为0.00426,均值标准误为0.00072从单样本检验表中可以看出:t统计量的值为3.174,自由度为34,均值差值为0.00229,95%的置信区间(0.0008,0.0037),相伴概率为0.003,远小于显著性水平0.05,说明假设成立,也就是说这批产品的质量与0.140欧姆有显著性差异,说明这批产品的质量是不合格的。
【独立样本T检验】2、甲乙两台测时仪同时测量两靶间子弹飞行的时间,测量结果在“小测2.sav”中,假定两台仪器测量的结果服从正态分布,设显著性水平为0.05,问两台仪器的测量结果有无显著差异Levene检验主要用来检验原假设条件是否成立,(即:假设方差相等和方差不相等两种情况)如果SIG>0.05,证明假设成立,不能够拒绝原假设,如果SIG<0.05,证明假设不成立,拒绝原假设。
在组数据统计表中可以得到第1组有6个样本,均值为12.8883,标准差是0.72256,均值标准误为0.29498;第二组有7个样本,均值是13,标准差是0.5870均值标准误是0.22189;在独立样本检验表中可以得出F 的统计量的值为1.028,相伴概况为0,332,远大于显著性水平0.05,说明这两组数据的方差之间不存在显著差别,所以适合采用独立样本T检验。
t的统计量为-0.772,自由度为11,95%的置信区间,(01.07881,0.51834),相伴概率为0.456,远大于显著性水平0.05,假设成立,不能拒绝原假设,说明这2台仪器的测试结果没有显著性差异。
3-5--t检验-SPSS-有答案知识讲解
1. 00
16 2.6250 .9270.926763
Independent Samples Test
Levene's Test for Equalit y of Variances t-t est for Equality of Means
F
Sig.
t
血 清 胆 E固 qua 醇 l variances assumed .057 .8141.532
健康者编号 X2
1
2.34
2
6.40
3
2.60
4
3.24
5
6.53
6
5.18
7
5.58
8
3.73
9
4.32
10
5.78
11
3.73
2
2.50
3
1.98
4
1.67
5
1.98
6
3.60
7
2.33
8
3.73
9
4.57
10 4.82
11 5.78
12 4.17
13 4.14
分析步骤
第一步:建立数据文件。它设立两个变 量:group 其取值为1表示甲组,其取值2表 示乙组,取文件名为独立样本t检验。GS表 示血糖值.
Test Variable List框内;在
Test Distribution中 激活“Normal”。 单击OK按钮。 则得出输出结 果。
P1=0.995,P2=0.652,都可认为近似正态分布
One -Sample Kolm ogoro v-Smirnov Te st
GRO UP
1.00
N
Norm al Parameters
SPSS-t检验
数据输入
1)启动SPSS,进入定义变量工作表,分别命名 两变量:组别、鱼产量。其中组别1表示A料,组 别2表示B料。
2)进入数据视图工作表,输入数据
统计பைடு நூலகம்析
Analyze---compare mean----indendent samples T test
Test variable(输入):产鱼量
2、选择检验方法和计算检验统计量 因为总体标准差σ未知,所以采用t检验。 Analyze →Compare Means→One-Sample T Test出现如下对话框:
•把x移入到Test Variable(s) 的变量列表; •在Test Value后输入需要 比较的总体均数20; •OK
3、根据检验统计量的结果做出统计推断 基本统计量信息:
T检验
(一)单个总体均数的t检验 (二)独立样本成组t检验 (三)成对样本t检验
(一)单个总体均数的t检验
计算公式
样本平均数与总体平均数差异显著性检验
例:成虾的平均体重为21克,在配合饲料中添加 0.5%的酵母培养物饲养成虾时,随机抽取16只对 虾,体重为20.1、21.6、22.2、23.1、20.7、19.9、 21.3、21.4、22.6、22.3、20.9、21.7、22.8、 21.7、21.3、20.7。试检验添加添加0.5%的酵母 培养物是否提高了成虾体重。
从结果中可以看出,统计量t=3.056,P=0.012<α=0.05,因此拒 绝H0,接收H1,即用该方法测量所得结果与标准浓度值有所不 同。认为该方法测量结果所对应总体均数μ与标准浓度μ0间的差 异有统计学意义。
(二)独立样本成组t检验
独立样本:又称非配对样本或成组样本。是指一组数据与另一 组数据没有任何关系,也就是说,两样本资料是相互独立的。 两组的样本容量尽可能相同,可以提高检验的精确度。其均 数差异显著性的t检验,又分为两总体方差相等(方差齐性)和 方差不等两种检验方法。
spss均值检验(均数分析单样本t检验独立样本t检验)
在统计学中,我们往往从样本的特性推知随机变量总体的特性。
但由于总体中个体之间存在差异,样本的统计量和总体的参数之间往往会有误差。
因此,均值不相等的样本未必来自不同分布的总体,而均值相等的样本未必来自有相同分布的总体。
也就是说,如何从样本均值的差异推知总体的差异,这就是均值比较的内容。
SPSS提供了均值比较过程,在主菜单栏单击“Analyze”菜单下的“Compare Means”项,该项下有5个过程,如图4-1。
平均数比较Means过程用于统计分组变量的的基本统计量。
这些基本统计量包括:均值(Mean)、标准差(Standard Deviation)、观察量数目(Number of Cases)、方差(Variance)。
Means过程还可以列出方差表和线性检验结果。
[例子]调查了棉铃虫百株卵量在暴雨前后的数量变化,统计暴雨前和暴雨后的统计量,其数据如下:暴雨前 110 115 133 133 128 108 110 110 140 104 160 120 120暴雨后 90 116 101 131 110 88 92 104 126 86 114 88 112该数据保存在“DATA4-1.SAV”文件中。
1)准备分析数据在数据编辑窗口输入分析的数据,如图4-2所示。
或者打开需要分析的数据文件“DATA4-1.SAV”。
图4-2 数据窗口2)启动分析过程在SPSS主菜单中依次选择“Analyze→Compare Means→Means”。
出现对话框如图4-3。
图4-3 Means设置窗口3)设置分析变量从左边的变量列表中选中“百株卵量”变量后,点击变量选择右拉按钮,该变量就进入到因子变量列表“Dependent List:”框里,用户可以从左边变量列表里选择一个或多个变量进行统计。
从左边的变量列表中选中“调查时候”变量,点击“Independent List”框左边的右拉按钮,该变量就进入分组变量“IndependentList”框里,用户可以从左边变量列表里选择一个或多个分组变量。
spss统计分析教程-独立样本t检验(1)
独立样本T检验下面我们要用SPSS来做成组设计两样本均数比较的t检验,选择Analyze==>Compare Means==>Independent-Samples T test,系统弹出两样本t检验对话框如下:将变量X选入test框内,变量group选入grouping框内,注意这时下面的Define Groups按钮变黑,表示该按钮可用,单击它,系统弹出比较组定义对话框如右图所示:该对话框用于定义是哪两组相比,在两个group框内分别输入1和2,表明是变量group取值为1和2的两组相比。
然后单击Continue按钮,再单击OK按钮,系统经过计算后会弹出结果浏览窗口,首先给出的是两组的基本情况描述,如样本量、均数等(糟糕,刚才的半天工夫白费了),然后是t检验的结果如下:Levene's TestforEqualityofVariancest-test for Equality of MeansFSig.tdfSig.(2-tailed)MeanDifferenceStd.ErrorDifference95%ConfidenceInterval ofthe Difference体方差是否齐,这里的戒严结果为F = ,p = ,可见在本例中方差是齐的;第二部分则分别给出两组所在总体方差齐和方差不齐时的t检验结果,由于前面的方差齐性检验结果为方差齐,第二部分就应选用方差齐时的t检验结果,即上面一行列出的t= ,ν=22,p=。
从而最终的统计结论为按α=水准,拒绝H0,认为克山病患者与健康人的血磷值不同,从样本均数来看,可认为克山病患者的血磷值较高。
SPSS抽样误差和t检验
抽样误差和t 检验Sampling error and t test一、目的要求(一)掌握抽样误差的定义,单样本t 检验、配对t 检验和两样本t 检验的计算及在SPSS 中的实现 (二)熟悉三种t 检验的适用条件二、预习纲要(一)t 检验的前提条件1.样本来自正态总体;2.两样本均数比较时,两样本总体方差齐性;3.各样本之间相互独立。
(二)抽样误差定义由个体变异产生的,抽样造成样本统计量与总体参数的差异,称为抽样误差。
通常用标准误说明均数抽样误差的大小。
(三)计算公式 1.标准误 nS S x =2.样本均数与总体均数比较 xS x t ||μ-=3.配对资料的比较 dS d t |0|-=4.两样本均数比较 )(2121||x x S x x t --=三、例题(一)样本均数与总体均数比较(One-Sample T Test 过程)【例1】随机抽取某地区20名成年男子,测得其脉搏(次/分)如下:75 73 73 76 79 63 81 80 76 70 897577828176806779661.数据的录入本例只有一个变量脉搏,其变量名为pulse ,依次输入上述的20个脉搏测量值,结果如图4.1图4.1 单样本t检验数据录入格式2.统计分析选择Analyze---Compare Means---One Sample T Test…命令项,弹出One Sample T Test对话框,将左侧变量列表中的变量pulse选入右侧的Test Variable(s):栏中。
在Test V alue栏中键入待比较的总体均值72(图4.2),最后点击OK钮。
图4.2 One Sample T Test对话框3.结果的输出及解释:首先输出的是变量pulse的基本统计指标,一共有20例样本,样本均值为75.900,标准差为6.121,标准误为1.3686。
其次输出的是单样本比较的统计指标,t=2.850,自由度为19,双侧P值=0.010,P<0.05,不能认为该地成年男子的脉搏为72次/分。
spss T检验
Std. Error Mean 193.13
t 4.207
df 7
Sig. (2-tailed) .004
正正正正组 维维素E缺缺组
812.50
结论:相关系数=0.584,P(sig.)=0.129,认为两配对变量无相 关关系。t=4.207,df=7,P=0.004<0.05,故可认为不同正正的大 百鼠肝中维维素A含量有统计意义。
脉脉
10
One-Sample Test Test Value = 72 95% Confidence Interval of the Difference Lower Upper -8.84 -.36
脉脉
t -2.453
df 9
Sig. (2-tailed) .037
Mean Difference -4.60
T检验:样本均数与总体均数的比较
问题:正正人的脉脉麻均72次/分,现测得10例某病患者的脉脉(次/分): 54,67,68,78,70,66,67,70,65,69,试问此病患者与正正人有无 显著性差别?
检验变量
检验值
One-Sample Statistics N Mean 67.40 Std. Deviation 5.93 Std. Error Mean 1.87
Mean Difference 119.725
结论:因t=-264.848,df=109,双侧概率P〈0.0005,两均数之 〈 差=119.725,差值的95%可信区间为118.829-120.621。因此该 市7岁男童的95%可信区间为118.829-120.621cm。
独立样本T检验 ( tow-sample t-test for independent samples )
SPSS统计实验单双样本t检验
单样本T检验
班级
期末成
绩
1 87 1 96 1 80 1 90 1 88 1 70 1 67 1 7
2 1 70 1 75 1 86
检验班级1的期末平均成绩是否达到80.
表中可看出均值=80.09,均值大于80
上表是对均值为80的显著性检验:T统计量=0.031,双侧检验P值=0.976大于显著性水平0.05,即表明接受原假设,没有显著性差异。
在95%的置信区间下的取值范围为(-6.50,6.68).综合分析可知班级1的期末平均成绩达到80.
两个样本T检验
班级
期末成
绩
1 87 1 96 1 80 1 90 1 88 1 70 1 67 1 7
2 1 70 1 75
1 86
2 77 2 68 2 65 2 61 2 9
3 2 88 2 80 2 85 2 85 2 80 2 96
计算两个班级期末成绩的平均成绩,标准差,最高分和最低分来比较两个班级间成绩有无明显差异。
两个班级期末成绩的均值为79.95,标准差为10.330,最高分为96,最低分为61,置信区间下限为75.37,上限为84.53。
上表为班级1,2在均值,置信度,标准差、中位数和最大、最小值等各项指标的对比情况:从表中可看出1班与2班的各项指标都很接近,1班略大于2班。
方差齐性检验的F值=0.018,P值=0.895,T检验在方差相等与不等两种情况下的T值都为0.06,P值都为0.952,都大于给定的显著性水平a=0.05,即两个班的成绩没有显著性差异。
spss软件进行T检验方法
小 结
SPSS中“Analyze”菜单中的“Compare Means”可用于均值检验,其子菜单中的 “One-sample T test”用于单一样本T检验; “Independent-samples T test”用于两独立 样本T检验;“Baired-samples T test”用于 两配对样本T检验。
SPSS将自动计算T值,由于该统计量服从 n−1个自由度的T分布,SPSS将根据T分布表给 出t值对应的相伴概率值。如果相伴概率值小 于或等于用户设想的显著性水平,则拒绝H0, 认为两总体均值之间存在显著差异。相反,相 伴概率大于显著性水平,则不拒绝H0,可以 认为两总体均值之间不存在显著差异。
4.1 Means过程 4.1.1 统计学上的定义和计算公式
定义:Means过程是SPSS计算各种基本描 述统计量的过程。与第3章中的计算某一样本 总体均值相比,Means过程其实就是按照用户 指定条件,对样本进行分组计算均数和标准差, 如按性别计算各组的均数和标准差。
用户可以指定一个或多个变量作为分组变 量。如果分组变量为多个,还应指定这些分组 变量之间的层次关系。层次关系可以是同层次 的或多层次的。同层次意味着将按照各分组变 量的不同取值分别对个案进行分组;多层次表 示将首先按第一分组变量分组,然后对各个分 组下的个案按照第二组分组变量进行分组。
78.00
89.00 87.00 76.00 56.00 76.00 89.00 89.00 99.00 89.00 88.00 98.00 78.00 89.00
78.00
87.00 89.00 97.00 76.00 100.00 89.00 89.00 89.00 98.00 78.00 78.00 89.00 68.00
spss独立样本t检验
spss中有关独立样本T检验的详细介绍包含操作过程和结果分析分析>比较平均值3.独立样本T检验独立样本T检验类似于单样本T检验,不过独立样本T检验的内容比单样本T检验要复杂的多,特别是对其结果的分析,而独立样本T检验被使用的情况也比单样本T检验更广泛(因此也可以看到网络上关于独立样本T检验的文章远比关于单样本T检验的文章多)对比:二者都是将数据的平均值进行比较,不同之处在于单样本T检验是将一个样本与某一特定值进行对比,而独立样本T检验是对多个样本之间的平均值进行对比。
独立样本是指进行对比的多个样本之间是相互独立、互不干扰的,通过独立样本T检验我们可以判断多个样本之间的平均值是否可以认为是相等的。
没有什么比举个例子更容易理解独立样本T检验的用途了:假如我们有两个样本,分别是来自农村和城市两个不同地方的人们的身高数据,我们的目的是探讨农村和城市的差异会不会给当地的人们带来身高上的影。
这时我们算出城市的人群的平均身高为168.38cm,而农村的人们的平均身高为164.58cm,二者差了3.8cm,那我们是否就可以认为这3.8cm就可以很好的说明农村和城市的人们身高有差异呢?那如果是差了3cm呢?如果是差了1cm呢?这种时候就不可以单靠感觉来评判了,而是应该使用独立样本T检验来帮助我们判断得出结论检验变量——需要进行平均值比较的数据分组变量——用于区分不同样本的变量选项——选择置信区间百分比以及缺失值的处理方法对于分组变量我们操作时需要注意一下,在我们选入了分组变量后,我们必须要对其进行定义组操作,因为SPSS无法自行判断如何通过分组变量对数据进行分组点击定义组我们有两种分类的方法,分别是使用指定的值与分割点,指定值就是将所有分类变量等于该输入的数值的样本划分为一组,分割点就是以该输入的数值为分割点划分出大于和小于该值的两组进行比较,这些都是很简单的,不多废话了~~接下来就是重头戏了——对结果的分析简洁解释:得到结果后,首先将独立样本检验表格中莱文方差等同性检验的显著性数值与0.05进行比较大于0.05,两组假定等方差,看第一行数据的显著性(双尾)数值,如果大于0.05,两组差异不显著;如果小于0.05,两组差异显著;小于0.05,两组不假定等方差,看第二行数据的显著性(双尾)数值,如果大于0.05,两组差异不显著;如果小于0.05,两组差异显著。
独立样本t检验SPSS教程
一、问题与数据某班级老师拟比较该班级本次考试中,男生和女生的考试成绩是否有差异,该班级男生和女生各有20名同学,变量名记录为gender,分别赋值为1和2,考试成绩变量名记录为score,部分数据如图1。
图1 部分数据二、对问题分析研究者拟分析两组数据均值是否有差异,即判断男生和女生的成绩是否有差异。
针对这种情况,我们可以使用独立样本t检验,但需要先满足6项假设:假设1:观测变量为连续变量,如本研究中的成绩为连续变量。
假设2:观测变量可分为2组,如本研究中分为男生和女生。
假设3:观测值之间相互独立,如本研究中各位研究对象的信息都是独立的,不存在相互干扰。
假设4:观测变量不存在显著的异常值。
假设5:观测变量在各组内接近正态分布。
假设6:两组的观测变量的方差相等。
假设1-3取决于研究设计和数据类型,本研究数据符合假设1-3。
那么应该如何检验假设4-6,并进行独立样本t检验呢?三、SPSS操作假设4和假设5可通过以下方式检验。
假设6的检验结果可在结果解释部分查看。
3.1 检验假设4:观测变量不存在显著的异常值在主界面点击Analyze→Descriptive Statistics→Explore,弹出Explore对话框,如图2。
在对话框中将score变量放入Dependent List栏,并将gender变量放入 Factor List栏。
图2 Explore点击Plots,取消对Descriptive栏内 Stem-and-leaf选项的选择,并点击Normality plots with tests选项,点击Continue→OK。
如图3。
图3 Explore: Plots 经上述操作,SPSS输出箱式图。
如图4。
图4 箱式图SPSS中,数据点与箱子边缘的距离大于1.5倍箱身长度,则定义为异常值,以圆点(°)表示;与箱子边缘的距离大于3倍箱身长度,则定义为极端值,以星号(*)表示。
圆点或星号附近的数值是SPSS系统的自动编码(Data View窗口中最左侧蓝色一列中的编码)。
单样本t检验
SPSS比较均独立样本T检验案例解析
SPSS-比较均值-独立样本T检验案例解析2011-08-26 14:55在使用SPSS进行单样本T检验时,很多人都会问,如果数据不符合正太分布,那还能够进行T检验吗?而大样本,我们一般会认为它是符合正太分布的,在鈡型图看来,正太分布,基本左右是对称的,一般具备两个参数,数学期望和标准方差,即:N(p, Q)如果你的样本数非常少,一般需要进行正太分布检验,检验的方法网上很多,我就不说了下面以“雄性老鼠和雌性老鼠分别注射了某种毒素,经过观察分析,进行随机取样,查看最终老鼠是否活着。
问题:很多人认为,雄性老鼠和雌性老鼠分别注射毒液后,雌性老鼠存活下来的数量会比雄性老鼠多?我们将通过进行统计分析来认证这个假设是否成立。
下面进行参数设置:a 代表:雄性老鼠b代表:雌性老鼠tim 代表:生存时间,即指经过多长时间后,去查看结果0 代表:结果死亡1 代表:结果活着随机抽取的样本,如下所示:打开SPSS- 分析---检验均值---独立样本T检验,如下图所示:将你要分析的变量,移入右边的框内,再将你要进行分组的变量移入“分组变量”框内,“组别group()里面的两个参数,不能够随意设置,必须要跟样本里面的数字一致点击确定后,分析结果,如下所示:从组统计量可以看出,雄性老鼠的存活下来的均值为0.73,但是雌性老鼠存活下来的均值为1.00,很明显,雌性老是存活下来的个数明显比雄性老鼠多,但是一般我们不看这个结果,为什么?因为样本不够大,如果将样本升至10000个?也许这个均值将会发生变化,不具备统计学意义,我们一般只看独立样本检验的结果。
独立样本检验,提供了两种方法:levene检验和均值T检验两种方法Levene检验主要用来检验原假设条件是否成立,(即:假设方差相等和方差不相等两种情况)如果SIG>0.05,证明假设成立,不能够拒绝原假设,如果SIG<0.05,证明假设不成立,拒绝原假设。
进行levene检验结果判断是第一步,从上图,可以看出 sig<0.05 方差相等的假设不成立,所以看第二行,方差不相等的情况sig=0.082>0.05 即说明 P 值大于显著性水平,不应该拒绝原假设:即指:雌性老鼠和雄性老鼠在注射毒液后,存活下来的个数没有显著的差异本次分析的结果,不支持,很多人认为的:雄性老鼠和雌性老鼠分别注射毒液后,雌性老鼠存活下来的数量会比雄性老鼠多的结论。
单样本t检验-SPSS教程
单样本t检验-SPSS教程一、问题与数据某研究者拟开展一项健康调查,在开展该研究之前,他想了解所招募的40名研究对象的体重指数BMI是否具有代表性。
根据既往研究报道,目标人群的BMI 均值为24kg/m²。
该研究者想知道他招募的研究对象的BMI均值是否也为24kg/m²。
部分数据图1。
图1 部分数据二、对问题分析研究者拟分析样本均值与总体均值是否不同,即判断招募研究对象的BMI均值与总体人群BMI均值24之间是否有差异。
针对这种情况,可以使用单样本t 检验,但需要先满足4项假设:假设1:观测变量为连续变量,如本研究中的BMI为连续变量。
假设2:观测值相互独立,如本研究中各位研究对象的信息都是独立的,不存在相互干扰作用。
假设3:观测变量不存在显著的异常值。
假设4:观测变量接近正态分布。
假设1和假设2取决于研究设计和数据类型,本研究数据符合假设1和假设2。
那么应该如何检验假设3和假设4,并进行单样本t检验呢?三、SPSS操作3.1 检验假设3:观测变量不存在显著的异常值在主界面点击Analyze→Descriptive Statistics→Explore,在Explore对话框中,将变量BMI选入Dependent List。
在Display模块内点击Plots。
如图2。
图2 Explore点击Plots,出现Explore: Plots对话框,保留Boxplots内系统默认选项Factor levels together,在Descriptive内取消选择Stem-and-leaf,在下方勾选Normality plots with tests。
点击Continue→OK。
如图3。
图3 Explore: Plots经上述操作,SPSS输出箱式图,研究者可根据箱式图判断数据中是否存在异常值。
如图4。
图4 箱式图SPSS中,数据点与箱子边缘的距离大于1.5倍箱身长度,则定义为异常值,以圆点(°)表示;与箱子边缘的距离大于3倍箱身长度,则定义为极端值,以星号(*)表示。
SPSS数据分析 第四章 t检验
3. 被称为观察到的(或实测的)显著性水平
4. 决策规则:若p值<, 拒绝 H0
双侧检验的P 值
/2
拒绝H0
1/2 P 值
/2
拒绝H0
1/2 P 值
临界值 0
临界值
Z
计算出的样本统计量
计算出的样本统计量
左侧检验的P 值
抽样分布
拒绝H0
P值
异较大。其图形如下:
f(t)
ν─>∞(标准正态曲线)
ν=5
ν=1
-5.0
-4.0
-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0
4.0
5.0
t
图3-3 不同自由度下的t 分布图
3.特征:
① 单峰分布,以 0 为中心,左右对称; ② 自由度 越小,则 t 值越分散,t 分布的峰部
越矮而尾部翘得越高; ③当 逼近, SX 逼近 X , t 分布逼近 u 分布,故标
解:研究者想收集证据予以证明的 假设应该是“生产过程不正常”。 建立的原假设和备择假设为
H0 : 10cm H1 : 10cm
【例】某品牌洗涤剂在它的产品说明书中声称: 平均净含量不少于500克。从消费者的利益出发, 有关研究人员要通过抽检其中的一批产品来验 证该产品制造商的说明是否属实。试陈述用于 检验的原假设与备择假设
行比较
3. 作出决策
双侧检验:统计量的绝对值 > 临界值,拒 绝H0
左侧检验:统计量 < 临界值,拒绝H0 右侧检验:统计量 > 临界值,拒绝H0
利用 P 值 进行决策
什么是P 值?